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Summary 

In visual cortex, high-contrast grating stimuli induce neurons to oscillate synchronously 

with a centre frequency in the gamma range (~30–80 Hz). The peak frequency of visual 

gamma oscillations is modulated by numerous factors, including stimulus properties, 

cortical architecture and genetics, however, it can be measured reliably over time. As 

demonstrated by both animal models and human pharmacological studies, the gamma 

peak frequency is determined by the excitation/inhibition balance and the time constants 

of GABAergic processes. This oscillatory parameter could thus reflect inter-individual 

differences in cortical function/physiology, representing a possible biomarker for 

pharmacological treatment in conditions such as epilepsy, autism and schizophrenia. 

This thesis demonstrates the importance of measuring the gamma peak frequency 

accurately and reliably in magnetoencephalographic (MEG) recordings. In Chapter 2, a 

novel quality-control (QC) approach was validated for peak frequency estimation and 

identification of poor-quality data. In Chapter 3, QC of a previous pharmacological 

MEG study of visual gamma with tiagabine revealed a marked drug-induced reduction 

of peak frequency. Although contrasting with the null finding originally reported 

(Muthukumaraswamy et al., 2013), the result is supported by both animal models and 

recent human studies, demonstrating the potentialities of appropriate QC routines. In 

Chapter 4, testing for the effect of spatial attention on the gamma peak frequency in 

primary visual cortex resulted in no evidence of a change. However, the modulation of 

gamma amplitude by attention was consistent with a role in feed-forward signal 

propagation across the visual hierarchy. In Chapter 5, the QC approach was used to 

compare visual gamma data recorded at different sites of the UK MEG Partnership, 

demonstrating the feasibility of combining data from different MEG systems. 

These results have implications particularly for pharmacological and large-scale multi-

site studies, both of which are emerging as promising approaches for the study of brain 

function with MEG. 
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1 Chapter 1. 

General introduction 

  



 

2 
 

  



3 
 

1.1 A brief history of gamma oscillations 

The study of neuronal oscillations in humans began with the observation of large-

amplitude voltage fluctuations in the electroencephalographic (EEG) signal, at a 

frequency of ~10 Hz (Berger, 1929). The ‘alpha rhythm’ was observed predominantly 

over occipital areas, during periods of rest with eyes closed. Sixty years later, 

pioneering work by Singer and colleagues (Gray and Singer, 1989; Gray et al., 1989) 

demonstrated synchronous oscillatory activity in cat primary visual cortex, at 

frequencies of ~40 Hz, in response to visual stimulation. In the study by Gray et al. 

(1989), drifting square-wave gratings elicited synchronous rhythmic responses in 

groups of neurons that were recorded from separate locations within the visual cortex. 

Crucially, synchronisation was dependent on the configuration of the visual stimulus, 

with distinct neuronal groups establishing oscillatory synchrony in response to 

simultaneous and coherent stimulation of their receptive fields. Synchrony was thus 

hypothesised to serve as a neuronal principle relating spatially separated neuronal 

groups based on simple characteristics of the visual input (for a review, see Singer, 

2007). 

Oscillatory activity at high frequencies (20–80 Hz) had already been reported 

previously in the olfactory bulb of the hedgehog (Adrian, 1942) and rabbit (Freeman, 

1975; Gray and Skinner, 1988; Viana Di Prisco and Freeman, 1985), as well as in 

neocortical sensory areas of other animals, such as cats (Bouyer et al., 1981, 1987), 

dogs (Lopes da Silva et al., 1970) and monkeys (Freeman and van Dijk, 1987; Rougeul 

et al., 1979), and even in the human visual cortex (Chatrian et al., 1960). However, the 

studies by Singer and colleagues were remarkable because they provided, for the first 

time, experimental evidence in support of the so-called ‘binding by synchrony’ 

hypothesis (Milner, 1974; Singer, 1999). In particular, their results fostered research on 

the potential role of gamma oscillations (30–100 Hz) in organising spike timing and 
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defining neuronal coding schemes, which, at least in theory, could represent a 

fundamental computational principle in the brain (Singer, 1999; Singer and Gray, 

1995). Subsequently, one popular theoretical proposal, the ‘communication through 

coherence’ hypothesis (Fries, 2005, 2009), suggested that since synchronised pre-

synaptic neurons have greatest downstream impact when their spikes arrive during 

periods of high post-synaptic excitability, neuronal communication could be flexibly 

modulated by establishing different phase relations among groups of coherently 

oscillating neurons (for a review and recent formulation of this hypothesis, see Bastos et 

al., 2015b). 

The supposed role of oscillatory synchrony as a neuronal processing mechanism (Fries, 

2005, 2009; Singer, 1993; Singer and Gray, 1995), together with the discovery of 

gamma oscillations in other areas of the brain, such as the hippocampus (Bragin et al., 

1995), led researchers to hypothesise a possible role of gamma-band synchronisation in 

human cognition (Engel et al., 2001; Varela et al., 2001; Wang, 2010). To date, human 

gamma oscillations have been implicated in a wide range of sensory and cognitive 

tasks, e.g., perception (Tallon-Baudry and Bertrand, 1999), memory (Herrmann et al., 

2004) and attention (Jensen et al., 2007). Unfortunately, however, most of the initial 

human studies on gamma oscillations were based on EEG measurements, a technique 

which has now been demonstrated vulnerable to different forms of artefactual activity in 

the gamma frequency range (Hipp and Siegel, 2013; Muthukumaraswamy, 2013; Nunez 

and Srinivasan, 2010). As such, the work presented within this thesis builds primarily 

on more recent evidence gathered using magnetoencephalographic (MEG) recordings, 

which, as discussed below, offer a number of advantages over EEG to study gamma 

oscillations in humans. 

  



5 
 

1.2 Overview of the technical basis of MEG 

The use of MEG as a technique to record the electro-physiological activity produced by 

the brain was first demonstrated on the alpha rhythm (Cohen, 1968, 1972) and this was 

later extended to measuring auditory signals in the gamma frequency range (e.g., 

Mäkelä and Hari, 1987; Ribary et al., 1991). While the first measurements were 

performed with a single sensor, which was repositioned multiple times to record from 

different locations of the head, MEG gradually developed from single- to multi-channel 

systems, which implemented whole-head coverage as well as various strategies for 

noise reduction (Hari and Salmelin, 2012). 

1.2.1 The biophysical basis of MEG 

From a physiological point of view, MEG measures the magnetic fields produced by 

intracellular currents flowing within the apical dendrites of pyramidal neurons, which 

are oriented in parallel with respect to each other and perpendicularly with respect to the 

cortical surface (Baillet et al., 2001). One of the main reasons why post-synaptic 

potentials provide the major contribution to the measured magnetic fields is that they 

occur on relatively slow time scales, lasting up to several tens or hundreds of 

milliseconds (Del Gratta et al., 2001; Williamson and Kaufman, 1990). This, in 

combination with the spatial superposition produced by the structural arrangement of 

the dendrites, allows the generated magnetic fields to sum in time and space, becoming 

of measurable intensity. On the contrary, the axonal currents produced by the firing of 

action potentials are thought to provide minimal or no contribution to the measured 

fields (Lopes da Silva, 2010). In fact, action potentials are much faster compared to 

post-synaptic potentials and thus less likely to synchronise over a sufficiently large 

number of neurons (see below). In addition, while post-synaptic potentials can be 

modelled as dipoles with fields falling with the square of the distance, the magnetic 
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fields produced by the axonal currents decay much more rapidly, falling with the cube 

of the distance. 

This type of cell population, i.e. pyramidal neurons, can be found primarily in the 

external and internal granular layers, i.e. layer II and layer V of the neocortex, 

respectively (Bear et al., 2007). In theory, those neurons that have a tangential 

component with respect to the scalp produce magnetic fields that are measurable with 

MEG, whereas those that are radially-oriented do not. This latter scenario is realised at 

the sulci and crests of cortical gyri, which however constitute only ~5% of the cortex  

(Hillebrand and Barnes, 2002). The presence of non-tangentially oriented pyramidal 

neurons in a limited portion of the cortex would thus not represent a major limitation for 

MEG. 

Importantly, rather, synchronisation among relatively large numbers of pyramidal 

neurons is required, for the resulting magnetic fields to be of measurable intensity, i.e. 

at least 50–500 fT (Hämäläinen et al., 1993). It has been estimated that between 10,000–

50,000 pyramidal cells need to be synchronously active for the signal to be detected 

(Murakami and Okada, 2006), for areas of the cortex between 0.1–4 cm2, depending on 

the type of neuronal activity and cortical region being recorded (cf. Barth, 1991; 

Chapman et al., 1984; Lü and Williamson, 1991). Also for this reason, and in support of 

the argument mentioned above, it is unlikely for a cortical source to be fully radial and 

hence silent (Hillebrand and Barnes, 2002). 

One important limiting factor of MEG, instead, is the relatively low sensitivity to deep 

sources. The magnetic field decays with the square of the distance (as stated by the 

Biot-Savart law) and thus sources deep in the brain need to be of large intensity in order 

to be detected with MEG (Hillebrand and Barnes, 2002). Despite this, both empirical 

evidence and computational models suggest that some subcortical structures, such as the 
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hippocampus, might be measurable with MEG (Attal et al., 2007; Dalal et al., 2009; 

Kaplan et al., 2012). 

1.2.2 MEG instrumentation 

The challenge of measuring from deep sources is partly related also to the difficulty of 

reducing the distance between the MEG pick-up coils and the scalp, which represents 

the main disadvantage of MEG compared, for example, to EEG (Muthukumaraswamy, 

2014). In modern MEG systems, the magnetic fields produced by the brain are coupled 

to superconducting quantum interference devices (SQUIDs; Zimmerman, 1970) via flux 

transformers, which consist of a pick-up coil and a coupling coil (Vrba and Robinson, 

2001). SQUIDs and flux transformers need to be cooled to superconductive 

temperatures (4°K, i.e. -269°C) and for this reason are kept inside a cryogenic dewar, 

immersed in liquid helium. Together, the dewar and the skull/scalp create a minimum 

distance of ~4 cm between the cortex and the pick-up coil. 

The configuration of the pick-up coils, illustrated in Figure 1.1, represents one of the 

major differences among the various MEG systems commercially available. There are 

three main types of pick-up coils: magnetometers, axial gradiometers and planar 

gradiometers (Hämäläinen et al., 1993; Muthukumaraswamy, 2014; Vrba and Robinson, 

2001). A magnetometer consists of a single coil connected to a SQUID and is relatively 

sensitive to large and distant sources of noise. Magnetometers produce field maps with 

a positive and a negative peak on either side of the measured dipole; the larger the 

distance between minimum and maximum, the deeper the dipole. An axial gradiometer 

consists of two magnetometers looped in the opposite direction and oriented parallel to 

the dipole source, i.e. on top of each other. Axial gradiometers measure the change in 

magnetic field between the two coils and are thus less sensitive to large and distant 

sources of noise, which are picked up by both coils and cancelled out. The resulting 
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field maps are similar to those produced by magnetometers, but have a more focal 

pattern. Planar gradiometers exploit the same principles of axial gradiometers, but 

consist of two coils looped in a figure of eight, perpendicular to the dipole. Differently 

to both axial gradiometers and magnetometers, their field maps show a single peak 

directly above the dipole. The fields measured by an axial gradiometer system can be 

transformed into a planar gradiometer configuration, by calculating the second spatial 

derivative of the recorded field (Oostenveld et al., 2011). 

 

Figure 1.1. Configuration and field pattern of four different pick-up coils. 

Schematic illustration of the coil configuration for axial magnetometers, axial gradiometers and 

planar gradiometers (top), with the typical field patterns generated in each of them (bottom). 

The black arrow in each plot represents a single tangential dipolar current source at the vertex. 

The red and blue circles indicate magnetic field lines entering and exiting the head, respectively. 

