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Abstract

Freight transportation activities could potentially lead to detrimental effects on the natural and
built environments and pose health risks. The importance of the present study is to consider
demand and travel time uncertainty in green transport planning by proposing several robust
optimization techniques; soft worst case, hard worst case and chance constraints. These tech-
niques provide the most reliable solutions with very limited increase in the objective function
related to fuel consumption and CO2-equivalent emissions.
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1. Introduction

Green vehicle routing is related to dispatching goods not only based on economic goals,
but also by considering the relevant harmful impacts on the environment. Transportation has
detrimental effects on the environment such as resource depletion, land use, acidification, toxic
effects on ecosystems and humans, noise and the impacts induced by Greenhouse Gas (GHG)
emissions (Knörr, 2009). GHGs absorb and emit radiations within the thermal infra-red range
in the atmosphere and significantly raise the Earth’s temperature. As of August 2016, the level
of atmospheric CO2 emissions is estimated to be equal to 402.25 ppm and is still increasing
(ESRL, 2016). The emissions of CO2 are directly proportional to the amount of fuel consumed
by a vehicle, which is in turn dependent on a variety of vehicle, environment and traffic-related
parameters, such as vehicle speed, load and road gradient (Demir et al., 2011, 2014). The carbon
dioxide equivalent (CO2e) measures how much global warming a given type and amount of GHG
may cause, using the functionally equivalent amount or concentration of CO2 as the reference.

The Vehicle Routing Problem (VRP) is a well-known NP-hard problem which was introduced
by Dantzig and Ramser (1959). Since then, VRP has been a topic of numerous studies in the
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literature of operations research. The traditional VRP includes a set of costumers with known
demands, a single depot, and a homogeneous fleet of vehicles by determining a set of routes.
The literature on VRP and its variants are very widespread and involve many different aspects
and decisions (see, for example, the latest surveys of Golden et al. (2008); Eksioglu et al. (2009);
De Jaegere et al. (2014)). Also various exact (see, e.g., Baldacci et al., 2012; Almoustafa et al.,
2013) and heuristics algorithms (see, e.g., Demir et al., 2012; Kramer et al., 2015) are suggested
to solve such operational-level routing problems.

The traditional objective in the standard VRP is to minimize the total distance traveled by
all vehicles, but this objective can be enriched through the inclusion of terms related to fuel con-
sumption (Bektaş and Laporte, 2011). Recent developments in Green Vehicle Routing Problems
(GVRPs) have heightened the importance of operations research techniques in this area. One
of the successful applications in GVRP is due to Bektaş and Laporte (2011) who introduced
the Pollution-Routing Problem (PRP), which is an extension of the VRP with time windows
(VRPTW). In this paper, we consider a special case of the PRP where the objective function
solely depends on the total fuel consumption rather than a weighted sum of fuel consumption
and total driving time as in the PRP.

Demand uncertainty is one of the most common variants in non-deterministic (stochastic)
VRPs. However, to the best of our knowledge, it has not been studied in the domain of GVRPs.
Travel time uncertainty has been also investigated to see the impact of congested travel speeds
on fuel consumption. The contributions of the paper are two-fold: piq we investigate the previous
robust VRP models with stochastic demand and illustrate their weakness for the PRP, and piiq
we reformulate the PRP with several well-known robust approaches.

The remainder of this paper is organized as follows. In Section 2, literature review on
both VRPs and GVRPs is provided. In section 3, the mathematical formulation of the PRP
is presented. Section 4 introduces the proposed robust optimization approaches along with
their formulations. Extensive numerical experiments and comparative analysis are provided in
Section 5 to show the powerfulness of the proposed robust optimization models. Finally, Section
6 concludes the paper and introduces relevant future research directions.

2. Literature review

This section reviews the existing research literature on both VRP with uncertain data and
green vehicle routing problems.

2.1. VRP with uncertain data

Nondeterministic VRP refers to situations that all information about the vehicle routing is
not deterministic before the start of the planning, and some of the information may be uncertain,
ambiguous, or even unknown (Chen et al., 2013). In the real world applications the input data of
VRP is highly tainted with uncertainty. This has triggered the development of several techniques
to handle the imprecision of uncertain data in VRPs. In the literature, VRP with uncertain
data has been studied in four groups; namely stochastic VRP, dynamic VRP, fuzzy VRP, and
robust VRP.

Stochastic VRP (SVRP) has been extensively applied in the condition that the probability
distribution of the uncertain parameter is available according to sufficient and reliable histor-
ical data (see, e.g., Li et al., 2010; Faulin et al., 2011). Generic variants of SVRP are VRP
with stochastic customer demands (see, e.g., Novoa et al., 2006; Smith et al., 2010), VRP with
stochastic customers (Bertsimas and Van Ryzin, 1991), VRP with stochastic customers and
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demands (Gendreau et al., 1995), and VRP with stochastic service times (Laporte, 1992). In-
terested readers are referred to Berhan et al. (2014) for a survey on different types of SVRP and
its solution methodologies. The first study on dynamic VRP (DVRP) is done by Wilson and
Colvin (1977). The authors investigated a single vehicle dynamic arc routing problem which in-
volves dynamic demand. We refer to Pillac et al. (2013) for the DVRP and its solution methods.
Fuzzy number, or Fuzzy VRP (FVRP), is one of the most common approaches for modelling
optimization problems which have one or more uncertain data with vagueness or ambiguity.
Chen et al. (2013) categorized related works in three groups; namely VRP with fuzzy demands
(Chen et al., 2006; Peng and Qian, 2010), VRP with fuzzy due times (see, e.g., Zhang et al.,
2008; Jun, 2009) and VRP with fuzzy travel times (Brito et al., 2010).

