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Faithful SGCE imprinting in iPSC-
derived cortical neurons: an 
endogenous cellular model of 
myoclonus-dystonia
Karen Grütz1, Philip Seibler1, Anne Weissbach1, Katja Lohmann1, Francesca A. Carlisle2, 
Derek J. Blake2, Ana Westenberger1, Christine Klein1 & Anne Grünewald1,3

In neuropathology research, induced pluripotent stem cell (iPSC)-derived neurons are considered a tool 
closely resembling the patient brain. Albeit in respect to epigenetics, this concept has been challenged. 
We generated iPSC-derived cortical neurons from myoclonus-dystonia patients with mutations (W100G 
and R102X) in the maternally imprinted ε-sarcoglycan (SGCE) gene and analysed properties such as 
imprinting, mRNA and protein expression. Comparison of the promoter during reprogramming and 
diơerentiation showed tissue-independent diơerential methylation. DNA sequencing with methylation-
speciƤc primers and cDNA analysis in patient neurons indicated selective expression of the mutated 
paternal SGCE allele. While Ƥbroblasts only expressed the ubiquitous mRNA isoform, brain-speciƤc 
SGCE mRNA and ε-sarcoglycan protein were detected in iPSC-derived control neurons. However, 
neuronal protein levels were reduced in both mutants. Our phenotypic characterization highlights the 
suitability of iPSC-derived cortical neurons with SGCE mutations for myoclonus-dystonia research and, 
in more general terms, prompts the use of iPSC-derived cellular models to study epigenetic mechanisms 
impacting on health and disease.

Induced pluripotent stem cell (iPSC) technology has greatly advanced our understanding of pathways underlying 
neurological disorders1,2. Recent work suggested epigenetic variations between di�erent iPSC lines from the same 
individual and even between di�erent passages of an identical clone3, raising doubt as to the applicability and 
reproducibility of the method. �erefore, it is of great importance to investigate the utility of iPSC technology to 
study speci�c epigenetic-related neurological diseases such as myoclonus-dystonia (M-D).

M-D is an alcohol-responsive early-onset movement disorder. Patients commonly su�er from myoclonic jerks 
of the neck, trunk, and upper limbs, as well as dystonia. Established diagnostic criteria classify patients as ‘pos-
sible’, ‘probable’, and ‘de�nite’ M-D. More than 75% of the clinically ‘de�nite’ cases harbour mutations in SGCE4.

SGCE-associated M-D is inherited in an autosomal-dominant fashion with variable expressivity and incom-
plete penetrance5. �e latter is caused by maternal imprinting, an epigenetic phenomenon resulting in selective 
silencing of the maternal SGCE allele6,7, a �nding that is of translational relevance as it speci�cally informs genetic 
counselling of mutation carriers.

The protein encoded by SGCE, i.e. ε-sarcoglycan, belongs to a family of transmembrane proteins. A 
brain-speci�c isoform of SGCE, which includes an additional exon, i.e. exon 11b, is predominantly expressed in 
the cerebral cortex, the cerebellum, and the hippocampus8.

While wildtype ε-sarcoglycan localizes to the plasma membrane, all missense mutant forms currently ana-
lysed were retained intracellularly and degraded by the proteasome in overexpression studies using mammalian 
cell lines9.
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Here, we explore, for the �rst time, the potential of iPSC-derived neurons from M-D patients as a human cel-
lular disease model to study the molecular consequences of endogenous SGCE mutations, with special emphasis 
on the phenomenon of maternal imprinting of the SGCE gene.

Results
iPSCs from M-D patients with SGCE mutations are eƥciently diơerentiated into cortical neurons.
We generated iPSC colonies from �broblasts of a patient with W100G SGCE and from a patient harbouring the 
most common SGCE mutation - R102X10. Immuno�uorescence analysis indicated high levels of the endogenous 
pluripotency markers OCT4, Tra-1-60, NANOG, and SSEA-4 in the patient iPSC lines (Fig. 1A). �e karyotype 
of both lines was normal (Fig. 1B) and quantitative RT-PCR analysis showed e�cient silencing of the viral trans-
genes OCT4, SOX2, cMYC, and KLF4 when compared to newly infected �broblasts (Fig. 1C). In keeping with 
the immuno�uorescence results, mRNA expression analysis indicated high levels of the pluripotency markers 
NANOG, GDF3, OCT4, and SOX2 in both patient iPSC lines compared to non-transfected �broblasts (Fig. 1D). 
Comparison of AFP, GATA4 and SOX17 (endoderm), RUNX1, MSX1 and MYH6 (mesoderm) as well as NCAM, 
PAX6 and NES (ectoderm) expression by quantitative RT-PCR of plated embryoid bodies and the respective 
iPSCs con�rmed the potential of the iPSCs to diverge into all three germ layers (Fig. 1E). From these results we 
concluded that the M-D patient �broblasts were successfully reprogrammed into iPSCs.

