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Turbulent Rayleigh-Bénard convection with polymers: Understanding how heat flux is modified
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We study how polymers affect the heat flux in turbulent Rayleigh-Bénard convection at moderate Rayleigh
numbers using direct numerical simulations with polymers of different relaxation times. We find that heat flux
is enhanced by polymers and the amount of heat enhancement first increases and then decreases with the
Weissenberg number, which is the ratio of the polymer relaxation time to the typical time scale of the flow. We
show that this nonmonotonic behavior of the heat flux enhancement is the combined effect of the decrease in
the viscous energy dissipation rate due to the viscosity of the Newtonian fluid and the increase in the energy
dissipation rate due to polymers when Weissenberg number is increased. We explain why the viscous energy
dissipation rate decreases with the Weissenberg number. Then by carrying out a generalized boundary layer
analysis supplemented by a space-dependent effective viscosity from the numerical simulations, we provide a
theoretical understanding of the change of the heat flux when the viscous energy dissipation rate is held constant.
Our analysis thus provides a physical way to understand the numerical results.
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I. INTRODUCTION

It is well known that adding polymers to turbulent wall-
bounded flows can significantly reduce the friction drag or,
equivalently, increase the mass transport. The phenomenon
of turbulent drag reduction by polymers has been extensively
studied since its discovery by Toms in 1948 [1]. Compared
to drag reduction, the effect of polymers on the heat transport
in turbulent thermal convection is much less explored and
has been the focus of several recent studies [2–5]. Rayleigh-
Bénard (RB) convection [6–9] is a paradigm system to study
turbulent thermal convection. In the RB system, a fluid is
constrained between two horizontal plates that are heated from
below and cooled from above, and the system is controlled by
two parameters: the Rayleigh number, Ra = αg�T H 3/(κνs),
which measures the thermal forcing due to the temperature
difference �T between the two plates, and the Prandtl number,
Pr = νs/κ , which is the ratio between the kinematic viscosity
νs and the thermal diffusivity κ of the fluid. In addition, α

is the isobaric volume expansion coefficient of the fluid, g is
the acceleration due to gravity, and H is the vertical distance
between the top and bottom plates. In turbulent RB convection,
there are distinct flow regions, namely viscous boundary layers
near all rigid walls and two thermal boundary layers, one
above the bottom plate and one below the top plate, and an
approximately homogeneous bulk flow in the central region of
the convection cell.

The bulk flow of turbulent RB convection without the
boundary layers is believed [10] to be a good approximation
of the ultimate regime [11] at large Ra. To study the
effect of polymers in this case, we have performed direct
numerical simulations (DNS) of homogeneous turbulent ther-
mal convection without boundaries using periodic boundary
conditions [2] and found that polymers enhance heat transport.
A similar heat enhancement by polymers has been found in
Rayleigh-Taylor turbulence [4]. At variance with these results,
experiments on turbulent RB convection of water at moderate
Ra [3] reveal that polymers reduce heat transport and the

amount of reduction increases with polymer concentration.
This reduction of heat transport by polymers at moderate
Ra has also been found in a later experimental study [5]. To
account for these experimental findings, some of us [12] have
generalized the classical boundary layer theory [13–15] to
study heat transport by boundary layer flow with polymers
using the Oldroyd-B model [16], in which polymer chains
can be stretched indefinitely without a limit. We recall that
the classical boundary layer theory was developed for steady-
state forced convection above a semi-infinite weakly heated
plate [17,18] and has been shown [7,19] to provide basic
understanding of the physics of heat transport in fluctuating
boundary layers in turbulent RB convection at moderate Ra. On
the other hand, experiments using convection cell with rough
top and bottom plates indicated that heat flux is enhanced
by polymers when the concentration of polymers is not too
small [15,20]. It is believed that the pyramidal structures of
the rough plates perturb the boundary layers and make the flow
resembling that of the bulk flow even at moderate Ra.