Robust VRP (RVRP) was introduced by Bertsimas and Simchi-Levi (1996) for the SVRP
and is applied when the probability distribution of uncertain parameter is unknown (i.e., deep
uncertainty). Sungur et al. (2008) introduced a robust optimization approach to solve the capac-
itated VRP with demand uncertainty and compared the performance of robust solutions with
deterministic ones. In a related work, Lee et al. (2012) addressed the VRP with deadlines which
involves demand and travel time uncertainty. Adulyasak and Jaillet (2014) described models
and algorithms for SVRP and RVRP with deadlines. The authors proposed new mathemati-
cal formulations to solve these problems based on a branch-and-cut framework. Solano-Charris
et al. (2014) studied the RVRP with uncertain traveling costs. The authors proposed a heuristic
approach to solve the investigated problem. The summary of the current studies are listed in
Table 1.

Table 1
Recent studies on VRP with uncertain data

Reference Uncertain parameters Type of Modeling
Demand Traveling Costumer Service or VRP approach

time/cost due time

Novoa et al. (2006) 4 CVRP SVRP
Chen et al. (2006) 4 CVRP FVRP
Sungur et al. (2008) 4 CVRP RVRP
Zhang et al. (2008) 4 VRPTW FVRP
Jun (2009) 4 VRPTW FVRP
Brito et al. (2010) 4 VRPTW FVRP
Peng and Qian (2010) 4 CVRP FVRP
Smith et al. (2010) 4 CVRP SVRP
Li et al. (2010) 4 4 VRPTW SVRP
Faulin et al. (2011) 4 CVRP SVRP
Lee et al. (2012) 4 4 VRPTW RVRP
Agra et al. (2013) 4 VRPTW RVRP
Adulyasak and Jaillet (2014) 4 VRPD RVRP/SVRP
Solano-Charris et al. (2014) 4 CVRP RVRP

VRPTW: Vehicle Routing Problem with Time Windows; CVRP: Capacitated Vehicle Routing Problem; VRPD: Vehicle
Routing Problem with Deadline; RVRP: Robust Vehicle Routing Problem; FVRP: Fuzzy Vehicle Routing Problem; DVRP:
Dynamic Vehicle Routing Problem; SVRP: Stochastic Vehicle Routing Problem

2.2. Green vehicle routing problems

Green vehicle routing is a branch of green logistics which refers to vehicle routing problems
where negative externalities, such as CO2e emissions, are explicitly taken into account so that
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they are reduced through better planning (Demir et al., 2014). One of the successful applications
of the GVRP is the Pollution-Routing Problem, which is coined by Bektaş and Laporte (2011).
The PRP is an extension of the classical VRPTW, where the aim is to route a number of vehicles
to serve a set of customers and to determine their speed on each route segment, so as to minimize
a function comprising fuel, emissions and driver costs. The interested readers are referred to
Demir et al. (2014) for a literature survey on GVRPs. A summary of the GVRP studies is given
in Table 2.

Table 2
Recent studies on GVRPs

Reference CO2 or CO2e emissions Type of VRP Modeling approach

Bektaş and Laporte (2011) 4 PRP D
Faulin et al. (2011) 4 CVRP D
Suzuki (2011) 4 TSPTW D
Ubeda et al. (2011) 4 VRPCB D
Xiao et al. (2012) 4 CVRP D
Demir et al. (2012) 4 PRP D
Jemai et al. (2012) 4 CVRP D
Franceschetti et al. (2013) 4 TDPRP D
Demir et al. (2013) 4 BiPRP D
Kopfer et al. (2014) 4 FVRPTW D
Pradenas et al. (2013) 4 VRPBTW D
Koç et al. (2014) 4 MFPRP D
Zhang et al. (2014) 4 CVRP D
Kramer et al. (2015) 4 PRP D
Dabia et al. (2016) 4 PRP D

TDVRP: Time-Dependent Vehicle Routing Problem; VRPCB: Vehicle Routing Problem with Clustered
Backhauls; D: Deterministic

Despite the fact that the number of studies on GVRPs is increasing in recent years, current
studies are still restricted and have not covered many practical aspects (e.g., data uncertainty).
Because of the cumulative variables in GVRPs, previous models and algorithms used for tradi-
tional variants of the VRP cannot be directly applied in our study. To overcome the literature
gap, this paper addresses the uncertain customers’ demands and travel times. In order to pro-
vide an appropriate decision making tool for less conservative decision makers, several flexible
robust optimization models are proposed.

3. Problem description

In this section we define and formulate the corresponding mathematical model as the foun-
dation of the proposed robust PRP. The problem on hand is defined on a complete directed
graph G � pN,Aq with N � t0, 1, 2, ..., nu as the set of nodes that node 0 considered as a depot
and N0 as the set of costumers. A � tpi, jq : i, j P N, i ¤ ju is the set of arcs and the distance
from node i to node j is shown by dij . The number of homogeneous vehicles is a deterministic
exogenous parameter and set of vehicles is represented by k � t1, 2, ...,mu, and the capacity of
each vehicle is equal to Q. Each customer i P N0 has a non-negative demand qi and a time
interval rai, bis in which service must start; early arrivals to customer nodes are permitted but
a vehicle, arriving early must wait until time ai before service can start. The service time of
customer i is denoted by ti.
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The tilde (˜ ), bar (¯ ) and hat (ˆ ) accents distinguish the uncertain parameters, nominal
value (which is used in deterministic modeling), and uncertain part of each uncertain parameters.
Therefore, q̃i is a uncertain parameter which is donated to a customer demand with nominal
value of q̄i and uncertain part of q̂i. An uncertainty interval of q̃i can be shown as rq̄i� q̂i, q̄i� q̂is.