In light of predominant SGCE expression in the cortex8, the SGCE-mutant and control iPSCs were di�eren-
tiated into cortical neurons. Immuno�uorescence analysis indicated that about a third of cells positive for the 
neuronal marker TUJ1 also express Tbr1 (which localizes to the cortical layers I, II/III, Vb, VI and the subplate) 
or Brn2 (which is present in the cortical layers I,II/III and Vb)11 (Fig. 1F).

Diơerential methylation of the SGCE promoter in control and M-D patient iPSCs and iPSC-derived  
neurons. Next, we investigated the impact of the reprogramming and differentiation procedure on the 
methylation status of the SGCE promoter. For this, DNA was extracted from blood, �broblasts, iPSCs, and 
iPSC-derived neurons of a healthy individual. Sanger sequencing a�er bisul�te treatment (which mediates the 
conversion of all un-methylated cytosines into uracil residues that subsequently appear as thymines) revealed dif-
ferentially methylated CpG dinucleotides in all investigated control DNA samples (Fig. 2A). �e same experiment 
was performed with DNA from the M-D patient neuron cultures. �is analysis con�rmed di�erential methyla-
tion at all of the 25 CpG repeats tested (data not shown).

Moreover, a sequencing approach with methylation-specific primers applied to bisulfite-treated DNA 
extracted from control (Cnt1) and M-D patient (W100G and R102X) iPSC-derived neurons indicated two dis-
tinct statuses of the promoter region – i.e. (i) methylation of all CpG islands along the entire length of the ampli-
�ed DNA fragment or (ii) no occurrence of DNA methylation at all. Areas of intermittent methylation were not 
detected with our approach (Fig. 2B).

iPSC-derived neurons from M-D patients and controls express the brain-speciƤc splice variant 
of SGCE. To further characterize the iPSC-derived neurons from M-D patients with SGCE mutations and 
controls, we analysed the two most abundant mRNA SGCE isoforms. The prevalent brain-specific isoform 
(NM_001099400.1) can be distinguished from the ubiquitous isoform (NM_003919.2) by the presence of the 
alternatively spliced exon 11b and the absence of exon 8 (Fig. 3A)12.

cDNA sequencing revealed that, while the ubiquitous SGCE isoform prevailed in control �broblasts, a com-
bination of ubiquitous and brain-speci�c SGCE was expressed in iPSC-derived neurons (Fig. 3B). Real-time 
PCR expression analysis with one primer situated in exon 11b supported this result. Markedly higher levels of 
brain-speci�c SGCE were detected in control and W100G-mutant iPSC-derived neurons compared to the levels 
in control �broblasts. In neurons with the R102X SGCE nonsense mutation, however, a drastic reduction of the 
brain-speci�c SGCE isoform was observed. We obtained similar SGCE gene expression results irrespective of 
which housekeeping gene (ACTB or HPRT1) was used as reference (Fig. 3C). Furthermore, quantitative RT-PCR 
analysis of the marker gene MAP2 con�rmed the neuronal character of the resulting cell cultures (Fig. 3C).

Reduced levels of brain-specific SGCE transcript in R102X-mutant patient neurons due to 
nonsense-mediated mRNA decay. First, to test whether the observed reduction in mRNA levels in the 
R102X neurons is speci�c to the brain-speci�c SGCE transcript, we also quanti�ed the expression of Paternally 
Expressed Gene 10 (PEG10) in our neuronal samples. The maternally imprinted PEG10 gene is located in a 
head-to-head position with SGCE and it shares some of its promoter region with SGCE13. Our quantitative RT-PCR 
analysis indicated no depletion of PEG10 mRNA in neurons harbouring the R102X mutation in SGCE (Fig. 3D).

