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Study of Saliency in Objective Video
Quality Assessment
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Abstract— Reliably predicting video quality as perceived by
humans remains challenging and is of high practical relevance.
A significant research trend is to investigate visual saliency and its
implications for video quality assessment. Fundamental problems
regarding how to acquire reliable eye-tracking data for the pur-
pose of video quality research and how saliency should be incor-
porated in objective video quality metrics (VQMs) are largely
unsolved. In this paper, we propose a refined methodology for
reliably collecting eye-tracking data, which essentially eliminates
bias induced by each subject having to view multiple variations
of the same scene in a conventional experiment. We performed
a large-scale eye-tracking experiment that involved 160 human
observers and 160 video stimuli distorted with different distortion
types at various degradation levels. The measured saliency was
integrated into several best known VQMs in the literature.
With the assurance of the reliability of the saliency data, we
thoroughly assessed the capabilities of saliency in improving the
performance of VQMs, and devised a novel approach for optimal
use of saliency in VQMs. We also evaluated to what extent
the state-of-the-art computational saliency models can improve
VQMs in comparison to the improvement achieved by using
“ground truth” eye-tracking data. The eye-tracking database is
made publicly available to the research community.

Index Terms— Saliency, video quality assessment, eye-tracking,
quality metric, saliency model.

I. INTRODUCTION

HE last few decades have witnessed a phenomenal
growth in the use of digital videos in our everyday
lives. Video signals, however, are vulnerable to distortion
due to causes such as acquisition errors, data compression,
noisy transmission channels and the limitations in rendering
devices. The ultimate video content received or consumed by
the end user largely differs in perceived quality depending
on the application. The reduction in video quality may affect
viewers’ visual experiences or lead to interpretation mistakes
in video-based inspection tasks. Finding ways to effectively
control and improve video quality has become a focal concern
in both academia and industry [1].
Video quality metrics (VQMs), which represent computa-
tional models for automatic assessment of perceived video
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quality aspects, have emerged as an important tool for the
optimisation of modern imaging systems [2]. Video quality,
to some extent, may be approached as a summation of the
quality of individual frames in a video sequence [2], [3].
Therefore, models established for image quality may be
reused and extended towards video quality assessment. Taking
advantage of sophisticated modelling of image quality and by
incorporating the multi-dimensional (i.e., spatial and temporal)
structure of video signals, a variety of VQMs have been
devised and proven useful in predicting human judgements of
video quality [4]-[10]. Yet, notwithstanding the progress made
in the development of VQMs, being able to reliably predict the
way humans assess the overall video quality or some aspect of
it remains an academically rather challenging problem. This
is intrinsically due to the fact that our understanding of how
video signals and their distortions are perceived by the human
visual system (HVS) is still far from complete.

To further enhance the reliability of VQMs, a signifi-
cant research trend is to investigate the impact of visual
attention, which is considered as an essential component of
the HVS. Visual attention exists in the HVS as a pow-
erful mechanism that allows effectively selecting the most
relevant information from a visual scene [11], [12]. This
attentional selection is known to be controlled by two kinds
of mechanisms: stimulus-driven, bottom-up mechanism and
expectation-driven, top-down mechanism [11]-[13]. In the
field of machine vision, visual attention is mainly concerned
with the former attentional mechanism, and is often inter-
changeably referred to as saliency [14]-[16]. The empirical
foundation of saliency modelling lies in the eye movements
of human observers, intent on explicitly addressing fixations
during free-viewing of a visual stimulus [14], [17]. A com-
putational model of saliency generally outputs a topographic
map that represents conspicuousness of scene locations [18].
To incorporate saliency aspects in VQMs, the vast majority of
existing approaches have focused on simply using a specific
saliency model to weight the local distortions measured by
a specific VQM [19]-[27]. For example, in [21], a well-
established saliency model (i.e., SaliencyToolBox [28]) is
integrated into two popular VQMs (i.e., SSIM and MSE [29])
to improve their performance for the assessment of packet-
loss-impaired video. In such an approach, the evaluation of
the benefits of saliency (e.g., as the results reported in the
studies in [19]-[27]) may heavily depend on the reliability
of the saliency model used. Fundamental problems such as
how saliency plays a role in judging video quality and how to
integrate saliency into VQMs in a perceptually optimised way
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remain unsolved. To investigate these topics, eye-tracking data
that represent “ground truth” saliency in the particular context
of video quality are highly desirable.

II. RELATED WORK AND CONTRIBUTIONS
A. Related Work

Eye-tracking studies have been attempted to understand
saliency in relation to video quality assessment [30]-[33].
The study in [30] focuses on investigating the relative impact
of artifacts in the region of interest (ROI) and that in the
background region on the overall video quality. ROI was
determined by means of eye-tracking experiments. It shows
that the quality of the ROI is about ten times more important
for the overall quality judgement than the quality of the
background. A subjective experiment was conducted in [31]
to exam the impact of visual saliency on the annoyance of
packet loss distortion. Saliency was identified using free-
viewing eye-tracking data. The results show that distortions
in salient regions are perceived significantly more annoying
than that in the non-salient regions. In [32], eye-tracking
experiments were performed with the aim to understand
whether a quality scoring task can affect the deployment of
fixations. The study indicates that the scoring task given to the
subjects may have an impact on where they look in videos.
It also demonstrates that adding eye-tracking data collected
under a quality scoring task into VQMs does not significantly
improve their performance. The findings sufficiently support
the high relevance of saliency to VQMs and the importance
of collecting eye-tracking data under free-viewing conditions.

In general, psychophysical studies as mentioned above
strongly imply that visual saliency plays a vital role in judging
video quality. Due to the “ground truth” nature of eye-tracking,
modelling saliency in VQMs largely relies on the availability
of a dedicated and reliable eye-tracking database. However,
existing eye-tracking data relevant to video quality are limited
with respect to the number of human subjects, the number of
stimuli and the degree of stimulus variability. For example,
the eye-tracking experiments reported in [30]-[32] all made
use of a single type of distortion (i.e., H.264 compression
artifacts), which affects the validity of the results in terms
of generalisation. The other drawback to existing eye-tracking
data is that they are potentially biased due to the method-
ology used for data collection. More specifically, in their
eye-tracking experiments each observer had to view the same
scene repeated several times (with multiple types and/or levels
of distortion). In such a scenario, the viewers might be forced
to e.g. learn to look for the artifacts rather than observing
the stimuli naturally. As a consequence, the recorded fixations
might be more affected by the visual distortions rather than
the natural scenes. Such involvement of stimulus repetition
(i.e., repeated versions of the same scene) and its implications
for observers’ perception challenge the reliability of existing
eye-tracking data. This kind of bias is increasingly noticed
as a general challenge to subjective testing, where subjects
interact with the same stimuli repeatedly. Effort has been made
to refine traditional experimental methods, such as for scoring
video or speech quality [34]. It is worth investigating a refined
method for eye-tracking.
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Due to the absence of sufficient eye-tracking data, studies
integrating saliency into VQMs in a perceptually meaningful
way are still very limited. A fundamental question remains
whether it is natural scene saliency (i.e., saliency derived from
the original, non-degraded content of a natural scene, and
referred to as NSS) or distorted scene saliency (i.e., saliency
derived from a visual scene distorted with artifacts, and
referred to as DSS) that should be included in VQMs. Due
to the lack of sound evidence to guide choice, researchers
often make an ad hoc decision by either generating saliency
from the reference videos (e.g., [20], [23], [35]) or from the
distorted videos (e.g., [21], [24], [32]). Such a rather random
selection of saliency (i.e., NSS or DSS) runs the risk of
compromising the effectiveness of the inclusion of saliency
in VQMs. Determining optimal use of saliency in VQMs is
worth further investigation.