Our work in Ref. [12] and its extension to finitely extensible
polymers [21] shows that polymer stretching gives rise to a
space-dependent effective viscosity in boundary layer flow.
For the Oldroyd-B polymers and for polymers with large
finite extensibility, the effective viscosity vanishes quickly as
one moves away from the plate and is nonzero only within
a region very close to the plate. In both cases, a reduction
in heat transport is found and the amount of heat reduction
increases with polymer concentration, in agreement with the
experimental observations in Ref. [3]. It is thus reasonable
to assume that the specific details of polymer stretching
determine heat transport in the system.

In this paper, we investigate turbulent RB convection at
moderate Ra with Oldroyd-B polymers of different relaxation
times and thus different stretching behaviors. The remainder of
this paper is organized as follows. In Sec. II we give a brief re-
view of our earlier DNS study of the bulk flow without bound-
ary layers [2] and the generalization of the classical boundary
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layer theory in the presence of polymers [12]. In Sec. III we
report the results of our present DNS of turbulent RB convec-
tion at moderate Ra with polymers of different relaxation times
and discuss how we can use the generalized boundary layer
analysis to provide a theoretical understanding of the change
in heat flux due to polymers. Conclusions follow in Sec. IV.

II. REVIEW OF PREVIOUS RESULTS

In the Boussinesq approximation, the equations of motion
for RB convection with polymers are

Dua

Dt
= −∇ap + νs∇2ua + ∇bTab + αg(T − T∗) δaz, (1)

DT

Dt
= κ∇2T , (2)

where D/Dt ≡ ∂t + �u · �∇ is the material derivative, �u is the
velocity field with components ua , a = x,y,z, with x and
y along the horizontal directions and z along the vertical
direction, p is the pressure, and T is the temperature field with
T∗ being the mean temperature averaged over time and the
whole system. We have used the repeated indices summation
convention and for simplicity the density of the fluid is taken to
be 1. The polymeric stress tensor Tab depends on how much the
polymer chains are stretched and is a function of the polymer
conformation tensor Rab. Let �d be the end-to-end distance
vector of a polymer chain, and Rab is the ensemble average
of dadb normalized by the equilibrium value of the ensemble
average of d2

a /3. For Oldroyd-B polymers,

Tab(�r,t) = νp

τ
[Rab(�r,t) − δab] (3)

and the equation of motion for Rab is

DRab

Dt
= ∂cuaRcb + Rac∂cub − 1

τ
(Rab − δab). (4)

Here νp is the polymer contribution to the zero-shear viscosity
of the polymer solution, which increases with polymer con-
centration, and τ is the relaxation time of the polymers. Heat
transport is measured by the dimensionless Nusselt number
(Nu), which is the normalized heat flux defined by

Nu ≡ 〈uzT − κ∂zT 〉A
κ�T/H

, (5)

where 〈· · · 〉A denotes an average over a horizontal plane of the
convection cell and time.

Equations (1)–(4) have been studied in two different limits,
namely (a) large Ra with periodic boundary conditions [2,4]
and (b) moderate Ra with no-slip boundary condition for ve-
locity and isothermal boundary condition for temperature [12].
Case (a) corresponds to the ultimate regime [11] in which
Nu scales as Ra1/2. In this case, numerical simulations show
an increase of Nu when polymers are added to the system.
For case (b), the effect of polymers has been analyzed in the
framework of the classical boundary layer theory, which has
been known [7,19] to be a good approximation for moderate
Ra and stable boundary layers. We will review the two cases
separately in order to highlight the different physics.