Next, we explored the possibility of nonsense-mediated mRNA decay (NMD) as cause of low SGCE transcript 
levels in the R102X neurons. Treating the cells with 0, 20 or 100µg/ml cycloheximide - a potent NMD inhibitor14

- resulted in increasing mRNA concentrations of brain-speci�c SGCE (Fig. 3E, upper panel). Furthermore, cDNA 
sequencing at each of the di�erent cycloheximide concentration steps implicated that the observed e�ect is predomi-
nantly due to elevated expression of the nonsense-mutant paternal allele a�er NMD inhibition (Fig. 3E, lower panel).

Maternal imprinting of SGCE is maintained in iPSC-derived M-D patient neurons regardless 
of mutation type. Studying the mRNA in the iPSC-derived M-D patient neurons provided us with addi-
tional clues about the imprinting status of the SGCE promoter. Further exploiting our expression data, in the 
R102X neurons, drastically reduced SGCE levels were not only evidence of nonsense-mediated decay of mRNA 
encoded by the mutant paternal allele. Considering the previously observed ‘all-or-none’ methylation pattern of 
the SGCE promoter, reduced SGCE expression is also indicative of stable imprinting of the maternal wildtype 
allele throughout the reprogramming and di�erentiation procedure of the iPSCs.
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Figure 1. Characterization of iPSCs and cortical neurons derived from controls and M-D patients.  
(A) Immuno�uorescence detection of pluripotency markers SSEA-4, NANOG, Tra-1-60, and OCT4 in iPSC 
colonies of both M-D patients. (B) Karyotype analysis of the iPSC clones from both patients. (C) Residual 
expression levels of the transgenes OCT4, SOX2, cMYC, and KLF4 (relative to ACTB) used for retroviral 
reprogramming. Values were normalized for respective expression levels in infected �broblasts (isolated 7 days 
post infection). �e error bars indicate SD. (D) Relative gene expression of the pluripotency markers NANOG, 
GDF3, OCT4, and SOX2 in �broblasts and iPSCs. ACTB served as housekeeping gene. Expression levels of 
�broblasts were set to 1. (E) Relative gene expression of AFP, GATA4 and SOX17 (endoderm), RUNX1, MSX1 and 
MYH6 (mesoderm) as well as NCAM, PAX6 and NES (ectoderm), representing all three germ layers. ACTB served 
as housekeeping gene and spontaneously di�erentiated embryoid bodies of iPSCs were compared to the respective 
iPSC line. (F) Immuno�uorescence analysis of the neuronal marker TUJ1 (red), and the cortical markers Tbr1 
(blue) and Brn2 (green) (upper image) and DAPI (white) (lower image) in iPSC-derived patient neurons.
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�is �nding is supported by cDNA sequencing of SGCE in the missense-mutant neurons. In line with maternal 
imprinting, our analysis con�rmed the presence of the paternal mutant c.298G allele (encoding a glycine at posi-
tion 100 of ε-sarcoglycan) and complete absence of the maternal c.298T wildtype allele in the missense-mutant 
neurons (Fig. 3F).

Wildtype ε-sarcoglycan localizes to the plasma membrane in iPSC-derived neurons. In over-
expression studies, ε-sarcoglycan has previously been shown to localize to the plasma membrane9. We were able 
to replicate this �nding when transiently transfecting HEK 293FT cells with a vector expressing brain-speci�c 
ε-sarcoglycan-Myc-FLAG. In a fractionation experiment, e�cient separation of the cytosol from the plasma 
membrane was achieved by di�erential centrifugation as indicated by the localization of the marker proteins 
β-actin and Flotilin-1 to the respective fractions (Fig. 4A). FLAG-tagged ε-sarcoglycan was selectively identi-
�ed in the plasma membrane fraction using an anti-FLAG antibody as well as an antibody (esg2-1355) directed 
against the brain-associated isoform of ε-sarcoglycan (Fig. 4A) con�rming the speci�city of the latter antibody. 
Accordingly, the endogenous brain-speci�c isoform of the protein was detected in iPSC-derived control neu-
rons but not in �broblasts of a healthy individual (Fig. 4B). Fractionation experiments with SH-SY5Y cells and 
control iPSC-neurons also indicated that endogenous human ε-sarcoglycan localizes to the plasma membrane 
(Fig. 4C,D).