B. Contributions of the Paper

1) Eye-tracking data for video quality research are already
available in the literature. However, they are either
strongly biased or limited by their scale to be able to pro-
duce statistically sound findings. We aim to build a large-
scale and reliable eye-tracking database. To this end,
we focus on refining traditional experimental method-
ologies and developing an alternative methodology for
reliably recording fixations of videos of varying quality.
The refined methodology is rigorously validated and can
be used as a generic framework for studying saliency in
video quality assessment. Moreover, we have made the
eye-tracking database publicly available [36] to facilitate
research on modelling saliency in VQMs.

2) On the basis of the “ground truth” eye-tracking data,
dedicated analysis is performed to better understand
human fixation behaviour. New findings are achieved
regarding the differences in fixation deployment when
viewing the original versus distorted scenes and when
viewing the static versus dynamic scene.

3) So far, there is no reliable, scientifically sound evidence
on whether it is NSS or DSS should be included in
VQMs. With both NSS and DSS reliably measured
in our eye-tracking experiments, we aim to clarify the
knowledge on the intrinsic added value of both types of
saliency in VQMs. We found that the benefit of adding
NSS to VQMs was marginal, but DSS could improve
the VQMs’ performance to a considerable extent.

4) To build a benchmark for saliency-based VQMs, the
“ground truth” DSS is then added to several best-
known VQMs in the literature. We aim to provide accu-
rate quantitative evidence, by means of an exhaustive
statistical evaluation, on to what extent saliency can
actually benefit VQMs depending on the distortion types
assessed and the VQMs used.

5) On the basis of DSS, we further investigate combining
local distortions and their corresponding saliency. Rather
than focusing on a VQM-specific integration approach,
we devise a generic approach for perceptually optimising
the use of saliency in VQMs.
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6) We also evaluate thoroughly to what extent state-of-
the-art saliency models can improve the performance
of VQMs compared to improvement achieved by using
eye-tracking data. Many saliency models are available
in the literature (see e.g., in [12]); but the general
applicability of these models in VQMs is not fully
justified. The results of the quantitative comparison serve
as a reference for pre-screening saliency models for the
particular application domain of video quality.

III. PROPOSED EXPERIMENTAL METHODOLOGY
A. Refined Experimental Design

Unlike previous studies which are potentially biased due
to the subjects experiencing massive stimulus repetition, our
proposed methodology includes dedicated control mechanisms
to eliminate such bias. In addition, our experiment contains a
large degree of stimulus variability in terms of video content,
distortion type as well as degradation level. This yields a large-
scale database, involving 160 human observers, 160 video
sequences, and 3200 eye-tracking trials.

1) Stimuli: The test stimuli were taken from the LIVE video
quality database [37]. The database is formed of 10 uncom-
pressed, high-quality source/reference videos with a wide
variety of content, and a set of 150 distorted videos
(i.e.,15 distorted videos per reference) of four different dis-
tortion types, namely MPEG-2 compression (i.e., referred to
as MPEG-2), H.264 compression (i.e., referred to as H.264),
simulated transmission of H.264 compressed bit streams
through error-prone IP networks (i.e., referred to as IP)
and through error-prone wireless networks (i.e., referred to
as Wireless). Per video, a difference mean opinion score
(i.e., DMOS) was generated from an extensive subjective
quality assessment study.

2) Protocol: A quality assessment database typically
involves deliberate stimulus repetition, where a reference video
exists simultaneously with a number of its distorted versions
of varying quality. In the literature, eye-tracking experiments
are commonly conducted using a “within-subjects” design, in
which the same group of subjects views all stimuli [31]-[33].
This methodology, however, potentially contaminates the
results due to carryover effects, which refers to any effect that
carries over from one experimental condition (i.e., viewing
a stimulus) to another (i.e., viewing another stimulus orig-
inated from the same reference) [38], [39]. In our exper-
iment, each reference video corresponds to 16 variations
(i.e., 15 distorted + 1 original), which makes data collec-
tion prone to undesirable effects such as fatigue, boredom
and learning from practice and experience, and consequently
increases the chances of skewing the experimental results.
To improve the reliability of data collection, we propose
to adopt an alternative methodology, namely ‘“between-
subjects” [40], in which multiple groups of subjects are
randomly assigned to partitions of stimuli, each contains little
or no stimulus repetition.

3) Experimental Procedure: The test dataset was divided
into 8 partitions of 20 videos each, and only two repeated
versions of the same scene were allowed in each partition.
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To further reduce the carryover effects, each session per
subject was divided into two sub-sessions with a “washout”
period in between; and by doing so, each subject viewed
10 videos (i.e., half partition) without stimulus repetition in
a separate session. Additional mechanisms were applied to
control the order in which participants per group perform their
tasks: (1) half of the participants viewed the first half of the
stimuli first, and half of the participants viewed the second
half first; (2) the stimuli in each sub-session were presented
to each subject in a random order. A dedicated control was also
added to deliberately include a mixture of all distortion types
and the full range of distortion levels in each sub-session.

A standard office environment as specified in [41] was
set up for the conduct of our experiment. The stimuli
were displayed on a 19-inch LCD monitor with a native
resolution of 1024x768 pixels. The viewing distance was
approximately 60cm. Eye movements were recorded using
an image-processing-based contact-free tracking system with
sufficient head movement compensation (SensoMotoric Instru-
ment (SMI) Red-m). The eye-tracking system featured a
sampling rate of 120Hz, a spatial resolution of 0.1 degree
and a gaze position accuracy of 0.5 degree. Before the start
of the actual experiment, each participant was provided with
instructions on the procedure (e.g., the task, the format of
stimuli and the timing) of the experiment. A training session
was conducted as a full-scale rehearsal in order to familiarise
the participant with the experiment. The video stimuli used
in the training session were different from those used in the
real experiment. Each full session per subject consisted of two
successive sub-sessions with a break of 60 minutes between
sub-sessions. Each individual sub-session was preceded by a
9-points calibration of the eye-tracking equipment. The partici-
pants were instructed to experience the videos in a natural way
(“view it as you normally would”). Each video was displayed
followed by a mid-gray screen lasting 3 seconds.

We recruited 160 participants from university students and
staff members, including 80 males and 80 females with their
ages ranging from 19 to 42. They were all inexperienced with
video quality assessment and eye-tracking. The subjects were
not tested for vision defects, and we considered their verbal
expression of the soundness of their own vision was sufficient.
The participants were first randomly divided into 8 groups
of equal size, each with 10 males and 10 females; and
the 8 groups of subjects were then randomly assigned to 8 par-
titions of stimuli. This gives a sample size of 20 subjects per
test stimulus.