Note the spatially tighter field maps of higher-order gradiometers and the different field map 

produced by the planar gradiometers. Reproduced from Singh (2006). 
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In addition to the widely adopted magnetically-shielded rooms (MSRs), advanced 

approaches to noise reduction are implemented in a manufacturer-specific manner, in 

part depending on the type of pick-up coils in use. The CTF-MEG system, for example, 

is equipped with a set of reference magnetometers, which allow the conversion from 

first- to synthetic third-order gradiometers to further attenuate environmental noise, 

reduce vibrational noise and even eliminate head motion artefacts (Vrba and Robinson, 

2001). For the Elekta Neuromag MEG system, instead, spatio-temporal signal space 

separation (SSS) algorithms are typically used to separate and remove the magnetic 

fields originating outside a volume of interest (e.g., the brain) from those arising from 

inside the volume of interest itself, without distorting the measured MEG signal (Taulu 

and Simola, 2006; Vrba et al., 2010). A summary of the main technical features of three 

major MEG systems, which will be analysed in Chapter 5, is illustrated in Table 1.1. 

Table 1.1. Technical characteristics of three different MEG systems. 

MEG system primary sensors noise cancellation (system-specific) 

CTF-MEG 
275 first-order axial 

gradiometers 

synthetic third-order gradiometers 

(generated using a linear 
combination of a set of weighted 

reference sensors) 

Elekta Neuromag 

(VectorView, Triux) 

102 magnetometers 

102 orthogonal pairs of 
planar gradiometers 

signal-space separation (SSS) 

(MaxFilter and MaxShield) 

4-D Neuroimaging 

(Magnes 3600 WH) 
248 magnetometers 

principal component analysis (PCA) 

(the principal components of a set of 
reference sensors are regressed out 

of the primary sensors) 
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1.2.3 Analysis of MEG data 

Irrespective of the type of system, the MEG signal-to-noise ratio (SNR) can be 

improved by adopting common source analysis approaches. For example, compared to 

data analysed directly at the sensor level, beamformer source reconstruction of visually 

induced gamma oscillations can result in spectral modulations of greater amplitude and, 

for some parameters, higher test-retest repeatability values (Tan et al., 2016). Although 

spatial filtering should not be considered an explicit noise-reduction technique, this 

approach often results in various forms of signal artefacts either being projected outside 

the area of space occupied by the brain, or becoming easily detectable within the brain 

source image (Muthukumaraswamy, 2013). 

As also discussed below, the MEG signal can be considered insensitive to the different 

tissue compartments of the head, which means that relatively simple forward models 

can be used. The MEG forward model, or leadfield, consists of a definition of the 

magnetic fields that would be measured at every sensor location if a dipole source was 

active at a given location in the brain (Mosher et al., 1999). Adequate forward models 

can be as simple as a single sphere (Hämäläinen and Sarvas, 1989), although more 

complex ones are often used, such as multi-sphere models (Huang et al., 1999) or  

models in which a spherical volume conductor is corrected using realistic information 

about the head shape (Nolte, 2003). The accuracy of the forward model contributes to 

the accuracy of the solution to the MEG inverse problem, which consists of determining 

the location of the dipole sources, given the magnetic fields measured at every sensor 

location.  

One common solution to the inverse problem is the beamformer approach (Hillebrand et 

al., 2005). Beamforming is a spatial filtering technique originally developed for radar 

applications (Van Veen and Buckley, 1988), which allows a given three-dimensional 
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area of space to be ‘scanned’ systematically in order to estimate the signal from each 

location independently. In simple terms, the algorithm weights the measurement of each 

sensor so as to increase the sensitivity to signals coming from a location of interest, 

while suppressing the interfering signals from other locations (Hillebrand et al., 2005). 

This is achieved by minimising the projected power at the source location, subject to a 

unit-gain constraint (Barnes and Hillebrand, 2003). The beamformer solution is thus 

determined by two key ingredients. The first is the leadfield, as the unit-gain constraint 

implies that power at a given source location, projected to the sensors through the 

leadfield, should be recovered in full when weighting the sensors to reconstruct the 

activity at that location (Brookes et al., 2008). The second ingredient is the data 

covariance matrix, for time-domain beamformers such as LCMV (Van Veen et al., 

1997) and SAM (Robinson and Vrba, 1999), or the cross-spectral density (CSD) matrix, 

for frequency-domain beamformers such as DICS (Gross et al., 2001), which contribute 

to the calculation of the beamformer weights (Brookes et al., 2008). Ultimately, the 

weights minimise the power projected at a given source location by reducing the 

contribution from other sources (Hillebrand et al., 2005), under the assumption that the 

sources are not correlated (Van Veen et al., 1997). 

Various beamformer algorithms have been proposed (Gross et al., 2001; Robinson and 

Vrba, 1999; Van Veen et al., 1997), which are actually mathematically very similar 

(Hillebrand et al., 2005). In the original linearly constrained minimum variance 

(LCMV) beamformer formulation by Van Veen et al. (1997), a vectorial solution is 

computed for each source location. In fact, the leadfield consists of a 3-by-N matrix, 

mapping three orthogonal dipole orientations to N sensors. With this approach, a 

different set of weights is calculated for each of the three possible dipole orientations (or 

two, if the radial orientation is ignored), resulting in three separate source 

reconstructions, one for each orientation. In the experimental chapters of this thesis, 



 

12 
 

however, singular value decomposition (SVD) will be used to reduce the leadfield 

matrix to a single dipole orientation (i.e. a 1-by-N matrix for each scanned source 

location). By SVD, the beamformer solution is computed for the dipole orientation that 

should theoretically explain most of the measured data. Importantly, although this 

procedure can potentially lead to loss of information, it reduces the dimensionality of 

the data, thereby avoiding additional multiple comparison problems and facilitating 

every subsequent analysis step (e.g., time-frequency or spectral analysis of the source-

reconstructed time-series). Throughout this thesis, this scalar beamformer approach will 

be referred to simply as LCMV. 

As mentioned above, dynamic imaging of coherent sources (DICS; Gross et al., 2001) 

corresponds to a frequency-domain LCMV, as the covariance matrix is simply replaced 

with the CSD matrix in the weights calculation. As for LCMV, a scalar DICS 

beamformer will be used in the experimental part of this thesis, by SVD of the leadfield 

matrix. Finally, synthetic aperture magnetometry (SAM; Robinson and Vrba, 1999) is 

the third type of beamformer that will be referred to in this thesis, which differs from a 

scalar LCMV simply by the method used to derive the dipole orientation. In SAM, the 

dipole orientation at each source location is calculated by ‘spinning’ the dipole in 

several different orientations, until the algorithm achieves the maximal ratio between 

total and noise power. It is entirely possible that the optimal dipole orientation obtained 

with SAM will often correspond to the orientation obtained by SVD of the leadfield 

with LCMV. 

In contrast to beamforming, in other approaches, such as minimum-norm estimates 

(MNE), the data are modelled simultaneously for a large number of potential sources. 

The measured data are then explained by the source configuration with the least energy 

that also minimises the difference between measured and estimated fields (Hämäläinen 
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and Ilmoniemi, 1994). Typically, however, this requires the specification of an 

arbitrarily-defined depth bias (Hillebrand et al., 2005). Several other inverse solutions 

for source localisation exist, beyond beamforming and MNE (for an overview, see 

Ramìrez, 2008). Since only beamforming will be used in the experimental chapters of 

this thesis, the alternative approaches will not be discussed further here. 

1.2.4 The history of three MEG systems 

In the last experimental chapter (Chapter 5), the results of a comparative analysis will 

be presented for MEG data pooled across four research centres in the UK and recorded 

using three different MEG systems. As such, what follows hereafter is an attempt to 

provide a brief historical perspective on three common MEG systems currently used in 

MEG research. In everyday language, these are known as CTF, Elekta and 4-D, though 

some confusion appears to exists around the use of their commercial names. The 

information reported hereafter was gathered by combining the literature (Brahme, 2014; 

Hämäläinen et al., 1993; Mason et al., 2013) with descriptions available on the 

companies’ websites and may therefore be partly inaccurate or incomplete. 

According to a recent estimate, at present there are about 160 MEG laboratories 

worldwide (Hari and Salmelin, 2012). The first whole-head MEG in the UK was 

installed at Aston University, in Birmingham, and was a 151-channel CTF system, 

which is now no longer in use at Aston. Founded in 1970, Canadian Thin Films (CTF) 

Systems Inc. was one of the first MEG manufacturers. From a commercial perspective, 

instead, the first multi-channel magnetometer system was introduced in 1985, by the 

American company Biomagnetic Technologies Inc. (BTi). In later years, the Finnish 

company Neuromag, merged with BTi and founded 4-D Neuroimaging. Neuromag then 

split from 4-D and in 2003 merged with Elekta Inc., becoming Elekta Neuromag. In the 

meantime, in 2001, CTF were acquired by VSM MedTech Ltd., a company who then 
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sold it to MEG International Services Ltd. (MISL) in 2007. In 2009, MISL acquired 

also 4-D, becoming service providers for both 4-D and CTF-MEG systems. 

The latest product by CTF, the 275-gradiometer CTF-MEG system, is currently in use 

at three MEG laboratories in the UK (Cardiff, Nottingham and UCL). The latest 4-D 

Neuroimaging MEG product, the 248-magnetometer system Magnes 3600 WH, is 

currently installed both in Glasgow and in York. Two of the most recent Elekta 

Neuromag MEG systems, VectorView and Triux, which combine 102 magnetometers 

with 102 pairs of orthogonal planar gradiometers, are in use in Birmingham (Aston), 

Cambridge and Oxford. At present, apart from Elekta and CTF, other operative MEG 

manufacturers are the Japanese company Yokogawa Inc. and the American company 

Tristan Technologies Inc. (Brahme, 2014), although no MEG system from these 

companies has ever been installed in the UK.  
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1.3 Studying visual gamma oscillations in humans with MEG 

1.3.1 The advantages of MEG over EEG 

The robustness of EEG as a technique to study induced oscillatory phenomena in the 

higher portion of the frequency spectrum has been questioned since the early days of 

research on human gamma oscillations (Juergens et al., 1999). In particular, several 

observations on the susceptibility of EEG to electro-myogenic artefacts (Hipp and 

Siegel, 2013; Muthukumaraswamy, 2013; Nunez and Srinivasan, 2010) cast doubt on 

the robustness of the early reports of gamma-band activity in the human EEG (e.g., 

Gruber et al., 1999; Müller et al., 2000; Tallon-Baudry et al., 1996). At frequencies 

above ~30 Hz, the EEG spectrum is strongly contaminated by artefacts produced by the 

electro-myogenic activity from face and neck muscles (Goncharova et al., 2003; 

O’Donnell et al., 1974; Whitham et al., 2008). The contraction of these muscles can 

even be modulated by task-related factors and, therefore, can potentially add further 

uncertainty to the quantification and interpretation of gamma activity measured with 

EEG (see Hipp and Siegel, 2013). In addition, micro-saccadic eye movements have 

been shown to contaminate the high-frequency EEG signals (Yuval-Greenberg et al., 

2008) in a task-dependent manner. 

Magnetoencephalography offers a number of advantages over EEG for the study of 

high-frequency neuronal activity. First, unlike EEG, MEG is virtually insensitive to the 

smearing of electrical potentials across different types of conductive tissues (Buzsáki et 

al., 2012), meaning that less complex forward models are adequate for source 

localisation (Muthukumaraswamy, 2014). Second, the superior SNR of MEG over EEG 

and increased robustness of a number of MEG-derived parameters of gamma activity 

have been demonstrated empirically (Muthukumaraswamy and Singh, 2013). Third, and 

partly related to the first point, the increased accuracy of MEG source reconstruction 



 

16 
 

can result in more focal localisation of physiological artefacts (Muthukumaraswamy, 

2014), leading to relatively simple identification of artefacts such as those created by 

saccadic eye movements (Carl et al., 2012). Fourth, preliminary evidence suggests that 

the sustained component of visual gamma oscillations is unaffected by the micro-

saccadic artefacts (Wieczorek, 2015). 

1.3.2 The study of visual gamma oscillations in humans 

Other than the visual system (Gray et al., 1989) and the hippocampus (Bragin et al., 

1995), gamma oscillations have been studied in several parts of the brain, such as in 

parietal (Pesaran et al., 2002) and frontal cortex (Gregoriou et al., 2009), as well as in 

subcortical regions (Popescu et al., 2009). The literature described hereafter, however, 

will refer primarily to visual gamma oscillations, which have been the focus of most of 

the experimental work in this thesis (see Chapters 2, 3, 4 and 5). The term ‘visual 

gamma’ refers to neuronal gamma-band activity generated in visual cortex in response 

to simple contrast pattern stimuli and sustained throughout the presentation of a 

stimulus (Singh, 2012). As already mentioned above, this type of oscillatory activity 

was first reported using local field potential (LFP) recordings in the cat primary visual 

cortex (Gray et al., 1989; Kayser et al., 2003). 