Uncertain demand results for a mixture of reasons; some variation in customer’s interests,
modes, styles, requirements, and the number of competitors faced in the market. These changes
might affect the demand of the customer after transport order placement. As the same way, real-
life issues (i.e., congestion, weather conditions) can lead to increase in traveling times. Longer
traveling times due to traveling at lower speeds lead to increased fuel consumption and CO2e
emissions.

3.1. Fuel consumption and CO2e emissions

The PRP model is introduced by Bektaş and Laporte (2011) based on the comprehensive
emission model presented by Barth and Boriboonsomsin (2008), Barth et al. (2005), and Scora
and Barth (2006). Recently, Demir et al. (2012) have extended the PRP with a more accurate
fuel consumption rate function. In this formulation, the fuel consumption rate is calculated as
the following:

F pvq �λ
�
kNV � wγαv � γαfv � βγv3

�
d{v. (1)

where v,τ ,θ, d and w denote the vehicle speed, acceleration, road gradient, distance, and
curb weight of an empty vehicle, respectively. To simplify notation, let λ � ξ{pκψq and
γ � 1{p1000ntfηq be constants, α � τ � g sin θ � gCr cos θ be a vehicle-arc specific constant
and β � 0.5CdρA be a vehicle-specific constant. Also, notation f denotes the vehicle payload.
The cost of fuel and CO2e emissions can be estimated as TC � F pvqfc, where fc is the unit cost
of fuel and CO2e emissions. The definition of all parameters and their typical values are given
in Table 3.

Table 3
Parameters used in the paper

Notation Description Typical values
w curb-weight (kg) 6,350
ξ fuel-to-air mass ratio 1
k engine friction factor (kJ/rev/liter) 0.23
N engine speed (rev/s) 37
V engine displacement (liters) 5

g gravitational constant (m/s2) 9.81
Cd coefficient of aerodynamic drag 0.7

ρ air density (kg/m3) 1.2041

A frontal surface area (m2) 3.912
Cr coefficient of rolling resistance 0.01
ntf vehicle drive train efficiency 0.4
η efficiency parameter for diesel engines 0.9
κ heating value of a typical diesel fuel (kJ/g) 44
ψ conversion factor (g/s to L/s) 737

vl lower speed limit (m/s) 11.1 (or 40 km/h)
vu upper speed limit (m/s) 23.6 (or 85 km/h)

We note that, particularly in freight transportation, the fuel consumption required to travel
from one location to another is highly related to the carried load. The effect of payload on fuel
consumption is visualized in Figure 1.

As seen from Figure 1, the fuel consumption mainly related to two important factors (i.e.,
travel speed and payload) under the same conditions (e.g., weather, traffic, driver). For low
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Figure 1
Fuel consumption on 100-km road segment with different payload settings
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speed values, the fuel consumption is very high because of the inefficiency in the usage of fuel.
It decreases while speed goes up to a certain level, and then starts to increase because of the
aerodynamic drag. Moreover, Figure 1 indicates that total vehicle weight has an impact on fuel
consumption and increases with the increase in payload. Since these two factors are impor-
tant, logistic service providers (LSPs) and freight forwarders should make better estimations for
payload and travel speed in the planning of transport activities.

3.2. Mathematical formulation of the PRP

In this section we present a special case of the PRP to consider demand and travel time
uncertainty. The model used here is the version proposed in Bektaş and Laporte (2011) and
Demir et al. (2012). In order to investigate the effect of demand uncertainty along with travel
time uncertainty, we adjust the PRP formulation by avoiding the driving wage component. This
is done to investigate the actual fuel consumption with purely related to customer’s demand and
travel time. In the proposed formulation, we first discretize speed function defined by R non-
reducing speed levels v̄r pr � 1, 2, , Rq. Binary variables xij are equal to 1 if arc pi, jq appears
in a solution. zrij is a binary variable equals 1 if arc pi, jq P A is crossed by a speed level r,
and 0 otherwise. Continuous variables fij defines the total amount of flow on each arc. yj is
a non-negative continuous variable representing the time at that service starts at node j P N0.
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An integer linear programming formulation of this variant of the PRP is shown below.

Minimize
¸

pi,jqPA
kNV λdij

Ŗ

r�1

zrij{v̄
r (2)

�
¸

pi,jqPA
wγλαijdijxij (3)

�
¸

pi,jqPA
γλαijdijfij (4)

�
¸

pi,jqPA
βγλdij

Ŗ

r�1

zrijpv̄
rq2 (5)

Subject to

¸

jPN
x0j � m (6)

¸

jPN
xij � 1 @i P N0 (7)

¸

iPN
xij � 1 @j P N0 (8)

¸

jPN
fji �

¸

jPN
fij � qi @i P N0 (9)

qjxij ¤ fij ¤ pQ� qiqxij @pi, jq P A (10)

yi � yj � ti �
¸

rPR
dijz

r
ij{v̄

r ¤ Kijp1 � xijq @i P N , j P N0, i � j (11)

ai ¤ yi ¤ bi @i P N0 (12)

Ŗ

r�1

zrij � xij @pi, jq P A (13)

xij P t0, 1u @pi, jq P A (14)

fij ¥ 0 @pi, jq P A (15)

yi ¥ 0 @i P N0 (16)

zrij P t0, 1u @pi, jq P A, r � 1, ..., R. (17)