In the ultimate regime, most of the energy dissipation is
supposed to occur in the bulk of the system. In this case,

polymers enhance the length scale lT of thermal plumes and the
correlation of vertical velocity and temperature fluctuations,
and Nu increases with the polymer relaxation time τ or
equivalently, the Weissenberg number Wi, defined by

Wi ≡ τUc

H
, (6)

where Uc = √
αg�T H . More precisely, we find that Nu

∼ l
3/2
T ∼ Wi3/2.
On the other hand, the experimental investigation of the

problem at moderate Ra [3,5] reported a small but clear
reduction of Nu in the presence of polymers. At low Ra, most of
the energy dissipation is concentrated in the boundary layers,
and therefore the numerical results reviewed above for the
ultimate regime do not apply. In an attempt to understand these
experimental results, some of us have generalized the classical
theory for boundary-layer flow with polymers in Ref. [12]. The
Prandtl-Blasius [13,14] boundary-layer equation of motion for
the steady-state velocity field uxx̂ + uzẑ is

ux∂xux + uz∂zux = νs∂
2
zzux. (7)

Here x denotes the direction along the plate, z is the direction
perpendicular to the plate, and ux → U as z → ∞. The
mainstream velocity U plays the role of the large-scale mean
flow velocity in turbulent RB convection. The crucial point
about Eq. (7) is that the viscous term is balanced against
the nonlinear advection term and that ∂z � ∂x . The latter is
satisfied for flows with large Reynolds number. Introducing
the stream function

	(x,z) ≡
√

νsxUφ(ξ ) (8)

with

ξ ≡
√

U

νsx
z (9)

such that ux = ∂z	 and uz = −∂x	, we obtain the famous
Blasius equation [14]

2φξξξ + φφξξ = 0. (10)

Here φξ denotes ∂ξφ. The no-slip boundary conditions, ux =
uz = 0 at the plate, and the condition ux → U far away from
the plate lead to

φ(0) = φξ (0) = 0; φξ (∞) = 1. (11)

Following the works of Prandtl [13] and Blasius [14],
Pohlhausen [15] obtained also the equation for temperature
field. By writing the temperature field as

T (x,z) = T0 + (T1 − T0)θ (ξ ), (12)

where T1 and T0 are respectively the temperatures at the plate
and far away from the plate (or at the center of the convection
cell in turbulent RB convection), θ (ξ ) satisfies the equation

2θξξ + Pr φθξ = 0 (13)

with the boundary conditions

θ (0) = 1; θ (∞) = 0. (14)
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In the presence of polymers described by the Oldroyd-B
model, Eq. (7) is modified to [12,21]

ux∂xux + uz∂zux = νs∂
2
zzux + νp

τ
∂z(Rxz). (15)

Replacing νs by the zero-shear viscosity ν0 = νp + νs of the
polymer solution in Eqs. (8) and (9), one obtains

−1

2
φφξξ = (1 − γ )φξξξ + γ

Wib
√

Reb

∂ξRxz, (16)

where

γ ≡ νp

νs + νp

(17)

increases with the polymer concentration, and

Reb = UH

ν0
, (18)

Wib = τU

H
(19)

are respectively the Reynolds and Weissenberg numbers of
the boundary layer flow. To obtain Eq. (16), we have used
the approximation of replacing x by the length H of the
(large) plate in the final equation, and this approximation is
consistent with the boundary layer description, which is meant
to be applicable for x being large. The final step to close the
problem is to express Rxz in terms of φ(ξ ), which can be done
numerically [12,21]. By writing νpRxz(ξ ) ≡ τνeff(ξ )∂zux ≈
Wib

√
Rebνeff(ξ )φξξ again with the approximation of replacing

x by H in the last step, Eq. (16) can always be written as

2∂ξ {[1 + g(ξ )]φξξ } + φφξξ = 0, (20)

where

g(ξ ) ≡ νeff(ξ )