The first demonstration of visual gamma oscillations in humans, with MEG, can be 

traced back to a study in 2004 (Adjamian et al., 2004b). In this study, Adjamian and 

colleagues managed for the first time to successfully apply a beamformer source 

reconstruction technique, synthetic aperture magnetometry (SAM; Vrba and Robinson, 

2001), to reconstruct gamma oscillations from the human primary visual cortex 

(Adjamian et al., 2004b). The authors also demonstrated the dependency of visual 

gamma on the parameters of visual stimulation, e.g., spatial frequency in their study. 

These results were replicated and extended soon after by another study (Hall et al., 
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2005), while, over time, the development of improved data analysis techniques, together 

with the optimisation of experimental protocols, allowed the same and other research 

groups to precisely illustrate the spectral and temporal evolution of this response (e.g., 

Hoogenboom et al., 2006; Swettenham et al., 2009). 

 

Figure 1.2. Source localisation and time-frequency representation of the visual gamma response. 

The epochs of interest in a typical visual gamma paradigm are analysed using a beamformer, 

which reveals a peak response in the primary visual cortex. A virtual sensor is generated and the 

time-course of activity reconstructed at this peak location is analysed in the time-frequency 

domain. This reveals the classic visual gamma response (section 1.3.2), as well as other features 

of the neuronal response to visual stimulation outside the gamma frequency range (30–100 Hz), 

i.e. an initial low-frequency evoked response, followed by the suppression of induced 

oscillatory power in the alpha/beta range (5–30 Hz). Adapted without permission from Singh 

(2012).  
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As shown in Figure 1.2, the classic time-frequency spectrogram for visual gamma is 

characterised by a transient and broadband ‘spike’, spanning frequencies between ~30–

100 Hz (or even higher) and terminating ~250–300 ms after stimulus onset. This initial 

evoked response, which is thought to be coupled to oscillatory potentials both in the 

retina and in the lateral geniculate nucleus (Castelo-Branco et al., 1998; 

Neuenschwander and Singer, 1996), is then followed by narrow-band gamma 

oscillations, typically sustained for the duration of the visual stimulus. This latter 

response is often referred to as the induced response, being time-locked but not phase-

locked to stimulus onset (Galambos, 1992; Tallon-Baudry and Bertrand, 1999). 

Importantly, these features can all be recorded with high consistency across non-human 

primates, with LFPs, and humans, using MEG or EEG (Fries et al., 2008a; Hall et al., 

2005). 

Over the course of the last 10 years, the oscillatory parameters of human visual gamma 

responses have been studied with respect to a number of factors. In particular, the 

amplitude, frequency, or bandwidth of gamma oscillations have been shown to depend 

strongly on the parameters of visual stimulation, in both humans and animals. This is 

the case for stimulus properties such as contrast (Hall et al., 2005; Henrie and Shapley, 

2005; Perry et al., 2015; Ray and Maunsell, 2010), size (Gieselmann and Thiele, 2008; 

Ray and Maunsell, 2011; van Pelt and Fries, 2013), orientation (Berens et al., 2008; 

Frien et al., 2000; Jia et al., 2011), spatial frequency (Adjamian et al., 2004b; 

Hadjipapas et al., 2007), motion (Gray et al., 1990; Muthukumaraswamy and Singh, 

2013; Swettenham et al., 2009) and motion velocity (Friedman-Hill et al., 2000; Gray 

and Viana Di Prisco, 1997). In general, both the gamma peak amplitude and peak 

frequency are modulated by the structural properties of the visual stimulus (Lima et al., 

2010; Perry, 2015). Interestingly, however, some dissociations have been observed 

between these two oscillatory parameters, which do not always co-vary with changes in 
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the stimulus properties (Jia et al., 2013). This led Jia and colleagues to conclude that the 

gamma peak amplitude and peak frequency are determined by different mechanisms 

and cannot be explained by models in which both amplitude and frequency increase 

with increasing input strength (see Whittington et al., 2011). An overview of the 

mechanisms that have been proposed to underpin the generation of gamma oscillations 

is presented in a later paragraph (section 1.4.1). 

1.3.3 Visual gamma and pharmaco-MEG 

In one of the experimental chapters of this thesis (Chapter 3), I will briefly review the 

pharmacological MEG (pharmaco-MEG) literature (for reviews, see Kähkönen, 2006; 

Muthukumaraswamy, 2014). In agreement with modelling work (e.g., Brunel and 

Wang, 2003), several recent pharmaco-MEG studies have consistently linked the 

properties of gamma oscillations to the balance between excitatory and inhibitory 

processes in the brain. As reported by Singh (2012), the possibility that specific 

oscillatory parameters could index inter-individual differences in cortical inhibition was 

initially suggested by two studies combining magnetic resonance spectroscopy (MRS) 

and MEG, which found a positive correlation between the individual gamma peak 

frequency and the γ-aminobutyric acid (GABA) concentration in occipital cortex 

(Edden et al., 2009; Muthukumaraswamy et al., 2009). However, a later study on a 

larger sample failed to replicate the result (Cousijn et al., 2014). MRS is in fact severely 

limited by the impossibility of distinguishing between intracellular and synaptic GABA 

concentrations (Muthukumaraswamy, 2014). In contrast, pharmaco-MEG can be used 

with drugs that have well-understood and well-defined mechanisms of action in order to 

probe the neurophysiological generative mechanism of neuronal responses that are 

measured consistently both invasively in animals and in humans with MEG 

(Muthukumaraswamy, 2014). Since this is the case for visual gamma oscillations (Fries 
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et al., 2008a; Hall et al., 2005), pharmaco-MEG represents a highly promising approach 

for the translation of animal models to humans. 
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1.4 Mechanisms and functions of gamma oscillations 

1.4.1 The role of GABAergic interneurons and glutamatergic pyramidal cells 

The two main types of neurons in the cerebral cortex are excitatory pyramidal cells and 

inhibitory interneurons, both of which have been implicated in the generation of gamma 

oscillations (Buzsáki and Wang, 2012). The two principal neurotransmitters in the brain 

are glutamate and GABA, with excitatory and inhibitory effect, respectively (Kandel et 

al., 2000). The excitatory action of glutamatergic pyramidal neurons occurs primarily 

via activation of ionotropic receptors that allow the influx of positively charged ions in 

the post-synaptic neurons and bring them to a depolarised state with respect to their 

resting membrane potential. The primary receptors for glutamatergic transmission are 

AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-

methyl-D-aspartate), which allow the inward flow of Na+ and Ca++ and mediate fast and 

slow excitation processes, respectively (Buzsáki et al., 2012). Conversely, the inhibitory 

action of GABAergic interneurons mediated by GABAA receptors generates an influx 

of negatively charged Cl- ions in the post-synaptic neurons. The time constants of both 

GABAA and AMPA receptors contribute to determining the time window of the gamma 

cycle (Buzsáki and Wang, 2012). 

The role of fast-spiking, parvalbumin-expressing interneurons in the generation of 

gamma oscillations is generally acknowledged (Bartos et al., 2007; Gonzalez-Burgos 

and Lewis, 2012; Tiesinga and Sejnowski, 2009). An individual GABAergic 

interneuron can form peri-somatic synapses with a large number of pyramidal neurons 

(Figure 1.3A) – about 15 in the neocortex (Markram et al., 2004) and up to 1500 in the 

hippocampus (Sik et al., 1995). The interneurons can thus modulate the excitability of 

relatively large populations of pyramidal cells, thereby shaping their firing activity. 

Crucially, the inhibitory post-synaptic potentials (IPSPs) reduce the firing probability 
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simultaneously in all post-synaptic pyramidal neurons with which the interneuron forms 

synaptic contacts (Gonzalez-Burgos and Lewis, 2008). Therefore, soon after the IPSPs 

terminate, the level of excitability recovers simultaneously across the whole cell 

population, resulting in the pyramidal neurons firing synchronously (Figure 1.3B). The 

rhythmic generation of IPSPs in the population of pyramidal cells translates to 

oscillations in the LFP, which can be observed also in the MEG signal. The exact 

mechanisms generating gamma oscillation, however, are not yet fully understood and 

the role of pyramidal cell firing, in particular, is still debated. As illustrated in Figure 

1.3C, two main circuit mechanisms have been proposed: the Interneuron Network 

Gamma (ING) and the Pyramidal Interneuron Network Gamma (PING) models (for 

reviews, see Gonzalez-Burgos and Lewis, 2012; Tiesinga and Sejnowski, 2009). 

According to the ING model, synchronisation in the gamma frequency range would 

arise simply from networks of interconnected and mutually inhibiting interneurons 

(Whittington et al., 2000). In this model, synchronous input from the pyramidal neurons 

is not required; the timing of pyramidal cells firing is determined by the decay time of 

GABAergic inhibition, but does not contribute to generating the gamma rhythm itself. 

In support to this model, in vitro pharmacological studies have shown that synchronous 

gamma oscillations in the hippocampus can be induced by tonic excitatory drive to the 

interneurons via metabotropic glutamate receptor activation (Whittington et al., 1995). 

The gamma oscillations observed following phasic excitation of the interneurons via a 

cholinergic agonist (Fisahn et al., 1998), instead, are more consistent with the PING 

model (Bartos et al., 2007; Tiesinga and Sejnowski, 2009). In the PING model, the 

interneurons are driven by the pyramidal cells, which become synchronised following 

feedback inhibition (Gonzalez-Burgos and Lewis, 2012). The generation of gamma 

oscillations would thus depend on the presence of recurrent connections between the 

pyramidal cells and the GABAergic interneurons (Whittington et al., 2000).  
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Figure 1.3. Mechanisms of gamma oscillations. 

A) Schematic illustration of an individual GABAergic interneuron making multiple synaptic 

contacts onto multiple post-synaptic pyramidal cells. B) Top, LFP recorded with an 

extracellular electrode in proximity of the pyramidal neurons. Bottom, superimposed traces of 

intracellular membrane potential recording, illustrating the synchronous firing of pyramidal 

neurons following phasic inhibitory input (black arrows). The IPSPs transiently inhibit spike 

firing, resulting in synchronous spikes soon after the IPSPs terminate. The negative components 

of the LFP reflect the synchronisation of pyramidal cell firing. C) In the ING model (left panel), 

gamma oscillations are generated by reciprocal inhibition between fast-spiking, parvalbumin-

expressing interneurons, which are activated by some form of tonic excitatory input. The 

pyramidal cells are synchronised by the interneurons, but do not contribute to the 

rhythmogenesis. In the PING model (right panel), gamma oscillations are generated by the 

interplay between interneurons and pyramidal cells, which contribute directly to the 

rhythmogenesis. The interneurons are driven by the phasic excitatory input from the 

glutamatergic pyramidal neurons, which are synchronised by feedback inhibition. Adapted 

without permission from Gonzalez-Burgos and Lewis (2008, 2012).  
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In recent years, in vivo optogenetic studies in mice have provided further evidence in 

support of the crucial role played by fast-spiking, parvalbumin-expressing interneurons 

in the generation of gamma oscillations (Cardin et al., 2009; Sohal et al., 2009). In these 

studies, gamma oscillations were amplified by light-driven activation of the 

interneurons (Cardin et al., 2009) and suppressed by their inhibition (Sohal et al., 2009). 

Furthermore, gamma oscillations were abolished by AMPA and NMDA receptor 

blockade, despite the presence of tonic excitatory drive to the interneurons, suggesting 

that phasic excitatory input to the interneurons is necessary for the generation of these 

oscillations (Cardin et al., 2009). Optogenetic manipulation appears thus a highly 

promising approach to study gamma oscillations in vivo. In particular, the possibility of 

precisely controlling the activity of different types of neurons, such as interneurons and 

pyramidal cells, will likely shed light on the circuit-level mechanisms implicated in the 

rhythmogenesis of gamma oscillations. 