4) Saliency Map: Saliency that represents stimulus-driven,
bottom-up visual attention is derived from free-viewing fix-
ations [42], [43]. Fixations were extracted using the SMI
BeGaze Software with minimum fixation duration threshold set
to 100ms. A fixation was defined by SMI’s Software using the
dispersal and duration based algorithm established in [44]. For
a given video sequence, a topographic saliency map per frame
is constructed by accumulating fixations over all subjects
(i.e., 20 in our experiment) and with each fixation location giv-
ing rise to a gray-scale patch that simulates the foveal vision of
the HVS [30], [32], [33]. The activity of the patch is modelled
as a Gaussian distribution, of which the width o approximates
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Illustration of saliency map for a frame taken from an original video and saliency map for the distorted version of the same frame, for two different

sample scenes in our experiment. (a) and (g) are original frames. (d) and (j) are distorted frames. (b), (e), (h) and (k) are saliency maps of (a), (d), (g) and
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(). (c), (f), (i) and (1) are corresponding heatmaps.

the size of the fovea (i.e., 2° of visual angle, 45 pixels width
in our experiment). The saliency map (SM) is calculated as:

)2 C_v)2
Xj — X) 4‘2()71 Y)] )

J (
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i=1

g

where (x;, y;) indicates the spatial coordinates of the ith
fixation, N 1is the total number of fixations. The inten-
sity of the resulting saliency map is linearly normalised to
the range [0, 1]. We follow conventional practice of rele-
vant studies [30]-[33]: when there is no experimental error
(e.g., participants failing to complete the entire trial or inter-
rupted data recording due to system failure), all recorded
eye-tracking data are deemed valid. Outlier detection may be
applied to the dataset. It should be noted that determining
whether or not an observation (e.g., fixation) is an outlier is
ultimately a subjective exercise [45], and rejection of outliers

may be acceptable e.g., when the distribution of measurement
error is confidently known [46]. Considering there is no rigid
definition of what constitutes an outlier [45], we decide to
retain all recorded fixations for further analysis. Fig. 1 illus-
trates two different sample scenes; and for each scene it shows
first the measured saliency map for a representative frame
taken from the reference video and then for the corresponding
frame from the distorted video (note that saliency maps for
the entire database can be accessed via [36]).

B. Validation: Proposed Reliability Testing

Eye-tracking data recorded for the purpose of visual qual-
ity research strongly differ in their reliability depending on
the choices made in the experimental methodology, such
as the sample size and the way of presenting stimuli to
observers [47], [48]. Therefore, to be able to draw upon
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Fig. 2. Illustration of the inter-observer agreement (IOA) value averaged

over all stimuli assigned to each subject group in our experiment. The error
bars indicate the 95% confidence interval.

eye-tracking data as a solid “ground-truth,” it is crucial
to rigorously validate the reliability of the collected data.
We propose and perform systematic reliability testing to assess
(1) whether the variances in the eye-tracking data obtained
from different subject groups are consistent; and (2) whether
the sample size is adequate.

1) Homogeneity of Variances Between Groups: Since a
between-subjects methodology is employed, it is important to
know whether the variances of eye-tracking data across all
subject groups are homogeneous. To be able to identify such
homogeneity, we measure the inter-observer agreement (IOA),
which refers to the degree of agreement in saliency among
observers viewing the same stimulus [49], [50]. In our imple-
mentation, IOA is quantified per frame by comparing the
saliency map generated from the fixations over all-except-
one observers to the saliency map built upon the fixations
of the excluded observer; and by repeating this operation
so that each observer serves as the excluded subject once.
The similarity between two saliency maps is measured by
the widely used area under the receiver operating charac-
teristic curve (AUC) [12]. Note that alternative similarity
measures to compare saliency maps do exist (e.g., Pearson
linear correlation coefficient (CC) and normalized scanpath
saliency (NSpS)), but since conclusions tend to be consistent
over these measures [12], [51], we decided to focus on AUC
only. The per-frame IOA is averaged over all frames of a video
to generate the per-video IOA: the larger the IOA value, the
smaller the variation in fixations among viewers, thus the more
reliable the eye-tracking data. Fig. 2 illustrates the per-video
IOA averaged over all video stimuli assigned to each subject
group in our experiment. It shows that the IOA remains very
similar across eight subject groups. A statistical significance
test (i.e., analysis of variance (ANOVA)) is performed and the
results (i.e., P>0.05 at 95% confidence level) show that there
is no statistically significant difference between groups. The
above evaluation indicates that a high degree of consistency
across groups is found in our eye-tracking data.

2) Data (Saliency) Saturation: To determine the sample size
for an eye-tracking experiment, researchers either follow the
rule of thumb (i.e., use of 5-15 participants [48]) or use “data
saturation” as a guiding principle to make sure a given/chosen
sample size is sufficient to cause a “saturated” saliency map.
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Fig. 3. Illustration of the inter-k-observer agreement (IOA-k) value aver-
aged over all stimuli contained in our dataset. The error bars indicate the
95% confidence interval.

The latter means a saliency map reaches the point at which no
new information is observed. We evaluate whether the sample
size is adequate to reach such “saturated” saliency (i.e., a proxy
of sufficient degree of reliability) in our data. The validation
is again based on the principle of IOA, which is extended
to an inter-k-observer agreement measure (i.e., referred to as
I0A-k, and k = 2,3,...,20 in our case). More specifically,
for a given stimulus, IOA-k is calculated by randomly selecting
k observers among all. Fig. 3 illustrates the IOA-k value
averaged over all video stimuli in our entire dataset. It shows
that “saturation” occurs with 18 participants, although a rea-
sonably high degree of consistency in fixation patterns is
already reached with 15 participants. It demonstrates that our
chosen number of 20 observers (per subject group and thus per
stimulus) is fairly sufficient to yield stable/saturated saliency
maps.

C. Behaviour Analysis: Fixation Deployment

1) Original Versus Distorted Scenes: Fig. 1 visualises
typical correspondences and differences in saliency between
the reference and its distorted scene (i.e., NSS and DSS).
In general, there exist consistent patterns between NSS and
DSS maps, e.g., the highly salient regions tend to occur
around the same places. However, there are some observed
deviations, which are seemingly caused by the appearance of
distortion. The visible artifacts occurring at the top-right corner
in Fig. 1(d) seems to cause an obvious change in saliency
(e.g., see the difference between Fig. 1(b) and (e)). This may
be due to the distraction power of the localised artifacts is
so strong that it offsets the deployment of NSS. In Fig. 1(j),
some annoying artifacts happen to occur around the salient
object (i.e., the bee in the centre) in the scene, which only
leads to a slight deviation in saliency relative to its original
pattern (e.g., see the difference between Fig. 1(h) and (k)). It is
worthwhile to better understand how saliency deployment is
affected by the presence of visual distortion. Such knowledge
would provide a grounding for the perceptual integration
of saliency and VQMs. We further investigate the observed
tendencies in the changes of saliency induced by distortion.
More specifically, we evaluate the impact of both distortion
strength and distortion type on the deployment of saliency.
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TABLE I

NSS-DSS SIMILARITY (MEASURED BY AUC, NSpS AND CC) FOR
DIFFERENT LEVELS OF VISUAL QUALITY: EXCELLENT,
GOOD, FAIR AND POOR

MEAN=STD
Excellent Good Fair Poor
AUC 0.8154+0.058  0.8104+0.059  0.809+0.053  0.781+0.030
NSpS 1.9284+0.921 1.94240.920  1.881+0.843  1.367+0.425
CcC 0.65740.138  0.6474+0.134  0.649+0.126  0.560+0.082
TABLE II

NSS-DSS SIMILARITY (MEASURED BY AUC) FOR DIFFERENT
DISTORTION TYPES AND FOR DIFFERENT VIDEO SCENES

Scene  MEAN=£STD
1P Wireless H.264 MPEG-2

pa 0.815+0.076  0.8264+0.059  0.822+0.063  0.819+0.056
b 0.7484+0.084  0.7644+0.085 0.7544+0.083  0.758+0.094
rh 0.765+0.082  0.7524+0.079  0.763+0.080  0.775+0.074
tr 0.8114+0.060  0.8034+0.057  0.810+0.057  0.806+0.059
st 0.87440.051 0.879+0.058  0.878+0.048  0.88140.051
st 0.920+0.040  0.9204+0.039  0.925+0.038  0.92240.037
bs 0.769+0.082  0.7624+0.079  0.791+0.064  0.773+0.070
sh 0.7494+0.092  0.761+0.084 0.747+0.088  0.763+0.081
mc 0.758+0.084  0.761+0.077  0.764+0.080  0.759+0.075
pr 0.8304+0.077  0.843+0.060 0.833+0.073  0.836+0.073