Figure 2. Detection of di�erentially methylated CpG dinucleotides in the promoter region of SGCE in 
iPSC-derived neurons. �e methylation pattern of the SGCE promoter was investigated by DNA sequencing 
with methylation-speci�c primers a�er bisul�te treatment. Upon bisul�te treatment, un-methylated cytosines 
are converted to uracil and therefore appear as thymines in the resulting sequence. (A) Possible sequencing 
outcomes and their interpretation are illustrated in the upper panel. In the lower panel, sequencing results of 
DNA extracted from blood, �broblasts, iPSCs and iPSC-derived neurons of a healthy individual are shown. 
Di�erential methylation was detected in all tissues. (B) Methylation-speci�c sequencing of the SGCE promoter 
region in iPSC-neurons of one control and both M-D patients revealed the presence of fully methylated DNA 
alongside fully unmethylated DNA in the samples representing the maternal and paternal allele, respectively. 
Continuous methylation (i.e. no alternation of non-methylated and methylated CpG islands) was detected.
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The W100G missense mutation promotes proteasomal degradation of endogenous ε-sarcoglycan.
Finally, we investigated the abundance of endogenous brain-speci�c ε-sarcoglycan in iPSC-derived neurons from 
the M-D patients with the R102X and W100G mutations, respectively. For both mutants, we did not detect any 
ε-sarcoglycan protein (Fig. 4E). For R102X, this is in line with NMD of mRNA transcribed from the mutated, 
paternal SGCE allele. In case of W100G ε-sarcoglycan, we hypothesized that the absence of the protein (despite 
high expression at the mRNA level) may be due to proteasomal degradation as previously observed in heterol-
ogous cells9,15. To prove this assumption, we treated missense mutant neurons with the proteasome inhibitor 
MG123 which resulted in a partial recovery of the abundance of W100G ε-sarcoglycan. By contrast, the treatment 

Figure 3. SGCE transcripts in �broblasts and iPSC-derived neurons. (A) Sequence alignment of the ubiquitous 
isoform (NM_003919.2) and the brain-speci�c isoform (NM_001099400.1). �e two isoforms di�er with respect 
to the presence of exons 8 and 11b. (B) cDNA sequencing indicates expression of the ubiquitous mRNA SGCE
isoform in �broblasts and the presence of the ubiquitous as well as the brain-speci�c isoform (includes exon 11b) 
in iPSC-derived neurons. (C) Gene expression analysis in iPSC-derived neurons from M-D patients and controls. 
�e levels of the brain-speci�c SGCE transcript and the neuronal marker MAP2 were determined relative to the 
expression of the housekeeping genes ACTB and HPRT1. Fibroblasts from two healthy individuals were used 
as negative controls. Values were normalized to the neuronal control (Cnt) 1. �e error bars indicate SE. (D) 
PEG10 expression analysis in iPSC-derived neurons from M-D patients and controls. �e levels of PEG10 were 
determined relative to the expression of the housekeeping genes ACTB and HPRT1. �e error bars indicate SE. 
(E) Expression of R102X brain-speci�c SGCE upon treatment with cycloheximide. Values were normalized to the 
nonsense mutant without treatment. �e lower panel depicts the cDNA sequence upon di�erent cycloheximide 
concentrations. (F) SGCE cDNA sequencing in blood and iPSC-derived neurons of the missense-mutant M-D 
patient (W100G). �e absence of the maternal c.298T allele and selective expression of the paternal c.298G allele 
was in concordance with imprinting of the maternal wildtype allele in the patient neurons.
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did not impact on the protein levels of wildtype ε-sarcoglycan in control iPSC-neurons (Fig. 4F). Importantly, the 
lack of ε-sarcoglycan protein in both patient samples is further evidence of complete imprinting of the maternal 
wildtype allele of SGCE in iPSC-derived neurons.