ν0
− γ (21)

with g(0) = 0 and g(ξ ) → 0 as ξ → ∞. The form of the
temperature equation [Eq. (13)] remains unchanged, with Pr
becoming ν0/κ and φ(ξ ) governed by Eq. (20) instead of the
Blasius equation [Eq. (10)]. The generalization of the classical
boundary layer theory to boundary-layer flow with polymers
thus shows that the effect of polymer can be represented by a
space-dependent effective viscosity νeff(ξ ). The function g(ξ )
can be numerically computed and its specific profile depends
on the system parameters, namely Reb, Pr, Wib, and γ . For the
parameters range explored in Ref. [12], g(ξ ) is peaked close to
the boundary, and a decrease in Nu compared to the value Nu0

for the Newtonian case with g(ξ ) = 0 (which corresponds to a
Newtonian fluid with kinematic viscosity ν0) is observed with
the amount of heat reduction increasing with γ or the polymer
concentration, in qualitative agreement with the experimental
observation reported in Ref. [3].

The results from the generalized Prandtl-Blasius-
Pohlhausen (PBP) boundary-layer theory are interesting for
two reasons. First, one can understand the role played by the
viscous boundary layers which is relevant for experimental
results at moderate Ra. Second, we have shown that polymer
effects in the boundary layers are equivalent to a space-
dependent effective viscosity. In the following, we show that
the profile of the space-dependent effective viscosity is one

crucial feature for understanding the effect of polymers on
heat transport in turbulent RB convection.

III. NUMERICAL SIMULATIONS

In this section, we report our present DNS of turbulent
RB convection at moderate Ra with polymers of different
Wi. Specifically, we integrate numerically Eqs. (1)–(4) in a
three-dimensional Cartesian domain of size 8 × 8 × 1 along
the horizontal x and y directions with periodic boundary
conditions and the vertical direction z. The discretization
method is a pseudospectral one where Chebychev polynomials
are used in the z direction with Fourier modes in the x and y

directions. Time integration is performed with a fourth-order
Runge-Kutta–Crank-Nicholson scheme. Periodic boundary
conditions are imposed at the lateral planes whereas fixed-
temperature and no-slip boundary conditions are used at the
top and bottom plates. The DNS is performed for a Newtonian
fluid of Pr = 7 with Oldroyd-B polymers of νp = 0.1νs at
different values of Wi using 1282 (horizontal)×129 (vertical)
fully dealiased modes and polynomials, which yield a spatial
resolution large enough to resolve the smallest length scale of
the problem. In order to accumulate reliable statistics, data over
30 eddy turnover times are collected after the initial transient
is neglected. The Rayleigh number for the Newtonian fluid is
Ra = 2.07 × 105 and the Reynolds number based on Uc, H ,
and νs is given by Re = UcH/νs = Ra1/2Pr−1/2 = 172.

We denote the Nusselt number for the Newtonian case
without polymers by Nus . In Fig. 1, we show Nu/Nus as a
function of Wi. For Wi = 2 we observe very little change
in Nu with Nu/Nus = 1.008 ≈ 1. For larger Wi, heat flux
is enhanced and Nu/Nus > 1. The amount of heat flux
enhancement first increases with Wi, reaching a maximum
of about 20% at Wi around 10, and then decreases. The aim
of this paper is to attain a theoretical understanding of this
nonmonotonic heat flux enhancement by polymers. Following
the discussion in Sec. II, we argue that profile of the polymer
stretching plays an important role. In Fig. 2, we show the
total amount of polymer stretching, measured by 〈Rii〉A − 3,
as a function of the distance z from the bottom plate for the

0 10 20 30 40 50
Wi

1.0

1.1

1.2

N
u/

N
u s

FIG. 1. Nu/Nus as a function of Wi. Wi = 0 corresponds to the
Newtonian case without polymers.
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FIG. 2. 〈Rii〉A − 3 for Wi = 2, 5, and 10 increasing from the
bottom to the top. The results for Wi = 2 are multiplied by a factor of
30 for clarity purpose. Inset is the plot for all the values of Wi = 2,
5, 10, 15, 25, and 50 increasing from the bottom to the top.

different values of Wi. For small Wi (Wi = 2), the amount
of polymer stretching is negligible and this is consistent with
the very slight change in Nu observed. The amount of polymer
stretching increases significantly as Wi is increased. Moreover,
we observe the interesting result that polymer stretching is
extended into the bulk region of the flow and reaches a
maximum at the center of the cell for large Wi (Wi � 10).
We will return to this feature below.