The objective function (2)–(5) minimizes the quantity of total fuel consumption is derived
from (1). Constraints (6) state that each vehicle must leave the depot. Constraints (7) and (8)
are the degree constraints which ensure that each customer is visited exactly once. Constraints
(9) and (10) define the arc flows. Constraints (11) and (12), where Kij � max{0, bi�ti�dij{v

l�
aj}, enforce the time window restrictions. Constraint (13) ensure that only one speed level is
selected for each arc and zrij � 1 if xij � 1. Finally, Constraints (14)–(17) enforce the binary
and non-negativity restrictions on decision variables.
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4. Modeling of the demand uncertainty

Stochastic optimization (SO) is one of the classical approaches to handle uncertainty, and
it requires sufficient historical data to decide probability distribution of the parameters. This is
not the case in many real world applications because it is hard to achieve accurate probability
distribution function. According to robust optimization, a range of uncertain parameters is
needed instead of finding the right probability distribution function. Interested readers are
referred to Soyster (1973), Ben-Tal and Nemirovski (1998, 2000) and Bertsimas and Sim (2003,
2004) for more information on robust optimization.

As stated by Pishvaee et al. (2012), a solution to an optimization problem is said to be robust
if it stays in feasible region for almost all possible values of uncertain parameters (i.e., feasibility
robustness). It also results in objective function values which have minimum deviation from the
planned optimal value for almost all possible values of uncertain parameters (i.e., optimality
robustness). Therefore, a robust optimization (RO) approach tries to enhance the performance
of the obtained solutions in both feasibility and optimality robustness aspects. As Pishvaee et al.
(2012) mentioned, various RO approaches can be classified in three main categories, including piq
hard worst case (HWC), piiq soft worst case (SWC), and piiiq realistic approaches. Among these
three categories, the HWC approach provides the maximum conservatism against uncertainty for
a decision maker. In other words, solution obtained with this approach is always feasible for all
possible values of uncertain parameters. Regarding the value of objective function, this approach
assures that the value of objective function never violates an optimal value. The HWC approach
can be applied on different problems (e.g., VRP) in the area of logistics management. The SWC
approach is a more flexible version of than the HWC approach and decision-makers can decide
robustness level proportionally with their risk costs. Chance-constrained robust (CCR) model
is another flexible version of the HWC approach with less variables and constraints.

4.1. The hard worst case robust optimization approach

In this section, the HWC approach which is based on the formulation of Ben-Tal and Ne-
mirovski (1998) is described. Sungur et al. (2008) developed the HWC robust optimization
model based on the methodology introduced by Ben-Tal and Nemirovski (1998) to solve the
CVRP with demand uncertainty and compared robust solutions with deterministic ones. The
authors illustrated that an optimal solution of RVRP is the route that optimizes the worst case
value over all uncertain data. The authors assumed that the maximum value of demand is
realized for each customer and the found solution is feasible for each possible scenarios. Even
though a solution is feasible for all scenarios, in the PRP and in other variants of cumulative
VRPs, a found solution is not the worst objective function value. For the purpose of showing
the difference, we now consider a four-node network as illustrated in Figure 2. The network
forms a quadrangular shape in which the length of each sides is equal to one hundred distance
unit. Assume that there is a single vehicle located at node 0 to serve three customers. The de-
mand pattern of each customer is unknown and the upper and lower bounds of each customers’
demand are set to q1 � r50, 120s, q2 � r80, 100s, q3 � r90, 100s.

We now consider two traditional VRP objective functions. The first objective function is
the minimization of the total distance, and the second objective function is the cumulative VRP
minimizing the product of weighted load and distance.

Model A: Minimize
¸

pi,jqPA
dijxij (18)
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Figure 2
A sample four-node instance

]120,50[1 q

]100,80[2 q]100,90[3 q

Subject to
Constraints (6) to (10), (14) and (15).

Model B: Minimize
¸

pi,jqPA
dijfij (19)

Subject to
Constraints (6) to (10), (14) and (15).
These models can be compared in two cases: piq customers need to be serviced considering

their upper bound, and piiq customers need to be serviced considering their lower bound. In both
models, unmet demands are not allowed (i.e., the maximum demand value for each customer).
In both cases, model A yields two optimal routes, i.e., (0, 1, 2, 3, 0) and (0, 3, 2, 1, 0) of length
400 units, but model B has different optimal route in each case. Detailed results are shown in
Table 4.

Table 4
An analysis of two routes with model B

Route 1 Route 2
Arc Load Load Objective Objective Arc Load Load Objective Objective

(i) (ii) value (i) value (ii) (i) (ii) value (i) value (ii)

(0, 1) 320 320 32,000 32,000 (0, 3) 320 320 32,000 32,000
(1, 2) 200 270 20,000 27,000 (3, 2) 220 230 22,000 23,000
(2, 3) 100 190 10,000 19,000 (2, 1) 120 150 10,000 15,000
(3, 0) 0 100 0 10,000 (1, 0) 0 100 0 10,000

Total 62,000 82,000 64,000 80,000

Table 4 provides optimal results for two different solutions. Results show that by considering

9



the effect of weight, the optimum solution may be different in each scenario. The first route (i.e.,
0, 1, 2, 3, 0) is is optimum for case (i) with 62,000 units, and the second route (i.e., 0, 3, 2, 1, 0) is
optimum solution for case(ii) with 80,000 units. According to this observation, the robust model
introduced by Sungur et al. (2008) is not respondent for the HWC modeling of the cumulative
VRP. In order to handle cumulative variables as in the PRP, we now reformulate the HWC
robust approach as follows.