1.4.2 The functional role of oscillatory rhythms in different frequency bands 

Our understanding of the neuronal networks generating gamma oscillations has recently 

been advanced by another line of research, which has revealed how superficial and deep 

layers of the cortex contribute differently to the generation of oscillations at different 

frequencies. This observation comes primarily from invasive studies in animals, in 

which LFP recordings were performed with multi-contact laminar electrodes (e.g., 

Spaak et al., 2012). In humans, similar results may be achieved also with MEG 

(Troebinger et al., 2014) and have already been demonstrated by a recent combined 

EEG-fMRI study (Scheeringa et al., 2016). In early visual cortex, gamma activity 

predominates in the more superficial layers, i.e. layer II, the external granular or 

supragranular layer (Buffalo et al., 2011; Maier et al., 2010; Scheeringa et al., 2016; 

Xing et al., 2012b). At lower frequencies, instead, both alpha (8–12 Hz; Buffalo et al., 

2011; Spaak et al., 2012) and beta oscillations (15–30 Hz; Maier et al., 2011) appear to 
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be generated in the deeper layers, i.e. layer V, the internal granular or infragranular 

layer (although, see also Haegens et al., 2015; Scheeringa et al., 2016). 

These studies corroborate the hypothesis that different oscillation frequencies may fulfil 

different cortical functions, such as establishing local representations at gamma 

frequencies and enabling long-range integration processes at lower frequencies (Donner 

and Siegel, 2011; Kopell et al., 2000). The afferent and efferent projections to and from 

each cortical layer differ between the different laminae and can be formed either within 

the same or across different brain regions (Douglas and Martin, 2004). Therefore, 

oscillations generated in different layers may reflect different mechanisms of 

information processing within a given cortical area and information transmission across 

different brain regions. In support of this view, recent evidence suggests that gamma 

and alpha/beta oscillations propagate in opposite directions between different areas of 

the visual system, with gamma reflecting feed-forward signal propagation and 

alpha/beta indexing feedback effects (Bastos et al., 2015a; Michalareas et al., 2016; van 

Kerkoerle et al., 2014). 

To date, the gamma rhythm has been implicated in a range of cognitive functions (Fries, 

2015; Jensen et al., 2007) as well as in pathological conditions (Lewis et al., 2005; 

Uhlhaas and Singer, 2006). Although not without some controversies (see Ray and 

Maunsell, 2015), visual gamma, in cooperation with alpha oscillations (Jensen et al., 

2014), have been proposed as a mechanism for selective routing of information across 

the visual cortical hierarchy (see Fries, 2015). The visual system represents a 

particularly well-suited scenario for the achievement of these functions, as the input 

from upstream neurons progressively converges to downstream regions with bigger 

receptive fields, where invariant stimulus representations can be formed (Desimone and 

Duncan, 1995; Reynolds and Chelazzi, 2004). In particular, a recent LFP study in 
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monkeys (Bosman et al., 2012) reported gamma-band synchronisation between low- 

and high-level visual regions, suggesting that inter-areal communication could be partly 

regulated by the oscillation frequency in primary visual cortex (Fries, 2015). In one of 

the experimental chapters of this thesis (Chapter 4), I will investigate the modulation of 

visual gamma oscillations in a spatial attention cueing task, testing specifically for the 

effect of attention on the gamma peak frequency. 
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1.5 Aims of this thesis 

One of the major problems in modern neuroscience concerns the quality of the data 

obtained with the techniques currently available. In part, this depends on the ability of 

the experimenter in designing appropriate experimental paradigms and adopting 

adequate strategies to mitigate the effects of undesired confounding variables, in order 

to collect the best possible quality data. Noise, however, is an intrinsic feature of any 

recording of brain activity and is particularly challenging in the case of MEG, where the 

signals of interest are thousands of times weaker than the Earth’s magnetic field. 

Furthermore, one of the most popular approaches to noise reduction, i.e. averaging over 

an ‘infinite’ number of trials, cannot always be exploited in full with human 

participants, whose noise-determining level of compliance largely depends on their 

comfort inside the MEG system and on the duration of the experimental session. 

In this thesis, I will focus on a specific parameter of sustained visual gamma 

oscillations, i.e. their peak frequency, which is often neglected in human MEG research. 

I will introduce a recently developed method for the quantitative estimation of the 

robustness of this parameter, which will be used as a proxy for data quality. In Chapter 

2, this quality-control (QC) approach, which is based on bootstrapping across trials, will 

first be tested on simulated data and then applied to a large-sample dataset, the ‘100 

Brains’, to illustrate the reliability of the gamma peak frequency in real MEG data, as 

well as the distribution of other QC and gamma oscillatory parameters. In Chapter 3, the 

potential applications of the QC approach will be tested on pharmaco-MEG data from 

two previous studies, which offered the advantageous opportunity of relating any 

observed modulations of peak frequency to relatively well-established animal models. 

Some of the results presented in Chapters 2 and 3 have recently been published in the 

form of a peer-reviewed journal article (Magazzini et al., 2016). In Chapter 3, I will use 

the QC method for peak frequency estimation to test a recently formulated hypothesis 
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on the role of the gamma peak frequency in attentional selection processes within 

primary visual cortex. The results of this study will soon be submitted for publication. 

In Chapter 4, I will use the QC approach to compare data quality across four visual 

gamma datasets, combining data collected with three different MEG systems, from four 

research centres of the UK MEG Partnership. The preliminary results of this study will 

lay the foundations for collaborative work aimed at establishing a shared database of 

MEG data and defining common analytical and QC procedures for future MEG 

research. 
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2 Chapter 2. 

A novel method for optimal peak frequency estimation 

and quality control 

Parts of this Chapter have been published in the form of a peer-reviewed journal article: 

Magazzini, L., Muthukumaraswamy, S. D., Campbell, A. E., Hamandi, K., Lingford-Hughes, 

A., Myers, J. F., ... & Singh, K. D. (2016). Significant reductions in human visual gamma 

frequency by the GABA reuptake inhibitor tiagabine revealed by robust peak frequency 

estimation. Human Brain Mapping. doi:10.1002/hbm.23283 
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2.1 Abstract 

Increasing evidence suggests that the peak frequency of visual gamma oscillations could 

reflect individual parameters of synaptic function and physiology. This oscillatory 

parameter has been linked to inter-individual differences in sensory processing, 

cognitive function, cortical structure and appears to have a genetic contribution. To 

disentangle the intricate relationship among these factors, accurate and reliable 

estimates of peak frequency are required. Here, we developed a bootstrapping approach 

that fulfilled two purposes, providing both optimal measures of peak frequency and 

estimates of peak frequency reliability. In the first part of this study, we tested the 

validity of this method by generating synthetic time-series and simulating 

electrophysiological data as they would be obtained from MEG recordings. We 

compared the gamma peak frequency measured with our novel approach with the 

estimates obtained with an alternative method used in our lab before. The bootstrap 

approach resulted in increased estimation accuracy, with the bootstrap peak frequency 

showing reduced estimation error particularly in conditions of poor signal-to-noise ratio. 

In the second part of this work, we used the distribution of bootstrapped peak 

frequencies as a tool for data quality control (QC) with real MEG data. In a large 

sample of 97 participants, we found that the gamma peak frequency was estimated with 

high reliability in almost 90% of the sample. Three measures of visual gamma 

oscillations, namely peak amplitude, peak frequency and peak frequency reliability, 

were estimated with the bootstrap approach. We illustrate the distribution of these 

parameters across the sample and compare these measures among themselves as well as 

between different approaches to peak frequency estimation. The present work represents 

a first step towards establishing normative distributions of these oscillatory parameters 

in a large sample of healthy individuals. 
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2.2 Introduction 

The frequency at which neurons in visual cortex oscillate in response to visual 

stimulation, i.e. the gamma peak frequency, is modulated by a number of factors, both 

extrinsic and intrinsic to the individuals from whom recordings are taken. Among the 

extrinsic factors, several physical properties of the visual stimulus modulate the gamma 

peak frequency. For example, the gamma peak frequency increases monotonically with 

increasing stimulus contrast (Jia et al., 2013; Ray and Maunsell, 2010; Roberts et al., 

2013), is higher for moving stimuli compared to static ones (Friedman-Hill et al., 2000), 

for fast-moving compared to slow-moving stimuli (Gray et al., 1990; Gray and Viana Di 

Prisco, 1997), and for plaid stimuli compared to gratings (Lima et al., 2010). In turn, the 

gamma peak frequency decreases with increasing stimulus size (Gieselmann and Thiele, 

2008; Jia et al., 2013; Ray and Maunsell, 2011), increasing stimulus eccentricity (Lima 

et al., 2010) and increasing levels of noise-masking (Jia et al., 2013). 

Several of these findings were first reported in monkeys but have now been replicated in 

humans, including studies of stimulus contrast (Hadjipapas et al., 2015; Perry et al., 

2014, 2015), size (van Pelt and Fries, 2013), motion (Muthukumaraswamy and Singh, 

2013; Swettenham et al., 2009), motion velocity (Orekhova et al., 2015), eccentricity 

(van Pelt and Fries, 2013) and cross-orientation masking (Perry, 2015). However, the 

methodological differences between invasive LFP recordings and MEG can sometimes 

complicate the translation of animal models to humans. For example, in one MEG study 

by Perry et al. (2013), the decrease in peak frequency for large stimuli, previously 

reported in several monkey studies (Gieselmann and Thiele, 2008; Jia et al., 2013; Ray 

and Maunsell, 2011), was not observed consistently across human individuals (Perry et 

al., 2013). Since another MEG study on a smaller sample did replicate the relationship 

between these two parameters (van Pelt and Fries, 2013), the possible contribution of 

measurement noise to the high inter-individual variability reported by Perry et al. (2013) 
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cannot be completely ruled out. For example, the presence of multiple peaks in the 

gamma spectrum, which is sometimes observed in MEG recordings 

(Muthukumaraswamy and Singh, 2013), can introduce uncertainties in the interpretation 

of the MEG data and impact on the process of statistical inference. 

Complicating this scenario, the gamma peak frequency appears to be modulated also by 

a number of intrinsic factors. Across individuals, the gamma peak frequency was shown 

to correlate positively with the surface area of V1 and V2 (Schwarzkopf et al., 2012) 

and with the thickness of the pericalcarine cortex (Muthukumaraswamy et al., 2010), 

although later studies failed to replicate either of these findings (Robson et al., 2015). 

The gamma peak frequency also correlates with psychophysical performance in visual 

discrimination tasks (Dickinson et al., 2015; Edden et al., 2009) and appears to co-vary 

with cognitive traits of possible clinical relevance (Dickinson et al., 2015; Kahlbrock et 

al., 2012a; Stroganova et al., 2015). The inter-individual differences in peak frequency 

are large and likely under genetic influences (van Pelt et al., 2012) and although the 

individual gamma peak frequency decreases with age (Gaetz et al., 2012; 

Muthukumaraswamy et al., 2010; Robson et al., 2015), this measure is highly repeatable 

over shorter time scales (Muthukumaraswamy et al., 2010; Tan et al., 2016). 

Our ability to disentangle the relationship between gamma oscillation frequency and 

other parameters depends partly on the accurate and reliable estimation of peak 

frequency. The inclusion of weakly estimated parameters in inferential statistics can 

lead to enhanced risk of both spurious findings and false negative results. For these 

reasons, we developed a novel approach to identify poor-quality data by means of 

objective procedures that identify confidence intervals on the parameter estimates via 

bootstrapping. In the first part of this study, we tested this method on simulated data, 

demonstrating its validity as well as its increased accuracy in peak frequency 
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estimation. In the second part, we used the method to analyse real MEG data, providing 

descriptive metrics of visual gamma oscillatory parameter estimates in a large-sample 

cohort of healthy individuals. 
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2.3 Part I – Quality-control method validation with simulated data 

2.3.1 Simulated data 

We used Matlab (The MathWorks) to simulate electrophysiological data, as they would 

be recorded in visual gamma paradigms with MEG. The data resembled the time course 

of source-reconstructed cortical activity in the occipital lobe (for an example with real 

data, see Muthukumaraswamy et al., 2010) and were generated on a trial-by-trial basis 

(100 trials per dataset). Each trial was 2 seconds long, sampled at 1200 Hz, and was 

initially constructed with randomly generated noise that had a 1/f frequency scaling of 

the power spectrum. To reproduce the sustained component of visual gamma responses, 

the second half of each trial (i.e. 1 s) was embedded with a sinusoidal signal that had a 

different frequency in each trial. The frequency of the oscillation was normally 

distributed across trials, with both a mean and mode of 60 Hz, and a standard deviation 

(SD) increasing exponentially from 2.5 to 20 Hz across six different conditions (Figure 

2.1). The six conditions were used to represent the inter-individual variability in gamma 

quality that is observed in real participants (e.g., Muthukumaraswamy et al., 2010). The 

amplitude of the oscillation was also normally distributed across trials (mean = 10%, 

SD = 1%, relative to noise amplitude). The phase of the oscillation was generated at 

random, to avoid phase consistency across trials and reproduce the induced component 

of visual gamma responses (i.e. time-locked but not phase-locked across trials). Thirty 

datasets were generated in each SD condition. The distribution of frequencies across 

trials differed slightly between datasets, although it always conformed in mean, mode, 

and SD, to the appropriate condition. Therefore, by manipulating the consistency of 

gamma frequency, while precisely controlling for other parameters, we created an ideal 

scenario for testing the performance of our method with data of progressively degraded 

quality. The spectra derived with the envelope and bootstrap methods (par. 2.3.2) are 

shown in Figure 2.1C and Figure 2.1D, respectively.  
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Figure 2.1. Simulated data. 