It might appear that the monotonic increase of the amount
of polymer stretching with Wi is in contradiction with the
observed nonmonotonic heat flux enhancement. We will first
understand why this is not so. Taking the dot product of Eq. (1)
with �u and averaging over time and whole volume of the flow,
we obtain

αg〈uzT 〉V = εu + εp, (22)

where

εu ≡ νs〈(∇aua)2〉V , (23)

εp ≡ 〈−ua∇bTab〉V , (24)

and 〈· · · 〉V denotes an average over time and the whole volume
of the convection cell. εu is the viscous energy dissipation rate
due to the viscosity of the Newtonian fluid while εp is the
rate of energy transfer from the fluid to the polymers which
is also equal to the energy dissipation rate due to polymers as
the energy transfer to the polymers is eventually dissipated as
heat. Using Eq. (5), one can show that

Nu = 〈uzT 〉V
κ�T/H

+ 1. (25)

Equations (22) and (25) give the exact balance between the
heat flux and the sum of the two energy dissipation rates:

RaPr(Nu − 1) = H 4

κ3
(εu + εp). (26)

Thus, the change in Nu is the combined effect of the changes in
εu and εp with the latter change being a direct result of polymer
stretching. Since the amount of polymer stretching and thus
εp increases monotonically with Wi as shown in Fig. 2, the

observed nonmonotonic heat flux enhancement must be due
to a decrease of εu with Wi in some range of Wi. As discussed
above, the amount of polymer stretching is negligible at
Wi = 2; thus we approximate εp ≈ 0 for Wi = 2 and denote
the value of εu at Wi = 2 by εu0. In Fig. 3 we plot εu/εu0 as a
function of Wi, which shows clearly that εu indeed decreases
with Wi.

In order to understand why εu decreases when Wi is
increased, we recall that polymers affect a turbulent flow for
scales smaller than or equal to the Lumley scale lL, which is
defined as the scale at which the time scale of energy transfer
given by lL/δv(lL) is equal to the polymer relaxation time.
Namely,

lL

δv(lL)
= τ. (27)

Here δv(r) is the characteristic velocity scale of eddies of a
characteristic length scale r . The effect of polymers is strongest
at scales around lL. Since δv(r) ∼ rβ with an exponent 0 <

β < 1, lL increases with τ or Wi. When lL approaches the
system size H , polymers would interfere with the convective
instability that injects energy to the system and leads to a
decrease in εu. This is exactly what happens in our numerical
simulations and a similar effect has also been observed for the
ultimate regime studied in Ref. [2].

Next, we aim to provide a theoretical explanation of the
change in Nu due to polymers when εu is held fixed. Using
Eq. (26) with Nu − 1 ≈ Nu we obtain

Nu

Nu0
= εu

εu0
+ εp

εu0
, (28)

where Nu0 is the value of Nu at Wi = 2 and we have
used the approximation that εp ≈ 0 at Wi = 2. If εu is held
fixed at εu0, the relative change in heat flux, denoted by
δNu/Nu0 = Nu/Nu0 − 1, is given by εp/εu0. Our basic idea
is that the relative change in the heat flux at a fixed viscous
energy dissipation rate can be computed using the generalized
PBP boundary layer theory, namely