ALL 0.7861+0.097  0.806+0.088 0.805+0.089  0.806+0.087

For each distorted frame in the dataset, we quantify the
difference between a DSS map and its corresponding NSS
map using three popular similarity measures: AUC, NSpS
and CC as mentioned in Section III-B. The use of these
measures is already described in more detail in [52], and their
general meaning in our context is as follows: when AUC>0.5
or NSpS>0, the higher the value of the measure the more
similar NSS and DSS are; when CC is close to -1 or 1, the
similarity between NSS and DSS is high, when CC is close
to 0, the similarity is low. Our evaluation is based on all
data points (i.e., all individual frames of 150 distorted video
stimuli) of NSS-DSS similarity calculated by AUC, NSpS and
CC. To investigate the effect of distortion strength on NSS-
DSS similarity, video stimuli are categorised into four levels
of visual quality by dividing the full range of DMOS into four
equal intervals. This reflects four levels of quality: “Excellent”,
“Good,” “Fair” and “Poor” as also studied in [37]. Table I
illustrates the NSS-DSS similarity averaged for four quality
levels. It tends to show that the degree of NSS-DSS similarity
decreases as the distortion strength increases. It reveals a
significant drop in NSS-DSS similarity at low visual quality,
which implies that the distraction power of strong distortions
may come into significantly impact the perception of the
natural scene.

The impact of distortion type on NSS-DSS similarity
(in terms of AUC; NSpS and CC exhibit the same trend of
changes and thus are not included in the table) is illustrated in
Table II, where video stimuli are categorised according to the
source of distortion (i.e., Wireless, IP, H.264 and MPEG-2) in
the LIVE database. We also further breakdown the grouping
into the per-scene level, resulting in four average AUC values
for each visual scene. It tends to show that IP distortion
produces a larger extent of saliency deviation between NSS
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and DSS than other three distortion types. On average, com-
pared to Wireless, H.264 and MPEG-2, IP distortion yields a
smaller mean AUC with a larger standard deviation. This is
probably due to the difference in the perceptual characteristics
between distortion types. IP distortion usually appears as a
surprising “glitch” in a fairly large area in a scene [37], which
may cause considerable distraction during viewing the scene;
whereas Wireless, H.264 and MPEG-2 often generate less
surprising distortion, such as the uniformly distributed artifacts
throughout the entire scene or some localised artifacts in small
regions [37]. Table II also shows that NSS-DSS similarity
seems to be affected by scene content, e.g., a large AUC with
small standard deviation is consistently found for the scene
“st” (i.e., the scene shown in Fig. 1(g) and (j)). This may be
explained by the fact that the scene contains a highly salient
object that dominates the distribution of fixations, and that
the contribution of distortion to the deployment of saliency is
relatively small.

2) Static Versus Dynamic Scenes: It should be noted in
Fig. 1 that the saliency map does not represent the saliency of
a certain frame when being viewed as an independent static
picture. The fixations per frame were actually collected when
observers viewing the context of motion picture, and therefore,
the per-frame saliency map contains both spatial and temporal
aspects of visual perception. We further explore human behav-
ioural responses to static and dynamic scenes; and investigate
saliency deployment under both contexts. To this end, we
conducted an eye-tracking experiment, where 20 subjects were
recruited to view freely some sample frames taken from our
video stimuli. We limited the study to the undistorted stimuli
only in order to avoid introducing an additional variable (i.e.,
distortion) to the experiment. Two representative frames were
extracted from each reference video, resulting in a total of
20 static stimuli. Each participant viewed each stimulus for
10 seconds with the same experimental setup as described in
Section III.

Fig. 4 illustrates the comparison of saliency collected for
the same frame when viewed as part of a video sequence and
as an independent static scene. It clearly shows the deviations
in saliency deployment: under the situation of viewing a static
scene, fixations tend to cluster around salient objects, such as
text and faces; however, when the same scene is placed in
the video context, fixations are more affected by dynamics of
the sequence, e.g. the movement of an object. To quantify
such difference, we calculate the AUC between the two
kinds of saliency for each stimulus pair. To make a rigorous
comparison, we also vary the duration used for generating
a saliency map for the “static” case, covering the intervals
of 0-50ms, 0-200ms, 0-500ms till 0-10s. Fig. 5 illustrates
the similarity in saliency between the “static” and “dynamic”
conditions. In general, it shows a noticeable difference (i.e.,
AUC is around 0.8) independent of the viewing time used for
the “static” case.

IV. THE INTEGRATION OF NSS VERSUS DSS
IN VQMS: A COMPARATIVE ANALYSIS

As described in Section II-A, it is still unclear whether
it is NSS or DSS that should be included in the design of
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Fig. 4. Tllustration of the comparison of saliency for the same scene (a) or
(b) when being viewed as part of a video sequence (c) or (d) and as an static
picturee (e) or (f).
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Fig. 5. Tllustration of the fixation deployment similarity (measured by AUC)

between “static” and “dynamic” viewing conditions. Errorbars indicates 95%
confidence level.

saliency-based VQMs. It is important to understand whether
the observed difference between NSS and DSS (as detailed
in Section III-C) is sufficiently large to actually affect the
performance gain for VQMs. To this end, we simply add
both types of saliency to several well-established VQM s in the
literature, and compare the performance gain obtained when
including NSS versus DSS.

A. Evaluation Framework

1) VOMs: Eight widely recognised full-reference VQMs,
namely PSNR, SSIM, ViS3, STMAD, spatial MOVIE, tempo-
ral MOVIE, MOVIE and VSSIM are applied in our evaluation:

PSNR: The peak signal-to-noise ratio is based on the mean
squared error between the distorted video and its reference on
a pixel-by-pixel basis.

SSIM: The structural similarity index [29] measures per-
frame quality of a video based on the degradation in structural
information. The SSIM is first calculated frame-by-frame on
the luminance component of the video and then averaged over
all frames to achieve an overall quality prediction.
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ViS3: The ViS3 algorithm [9] contains two stages: the first
stage measures the quality based on spatial distortion, and the
second stage measures the quality based on the dissimilarity
between spatiotemporal slice images. The overall video quality
prediction is a combination of the quality scores calculated at
two stages.

STMAD: The spatiotemporal MAD [8] extends the
image-based quality metric MAD by taking into account the
visual perception of motion artifacts. The motion artifacts
are measured on the time-based slices of the original and
distorted videos. The velocity of moving objects is taken into
consideration to adjust the locally measured degradations.

MOVIE: The motion-based video integrity evaluation
index [7] utilises a general, spatio-spectrally localized multi-
scale framework for evaluating dynamic video fidelity. It inte-
grates both spatial and temporal (and spatio-temporal) aspects
of distortion assessment, resulting in three different versions
of the MOVIE index, namely the spatial MOVIE (SMOVIE),
the temporal MOVIE (TMOVIE) and MOVIE.

VSSIM: The video SSIM [10] is an improved version of the
single-scale SSIM taking into account the motion perception
of the HVS.