Minimize (2)-(3), (5) and:

¸

pi,jqPA
γλαijdijf

1
ij (20)

Subject to
Constraints (6)–(8),(11)–(17) and:

¸

jPN
f 1ji �

¸

jPN
f 1ij � q̄i � q̂i @i P N0 (21)

¸

jPN
fji �

¸

jPN
fij � q̄i � q̂i @i P N0 (22)

fijxij ¤ pQ� q̄i � q̂iqxij @pi, jq P A (23)

fijxij ¥ pq̄j � q̂jqxij @pi, jq P A (24)

f0ixij ¤ f 10i @i P N0 (25)
¸

pi,jqPA
fji �

¸

pi,jqPA
fij �

¸

pi,jqPA
f 1ji �

¸

pi,jqPA
f 1ij � 2q̂i @i P N (26)

f 1ij ¥ 0 @pi, jq P A, (27)

where continuous variables f 1ij are defined as the total amount of flow on arc pi, jq if each
customer receives a lower bound of demand when vehicles are loaded with an upper bound of
demand. Variables fij show the total amount of flow on arc pi, jq if each customer receives an
upper bound of demand when vehicles are loaded with an upper bound of demand. The objective
function (20) is counterpart of the objective function (4) in robust approach. Constraints (21)
and (22) define the hard worst case arc flows as well as eliminating sub-tours like constraints
(9). Constraints (23) and (24) enforce the capacity limitations on payload. Constraints (25)-(26)
balance the flow and ensure the relations between variables fij and f 1ij .

4.2. The soft worst-case robust optimization approach

In order to control the conservation of solution, a new parameter ψ can be used as an un-
certainty budget. The concept of uncertainty budget or the price of robustness was introduced
by Bertsimas and Sim (2003, 2004). In the proposed SWC robust optimization approach, pa-
rameter ψ can be selected as any value in the interval of r0, |N0|s, which ψ � |N0| is the most
conservative condition. The SWC approach is a more flexible version of the HWC approach, and
tries to minimize the worst case value of objective function without satisfying all constraints in
their extreme worst case values (see, e.g., Pishvaee et al. (2012)). Moreover, binary variables Γi

are defined to control the degree of conservation in each constraint i in which Γi is equal to 1 if
q̃i receives its upper bound value (otherwise it takes 0). Therefore,

°
i Γi � ψ means that only ψ

number of uncertain parameters (q̃iq achieve the corresponding upper bound values. According
to above-mentioned descriptions the SWC, a new robust approach can be formulated as follows.
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Minimize (2)–(3), (5) and (20):
Subject to
Constraints (6)–(8), (11)–(17), (21),(25), (27) and:

¸

jPN
fji �

¸

jPN
fij � q̄i � Γiq̂i @i P N0 (28)

fijxij ¤ pQ� q̄i � Γiq̂iqxij @pi, jq P A (29)

fijxij ¥ pq̄j � Γiq̂jqxij @pi, jq P A (30)
¸

pi,jqPA
fji �

¸

pi,jqPA
fij �

¸

pi,jqPA
f 1ji �

¸

pi,jqPA
f 1ij � p1 � Γiqq̂i @i P N (31)

¸

iPN0

Γi � ψ (32)

Γi P t0, 1u @i P N0, (33)

where binary variables Γi are equal to 1 if an upper bound of customer i corresponding to
the demand allocated. And it is equal to 0 if nominal demand allocated. Constraints (28) to
(31) are counterpart of constraints (22) to (24) and (26). Constraints (32) ensure that only ψ
number of customers receive an upper bound value of the corresponding uncertain parameters.
In this problem the maximum value of ψ is equal to the total number of nodes. Time windows
constraints are used as in hard worst case approach. Due to the multiplication of binary variables
in constraints (29) and (30), the SWC formulation becomes a non-linear programming problem.
To convert the formulation into its equivalent linear form, we define two new set of binary
variables as follows.

νij � Γixij @pi, jq, and

ν 1ij � Γjxij @pi, jq.

Hence, constraints (29) and (30) can be replaced by following constraints:

fijxij ¤ pQ� q̄iqxij � q̂iνij @pi, jq P A (34)

fijxij ¥ q̄jxij � q̂jν
1
ij @pi, jq P A (35)

νij ¤ xij @pi, jq P A (36)

νij ¤ Γi @pi, jq P A (37)

Γi � xij � νij ¤ 1 @pi, jq P A (38)

ν 1ij ¤ xij @pi, jq P A (39)

ν 1ij ¤ Γj @pi, jq P A (40)

Γj � xij � ν 1ij ¤ 1 @pi, jq P A (41)

νij P t0, 1u @pi, jq P A (42)

ν 1ij P t0, 1u @pi, jq P A. (43)

4.3. The chance-constrained robust optimization approach

If a probability distribution of demands is known, we can adapt a new robust formulation
based on chance constrained programming. When the objective is to have a solution that
is feasible at least for (1-α) percent of scenarios, the HWC formulation can be converted to
chance-constrained robust (CCR) formulation with change constraints (21) to (24) and (26). If
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an uniform distribution is considered for demand-related parameters, the CCR formulation can
be given as follows.