Nu

Nu0
− εu

εu0
≡

(
δNu

Nu0

)
εufixed

∼
(

δNu

Nu0

)
PBP

. (29)
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Wi

0.2
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1.0

ε u/ε
u0

FIG. 3. εu/εu0 as a function of Wi, where εu0 denotes the value
of εu at Wi = 2.
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As discussed above, the polymer stretching extends into the
bulk region of the flow when Wi > 2 (see Fig. 2). This feature
is in contrast to the case in laminar steady-state boundary-
layer flow with polymers in which the effective viscosity
vanishes quickly as one moves away from the boundary, and
is nonzero only within a region very close to the boundary.
This indicates that we cannot compute the effective viscosity
profile due to polymer stretching self-consistently within the
generalized PBP boundary layer theory. Thus we estimate
g(ξ ) from the DNS data and use it as an external input to
the generalized PBP boundary layer theory. We recall that the
classical PBP boundary layer theory is in good agreement with
both experimental measurements and numerical simulations
obtained in turbulent RB system at moderate Ra and argue that
our investigation can provide a way to theoretically understand
(δNu/Nu0)εufixed.

To obtain g(ξ ) from the DNS data, we note from Eq. (21)
that g(ξ ) is related to the space-dependent effective viscosity
νeff(ξ ) of the polymers. We can now use our numerical
simulations to get a quantitative computation of νeff(ξ ). In
our case, the total rate of energy change of the fluid, averaged
over time and the horizontal plane of the cell, is the sum of
εu(z) = νs〈(∇aua)2〉A and the rate of energy dissipation due
to polymers Ep(z). The latter is given in terms of the polymer
stretching

Ep(z) = 1

2

νp

τ 2
[〈Rii〉A(z) − 3]. (30)

One can define a space-dependent effective viscosity νeff(z) of
polymers by the relation

νeff(z)

νs

= Ep(z)

εu(z)
(31)

and estimate

g(ξ ) = νeff(ξ ) − νeff(0)

νs

. (32)

To relate ξ to z, we first approximate the case of Wi = 2
in the DNS to correspond to a Newtonian fluid with a
kinematic viscosity equal to the zero-shear viscosity of the
polymer solution ν0 = νs + νp, or equivalently with a Prandtl
number Pr0 = ν0/κ = 7.7. This is justified by the negligible
polymer stretching at Wi = 2. Denote the thermal boundary
layer thickness by λt0. Then we perform a calculation using
the classical boundary layer theory for a Newtonian fluid
with Pr0 = 7.7 and obtain the corresponding θ ′

0(0) and the
(dimensionless) thermal boundary layer thickness 1/|θ ′

0(0)|.
Finally, ξ is related to z by ξ |θ ′

0(0)| = z/λt0.
In Fig. 4 we show g(ξ ) evaluated from the DNS data as

a function of ξ . We see the general feature of g(ξ ) increases
from zero and saturates to some maximum value A near the
bulk. We capture this general shape by fitting the data by g(ξ ):

g(ξ ) = A{1 − exp[−(ξ/ξ0)α]} . (33)

The fitted values of ξ0 are around 1 for all Wi � 5 and the fitted
value of α increases from about 1 for Wi = 5 to 3 for Wi = 50.
The idea is to use Eqs. (13) and (20) with this fitted form of g(ξ )
[Eq. (33)] to calculate (δNu/Nu0)PBP as a function of Wi using
the generalized PBP theory. As polymer stretching extends
to the bulk region and beyond the thermal boundary layers,

0 1 2 3 4
ξ

0

1

2

3

g(
ξ)

FIG. 4. The function g(ξ ), which is evaluated using the DNS data,
measures the effective viscosity of the polymers for different Wi as a
function of the dimensionless distance ξ . Wi = 5, 10, 15, 25, and 50
from bottom to top. The solid lines are the fits using the simplified
form in Eq. (33).

heat flux enhancement is expected [21] and is indeed found.
Moreover, we check that εu for the boundary layer flow remains
approximately constant for all the effective viscosity profiles
studied. We now validate the basic assumption in Eq. (29),
namely (