The VQMs above range from the purely pixel-based VQMs
without characteristics of the HVS (i.e., PSNR) to VQMSs that
contain rather complex HVS properties (i.e., VQMs under
test except for PSNR). Some VQMs operate on a frame-
by-frame, spatial-distortion-only basis (i.e., PSNR, SSIM,
SMOVIE), whereas other VQMs predict local, spatio-temporal
quality by taking into account several frames of the sequence
(i.e., ViS3, STMAD, TMOIVE, MOVIE, VSSIM). All VQMs
result in a quantitative per-frame distortion map (PFDM)
which represents a local quality degradation profile. Note that
other well-known VQMs that do not explicitly produce a
PFDM, such as VQM software tool [6], are not included in our
study. Integrating a (per-frame) saliency map into such kind
of VQMs is not straightforward and is, therefore, outside the
scope of this paper. Also, reduced-reference and no-reference
VQMs are not included, since they are still in the early stages
of development and remain limited in their sophistication,
which makes studying the added value of saliency in these
VQMs less meaningful.

2) Saliency-Based VOMs: Saliency map (SM), either NSS
or DSS, is integrated into a VQM via locally weighting
(i.e., by multiplying) the PFDM with the corresponding SM
per frame (of size MxN pixels), yielding a saliency weighted
PFDM (SW-PFDM):

PFDM(x,y) * SM(x, y)
M N

2. 2. SM(x,y)

x=1y=1
where PFDM is measured by an VQM, SM is generated from
our eye-tracking data. Once the PFDM is upgraded to the
SW-PFDM, the remaining operations of the VQM proceed as
usual to produce an overall quality score. It should be noted
that PFDM and SM are simply combined in our implemen-
tation. This simple weighting has been conventionally used
in the literature [19]-[21], due to its nature of being para-
meter free and universally applicable. A more sophisticated

SW — PFDM = (2)



1282

COMPARISON OF PERFORMANCE (CC) FOR DIFFERENT VQMs AND THEIR CORRESPONDING SALIENCY-BASED VERSIONS. VALUES IN THE BRACKETS

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 3, MARCH 2017

TABLE III

REPRESENT THE PERFORMANCE GAIN (I.E., THE INCREASE IN CC (ACC)) OF A SALIENCY-BASED VQM OVER ITS ORIGINAL VERSION

PSNR SSIM Vis3 STMAD SMOVIE TMOVIE MOVIE VSSIM
Original | 0.539 0.500 0.826 0823 0.740 0823 0.795 0.584
DSS-based | 0.567(0.028) | 0.544(0.044) | 0.839(0.013) | 0.834(0.011) | 0.771(0.031) | 0.836(0.013) | 0.829(0.034) | 0.605(0.021)
NSS-based | 0.562(0.023) | 0.504(0.004) | 0.829(0.003) | 0.827(0.004) | 0.734(-0.006) | 0.821(-0.002) | 0.790(-0.005) | 0.581(-0.003)
RSS-based | 0.542(0.003) | 0.503(0.003) | 0.817(-0.009) | 0.816(-0.007) | 0.731(-0.009) | 0.815(-0.008) | 0.788(-0.007) | 0.580(-0.004)

TABLE IV

COMPARISON OF PERFORMANCE (SROCC) FOR DIFFERENT VQMs AND THEIR CORRESPONDING SALIENCY-BASED VERSIONS.

VALUES IN THE BRACKETS REPRESENT THE PERFORMANCE GAIN (I.E., THE INCREASE IN SROCC (ASROCC))

OF A SALIENCY-BASED VQM OVER ITS ORIGINAL VERSION

PSNR SSIM ViS3 STMAD SMOVIE TMOVIE MOVIE VSSIM

Original 0.523 0.525 0.816 0.825 0.727 0.806 0.789 0.587
DSS-based | 0.543(0.020) | 0.567(0.042) | 0.833(0.017) | 0.830(0.005) | 0.755(0.028) | 0.808(0.002) | 0.809(0.020) | 0.606(0.019)
NSS-based | 0.536(0.013) | 0.520(-0.005) | 0.837(0.021) | 0.826(0.001) | 0.685(-0.042) | 0.801(-0.005) | 0.776(-0.013) | 0.574(-0.013)
RSS-based | 0.509(-0.014) | 0.536(0.011) | 0.811(-0.005) | 0.818(-0.007) | 0.724(-0.003) | 0.799(-0.007) | 0.792(0.003) | 0.571(-0.016)

combination strategy may further improve the performance of 0.04 T

a specific VQM (see, e.g., [35]), but is often incompatible

with other VQMs. Using such VQM-specific weighting would 8 0.02 1

make the comparative study of VQMs impractical and less 4 0 L

meaningful. Since there does not exit a more sophisticated

and generic weighting strategy, we decide to use the simple -0.02 . . .

weighting to ensure a fair comparison between NSS and DSS. DSS NSS RSS

3) Performance Evaluation Criteria: As prescribed by the
Video Quality Experts Group [53], the performance of a VQM
is quantified by the Pearson linear correlation coefficient (CC)
and the Spearman rank order correlation coefficient (SROCC)
between the quality predictions of the VQM and the DMOS
scores. Seemingly, the quality assessment community is accus-
tomed to fitting the predictions of a VQM to the DMOS
scores [53]. A nonlinear mapping may, e.g., account for a
possible saturation effect in the quality scores at high quality.
It usually yields higher correlations in absolute terms, while
generally keeping the relative differences between VQMs [54].
As also explained in [55], without a sophisticated nonlinear
fitting the correlations cannot mask a bad performance of the
VQM itself. To better visualise differences in performance, we
avoid any nonlinear fitting and directly calculate correlations
between the VQM’s predictions and the DMOS scores.

B. Comparison of NSS Versus DSS Applied in VOMs

Based on the “ground truth” NSS and DSS obtained from
our eye-tracking experiments, we set out to evaluate to what
extent adding both types of saliency is beneficial for the pre-
diction performance of VQMs. We compare the performance
gain that can be obtained when adding NSS versus DSS to
PSNR, SSIM, ViS3, STMAD, SMOVIE, TMOVIE, MOVIE
or VSSIM. To better visualise the comparison, we also include
the so-called random scene saliency (RSS), which provides a
baseline for the performance gain when adding saliency to
VQMs. RSS is generated for a video stimulus by randomly
selecting saliency from our collection of NSS and DSS.

Table III and IV summarise the performance of VQMs
in terms of CC and SROCC. Each entry represents the

saliency types

Fig. 6. Comparison of performance gain for VQMs weighted with DSS,
NSS and RSS. The errorbars indicate 95% confidence level.

performance of a VQM (with or without saliency weighting)
on the entire LIVE video quality database (i.e., a total
of 150 data points/distorted video stimuli). In general, both
tables demonstrate that the performance of all VQMs is
consistently enhanced by including DSS. The gain in their per-
formance ranges from 0.011 to 0.044 in CC and 0.002 to 0.042
in SROCC. On the contrary, adding NSS or RSS does not
seem to be beneficial for VQMs. The performance gain is
either marginal (non-existent) or even negative, e.g., adding
NSS and RSS to SSIM corresponds to an increase of 0.004
and 0.003 in CC respectively; both NSS and RSS deteriorate
the performance of MOVIE (i.e., NSS causes a decrease of
0.005 in CC, and RSS decreases CC by 0.007). Fig. 6 plots
the overall performance gain (i.e., expressed by the increase
in CC (ACC)) that can be obtained by adding three types of
saliency to all VQMs. On average, incorporating DSS yields
a promising gain for VQMs (i.e., < ACC >= 0.024); and
VQMs do not actually profit from being extended with NSS
(i.e., < ACC >=0.002) or RSS (i.e., < ACC >= —0.005).
To check such effects with a statistical analysis, a nonpara-
metric test (i.e., Wilcoxon signed rank test [56]) analogue
to a paired samples t-test (as ACC values are tested to be
not normally distributed) is performed once between DSS and
NSS and once between DSS and RSS. The test results show
that DSS weighted VQMs receive statistically significantly
higher performance gain than NSS or RSS weighted VQMs
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TABLE V