Minimize (2)–(3), (5) and (20):
Subject to
Constraints (6)–(8), (11)–(17), (21), (25), (27) and:

¸

jPN
f 1ji �

¸

jPN
f 1ij � q̄i � p1 � αqq̂i @i P N0 (44)

¸

jPN
fji �

¸

jPN
fij � q̄i � p1 � αqq̂i @i P N0 (45)

fijxij ¤ pQ� q̄i � p1 � αqq̂iqxij @pi, jq P A (46)

fijxij ¥ pq̄j � p1 � αqq̂jqxij @pi, jq P A (47)
¸

pi,jqPA
fji �

¸

pi,jqPA
fij �

¸

pi,jqPA
f 1ji �

¸

pi,jqPA
f 1ij � 2p1 � αqq̂i @i P N . (48)

5. Computational experiments

This section presents the results of extensive computational experiments performed to assess
the performance of our three robust approaches. We first describe the PRPLIB instances and
then present the results.

5.1. Data and experimental setting

We have used specifically designed PRPLIB instances which are introduced by Demir et al.
(2012). These PRPLIB instances are generated to analyze the fuel consumption in more realistic
transport networks. The instances represent randomly selected cities from the United Kingdom
and therefore use real geographical distances. Time windows and service times are randomly
generated. In this paper, we only consider three sets of five instances each. The size of the
considered PRPLIB instances in this paper ranges from 10 to 20 customers’ nodes. All instances
are available for download from the website http://www.apollo.management.soton.ac.uk/

prplib.
The proposed robust solution formulations were implemented in an Advanced Integrated

Multidimensional Modeling Software (AIMMS) (Roelofs, 2010). All experiments were conducted
on a computer with core i5-4200U 1.6GHz CPU and 8 GB RAM. A common time-limit of three
hours was imposed on the solution time for all instances.

In Table 5, for the SWC robust approach, different robustness levels and the corresponding
values of (ψ) are shown. The first column indicates an instance set based on number of nodes
in each instance and the columns 2 to 5 show the value of (ψ) for different levels of robustness.
It is noted that the column “Zero” represents the zero robustness level, “Low” represents the
low robustness level, “Medium” represents the medium robustness level, and “High” represents
the high robustness level.

To help assess the complexity of the robust approaches, we now present the average time
required by the AIMMS to solve an instance to optimality in Table 6. For each instance set,
we present the instance set name in column “Instance set”, the uncertainty level of demand in
column “Uncert. level”, and average solution times required for each approach in the following
seven columns. Moreover,“HWC” represents hard worse case solution and“LSL” represents
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Table 5
Different robustness level and corresponding values of (ψ) in each instance type

Instance Value of (ψ) for different robustness levels
set Zero Low Medium High

UK10 0 2 5 7
UK15 0 3 7 11
UK20 0 5 10 15

the low safety level (α=0.1), and “’HSL” represents the high safety level (α=0.01) in chance-
constrained approach. Uncertainty level for (10–50%) is an average value of these bounds (i.e.
UK10 (10–50 %)=(UK10 (10%) + UK10 (50%))/2).

Table 6
Averege CPU time required to solve three sets of PRPLIB instances

Instance Uncert. SWC HWC CCR
set level Zero Low Medium High LSL HSL

UK10 10% 3.0 3.0 4.2 4.2 1.9 2.6 3.1
UK15 10% 53.1 104.5 93.4 144.5 68.4 54.0 115.2
UK20 10% 394.3 3,944.5 2,820.3 3,759.4 1,372.4 1,803.2 879.1

UK10 50% 2.7 4.9 4.9 14.0 6.1 10.8 13.5
UK15 50% 119.4 149.4 228.4 250.2 312.9 249.8 351.4
UK20 50% 3,002.7 5,335.0 6,752.5 10,406.3 7,495.7 8,400.4 10,800.0

UK10 10–50% 2.8 3.9 4.5 9.1 4.0 6.7 8.3
UK15 10–50% 86.2 127.0 160.9 197.4 190.6 151.9 233.3
UK20 10–50% 1,698.5 4,639.7 4,786.4 7,082.8 4,434.1 5,101.8 5,839.5

Average 595.9 1,590.2 1,650.6 2,429.8 1,542.9 1,753.5 2,027.0

Table 6 provides the average CPU time required by the solver for three instance category
(i.e., 10-, 15-, and 20-node instances). The average times required with the SWC ranges from
595.9 to 2,429.8 seconds. The average time required with the HWC is around 1,542.9 seconds.
The average times required with the LSL and HSL are found to be 1,753.5 and 2,027 seconds,
respectively.

5.2. Results of the low uncertainty level

Fuel consumption depends on several factors, such as vehicle speed, vehicle load, etc (Demir
et al., 2011). In this section, we particularly look at the low demand uncertainty and its impact
on fuel consumption. More specifically, we set the low uncertainty level as 10% for each robust
strategy.

With the HWC approach and low uncertainty level, we now provide a numerical comparison
between deterministic and robust solutions on instance UK15 01 in Table 7. In this example,
we provide the routes, the total distance traveled, the number of vehicles used, and the total
fuel consumption consumed.

Table 7 provides that robust solution leads to most reliable results with limited increase in
fuel consumption. We suppose that each customer’s demand follows the normal distribution,
and therefore each route should satisfy total demand with the normal distribution. With the
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Table 7
Two solutions for UK15 01

Solutions Routes Total # of Fuel
distance (m) vehicles consumption (L)

Deterministic solution
0–8–6–10–7–1–9–3–0 709,035 2 132.21
0–12–14–13–4–5–2–15–11–0

Robust solution
0–8–6–14–13–4–5–0 727,303 3 135.03
0–9–3–15–2–11–0
0–12–10–7–1–0

deterministic model and nominal value for customer’s demand, optimum solution has two routes.
In each route, vehicle maybe confronted with shortage by probability equal to 0.5 and finally,
deterministic solution feasible with probability equal to 0.25. On the other hand, robust solution
is feasible, in all situations, with only 2.58% increase in total distance (709,035 to 727,303
meters), 2.13% in fuel consumption (132.21 to 135.03 liters), and 8.9 kg more CO2e emissions.