A) Distribution of simulated frequencies and amplitudes pooled across all trials and all datasets, 

with decreasing frequency consistency across conditions. B) Time-frequency spectrograms 

derived using the envelope method, averaged across trials and across datasets. The warm 

colours index the percentage change from baseline, with the same scale in all conditions. The 

horizontal white line represents the real peak frequency in the data, defined by mean and mode 

frequency across trials. C) Spectra of percentage signal change from baseline derived using the 

envelope method, by averaging across the time dimension (0–1 s) of the time-frequency 

spectrograms. The coloured shadings represent ± 1 SD across datasets, the thick vertical black 

lines indicate the gamma peak frequency, the vertical dashed lines mark the frequency range in 

which peaks were searched, and the grey background areas define the range of observed peaks 

across datasets. D) The same as in C), but with spectra derived using the bootstrap method, by 

averaging the bootstrapped spectra calculated with the smoothed periodogram. 
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2.3.2 Bootstrap peak frequency estimation and quality control 

An overview of our approach to peak frequency estimation and QC is illustrated 

schematically in Figure 2.2. To estimate the gamma peak frequency, we performed 

spectral analysis using a Fourier method, the smoothed periodogram (Bloomfield, 

2000). In each trial, the time-series of baseline and stimulus (1 s each) were demeaned 

and tapered with a Hanning window. The raw periodogram was computed individually 

for each trial, separately for baseline and stimulus epochs, and smoothed with a 

Gaussian kernel (SD = 2 Hz). The single-trial spectra were averaged across trials, 

separately for baseline and stimulus, and the amplitude spectrum was calculated as 

percentage signal change from baseline. 

At this point, our method departed from the typical approach to peak frequency 

estimation. The bootstrap procedure consisted of 10,000 iterations, in each of which 

trials were resampled, with replacement. Assuming an original sample composed of N 

trials, in each iteration, the sample resulting from the resampling procedure consisted 

always of N trials. However, by resampling with replacement, some trials would be 

included in the resampled pool of trials more than once, while others would be 

excluded. The resampling was at random in each iteration. In other words, in the 

extreme case that the same trial was included N times, the new sample would consist of 

N times the same trial. In the opposite extreme case, if each trial was included only 

once, the resampling would return the original sample. Note, though, that these extreme 

scenarios were highly unlikely to be realised over 10,000 iterations only (see below). 
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Figure 2.2. Schematic illustration of the approach to peak frequency estimation and QC. 
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The baseline and stimulus spectra of the same trial were always selected in pairs, i.e. 

there was no shuffling between trial epochs. In each bootstrap iteration, the resampled 

single-trial spectra were averaged, separately for baseline and stimulus spectra, and 

peak frequency was measured from the resulting spectrum of percentage change, as the 

peak of greatest increase in power in the 30–90 Hz range. The distribution of peak 

frequencies, across 10,000 bootstrap iterations, was then used in a QC procedure, which 

evaluated the reliability of the estimated peak frequencies, by calculating the width in 

frequency that was necessary to accommodate at least 50% of the bootstrapped 

frequencies around the distribution mode. 

To test the properties of the bootstrap resampling approach, we simulated the 

resampling of 100 trials over 10,000 iterations. The procedure was repeated 10 times, in 

order to test the consistency of the results across repetitions. As illustrated in Figure 

2.3A, on average 64 unique trials were included in each iteration. The distribution 

showed a Gaussian shape, ranging between 52 and 76 unique trials per iteration. The 

mean and mode of the distribution, as well as its shape, were highly repeatable across 

the 10 repetitions. Next, for each of the 10,000 iterations, we calculated how many 

times each trial (indexed from 1 to 100) was included in the resampling. As illustrated 

in Figure 2.3B, each trial was included on average once per iteration (average across 

iterations). Overall, these results indicate that the bootstrap approach is a valid method 

for obtaining estimates of central tendency and dispersion across trials, which does not 

introduce systematic biases in the resampled trials. 
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Figure 2.3. Properties of the bootstrap resampling approach. 

A) The histogram illustrates the number of iterations (y axis) in which a given number of unique 

trials (x axis) was included in the resampled pool of trials. The distribution was averaged over 

10 repetitions of the simulation, with error bars indicating ± 1 SD across repetitions. B) The 

thick line indicates how many times (y axis) each of the 100 trials (x axis) was included in the 

resampling of each iteration. This was calculated by averaging first across 10,000 iterations and 

then across 10 repetitions of the simulation. The grey shaded area indicates ± 1 SD across 

repetitions. 

The gamma peak frequency was calculated by averaging over the distribution of 

bootstrapped peak frequencies. To test the validity of this measure as an improved 

estimate of peak frequency, hereafter also referred to as the ‘bootstrap peak frequency’, 

we compared its accuracy to a standard measure used in our lab, the ‘envelope peak 

frequency’. The envelope peak frequency was calculated by bandpass-filtering the 

individual frequencies between 30–90 Hz in steps of 0.5 Hz, then calculating the 

magnitude of the analytic signal (Matlab function: hilbert), to yield the amplitude 

envelope for this frequency range. The envelopes were baselined, in order to express the 

response as a percentage change from baseline, and then ‘stacked’ to form a time-

frequency spectrogram (Figure 2.1B). From this spectrogram, the amplitude values were 

averaged over the stimulus time-range, within each frequency, yielding the average 

amplitude spectrum. This spectrum can be used to estimate the gamma peak frequency 

induced by visual stimulation (for an example, see Muthukumaraswamy et al., 2010).  
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2.4 Part I - Results 

2.4.1 Simulation results 

The QC analysis of the simulated data showed that the width of the bootstrap peak 

frequency distribution necessary to accommodate at least 50% of the iterations 

increased monotonically across the six conditions of exponentially decreasing frequency 

consistency (Figure 2.4A). Similarly, we observed a monotonic decrease in the 

percentage of bootstrap iterations falling within ± 1.2 Hz of the bootstrap distribution 

mode (Figure 2.4B). This indicated the validity of the QC as a method to obtain 

reliability estimates of peak frequency. 

Next, we compared the accuracy in peak frequency estimation between the bootstrap 

peak frequency and the envelope peak frequency. As shown in Figure 2.4C, the 

bootstrap method performed better than the envelope method, with higher estimation 

accuracy particularly at the lowest levels of gamma quality. This is also illustrated in 

Figure 2.1, where, as the SD of the response frequency increased, the range of estimated 

peak frequencies across datasets also increased (grey background areas in Figure 2.1C 

and Figure 2.1D). Overall, the range of peaks estimated with the bootstrap method was 

smaller and closer to the real peak frequency of the data. 

These results provided the first indications for the choice of a QC cut-off threshold. In 

the two conditions of lowest frequency consistency (i.e. 10.8 and 20.0 SD), the 

frequency window accommodating 50% iterations around the bootstrap mode increased 

to widths markedly higher than 2.4 Hz (Figure 2.4A) and the percentage of iterations 

within ± 1.2 Hz fell below 50%. At these two levels of data quality, additionally, the 

estimation error of the bootstrap peak frequency was higher than ~1 Hz. These 

observations contributed to the choice of QC criterion adopted in the second part of this 

study (par. 2.5.6). 
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Figure 2.4. Results of the method validation 

with simulated data. 

A) Width of the frequency range 

accommodating 50% or more of the 

bootstrapped peaks around the bootstrap 

distribution mode. B) Percentage of 

bootstrapped peaks within ± 1.2 Hz of the 

distribution mode. C) Absolute difference 

between the real and the estimated peak 

frequencies, averaged across datasets and 

plotted separately for the bootstrap (blue) 

and envelope (green) estimation methods. In 

all plots, shaded areas represent ± 1 SEM 

across datasets.   
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2.5 Part II – Quality control in the 100 Brains MEG cohort 

2.5.1 Participants of the 100 Brains study 

The ‘100 Brains’ is a large genetic and multi-modal imaging project conducted at 

Cardiff University (Brealy, 2015). The participants of this study consisted of 100 

healthy individuals, with normal or corrected vision, who were relatively homogenous 

in age, ethnicity, education and handedness. Participants were right-handed (as 

determined by the Edinburgh Inventory; Oldfield, 1971), of Caucasian ethnicity and had 

all completed or were completing a degree at the time they took part to the study. Their 

mental health was screened using the 12-Item General Health Questionnaire (Goldberg 

and Williams, 1988), with additional questions on history of excessive drug or alcohol 

use and any regular medications. The MEG data were available in 97 out of 100 

participants (for more detailed information, see Brealy, 2015). 

2.5.2 Visual gamma paradigm 

The MEG data that we analysed here were collected while participants performed a 

visual paradigm known to induce strong gamma responses in occipital cortex 

(Muthukumaraswamy and Singh, 2009). The paradigm is illustrated schematically in 

Figure 2.5A. The visual stimulus consisted of a vertical, stationary, maximum contrast, 

square-wave grating with a spatial frequency of three cycles per degree, covering 8° × 

8° of visual angle. The grating was presented centrally, on a mean luminance 

background, for a jittered duration between 1.5–2 s and was followed by an ITI of 2 s. 

Participants were instructed to fixate a red dot positioned at the centre of the grating and 

to press a button once the grating disappeared. A warning would be presented if no 

response was detected within 750 ms. The paradigm consisted of 100 trials, for a total 

duration of ~10 min. The stimulus presentations were programmed in Matlab (The 

Mathworks) using the Psychophysics Toolbox (Kleiner et al., 2007). Stimuli were 
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displayed on a Mitsubishi Diamond Pro 2070 monitor operating at a refresh rate of 100 

Hz. 

2.5.3 MEG data acquisition 

The MEG recordings were performed using a 275-channel CTF axial gradiometer 

system (VSM MedTech), located inside a magnetically shielded room. An additional 29 

reference channels were recorded for noise cancellation purposes and the primary 

sensors were analysed as synthetic third-order gradiometers (Vrba and Robinson, 2001). 

The sampling rate was 1200 Hz. Three electromagnetic coils were placed on three 

fiduciary locations (nasion, left and right pre-auricular) and their position relative to the 

MEG sensors was localised before and after the session. 

2.5.4 MEG data pre-processing and MEG/MRI co-registration 

The pre-processed MEG datasets and co-registered MRIs were courtesy of Dr Jennifer 

Brealy (Brealy, 2015). For each dataset, the individual trial epochs (-2–2 s) were 

visually inspected and trials containing large artefacts (e.g., head movements, muscle 

clenching and eye blinks) were excluded (~10% of the trials on average; range, 0–51%). 