COMPARISON OF PERFORMANCE FOR VQMs WITH AND WITHOUT DSS WEIGHTING. (A) LINEAR CORRELATION
COEFFICIENT (CC); AND (B) SPEARMAN RANK ORDER CORRELATION COEFFICIENT (SROCC)

Wireless 1P H.264 | MPEG-2 | All Data Wireless 1P H.264 | MPEG-2 | All Data
PSNR 0.654 0.481 0.539 0.401 0.539 PSNR 0.621 0.472 0.473 0.383 0.523
DSS-PSNR 0.688 0.457 0.559 0.455 0.567 DSS-PSNR 0.640 0.477 0.499 0.441 0.543
SSIM 0.471 0.536 0.610 0.574 0.500 SSIM 0.522 0.470 0.656 0.561 0.525
DSS-SSIM 0.567 0.534 0.642 0.603 0.544 DSS-SSIM 0.573 0.442 0.698 0.610 0.567
ViS3 0.855 0.822 0.789 0.751 0.826 ViS3 0.839 0.792 0.769 0.736 0.816
DSS-ViS3 0.859 0.808 0.829 0.765 0.839 DSS-ViS3 0.843 0.749 0.842 0.742 0.833
STMAD 0.802 0.796 0.908 0.820 0.823 STMAD 0.809 0.776 0.902 0.846 0.825
DSS-STMAD 0.816 0.798 0911 0.835 0.834 DSS-STMAD 0.819 0.776 0.898 0.857 0.830
SMOVIE 0.790 0.734 0.730 0.634 0.740 SMOVIE 0.793 0.705 0.707 0.691 0.727
DSS-SMOVIE 0.843 0.710 0.765 0.678 0.771 DSS-SMOVIE 0.800 0.692 0.693 0.734 0.755
TMOVIE 0.842 0.745 0.796 0.818 0.823 TMOVIE 0.811 0.719 0.780 0.817 0.806
DSS-TMOVIE 0.809 0.720 0.825 0.848 0.836 DSS-TMOVIE 0.775 0.667 0.810 0.852 0.808
MOVIE 0.836 0.759 0.787 0.725 0.795 MOVIE 0.811 0.716 0.766 0.773 0.789
DSS-MOVIE 0.862 0.744 0.816 0.759 0.829 DSS-MOVIE 0.830 0.701 0.789 0.816 0.809
VSSIM 0.591 0.552 0.578 0.589 0.584 VSSIM 0.582 0.548 0.572 0.577 0.587
DSS-VSSIM 0.618 0.554 0.597 0.616 0.605 DSS-VSSIM 0.613 0.555 0.581 0.603 0.606
() (b)
both with P<0.05 at 95% confidence level. Based on the TABLE VI

observed trend, we may conclude that modelling saliency in
VQMs should target DSS rather than NSS. The inadequate
performance gain obtained with NSS is possibly caused by
two reasons. One reason is that some VQMs are already
good at capturing NSS and, as a consequence, do not benefit
from the addition of NSS (i.e., saturation effect in saliency-
based optimization). The other reason might be that in some
demanding conditions, NSS map does not sufficiently reflect
the distraction power of artifacts occurring in some non-
salient region, and therefore weighting a VQM with NSS
might unhelpfully downplay the importance of distortion in
this region.

V. THE INTEGRATION OF DSS IN VQMSs:
STATISTICS AND OPTIMIZATION

Granted that DSS rather than NSS is beneficial for VQMs,
we further evaluate to what extent the actual amount of
performance gain (when adding DSS to VQMs) changes for
different VQMs and distortion types. Knowing the trends of
such variation (i.e., building a benchmark) in performance gain
is of high practical relevance to the application of saliency
in VQMs.

A. Performance Gain and Statistical Significance

Table V shows the performance (in terms of CC and
SROCC) of individual VQMs (with and without DSS weight-
ing) when accessing different types of video distortion. Each
entry in the table represents the performance of a VQM
(with or without saliency weighting) on a subset of the LIVE
database (i.e., a total of 40 data points for Wireless, 30 data
points for IP, 40 data points for H.264 and 40 data points
for MPEG-2). In general, this table demonstrates that there is
indeed a gain in performance when adding DSS in VQMs. For
the vast majority of cases, the performance of a DSS weighted
VQM is higher than its original metric. However, the actual
amount of such improvement varies, e.g., the performance

NORMALITY OF M-DMOS RESIDUALS. “1” REPRESENTS THE
NORMAL DISTRIBUTION AND “0” REPRESENTS THE
NON-NORMAL DISTRIBUTION

Wireless | IP
PSNR 1
DSS-PSNR
SSIM
DSS-SSIM
ViS3
DSS-ViS3
STMAD
DSS-STMAD
SMOVIE
DSS-SMOVIE
TMOVIE
DSS-TMOVIE
MOVIE
DSS-MOVIE
VSSIM
DSS-VSSIM

H.264 | MPEG-2
1 1

U Y [N (GRGOG[N U

U SN RN [FUREN (U RN VRN (JFGRNY |FUREN |URIY [V ORI N [N (U
U RSN RN (U (RN RN VRN (ORI ORI | U U I [N (U
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gain of DSS-SSIM over SSIM for Wireless is 0.096 in terms
of CC; whereas the difference in CC between DSS-TMOVIE
and TMOVIE is -0.033 (but not necessarily meaningless).
To verify whether the numerical difference in performance
between a DSS weighted VQM and the same VQM without
DSS is statistically significant, hypothesis testing is performed.
As suggested in [53], the test is based on the residuals between
DMOS and the outputs of a VQM (hereafter, referred to as
M-DMOS residuals). Before being able to run an appropriate
statistical significance test, we evaluate the assumption of
normality of the M-DMOS residuals. The results of the test for
normality are summarised in Table VI. As in all cases, paired
M-DMOS residuals (i.e., two sets of residuals are compared:
one is from the original VQM and one is from its DSS
weighted version) are both normal, a paired samples t-test
is performed (as used in [55]). The t-test results are given
in Table VII, and show that in most cases the difference in
performance between a VQM and its DSS weighted version is
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Fig. 7.

TABLE VII
T-TEST RESULTS OF THE M-DMOS RESIDUALS. “1” MEANS THAT THE

(b)

Tlustration of the appearance of artifacts at low quality IP distortion. (a) A sample frame distorted with IP. (b) Saliency map (i.e., DSS) of (a).

TABLE VIII
PERFORMANCE GAIN (EXPRESSED BY THE INCREASE IN CC, 1.E., ACC)

DIFFERENCE IN PERFORMANCE IS STATISTICALLY SIGNIFICANT.
“0” MEANS THAT THE DIFFERENCE IS NOT SIGNIFICANT

Wireless

1P

H.264

MPEG-2

PSNR vs.

DSS-PSNR

1

1

1

SSIM vs.

DSS-SSIM

ViS3 vs.

DSS-ViS3

STMAD vs.

DSS-STMAD

SMOVIE vs.

DSS-SMOVIE

TMOVIE vs.

DSS-TMOVIE

MOVIE vs.