We now present the detailed results obtained for all robust scenarios with three different
approaches. For each instance, we present the optimal fuel consumption (in L) in column
“Optimal”, and the difference between optimal and robust solutions values (in L) in the following
seven columns in Table 8.

Table 8
Fuel consumption comparison among different robust strategies for the low uncertainty level

Instance Optimal SWC HWC CCR
(L) Zero Low Medium High LSL HSL

UK10 01 104.55 0.80 0.95 1.30 2.62 3.21 2.98 3.18
UK10 02 133.32 0.90 1.06 1.36 1.67 2.41 2.16 2.38
UK10 03 125.69 0.56 0.65 0.89 1.12 1.64 1.48 1.63
UK10 04 120.26 0.79 0.89 1.17 1.48 2.09 1.88 2.06
UK10 05 111.32 0.56 0.65 0.89 1.16 1.65 1.49 1.64
UK15 01 185.09 1.59 1.79 2.30 2.94 3.94 3.62 3.92
UK15 02 129.98 1.07 1.19 1.51 2.00 2.76 2.47 2.72
UK15 03 179.88 1.15 1.28 1.67 2.30 3.12 2.80 3.08
UK15 04 189.12 1.39 1.67 2.44 5.00 6.96 5.78 6.92
UK15 05 188.41 1.26 1.47 1.99 2.86 17.24 16.82 17.20
UK20 01 199.05 1.66 1.96 2.57 3.39 14.24 4.03 14.18
UK20 02 211.88 1.59 1.80 2.28 3.23 4.66 4.20 4.61
UK20 03 117.30 1.02 1.18 4.29 10.20 11.02 10.73 10.99
UK20 04 204.04 1.86 2.30 3.02 4.09 10.60 10.21 10.56
UK20 05 183.74 1.45 1.72 2.14 2.91 4.33 3.91 4.27

Average 1.18 1.37 1.99 3.13 5.99 4.97 5.96

Table 8 shows that the difference in total fuel consumption obtained with robust approaches
are positive, meaning that robust solutions require only limited increase in terms of fuel con-
sumption to complete the transport plans. The average increase in fuel consumption with the
SWC are 1.18, 1.37, 1.99 and 3.13 liters for the corresponding robust strategies. The average in-
crease in fuel consumption with the HWC is 5.99 liters. The average increase in fuel consumption
with the LSL and HSL are found to be 4.97 and 5.96 liters, respectively.
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5.3. Results of the high uncertainty level

In this section, we assume a high uncertainty of demand and present the detailed results
for each instance. More specifically, we set the high uncertainty level as 50% for each robust
strategy. The detailed results on fuel consumption (in L) are provided in Table 9.

Table 9
Fuel consumption comparison among different robust strategies for the high uncertainty level

Instance Optimal SWC HWC CCR
(L) Zero Low Medium High LSL HSL

UK10 01 104.55 4.03 4.82 8.15 16.11 29.28 28.38 29.18
UK10 02 133.32 4.51 5.31 6.84 15.75 18.10 17.29 18.01
UK10 03 125.69 2.83 3.29 4.47 5.67 8.28 7.44 8.18
UK10 04 120.26 3.98 4.50 5.89 7.49 15.03 14.25 14.94
UK10 05 111.32 2.87 3.33 4.53 6.10 11.17 10.24 11.07
UK15 01 185.09 5.92 6.43 8.52 12.40 36.51 34.88 36.27
UK15 02 129.98 5.34 5.93 7.57 10.01 20.86 19.70 20.73
UK15 03 179.88 5.78 6.45 8.41 11.64 39.38 20.12 39.22
UK15 04 189.12 6.67 7.58 11.68 22.93 49.02 46.12 47.55
UK15 05 188.41 6.38 7.46 11.35 29.75 36.68 35.07 36.51
UK20 01 199.05 8.35 9.92 20.30 34.02 59.51 49.19 59.29
UK20 02 211.88 7.96 9.08 12.33 37.96 57.60 55.62 57.37
UK20 03 117.30 5.16 6.06 10.59 21.79 33.60 31.44 33.47
UK20 04 204.04 9.38 11.34 17.66 26.08 52.98 43.89 52.75
UK20 05 183.74 7.15 8.65 13.61 25.81 50.27 39.71 50.09

Average 5.75 6.68 10.13 18.90 34.55 30.22 34.31

Table 9 shows that the difference in total fuel consumption obtained with robust approaches
increases with the increase in uncertainty level. The average increase in fuel consumption with
the SWC are 5.78, 6.68, 10.13 and 18.90 liters for the corresponding robust strategies. The
average increase in fuel consumption with the HWC is 34.55 liters. The average increase in fuel
consumption with the LSL and HSL are 30.22 and 34.31 liters, respectively. According to these
results, we can claim that the demand uncertainty plays a vital role in transport planning and it
must be considered during the planning phase. As shown, robust solutions lead to most reliable
solutions with very limited increase in the objective function related to fuel consumption and
CO2-equivalent emissions. If demand uncertainty is not considered, LSPs and freight forwarders
do not only lose money but also produce more CO2e emissions for their transport activities.