Discussion
�e objective of our study was to establish iPSC-derived cortical neurons from patients with mutations in the 
maternally imprinted gene SGCE as a suitable human cellular model system for M-D and – as proof-of-principle 
– for other neurological diseases where the epigenetic mechanism of imprinting plays an important role. Indeed, 
we have shown allele-speci�c methylation of the promoter region of SGCE in iPSC-derived neurons from healthy 
controls and mutation-positive patients for the �rst time. �e SGCE imprinting patterns of the source �bro-
blast lines are maintained throughout the reprogramming and di�erentiation process. In control neurons, the 
brain-speci�c isoform of SGCE is expressed and the endogenous wildtype protein localizes to the plasma mem-
brane. However, in the presence of the W100G missense mutation, ε-sarcoglycan is degraded intracellularly with 
involvement of the proteasome system. By contrast, the R102X mutation interferes with SGCE gene expression.

�e advent of iPSC technology in 200616 has revolutionized research especially in disorders a�ecting the brain. 
To date, well over a thousand studies have been published utilizing the original or adapted versions of the protocol 
by Takahashi and Yamanaka which allows conversion of somatic cells into a pluripotent state. �e resulting iPSCs 
may be redirected into any desired cell type, including cortical neurons17,18.

Despite the unprecedented success of the method, concerns have recently been raised regarding non-physiological  
epigenetic alterations occurring during reprogramming which may interfere with the methylation status of 
imprinted genes3. Hypomethylation as the consequence of repeated iPSC passaging has been described for var-
ious loci19,20. Ultimately, loss of allele-speci�c gene expression may cause phenotypes to prevail which are not 
related to the disease under investigation3. An approach to circumvent or at least minimize the impact of epige-
netic variations in iPSCs is to focus on ‘local’ phenotypes that can safely be traced back to a speci�c gene muta-
tion. SGCE-associated M-D can serve as such an exemplary model, allowing the study of mechanisms of reduced 
penetrance which is a research �eld currently gaining considerable interest.

Extending our previous results from blood DNA7, we now showed that SGCE is maternally imprinted in 
iPSC-derived neurons from M-D patients with SGCE mutations. Di�erential methylation of the SGCE promoter 
region together with the absence of wildtype SGCE mRNA and/or ε-sarcoglycan protein provided evidence of 
epigenetic silencing of the maternal allele in missense and nonsense-mutant neurons. In light of a previous study 

Figure 4. Cellular localization of ε-sarcoglycan in iPSC-derived cortical neurons. (A) �e speci�city of the 
esg2-1355 antibody was tested in HEK 293FT cells overexpressing brain-speci�c ε-sarcoglycan with a Myc-
FLAG tag. In a fractionation experiment, ε-sarcoglycan-Myc-FLAG was selectively detected in the membrane 
fraction independently of the antibody used (anti-FLAG or esg2-1355). β-actin served as cytosolic marker, 
while Flotilin-1 was used to identify the membrane fraction. (B) Wildtype brain-speci�c ε-sarcoglycan was 
detectable in iPSC-derived control cortical neurons but not in �broblasts using esg2-1355. β-actin protein 
levels were used as a loading control. (C,D) In SH-SY5Y cells (C) and iPSC-derived neurons (D), endogenous 
wildtype brain-speci�c ε-sarcoglycan was localized in the membrane fraction. (E) While endogenous brain-
speci�c ε-sarcoglycan was identi�ed in two control iPSC-derived neuron samples, no signal was observed 
in cells from the R102X nonsense mutant (due to nonsense-mediated mRNA decay). Similarly, endogenous 
W100G ε-sarcoglycan was undetectable in iPSC-derived patient neurons. (F) Treatment with the proteasome 
inhibitor MG132 partially rescued W100G ε-sarcoglycan in the cells.
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demonstrating maternal imprinting of SGCE throughout the human brain8, we assume that iPSC-derived M-D 
patient cortical neurons mirror the physiological SGCE methylation status in the cortex.

Nevertheless, based on neuroimaging, the ‘all-or-none’ e�ect of SGCE imprinting has been questioned. When 
using positron emission tomography, metabolic changes were found in the thalamus, pons and cortex of M-D 
patients as well as non-manifesting individuals with mutations in the maternal SGCE allele21. To challenge these 
divergent hypotheses, it will be interesting to study SGCE promoter methylation in iPSC-derived neurons from 
clinically una�ected mutation-positive relatives of patients in the future.