DSS-MOVIE

VSSIM vs.

DSS-VSSIM
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BETWEEN A VQM AND ITS DSS WEIGHTED VERSION WHEN
ASSESSING DIFFERENT DISTORTION TYPES
(I.E., DENOTED AS AVQM)

statistically significant. This implies that the addition of DSS
in VQMs consistently makes a meaningful impact on their
reliability of performance.

B. Variation in Performance Gain

To further comprehend the impact of the type of distortion
and the kind of VQM on the changes of the performance gain
achieved by adding DSS to VQMs, we re-arrange the entries
of Table V with a focus on the increase in performance of
an VQM when assessing a given distortion type. Table VIII
illustrates the performance gain (expressed by ACC) of a
DSS weighted VQM over its original metric when accessing
Wireless, IP, H.264 and MPEG-2. It shows that MPEG-2
(<ACC>= 0.030) benefit most from adding DSS for qual-
ity prediction, followed by Wireless (<ACC>= 0.027) and
H.264 (<ACC>= 0.026); whereas there is a negetive effect
for adding DSS to VQMs for assessing the quality of IP
(< ACC>= —0.012). In the case of a stimulus distorted with
IP, especially at low quality, severe artifacts are often spread
out over a large area of the scene as illustrated in Fig. 7.
In such a scenario, the DSS map measured by eye-tracking,
as shown in Fig. 7(b), may not be able to fully capture the
perceptible artifacts and their impact on the judgement of
video quality. As such, weighting a VQM with DSS may
downplay the significance of potential distortion. This may
explain the overall negative performance gain for IP, and tends
to suggest that an optimised integration of saliency in VQMs
may need to take this phenomenon into account.

Wireless 1P H.264 | MPEG-2 | mean
APSNR 0.034 -0.024 | 0.020 0.054 0.021
ASSIM 0.096 -0.002 | 0.032 0.029 0.039
AViS3 0.004 -0.014 | 0.040 0.014 0.011
ASTMAD 0.014 0.002 0.003 0.015 0.009
ASMOVIE 0.053 -0.024 | 0.035 0.044 0.027
ATMOVIE -0.033 -0.025 | 0.029 0.030 0.000
AMOVIE 0.026 -0.015 | 0.029 0.034 0.019
AVSSIM 0.027 0.002 0.019 0.027 0.019
mean 0.027 -0.012 | 0.026 0.030
Table VIII also shows the performance gain

(expressed by ACC) of a DSS weighted VQM over its
original metric for individual VQM cases averaged over
all distortion types. It shows that adding DSS results in a
promising gain for all VQMs except for the case of TMOVIE.
It is worth noting that for VQMs that already achieve a high
prediction performance, such as ViS3 and STMAD, adding
DSS still produces a significant increase in their performance
(ie., <ACC>= 0.011 for ViS3 and <ACC>= 0.009
for STMAD). In terms of the mean over all distortion
types, TMOIVE does not benefit from the addition of DSS
(i.e., ACC = 0). This may be attributed to the fact that
TMOVIE already contains sufficient saliency aspects in its
metric design, e.g., it incorporates the estimate of motion,
which is considered as a relevant cue in video saliency.
Adding (possibly duplicated) saliency may be counter-
productive in some cases as it may confuse the workings of
the original VQM with built-in saliency.

C. Optimization: Proposed Integration Strategy

Section IV has demonstrated the superiority of DSS over
NSS in improving VQMs. DSS, to some extent, reflects the
interactions between natural scene and distortion, and therefore
is observed to be more effective when adding a saliency term
to VQMs. However, it is known that the recorded fixations
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TABLE IX
COMPARISON OF PERFORMANCE (CC) FOR DIFFERENT VQMs AND THEIR CORRESPONDING SALIENCY-BASED VERSIONS, USING SIMPLE
APPROACH AND PROPOSED APPROACH. THE LAST COLUMN PRESENTS THE PERFORMANCE GAIN (I.E., THE INCREASE
IN CC (ACC)) OF A SALIENCY-BASED VQM OVER ITS ORIGINAL VERSION AVERAGED OVER ALL VQMs
PSNR | SSIM ViS3 STMAD | SMOVIE | TMOVIE | MOVIE | VSSIM | Averaged ACC
Original 0.539 0.500 | 0.826 0.823 0.740 0.823 0.795 0.584 -
with DSS + simple approach 0.567 0.544 | 0.839 0.834 0.771 0.836 0.829 0.605 0.024
with DSS + proposed approach | 0.630 | 0.700 | 0.850 0.848 0.809 0.837 0.836 0.677 0.070
may not fully represent the entire human attentional behav- further defined as:
iour [12], [17]. For example, the so called covert attention 1 5
mechanisms, which refer to that of mentally focusing onto Is,p = B log(1 + O, p) (6)
one of several possible sensory stimuli (without necessarily 1 5
moving the eyes) [12], [17], may not be included in the DSS. Ir,p = 5 log(l +0,,) ™

This means that DSS may not be able to completely capture the
attentional power of perceptible distortion, i.e., some artifacts
in the visual field may be perceived but covertly attended
(without any recorded fixations in the DSS). To address this
phenomenon, we propose a more sophisticated integration
strategy that better takes into account the attentional power
of distortion. In [57], this idea has been initially explored for
improving image quality prediction. We now extend it to a
spatiotemporal framework for video quality assessment.

1) Proposed Approach: We now consider how to use the
above concept to improve the formula expressed in (2). For
each per-frame distortion map (PFDM) computed by a VQM,
instead of using SM as a weighting factor, we now use two
components: the captured DSS (i.e., denoted as a) and the
uncaptured attentional power of distortion (i.e., denoted as f)
to produce a local weighting factor w. Given a pixel location
(i, j), w is defined as:

ws(i, j) = f(a, Bs) 3)
or(i, j) = f(a, fr) 4)

where wg (or wr) denotes the weighting factor for spatial
PFDM (or temporal) portion of the PFDM, fs (or f7) denotes
the uncaptured attentional power of spatial (or temporal)
distortion. In this paper, £ is modelled using an information
theory based approach. This approach treats HVS as an
optimal information extractor [58]; and £ is considered to be
proportional to the perceived information of distortion.

Based on the principle in [59], the perceived information /
of a stimulus can be modelled as the number of bits transmitted
from this stimulus (with the stimulus power §) through the
visual channel of the HVS (with the noise power C); and can
be computed as:

1 S
I=3 log(1 + E) (%)

If we simply consider the distortion as the input stimulus,
the perceived information of distortion can now be measured
by the above formula. In such a scenario, the component S / C
is analogous to the power of the locally measured distortion
using PEDM. Due to the fact that HVS is not sensitive to pixel-
level variations [60], the implementation of the algorithm is
thus performed on the basis of a local patch of 45x45 pixels
(about 2° visual angle in our experiment). Thus, (5) can be

where asz’ p (or 02 p) estimates the power of the local spatial
(or temporal) distortion within the patch P centred at a given
pixel (i, j) in the PFDM; and oy, (or o, ,) denotes the
standard deviation of P.

Moreover, our algorithm is motivated by the significant
findings in [61] that each perceptible artifact suppresses each
other artifact’s effect especially for those with close proximity.
This so-called surround suppression effect (SSE) is used to
approximate the proportional relationship between S and I,
where the effect of [ is suppressed by its local neighbourhood.
Thus, f can be defined as:

1

Bs.p = £ (8)
I
I

Br.p = =L 9)
It

where Ig (or I7) represents the averaged spatial (or temporal)
attentional power of distortion surrounding the local patch P.
In this paper, the vicinity is defined as the Moore neighbour-
hood of the local patch P (i.e., the set of eight patches Pk
(k = 1 to 8) of the same size which share a vertex or edge
with P).