δNu

Nu0

)
εufixed

∼
(

δNu

Nu0

)
PBP

, (34)

in Fig. 5 and confirm that (δNu/Nu0)εufixed is a simple linear
function of (δNu/Nu0)PBP. Thus the generalized PBP theory
provides a theoretical way to understand the relative change
in Nu due to the polymers when εu is held fixed. Specifically,
when εu is held fixed, heat flux is enhanced by the polymers

0 0.02 0.04 0.06 0.08 0.1 0.12
(δNu/Nu0)PBP

0

0.2

0.4

0.6

0.8

(δ
N

u/
N

u 0) ε u fi
xe

d

FIG. 5. Comparison of the relative change in Nu at a fixed energy
dissipation rate, (δNu/Nu0)εufixed, measured in the DNS against the
theoretical value, (δNu/Nu0)PBP, obtained using the generalized PBP
boundary layer analysis with the fitted simplified form of g(ξ ) shown
in Fig. 4 for Wi = 5, 10, 15, 25, and 50. The solid line y = 0.12 +
5.94x is the least square fit.
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FIG. 6. Comparison of the DNS results of the relative change in
Nu, δNu/Nu0 (circles), against the results obtained using our present
analysis as explained in the text (triangles).

and the relative enhancement in Nu increases monotonically
with Wi as obtained by the generalized PBP theory.

Using the fitted linear relation (see Fig. 5) and the DNS
results of εu we can obtain δNu/Nu0 from (δNu/Nu0)PBP and
make a direct comparison of the results so obtained with the
DNS results. The good agreement found (see Fig. 6) is another
verification of the goodness of the linear fit in Fig. 5.

IV. CONCLUSIONS

Using DNS we have found that polymers start to affect
turbulent RB convection and enhance the heat flux when Wi is
greater than 2. For smaller Wi, polymer stretching is negligible.
As Wi is increased, the amount of heat flux enhancement
first increases but when Wi is beyond around 10, the heat
flux enhancement decreases when Wi is further increased.
This nonmonotonic behavior of heat flux enhancement is a
combined result of decrease in the viscous energy dissipation
rate εu and the increase in the energy dissipation rate due to
polymers εp as Wi is increased. The decrease in εu with Wi,

which has already been observed in DNS study of the ultimate
regime using periodic boundary conditions [2], is due to the
increase of the Lumley scale lL with Wi, whereas εp increases
with Wi as a result of the increase in polymer stretching. We
have analyzed the relative change in heat flux when εu is held
fixed, δNu/Nuεufixed, using the generalized PBP boundary layer
theory supplemented by a space-dependent effective viscosity,
which represents the effect of polymer stretching. To calculate
theoretically the effective viscosity profile, one would need
to estimate the amount of polymer stretching in the bulk
of the system and its nonlinear coupling with the boundary
layers. Such a theoretical development is outside the scope
of the present paper. Instead we have used the DNS data to
compute the effective viscosity and taken it as an external
input for the generalized PBP analysis. Our generalized PBP
analysis has demonstrated that heat flux enhancement occurs
as polymers are stretched mostly in the bulk of the system
and the amount of heat enhancement increases with Wi. We
have further confirmed that the values of δNu/Nuεufixed are
well fitted by a linear function of (δNu/Nu0)PBP obtained in
the generalized PBP analysis. Together with the DNS results
of εu, we are then able to obtain the nonmonotonic heat flux
enhancement with Wi. Our analysis thus provides a physical
way to understand the DNS results.

Our theoretical approach has the advantage of being quanti-
tative and based on the well-established definition of effective
viscosity and momentum balance near the boundary (the
Prandtl-Blasius equations). In comparison to the well-known
problem of drag reduction by polymers in wall-bounded turbu-
lence, the effect of polymers in turbulent RB convection can be
developed using the well-established approach for boundary
layer dynamics (with the caveats previously highlighted) and
we remark that this is an important point to be exploited in
the future. It remains an open question what may happen for
large Ra at which Nu is dominant from contribution to εu from
the bulk flow and the physical ground for using the boundary
layer approximation breaks down.
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