For source-localization purposes, the MEG data were co-registered to the individual 

anatomical MRI of each participant by marking the MRI voxels corresponding to the 

position of the three fiducial coils. The individual anatomical MRIs (1-mm isotropic, 

T1-weighted FSPGR) were acquired as part of the 100 Brains study protocol, using a 

3.0 T MRI scanner (General Electric). 

2.5.5 Source localization analysis 

The source localization analysis was performed in Matlab using the FieldTrip toolbox 

(Oostenveld et al., 2011). In order to reconstruct oscillatory activity at brain locations 

directly comparable across participants, 1) the MNI template brain was divided into a 
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grid with 5 mm isotropic voxel resolution, 2) the individual anatomical MRI was 

warped to the template MRI and 3) the inverse transformation matrix was used to warp 

the template grid onto an individual grid for each participant. The leadfield was 

calculated using a semi-realistic volume conduction model based on the individual 

anatomy (Nolte, 2003). The optimal dipole orientation at each voxel was calculated by 

SVD and power was estimated using the LCMV beamformer algorithm (Van Veen et 

al., 1997). 

The beamformer weights were computed using a covariance matrix calculated from -1.5 

to 1.5 s around stimulus onset, after bandpass-filtering the data between 35–75 Hz. The 

peak voxel was identified by selecting the voxel of greatest increase in gamma power 

(35–75 Hz) in the occipital lobe, measured as percentage change between stimulus (0.3–

1.5 s) and baseline (-1.2–0 s). The individual peak voxel location of each participant 

was used to reconstruct the virtual sensor time-series in visual cortex, by multiplying 

the sensor-level data by the beamformer weights. 

2.5.6 Quality control (100 Brains) 

For descriptive purposes, the peak frequency reliability estimates were defined both 1) 

as the width, in Hz, of the frequency window that was necessary to accommodate 50% 

or more of the iterations around the bootstrap distribution mode and 2) as the percentage 

of iterations falling within a frequency window of pre-defined width, around the 

bootstrap distribution mode. With a baseline and stimulus analysis time-range of 1.2 s 

duration each, the frequency resolution of the periodogram, was ~0.6 Hz (see 

Discussion). The cut-off threshold used to determine whether the peak frequency was 

estimated with sufficient reliability was defined based on the percentage of iterations 

falling within ± 1.2 Hz around the distribution mode. In other words, if the frequency 

window necessary to accommodate 50% or more of the iterations had a width larger 
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than 2.4 Hz, the dataset was considered of poor quality. This width criterion was chosen 

based on the results of both the validation study (par. 2.4.1) and the QC analysis of the 

100 Brains (par. 2.6.2). Furthermore, this cut-off width of 2.4 Hz was chosen to avoid 

excessively conservative thresholds, such as that of 1.2 Hz width, and to allow 

comparability with datasets in which a shorter analysis time-range can result in lower 

frequency resolution (see Discussion). 

2.5.7 Quality control (UK MEG Partnership) 

To test the reproducibility of the QC results of the 100 Brains cohort, the analysis was 

repeated on another large-sample dataset, from the UK MEG Partnership study at 

Cardiff University. A detailed description of this study is provided in the last 

experimental chapter of this thesis (Chapter 5). In brief, the data were recorded from 84 

participants as part of a visual gamma paradigm similar to the one used in the 100 

Brains study. The visual stimulus represented the major difference between the two 

protocols, as the grating used in the Partnership study subtended 4° of visual angle (both 

vertically and horizontally), compared to 8°, and was presented in the lower left visual 

field, rather than centrally. The processing parameters were the same as for the 100 

Brains, for both source (par. 2.5.5) and QC analyses (par. 2.5.6). In contrast to the 100 

Brains data, however, and in contrast to the analysis described for the twenty 

participants included in Chapter 5, the Partnership data were not visually inspected to 

remove gross artefacts. 
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2.6 Part II - Results 

2.6.1 Visual gamma responses 

The results of the source localization analysis are illustrated in Figure 2.5C. The 

percentage change in gamma power (35–75 Hz) between stimulus (0.3–1.5 s; sustained 

gamma) and baseline (-1.2–0 s) at each voxel location was calculated separately for 

each participant and then averaged. The average visual gamma response peaked in the 

left calcarine fissure (~80% power increase; MNI coordinates: [-8 -92 14] mm) and 

extended to the surrounding occipital cortex bilaterally. After visual inspection of the 

individual source topographies, three out of the initial 97 participants were excluded 

from further analysis, as they did not show a clear gamma peak in the occipital lobe. 

The time-frequency analysis was performed individually for each of the remaining 94 

participants by bandpass-filtering the virtual sensor time-series from -1.5 to 1.5 s at each 

frequency between 4–100 Hz in steps of 0.5 Hz (8 Hz bandpass, 3rd order Butterworth 

filter). The amplitude envelope of the analytic signal (Matlab function: hilbert) was then 

averaged across trials (e.g., Muthukumaraswamy et al., 2010) and expressed as 

percentage change from baseline (-1.5–0 s). The grand-average across participants 

(Figure 2.5B) illustrates the typical spectral and temporal evolution of visual gamma 

responses, characterised by a transient broadband power increase (~0–0.3 s; ~30–100 

Hz) followed by a sustained narrowband oscillatory response (~0.3–1.5 s). The spectral 

properties of the latter component were the focus of the present investigation (see par. 

2.6.2). 

Overall, these observations are in line with the results reported by Brealy (2015), whose 

analysis differed mainly by the use of an alternative approach to source localization, 

namely SAM (Robinson and Vrba, 1999) as opposed to the LCMV beamformer 

algorithm used here (Van Veen et al., 1997). The following paragraphs focus on the 
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inter-individual variability in two parameters that are classically derived from the visual 

gamma spectral response, i.e. the gamma peak amplitude and peak frequency (par. 

2.6.3), as well as on the reliability of the individual peak frequency estimates (par. 

2.6.2). 

 

Figure 2.5. Visual gamma in the 100 Brains. 

A) Schematic illustration of the visual gamma paradigm. Note that the motor response (button 

press) was provided within the first 750 ms of the 2 s ITI. B) Time-frequency representation of 

the virtual sensors reconstructed in visual cortex, calculated as percentage change from baseline 

(-1.5–0 s) and averaged over 94 participants. C) Beamformer source localization, averaged over 

97 participants and projected onto the surface of an MNI template brain. For illustration 

purposes, values lower than a 40% increase from baseline were masked. 

2.6.2 Data quality in the 100 Brains 

The QC approach was used to illustrate, across participants, the percentage of iterations 

falling around the bootstrap distribution mode, for frequency windows of width 

increasing between 0–4.8 Hz in steps of 1.2 Hz. The height of the histogram bars in 

Figure 2.6 indicates the number of participants showing a given percentage of iterations, 

within a given frequency window width. As expected, as the width criterion gets looser 

(i.e. the frequency window gets wider around the mode), the distribution of participants 

shifts towards higher values of percentage iterations. In the majority of participants, 

only 15–25% iterations coincided with the bootstrap distribution mode (i.e. width = 0 
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Hz; Figure 2.6, top panel). Most participants showed 65–75% iterations within ± 0.6 Hz, 

i.e. within a frequency window of 1.2 Hz width (Figure 2.6, second panel from the top). 

At a width of 2.4 Hz, the distribution of participants started to peak at 95–100% 

iterations, with only a few participants showing less than 45–55% iterations falling 

within ± 1.2 Hz (Figure 2.6, middle panel). Similar patterns were observed at the least 

conservative width criteria of 3.6 and 4.8 Hz (Figure 2.6, bottom two panels). 

The power spectra calculated with the QC method are illustrated in Figure 2.7, 

individually for each participant. The individual bootstrap peak frequency distributions 

are illustrated in Figure 2.8. The QC reliability criterion, i.e. at least 50% iterations 

falling within ± 1.2 Hz around the mode (par. 2.5.6), was not met in ~12% of the 

participants (11 out of 94). 

Figure 2.6. Distribution of the percentage 

of bootstrap iterations across participants. 

In each plot, the histogram bars illustrate 

the distribution, across participants, of 

bootstrap iterations falling within a given 

width criterion. From top to bottom, the 

width criterion is increased in steps of 1.2 

Hz (i.e. 0.6 Hz on each side of the 

distribution mode). As expected, as the 

width criterion gets less conservative, the 

number of participants showing high 

percentage values increases. Note the 

different y-axis scale between the top two 

and the bottom three histogram panels. 
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Figure 2.7. Individual visual gamma spectra (100 Brains). 

Individual spectra of percentage change from baseline in the gamma frequency range (35–75 

Hz). The shaded areas represent the 95% CI across bootstrapped trials. The vertical line in each 

panel indicates the mode of the bootstrap distribution. Poor-quality data (i.e. less than 50% of 

iterations within ± 1.2 Hz around the distribution mode) are shown in red. The empty panels 

correspond to participants without a peak voxel in visual cortex. Arbitrary participant labels are 

shown at the top of each plot. 
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Figure 2.8. Individual bootstrap distributions of the gamma peak frequency. 

The distributions were calculated over 10,000 bootstrap iterations. Poor-quality data (i.e. less 

than 50% of iterations within ± 1.2 Hz around the distribution mode) are shown in red. The 

width in frequency necessary to accommodate 50% or more of the bootstrap iterations is shown 

at the top of each panel. The empty panels correspond to participants without a peak voxel in 

visual cortex. 
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2.6.3 Distributions and correlations of parameter estimates 

The distribution of the gamma peak amplitude and peak frequency parameters across 

the sample is illustrated in Figure 2.9A and Figure 2.9B, respectively. The gamma peak 

amplitude, measured by averaging over the bootstrap iterations within each participant, 

showed a skewed distribution, right-tailed towards high amplitude values, with an 

average gamma amplitude of 230% increase from baseline (SD = 180%; range, 18–

1,060%). The gamma peak frequency, measured as the mode of the bootstrapped peak 

frequencies, was distributed symmetrically around a mean of 53.1 Hz (SD = 5.6 Hz; 

range, 35.7–70.9 Hz). The relationship between the gamma peak amplitude and peak 

frequency was tested using Pearson’s r. We found no evidence for a linear relationship 

between these two parameters (Figure 2.9D), either when all participants (r = -0.06, p = 

0.58) or only good-quality data were included in the analysis (r = -0.08, p = 0.47). 

The distribution of peak frequency reliability across the sample (as indexed by the width 

in Hz necessary to accommodate at least 50% iterations around the bootstrap mode) is 

illustrated in Figure 2.9C. The frequency window width was 0 Hz in ~8%, 1.2 Hz in 

~68%, 2.4 Hz in ~12%, 3.6 Hz in ~4% and 4.8 Hz or higher in the remaining ~8% of 

the participants. To test the relationship between data quality and gamma amplitude, the 

reliability of peak frequency was estimated using the percentage of iterations falling 

within a frequency window of 1.2 Hz width (i.e. ± 0.6 Hz), as this was the criterion 

showing the largest inter-individual variability across the sample (Figure 2.6, second 

panel from the top). The amplitude and reliability estimates were positively correlated 

(Figure 2.9E), with both all participants (r = 0.57, p < 10-9) and only good-quality data 

included (r = 0.55, p < 10-8). This indicated that the gamma peak frequency tended to be 

estimated more reliably in participants showing gamma responses of higher amplitude. 

No significant correlation was found between the gamma peak frequency and the 

estimates of peak frequency reliability (r = -0.01, p = 0.89; data not shown). 
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Figure 2.9. Distributions and correlations of the amplitude, frequency and quality parameters. 

A) Distribution of gamma amplitude values (measured as percentage change from baseline) 

across participants. B) The same as in A), but for the gamma peak frequency (bootstrap 

distribution mode). C) The same as in A), but for the width in Hz necessary to accommodate 

50% iterations or more around the bootstrap distribution mode. Note the different y-axis scale 

compared to A) and B). D) Scatter plot illustrating the absence of a linear relationship between 

gamma peak frequency and gamma amplitude (plotted on a logarithmic scale). The dots in red 

represent participants with poor-quality data. E) Scatter plot illustrating the significant positive 

linear relationship (Pearson’s r = 0.57) between gamma amplitude and data quality (as indexed 

by the percentage of iterations falling within ± 0.6 Hz around the distribution mode). Note that 

although the gamma amplitude is plotted on a logarithmic scale, the values were not log-

transformed prior to calculating the correlation coefficient. The colours are the same as in D). 
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Figure 2.10. Comparison between bootstrap and envelope parameter estimates. 

A) Scatter plot illustrating the significant positive linear relationship (Pearson’s r = 0.98) 

between the gamma peak amplitude estimates obtained with the bootstrap and envelope 

methods. The dots in red represent participants with poor-quality data. B) The same as in A), 

but for the peak frequency parameter (Pearson’s r = 0.86). 