Finally, we combine a and f using a simple multiplica-
tion operator, resulting in the spatial and temporal weighting
factors:

ws(i, j) =a" - ps"

or(, j) =a* - pr’

(10)
(1)

where m > 0, n > 0, x > 0 and y > O are parameters to
adjust the relative importance of different components. We set
m =n =x =y = 1 in our experiment for simplification.
Tuning the parameters may improve the algorithm; however it
goes beyond the merits of this paper. Once w is achieved, we
use it to replace the term SM in (2). Noted that for VQMs that
only perform in the spatial channels (e.g., PSNR and SSIM),
only wg is calculated.

2) Validation of the Approach: For each VQM, we compare
its DSS-weighted version using (2) (referred to as simple
approach) and that using the proposed approach. Table IX
shows the performance (i.e., in terms of CC, SROCC exhibits
the same trend of changes as CC and thus is not included here)
in each case. It shows that the proposed approach performs
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TABLE X

COMPARISON OF PERFORMANCE FOR VQMs WEIGHTED WITH MEASURED SALIENCY (DSS) AND MODELLED SALIENCY (BASED ON FIVE SALIENCY
MODELS, NAMELY SR, PQFT, GBVS, SDSR AND CA). TWO WEIGHTING APPROACHES ARE USED:
SIMPLE APPROACH (METH-1) AND PROPOSED APPROACH (METH-2)

original DSS GBVS SDSR PQFT CA SR
Meth-1  Meth-2 | Meth-1  Meth-2 | Meth-1  Meth-2 | Meth-1 Meth-2 | Meth-1 Meth-2 | Meth-1  Meth-2
PSNR 0.539 0.567

SSIM 0.500 0.544

ViS3 0.826 0.839

STMAD 0.823 0.834

SMOVIE 0.740 0.771

TMOVIE 0.823 0.836

MOVIE 0.795 0.829

VSSIM 0.584 0.605

consistently better in each comparison. A paired samples t-test
analysis (preceded by a test for the assumption of normality)
was further performed, selecting the integration approach as
the independent variable and the performance as the depen-
dent variable. The result shows that the proposed approach
statistically significantly outperforms the simple approach with
P<0.05 at 95% confidence level.

V1. EVALUATION OF MODELLED SALIENCY IN VQMS

We evaluate whether a saliency model, at least with the cur-
rent soundness of visual saliency modelling, can sufficiently
benefit VQMs in comparison to the gain yielded by DSS. Our
evaluation is carried out with five saliency models, namely
SR [62], PQFT [63], GBVS [64], SDSR [65] and CA [66].
Each saliency model is integrated in VQMs using both the
simple and proposed weighting methods.

These saliency models have been extensively studied in
the context of image quality assessment, and demonstrated
to be among the best performing saliency models in terms
of producing consistent performance gain for image quality
prediction [52]. It is, therefore, worth investigating the added
value of these saliency models in VQMs. Note that some
models, such as SR and CA are specifically designed for still
images; and models, such as GBVS, PQFT and SDSR account
for both spatial and temporal aspects in saliency modelling.

Table X shows the comparison of the performance
(i.e., expressed in terms of CC, SROCC exhibits the same trend
of changes as CC, and thus is not included here) of VQMs
using both the simple and proposed approaches. Fig. 8 further
illustrates the averaged performance gain (i.e., expressed in
terms of ACC) for both approaches. The performance that
can be achieved by adding DSS in VQMs is also included
as a reference. In terms of using the simple method, the table
tends to indicate that there does not exist a saliency model that
can consistently benefit all VQMs. The addition of a saliency
model may improve the performance of a specific VQM, while
running the risk of deteriorating other VQMs’ performance.
For example, adding SR to SSIM can boost its performance
by 0.08 in CC, but this saliency model significantly degrades
the performance of PSNR. Existing saliency models, on aver-
age, hardly improve the prediction performance of VQMs
(i.e., ACC is about 0.01), compared to the benefit of DSS
(i.e., ACC is around 0.025). Instead, when using the proposed

0.1
0.08 |

[ simple approach ||
] proposed approach

8 0.06 1
<10.04 | 1
0.02 I 1

0 I I

DSS saliency models

HH

Fig. 8. Performance gain obtained by adding DSS versus saliency models to
VQMs using both simple and proposed integration approaches. The errorbars
indicate 95% confidence interval.

approach, firstly, saliency models can benefit VQMs in a more
consistent way. For example, almost all saliency-based VQMs
outperform their original metics. Secondly, on average, as
shown in Fig. 8 the performance again obtained by adding
saliency models (i.e., ACC is 0.051) is significantly increased,
but is still lower than the gain achieved by adding DSS. Fig. 8
suggests that compared to the gain of “ground truth” saliency,
modelling saliency in VQMs contains sufficient headroom for
further improvement.

VII. DISCUSSION

Our statistical evaluation provides general insight into the
benefits of saliency in VQMs. The approach (either simple
or proposed) used for combining saliency and an VQM
is universally applicable. This means that this combination
method can be applied to all kinds of VQMs that measure
distortions locally. One should realise though that tuning a
specific VQM with a specifically designed saliency weighting,
e.g., using saliency aspects to optimise the contrast sensitivity
function (CSF) contained in a VQM [35], may produce
superior improvement for that particular VQM. There is,
however, no guarantee that this specifically designed approach
can be easily implemented in other VQMs or improve their
performance. In terms of conducting a rigorous comparative
study, a generic saliency integration method is highly required.

Our empirical evidence shows that NSS is not suitable for
VQMs, and it is DSS that should be included in VQMs. This
conclusion was drawn by using the simple saliency integration
approach. One may wonder whether this conclusion holds
when the proposed integration approach is used. We repeated
the experiment as described in Section IV, using the proposed
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integration approach. Our experimental results show that the
proposed approach increases the benefits of NSS in absolute
terms, while maintaining the relative difference in the gain
between NSS and DSS. In addition, from a practical point
of view, it may be unrealistic to calculate saliency from the
reference video simply because the reference is not always
available in many real-world applications.

VIII. CONCLUSION

In this paper, we investigated saliency and its use in
objective video quality assessment. To obtain reliable “ground
truth” saliency for video quality research, we proposed a
refined experimental methodology and conducted a large-
scale eye-tracking experiment. In our experiment, a large
number of human observers freely looked to a diverse range
of video stimuli distorted with different types of distortion at
various levels of degradation. We applied dedicated control
mechanisms with the aim to overcome bias that potentially
exists in related studies.

Based on the “ground truth” data of saliency, we performed
an exhaustive statistical evaluation to assess the effects of
saliency on the reliability of VQMs. We found a tendency
that adding DSS rather than NSS to a VQM improved its
performance in predicting perceived video quality. Based on
this evidence, the added value of DSS in VQMs was further
assessed. This evaluation shows that there is a statistically
significant gain in the performance for all VQMs when adding
DSS. The extent of the performance gain, however, tends to
depend on the specific distortion type assessed and the VQM
under test. We also investigated integrating saliency in VQMs
in a perceptually more relevant way, and devised a generic
approach that can optimise the use of saliency in VQMs.

Finally, we applied several state-of-the-art computational
models of visual saliency in VQMs, and assessed their capa-
bilities in improving the VQM’s performance. Quantitative
results tend to show that compared to the improvement
achieved by using eye-tracking data, modelling saliency in the
context of video quality requires further investigation.
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