5.4. The effect of the travel time uncertainty

Different countries impose different restrictions on traveling speed. Moreover, traveling speed
might be restricted based on other factors, such as congestion, weather conditions, etc (Demir
et al., 2015). Congestion happens in transportation networks when entities compete individually
for a limited capacity. Congestion causes increased travel times, operating costs, and unreliability
in travel activities (Banfi et al., 2000). Congestion could also indirectly result in increased fuel.
Since we discretize traveling speed, we can adjust these limits and observe the uncertainty of
travel times with the hard-worst case robust approach. As explained in section 3.2, speed levels
R (i.e., R � 40, ..., 85 km/h) can be redefined for both low and high uncertainty levels. The low
travel uncertainty is defined as R � 40, ..., 75 km/h whereas the high travel uncertainty (i.e.,
high congestion) is defined as R � 40, ..., 55 km/h. The detailed results are provided in Table
10.
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Table 10
Results of travel time uncertainty on fuel consumption

Instance Optimal High travel Low demand and high High demand and high
(L) time uncertainty travel time uncertainty travel time uncertainty

Difference # of Difference # of Difference # of
vehicles vehicles vehicles

UK10 01 104.55 1.40 2 3.73 2 29.90 3
UK10 02 133.32 2.28 2 4.76 2 18.81 3
UK10 03 125.69 0.62 3 2.26 3 8.90 3
UK10 04 120.26 0.59 2 2.68 2 15.66 3
UK10 05 111.32 0.55 2 2.19 2 11.73 2
UK15 01 185.09 1.71 3 5.02 3 37.53 4
UK15 02 129.98 0.64 2 3.40 2 21.56 3
UK15 03 179.88 0.88 3 4.01 3 40.39 4
UK15 04 189.12 1.70 4 7.90 4 50.13 5
UK15 05 188.41 9.82 3 22.29 3 37.71 3
UK20 01 199.05 0.97 3 19.77 4 60.68 4
UK20 02 211.88 1.03 3 5.69 3 58.83 4
UK20 03 117.30 0.57 3 11.63 3 34.29 4
UK20 04 204.04 0.99 3 11.63 4 54.15 5
UK20 05 183.74 0.92 3 6.46 3 51.33 5

Average 1.64 2.73 7.56 2.87 35.44 3.67

Table 10 shows the results in three category. The first category is presented for high travel
time uncertainty. In this case, demand uncertainty is not considered. The second category
presents results for high travel time with low demand uncertainty. Finally, the last category
presents results for high travel time with high demand uncertainty. Moreover, we provide the
number of vehicles used in the solutions in Table 10. It is noted that low travel time uncertainty
provided the similar results with optimal values because of the loose time windows of the PRPLIB
instances. However, one can still obtain realizable solutions for the least fuel consumption with
both high travel time and demand uncertainty.

6. Conclusions and future research directions

Vehicle routing problems have been conventionally optimized with a special focus on dis-
tance minimization or the number of vehicles reduction. With an ever growing concern for
the environment, better planning algorithms were required by the logistic service providers or
freight forwarders. As a result, in recent years, there have been emerging solutions provided
by scientific researchers as well as practitioners to minimize fuel consumption and particularly
CO2e emissions. In this paper, we have selected the well-known green vehicle routing problem
formulation, namely Pollution-Routing Problem (PRP), and extended it to consider data un-
certainties. In particular, we have formulated three different robust optimization approaches for
the solution of the PRP with demand and travel time uncertainty.

Almost all studies address the green vehicle routing problems in a context where all param-
eters are known with certainty. By using several robust techniques, we have showed that it is
possible to deal with data uncertainty and to obtain reliable solutions. However, this might
cause additional up to 30 L of fuel for a 10-node instance, up to 50 L of fuel for a 15-node
instance, and up to 60 L of fuel for a 20-node instance. With the help of robust techniques,
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we can decrease the risk of shortage and unmet demand, which might require more costly solu-
tions than robust ones in practice (i.e., extra fuel and time due to using an additional vehicle).
Decreasing the uncertainty level will lead to closer results to the corresponding deterministic
ones. Similarly, increase in the robustness level will lead to higher costs. Logistics companies
need to address their operations with better planning algorithms and pricing policies to enable
an efficient and sustainable freight transportation system. By looking at the results of robust
optimization approaches, the following two areas are identified as further research directions.
We have shown that a majority of the existing studies focus only on the routing aspect of green
vehicle routing. Other problems which can be linked to routing may offer former reductions in
emissions, such as location-routing problems, where relocating the depot or locating alternative
facilities may reduce the overall emissions. Another possible future research direction could be
related to the use of alternative types of vehicles, and in particular electric vehicles, which make
use of new technologies
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Demir, E., Bektaş, T., Laporte, G., 2013. The bi-objective pollution-routing problem. European
Journal of Operational Research 232, 464–478.
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dependent pollution routing problem. Transportation Research Part B: Methodological 56,
265–293.

Gendreau, M., Laporte, G., Séguin, R., 1995. An exact algorithm for the vehicle routing problem
with stochastic demands and customers. Transportation science 29, 143–155.

Golden, B., Raghavan, S., Wasil, E., 2008. The vehicle routing problem: latest advances and
new challenges. Washington, D.C., USA.

Jemai, J., Zekri, M., Mellouli, K., 2012. An NSGA-II algorithm for the green vehicle rout-
ing problem, in: Evolutionary Computation in Combinatorial Optimization: 12th European
Conference, Malaga, Spain, pp. 37–48.

Jun, L., 2009. A genetic algorithm to logistics distribution vehicle routing problem with fuzzy
due time, in: Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09. Sixth International
Conference on, IEEE. pp. 33–39.
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