2.6.4 Comparison of parameter estimates 

The comparison between the bootstrap and envelope estimates of the gamma peak 

amplitude and peak frequency parameters is illustrated in Figure 2.10A and Figure 

2.10B, respectively. The amplitude values obtained with the bootstrap method were 

significantly higher, compared to the envelope method, but the two sets of amplitude 

estimates were highly correlated (r = 0.98, p < 0.001). Although statistically significant, 

however, the relationship between these two measures appeared quadratic rather than 

linear. It should be noted, in fact, that while the ‘envelope peak amplitude’ reflects 

actual amplitude measures, what we refer to as ‘bootstrap peak amplitude’ consists of 

percentage signal change between measures of spectral power density (i.e. amplitude 

squared). The linear relationship between the spectral power estimates obtained with the 

two methods is illustrated in Figure 2.11. In this additional analysis, the amplitude 

values obtained with the envelope method were squared before calculating the 

percentage change between stimulus and baseline epochs. The two measures, i.e. 
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bootstrap and envelope power estimates, resulted almost perfectly correlated (r = 0.99, p 

< 0.001). 

 

Figure 2.11. Comparison between bootstrap power and envelope power. 

Scatter plot illustrating the almost perfect positive correlation (Pearson’s r = 0.99) between 

bootstrap and envelope measures of spectral power. Colours are as in Figure 2.10. 

The gamma peak frequency estimates (Figure 2.10B) were also highly correlated 

between the bootstrap and envelope methods (r = 0.86, p < 0.001). Furthermore, this 

significant positive relationship was strengthened after exclusion of poor-quality data 

from the correlational analysis (r = 0.93, p < 0.001). With inclusion of all participants, 

the bootstrap peak frequency was significantly higher than the envelope peak frequency 

(t(93) = 2.14, p = 0.035). However, after exclusion of the unreliable peak frequency 

estimates, this difference was no longer statistically significant (t(82) = 1.58, p = 0.12). 

2.6.5 Data quality in the UK MEG Partnership (Cardiff data) 

The power spectra calculated with the QC method for the UK MEG Partnership data 

collected at Cardiff University are illustrated in Figure 2.12, individually for each 

participant. A peak voxel in visual cortex could not be identified in five participants, 

which were thus excluded from the QC analysis. The QC reliability criterion, i.e. at 
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least 50% iterations falling within ± 1.2 Hz around the mode, was not met in ~13% of 

the remaining participants (10 out of 79). Overall, therefore, these results indicate that 

the QC results obtained in the 100 Brains dataset were replicated in a different sample 

of comparable size, using a similar visual gamma protocol. 

 

Figure 2.12. Individual visual gamma spectra (UK MEG Partnership). 

The same as in Figure 2.7, but for the Cardiff data of the UK MEG Partnership. 
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2.7 Discussion 

In the first part of this work, we developed a method based on bootstrapping across 

trials, which served two purposes: first, we measured the gamma peak frequency by 

averaging across the bootstrapped samples, and demonstrated the increased robustness 

of this measure relative to a more conventional alternative approach; second, we used a 

measure of spread in the distribution of bootstrapped peaks to estimate the reliability of 

the gamma peak frequency, which in turn allowed the identification of poorly estimated 

data. In the second part of this work, we used this QC approach to analyse real MEG 

data, which were collected as part of the ‘100 Brains’ study at Cardiff University. We 

used this large-sample dataset to illustrate the distribution of oscillatory parameters such 

as the gamma peak amplitude and peak frequency, with particular emphasis on the 

estimates of peak frequency reliability. 

2.7.1 Establishing quality-control criteria via bootstrapping 

The peak frequency reliability estimates were obtained with two different but 

comparable approaches. The first option consisted of establishing a fixed proportion of 

bootstrap iterations, e.g., 50%, and calculating the width of the frequency window that 

was necessary to accommodate the requested percentage of iterations around the mode 

of the bootstrap distribution. This first approach is illustrated in Figure 2.4A, for the 

simulated data, and in Figure 2.9C, for participants of the 100 Brains. The second 

option was to define a fixed frequency window width around the bootstrap mode, e.g., ± 

1.2 Hz, and calculate the proportion of iterations falling within the specified range. This 

second approach is illustrated in Figure 2.4B, for the simulated data, and in Figure 2.6, 

for participants of the 100 Brains.  

The QC approach presented here should be treated as a framework for objective 

quantification of data quality. This neither establishes fixed criteria, nor provides rigid 
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guidelines for data exclusion. Rather, by characterizing data quality with descriptive 

measures, the method can be used to define explicit exclusion criteria based on 

unambiguous thresholds, and could prove useful for comparing data across sites, 

studies, and designs. Importantly, both these two approaches to estimating peak 

frequency reliability depend on the frequency resolution of the spectral estimation 

method. In this work, power spectral density was estimated with a Fourier method, the 

smoothed periodogram (Bloomfield, 2000). The frequency resolution of the 

periodogram (Matlab function: periodogram) is determined by the ratio between the 

sampling frequency (i.e. 1200 Hz, both in the simulated and in the 100 Brains MEG 

data) and the next power of two greater than the signal length. For example, the 100 

Brains data consisted of analysis epochs of 1.2 s length, sampled at 1200 Hz for a total 

of 1440 time points. The next power of two greater than 1440 is 2048, resulting in 

‘frequency steps’ of 1200 / 2048 ≃ 0.6 Hz. At a sampling frequency of 1200 Hz, for 

analysis time-series shorter than ~850 ms (and longer than ~425 ms), the next power of 

two is 1024, resulting in frequency steps of 1200 / 1024 ≃ 1.2 Hz. Note, however, that 

if the time-series are zero-padded to the next power of two, the increased frequency 

resolution (as indexed by the smaller frequency step) is only apparent, as the intrinsic 

frequency resolution is still determined by the length of the trial time-series. In typical 

MEG analyses, the data epochs are often between 500 ms and a few seconds long and 

are usually acquired at sampling rates of approximately 1 kHz. Also for these reasons, 

the QC cut-off threshold that we used to define data as of poor quality in this study was 

set to ± 1.2 Hz, as opposed to ± 0.6 Hz. The latter criterion was considered both 

excessively conservative and less easily generalizable to the analysis of spectral 

estimates with lower frequency resolution. Furthermore, at a frequency window width 

of 2.4 Hz (Figure 2.6, middle panel), the distribution of percentage iterations across the 

sample showed a clear lower tail. This allowed us to identify the participants with the 
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lowest-quality data (less than 50% iterations within ± 1.2 Hz), which corresponded to 

12% of the sample. Interestingly, when this analysis was repeated for the second cohort 

(the UK MEG Partnership data, Figure 2.12) a very similar rejection rate of 13% was 

also achieved. This is despite the fact that the stimulus used was a smaller quadrant, 

rather than central full-field, and the data were not visually inspected to reject 

contaminated trials. Future work could directly compare cleaned and non-cleaned 

datasets to assess whether this rejection procedure is necessary for the analysis of visual 

gamma, particularly when using spatial filtering techniques, such as the beamformer 

used here. 

2.7.2 Optimal peak frequency estimation via bootstrapping 

It is worth noting that the two QC approaches mentioned above (par. 2.7.1) assume that 

the bootstrap distribution mode represents the most accurate estimator of the real peak 

frequency in the data, although our simulation demonstrated the validity also of the 

bootstrap mean as an accurate measure of peak frequency. The bootstrap peak 

frequency, calculated from the bootstrap distribution, resulted in an optimal measure 

when inter-trial frequency consistency was low in our method validation. However, it is 

possible that other methods, such as the envelope approach, could perform with better 

accuracy under different circumstances, such as when oscillation frequency cannot be 

assumed stationary. In the 100 Brains dataset, the exclusion of poor-quality data 

increased the strength of the correlation between the bootstrap and envelope peak 

frequency estimates (from r = 0.86 to r = 0.93; Figure 2.10B). This suggests that the 

uncertainty in peak frequency estimation was reduced by removing the estimates that 

were classified as unreliable with our QC criterion. 

After visual inspection of the scatter plot in Figure 2.10B, it can be noted that the peak 

frequency in one participant was estimated differently by the two methods despite being 
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classified as of good quality, while a number of participants appeared to be estimated 

consistently between the two methods despite being classified as of poor quality. This is 

likely to reflect the balance between sensitivity and specificity of the QC approach. In 

particular, sensitivity and specificity can be affected by the width criterion, which 

determines the threshold for marking data as of poor quality. If a strict criterion is 

chosen, good but not perfect frequency estimates could be inappropriately excluded, 

potentially leading to a loss of statistical power. On the contrary, the choice of a loose 

criterion could lead to inclusion of poor estimates and, for example, increased 

likelihood of false negative results. In the future, work on either simulated data or 

similar large-sample datasets will have the opportunity to optimise the current approach. 

For example, optimal QC criteria could be determined empirically by systematically 

varying the method parameters (e.g., spectral estimation, tapering, number of bootstrap 

iterations, bootstrap width criterion, etc.) and testing how each of these changes impacts 

on the sensitivity and specificity of the QC results. 

2.7.3 Considerations on gamma amplitude 

In this study, we found a significant positive correlation between the gamma peak 

amplitude and the peak frequency reliability estimates, indicating higher data quality in 

participants showing higher-amplitude gamma responses. This suggests that the 

reliability of peak frequency could be inferred using a QC approach that is simply based 

on the response amplitude. However, as illustrated in the scatter plot in Figure 2.9E, the 

peak frequency was measured with high consistency across bootstrap iterations in 

several participants who showed relatively low-amplitude gamma responses (~20–30% 

increase). Vice versa, in some of the poor-quality participants, the consistency of peak 

frequency across bootstrap samples was low despite the response amplitude being high. 

The power spectra of individual participants illustrate how the latter scenario can 

sometimes result from gamma responses spanning relatively broad frequency ranges at 
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the highest amplitude values, which can make a clear peak frequency difficult to discern 

(e.g., see participants labelled as C33, C50 and C84 in Figure 2.7). 

Finally, it is also worth noting that the estimates of peak amplitude derived with the 

smoothed periodogram in the bootstrap method were consistently higher than those 

obtained with the envelope approach. This is because the measures obtained with the 

periodogram reflect power spectral density, whereas in the envelope approach the 

analytic signal is used to derive amplitude envelopes. Nevertheless, when the estimates 

of gamma amplitude calculated with the envelope method turned into envelope power 

estimates (i.e. they were squared), the bootstrap and envelope power measures resulted 

almost perfectly correlated (r = 0.99; Figure 2.11). Similarly, when bootstrap power and 

envelope amplitude were correlated (Figure 2.10A), the two methods differed for the 

absolute values returned, but the relative differences across individuals were preserved. 

2.7.4 Method applications 

Overall, we believe that the QC approach proposed here will be most useful when noisy 

estimates of peak frequency can affect the statistical inferences made on this parameter. 

In particular, the modulation of the gamma peak frequency by extrinsic factors often 

occurs with small effect sizes and thus represents a challenge for the relatively noisy 

recordings obtained with MEG. One such example is the study by Perry et al. (2013) on 

the relationship between gamma frequency and stimulus size (see Introduction), where 

the large inter-individual variability in the relationship between these two parameters 

could be attributed also to external factors, such as measurement noise. Additionally, 

the use of relatively large stimulus sizes, which is typically necessary in order to elicit 

gamma responses of measurable amplitude in MEG (Muthukumaraswamy and Singh, 

2013; Perry et al., 2013), could in principle result in complex, rather than coherent, 

oscillatory patterns across the visual cortex (Perry et al., 2013; van Pelt and Fries, 
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2013). In turn, oscillatory responses with different spectral profiles, such as those that 

are recorded from neurons with receptive fields for different eccentricities (Lima et al., 

2010), could ‘leak’ into the spatially summated MEG signal, resulting in complex 

spectral responses. Together, measurement noise and spectral/spatial ‘leakage’ could 

explain the presence of multiple gamma peaks that is sometimes observed in MEG 

recordings (Muthukumaraswamy and Singh, 2013) and which can affect statistical 

inference. The QC approach proposed in this chapter provides a framework for 

objective quantification of data quality, which can contribute to reducing the 

uncertainties in the estimation and interpretation of the gamma peak frequency 

estimates obtained with MEG. The next chapter of this thesis (Chapter 3) will 

demonstrate the power of this approach when applied to the estimation of peak 

frequency modulations induced by pharmacological manipulation. 
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3 Chapter 3. 