SGCE mRNA transcripts are spliced in a tissue-speci�c manner. An isoform which includes an additional 
exon between exons 11 and 12, i.e. exon 11b, is predominantly expressed in the brain with highest levels in the 
motor cortex and somatosensory cortex8. Highlighting the �delity of our M-D model system, we detected signif-
icantly increased cDNA concentrations of transcripts containing exon 11b in iPSC-derived neurons compared to 
�broblasts. Further strengthening these results, an antibody directed against brain-speci�c ε-sarcoglycan identi-
�ed the protein in iPSC-derived neurons but not in �broblasts of controls.

�e majority of M-D patients with a mutation in SGCE harbour deletions, insertions or nonsense changes 
that result in a premature stop codon10. As an example of such a scenario, we investigated iPSC-derived neurons 
from a patient carrying the R102X mutation. In these cells, mRNA levels of SGCE exon 11b were markedly 
reduced implicating nonsense-mediated decay of the mutant transcripts. Treatment of R102X neurons with the 
NMD inhibitor cycloheximide indeed con�rmed that the mutation induces degradation of SGCE transcripts. 
Furthermore, expression analysis of PEG10 – a gene which is located in a head-to-head position with SGCE and 
which is under the control of the same promoter13 – con�rmed that the observed mRNA downregulation in 
the nonsense-mutant neurons is not a global phenomenon but instead limited to SGCE transcripts. In line with 
NMD, endogenous R102X ε-sarcoglycan protein was equally lacking in the patient neurons.

Overexpression of mouse wildtype or H36P, H36R, and L172R ε-sarcoglycan (corresponding to human 
H60P, H60R, and L196R ε-sarcoglycan, respectively) in neuronal human cell lines revealed that the normal pro-
tein localizes to the plasma membrane and the Golgi apparatus, whereas missense mutants are retained in the 
endoplasmic reticulum (ER). Assisted by the ubiquitin system, these newly synthesized misfolded ε-sarcoglycan 
forms undergo retrotranslocation from the ER to the proteasome9. Having access to �broblasts from an M-D 
patient with a missense mutation, we tested the cellular abundance and localization of W100G ε-sarcoglycan in 
iPSC-derived cortical neurons and indeed observed phenotypes in line with the published data for mouse H36P, 
H36R, and L172R ε-sarcoglycan. At the endogenous level, W100G ε-sarcoglycan proved to be a target for protea-
somal degradation in the cytosol.

Taken together, our characterization of iPSC-derived cortical neurons with mutations in SGCE revealed that 
these cells are a suitable model mirroring the endogenous environment in the M-D patient brain, especially, 
when focusing on concrete molecular aspects of the disease mechanism. We predict that future studies applying 
this model system will contribute to a better understanding of endogenous ε-sarcoglycan function and, more 
generally speaking, will further prompt the use of iPSC-derived cellular models to study epigenetic mechanisms 
impacting on health and disease.

Methods
Patients. All patients and control individuals gave informed consent and the Ethics Committee at the 
University of Lübeck approved the study. Further, all methods were performed in accordance with the experi-
mental protocols approved by the Ethics Committee at the University of Lübeck. �e diagnosis of M-D was estab-
lished based on published criteria10. Detailed demographic and phenotypic information on the patients (L-5007 
and L-6074) has been previously published22. Two healthy controls included in the study were aged 33 and 59 
years at biopsy taking and carried no mutation in the SGCE gene.

Culture of cell lines and iPSC-derived neurons. HEK 293FT cells, SH-SY5Y cells, and human dermal 
�broblasts from controls and two M-D patients with mutations in SGCE (i.e. W100G and R102X) were grown at 
37 °C under a 5% CO2 humidi�ed atmosphere in DMEM supplemented with 10% FBS and 1% penicillin/strepto-
mycin. Generation of iPSCs was carried out as previously published1. Cortical neuron di�erentiation was adapted 
from Shi et al.18. In brief, iPSCs were plated as single cells. At 95% con�uency, di�erentiation was initiated in neu-
ral di�erentiation medium supplemented with Dorsomorphine (1µM), SB 431542 (10µM) and Y-27632 (10µM).  
Until day twelve of di�erentiation, the medium composition was gradually shi�ed from neural di�erentiation 
medium to neural maintenance medium (NMM) supplemented with Dorsomorphine, SB 431542 and Y-27632. 
From day 13 to 17, the cells were cultured in NMM medium containing FGF (FGF2, basic �broblast growth fac-
tor; 20 ng/ml) and BDNF (Brain-derived neurotrophic factor; 20 ng/ml). Neural rosettes were manually replated 
on day 18 in NMM with BDNF (20 ng/ml), GDNF (Glial cell-derived neurotrophic factor; 20 ng/ml), and AA 
(ascorbic acid; 0.2 mM). �e medium was exchanged every second day until day 27 including an additional man-
ual rosette replating on day 23. On day 28, the rosettes were dissociated using accutase and plated at desired 
densities in NMM (with BDNF, GDNF, and AA). Until day 43, the medium (NMM with BDNF, GDNF, and AA) 
was changed every three days. For �nal di�erentiation the cells were cultured in NMM.

Inhibition of NMD was achieved by cycloheximide treatment for 8 hours at 20µg/ml and 100µg/ml �nal 
concentration. Proteasome inhibition by MG132 treatment was carried out at 10 µM �nal concentration for 
8 hours. For transient transfection of brain-speci�c SGCE in HEK 293FT cells, a pCMV6 Entry vector (OriGene 
Technologies, Inc. Rockville, USA) was used. Cells for immuno�uorescence were �xed in 4% formaldehyde for 
15 minutes, permeabilised with 0.1% Triton X-100, and blocked in 4% appropriate normal serum.
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Western blotting and immunofluorescence analyses. Western blotting and immunofluores-
cence analyses were performed as published23 with the following antibodies: anti-OCT4 (Abcam, Cambridge, 
UK), anti-Tra-1-60 (Merck Millipore, Darmstadt, Germany), anti-NANOG (Stemgent, Lexington, USA), 
anti-SSEA-4 (Merck Millipore, Darmstadt, Germany), anti-TUJ1 (Covance Inc., Princeton, USA), anti-Tbr1 
(Abcam, Cambridge, UK), anti-Brn2 (Santa Cruz), anti-ε-sarcoglycan (esg2-1355, published antibody against 
the brain-speci�c isoform of the protein)24, anti-FLAG (Sigma Aldrich, St. Louis, USA), anti-Flotilin-1 (Cell 
Signaling Technology, Danvers, USA), and anti-β-actin (Sigma Aldrich, St. Louis, USA).

RNA extraction, real-time PCR analysis, and sequencing. RNA was extracted using the RNAeasy 
protect kit (Qiagen, Venlo, Netherlands). Complementary DNA was synthesized with the Maxima First Strand 
cDNA Synthesis Kit (�ermo Fisher Scienti�c, Waltham, USA). Quanti�cation was carried out on the LC480 
(Roche) system with the Maxima SYBR Green/Fluorescein qPCR Master Mix (Thermo Fisher Scientific, 
Waltham, USA). Bisul�te treatment of DNA was performed with the Premium Bisul�te Kit (Diagenode, Liège, 
Belgium). DNA sequences were obtained by Sanger sequencing on an ABI 3130XL system (Applied Biosystems; 
�ermo Fisher Scienti�c, Waltham, USA). To test whether imprinting occurs on a single SGCE allele only, DNA 
was extracted from control and patient neurons and treated with bisul�te. Using this DNA, methylation-speci�c 
ampli�cation of the promoter region of SGCE was achieved by primers binding selectively to regions containing 
multiple CpG islands. �e resulting sequences represent pooled neuronal DNA enriched for either the presence 
or absence of methylated sites. All primer sequences can be found in the Supplementary Table S1.

Subcellular fractionation. Cell pellets were dissolved in a homogenization bu�er (sucrose 250mM, Hepes 
10 mM, pH 7.4) with anti-protease cocktail at 4 °C. Lysis was achieved by 30 strokes through a G22 needle and a 
1 ml syringe. �rough consecutive steps of centrifugation (10 min at 1,000 g and 10 min at 10,000 g), whole cells, 
debris and mitochondria were extracted from the solution. �e membrane fraction and the cytosol were sepa-
rated a�er 3 hours of centrifugation at 18,000 g25.
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