Peak frequency estimation and quality control in 

pharmacological MEG studies of visual gamma 

oscillations 

Parts of this Chapter have been published in the form of a peer-reviewed journal article: 

Magazzini, L., Muthukumaraswamy, S. D., Campbell, A. E., Hamandi, K., Lingford-Hughes, 

A., Myers, J. F., ... & Singh, K. D. (2016). Significant reductions in human visual gamma 

frequency by the GABA reuptake inhibitor tiagabine revealed by robust peak frequency 

estimation. Human Brain Mapping. doi:10.1002/hbm.23283 
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3.1 Abstract 

The peak frequency of visual gamma oscillations is determined by both the neuronal 

excitation-inhibition balance and the time constants of GABAergic processes. In this 

study, we used the quality control (QC) approach developed in the previous chapter of 

this thesis (Chapter 2) to re-analyse MEG data from two pharmacological studies of 

visual gamma with alcohol (Campbell et al., 2014) and tiagabine (Muthukumaraswamy 

et al., 2013a). In the first study, disruption of the excitation-inhibition balance by 

alcohol was found to increase the peak amplitude and decrease the peak frequency of 

visual gamma oscillations. Here, our QC method revealed unreliable estimates of peak 

frequency in the same participants who were originally excluded by Campbell et al. 

(2014) using different qualitative criteria. Furthermore, the alcohol-induced reduction in 

peak frequency was replicated using the gamma peak frequency estimates derived with 

the bootstrap approach. The second study by Muthukumaraswamy et al. (2013a) had 

previously reported that GABAergic enhancement by tiagabine had surprisingly no 

effect on visual gamma oscillations – an unexpected finding given the strong evidence 

from both animal models and recent human studies. In our re-evaluation of this study, 

unreliable data were excluded using the QC method and the gamma peak frequency was 

estimated with the bootstrap approach. As originally predicted, we found that the 

GABA reuptake inhibitor tiagabine did produce a marked decrease in visual gamma 

oscillation frequency. These results demonstrate the potential impact of objective QC 

approaches in pharmacological MEG studies. Additionally, the tiagabine results provide 

new translational evidence for the mechanisms of GABAergic transmission generating 

gamma oscillations in humans. 
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3.2 Introduction 

Synchronization of rhythmic neuronal firing in the gamma frequency range (~30–90 

Hz) is a potential mechanism for information coding in the brain (Buzsáki and Wang, 

2012; Fries, 2009). Pyramidal cell populations synchronized by inhibitory GABAergic 

interneurons produce intra-cortical LFP oscillations (Gonzalez-Burgos and Lewis, 

2012), which can be recorded with high consistency between primates and humans 

(Fries et al., 2008a). Through translational research (Hall et al., 2005), gamma 

oscillations have been implicated in human sensory and cognitive function, as well as in 

neuropsychiatric disease (for reviews, see Bosman et al., 2014; Phillips and Uhlhaas, 

2015; Sedley and Cunningham, 2013). In the MEG signal, sustained narrow-band 

gamma oscillations are generated in visual cortex in response to simple contrast pattern 

stimuli (Adjamian et al., 2004b; Hoogenboom et al., 2006). These responses arise from 

the interaction between local excitatory and inhibitory networks, which are believed to 

shape the amplitude, as well as the peak frequency of gamma oscillations (Bartos et al., 

2007; Gonzalez-Burgos and Lewis, 2012). 

In-vitro and in-vivo animal studies have demonstrated a dependency of the gamma peak 

frequency on the time constants of GABAergic processes (Bartos et al., 2007; 

Gonzalez-Burgos and Lewis, 2012). In very recent years, a limited number of studies 

combining MEG with pharmacological modulation of neurotransmission have provided 

initial compelling evidence for the translation of such models to humans. Reduced 

frequency of gamma oscillations was observed following administration of alcohol 

(Campbell et al., 2014) and lorazepam (Lozano-Soldevilla et al., 2014), drugs which 

enhance GABAergic transmission through different mechanisms. These findings largely 

support animal models in which IPSCs of prolonged duration result in synchronized 

pyramidal neurons firing at slower rhythms, generating gamma oscillations at lower 

frequencies and with higher amplitudes (Gonzalez-Burgos and Lewis, 2012). 
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However, not all human studies are entirely consistent with the animal literature. For 

example, the GABAA positive allosteric modulator propofol was found to increase 

gamma amplitude, but left gamma frequency unchanged (Saxena et al., 2013). More 

surprisingly, a recent study reported that neither the amplitude nor the frequency of 

visual gamma were modulated by tiagabine (Muthukumaraswamy et al., 2013a), a drug 

that prolongs IPSC duration by selectively inhibiting the re-uptake of GABA from the 

synapse. To date, the reasons behind such inconsistencies remain unknown. 

In the present work, we build upon previous research in which the robustness of gamma 

oscillatory measures was studied with respect to systematic variations of the stimulus 

configuration (Muthukumaraswamy and Singh, 2013). Despite the use of optimised 

experimental designs, gamma responses in certain participants can be barely detectable 

or scarcely quantifiable (Hoogenboom et al., 2006; Muthukumaraswamy et al., 2010). 

Since the inclusion of weakly estimated parameters can lead to enhanced risk of both 

spurious findings and false negative results, here we applied our novel QC approach to 

two previous MEG studies of visual gamma modulations by pharmacological agents. 

We re-analysed a study of alcohol by Campbell et al. (2014) and a study of tiagabine by 

Muthukumaraswamy et al. (2013a). Alcohol has a complex mechanism of action, 

affecting several different neurotransmitter systems, but primarily it decreases neuronal 

excitation by NMDA blockade (Grant and Lovinger, 1995) and increases neuronal 

inhibition via GABAergic enhancement (Weiner and Valenzuela, 2006). Tiagabine, in 

contrast, has a well-understood mechanism of action, which consist of inhibiting the 

reuptake of GABA from the synapse via GAT-1 blockade, resulting in elevated synaptic 

GABA concentrations (Dalby, 2000; Fink-Jensen et al., 1992). Despite these substantial 

pharmacological differences between alcohol and tiagabine, both drugs produce 

GABAA-mediated IPSPs and IPSCs of prolonged duration (Roberto et al., 2003; 
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Roepstorff and Lambert, 1994; Thompson and Gähwiler, 1992). For this reason, and 

because of the dependency of gamma oscillations on the time constants of GABAergic 

inhibition (Bartos et al., 2007; Gonzalez-Burgos and Lewis, 2012), we hypothesised that 

modulations of the gamma peak frequency comparable to those observed with alcohol 

(Campbell et al., 2014) could be observed also with tiagabine (Muthukumaraswamy et 

al., 2013a), after controlling for data quality. 

First, we tested the method on the study of alcohol, replicating the drug-induced 

reduction in peak frequency as well as providing objective quantitative measures that 

confirmed the authors’ original observations on data quality (Campbell et al., 2014). 

Second, we re-evaluated the study by Muthukumaraswamy et al. (2013a), in which 

GABAergic enhancement by tiagabine had previously demonstrated a null effect on 

visual gamma oscillations. After exclusion of participants with unreliably measured 

data, we found that GABAergic enhancement by tiagabine produced a marked decrease 

in the peak frequency of visual gamma oscillations. This result supports the authors’ 

original predictions (Muthukumaraswamy et al., 2013a), and provides additional 

translational evidence for the neurophysiological mechanisms generating gamma 

oscillations in humans (Bartos et al., 2007; Buzsáki and Wang, 2012). 
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3.3 Materials and Methods 

3.3.1 Alcohol study design and data acquisition 

We re-analysed data from a previous pharmacological MEG study of alcohol (Campbell 

et al., 2014). A detailed description of the experimental procedures, including 

participants, experimental design, MEG acquisition and analysis are reported in 

Campbell et al. (2014). Here we provide a summary. Sixteen healthy volunteers took 

part in a single-blind, placebo-controlled, crossover study. The study was divided into 

two days, each consisting of two sessions. Each day began with a ‘pre-drink’ session, 

followed by either placebo or alcohol consumption (0.8 g/kg), and by a ‘post-drink’ 

session.  

In each MEG session, participants performed a visual paradigm known to robustly 

induce gamma oscillations in primary visual cortex. The visual stimulus consisted of a 

vertical, stationary, maximum contrast, three cycles per degree, square-wave grating 

covering 8 × 8° of visual angle. The grating was presented centrally, on a mean 

luminance background, for 1.5 s and was followed by an ITI of 2 s. Participants were 

instructed to fixate a red dot positioned at the centre of the grating and to press a button 

once the grating disappeared. A warning would be presented if no response was 

detected within 750 ms. The paradigm consisted of 100 trials, for a total duration of ~10 

min. The stimulus presentations were programmed in Matlab (The Mathworks) using 

the Psychophysics Toolbox (Kleiner et al., 2007). Stimuli were displayed on a 

Mitsubishi Diamond Pro 2070 monitor operating at a refresh rate of 100 Hz. 

The MEG recordings were performed using a 275-channel CTF axial gradiometer 

system (VSM MedTech), located inside a magnetically shielded room. An additional 29 

reference channels were recorded for noise cancellation purposes and the primary 

sensors were analysed as synthetic third-order gradiometers (Vrba and Robinson, 2001). 
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The sampling rate was 1200 Hz. Three electromagnetic coils were placed on three 

fiduciary locations (nasion, left and right pre-auricular) and their position relative to the 

MEG sensors was localised before and after each session. For source-localization 

purposes, the MEG data were co-registered to the individual anatomical MRI of each 

participant by marking the MRI voxels corresponding to the position of the three 

fiducial coils. The individual anatomical MRIs (1-mm isotropic, T1-weighted FSPGR) 

were acquired as part of a different study, using a 3.0 T MRI scanner (General Electric). 

3.3.2 Analysis of alcohol MEG data 

The virtual sensor data that were re-analysed in this study were courtesy of Dr Anne 

Campbell (Campbell et al., 2014). For each dataset, the individual trial epochs (-2–2 s) 

were visually inspected and trials containing excessive artefacts (e.g., head movements, 

jaw clenches and eye blinks) were excluded. This resulted in the inclusion of the 

following average number of trials for analysis: pre-alcohol 82.6 (SD = 17.8), post-

alcohol 85 (SD = 11.2), pre-placebo 82.4 (SD = 14.5), post-placebo 77.2 (SD = 16.1). 

The source localization analysis was performed using the SAM beamformer algorithm 

(Robinson and Vrba, 1999). A multiple local-spheres volume conductor model (Huang 

et al., 1999) was computed by fitting spheres to the brain surface extracted by FSL's 

Brain Extraction Tool (Smith, 2002). The beamformer weights were computed at 4 mm 

isotropic voxel resolution using a global covariance matrix calculated on the bandpass-

filtered data. The difference in gamma power (30–80 Hz) between stimulus (0–1.5 s) 

and baseline (-1.5–0 s) was calculated with a paired t-statistic at each voxel location. 

Virtual sensors were generated at the peak voxel location in the occipital lobe, for each 

participant and each session separately. 
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3.3.3 Quality control of alcohol data 

The gamma peak frequency was calculated using the bootstrap approach described in 

the previous chapter of this thesis (Chapter 2), by averaging over 10,000 bootstrap 

iterations. In brief, the raw periodogram was computed separately for baseline (-1.4 to -

0.1 s) and stimulus (0.3 to 1.5 s), smoothed with a Gaussian kernel (SD = 2 Hz) and 

averaged across trials, separately for baseline and stimulus spectra. The average 

amplitude spectrum was calculated as percentage signal change from baseline and the 

peak frequency in each bootstrap iteration was measured as the spectral peak of greatest 

amplitude, in the 30–90 Hz range. To obtain the peak frequency reliability estimates, the 

QC criterion was defined using a frequency window width of 2.4 Hz. In other words, if 

50% or more of the bootstrapped peak frequencies in a given dataset fell within ± 1.2 

Hz around the bootstrap distribution mode, the peak frequency in that dataset was 

considered reliably estimated. Otherwise, the dataset was marked as of poor quality. 

For comparison, the analysis of the gamma peak frequency with alcohol was performed 

also using the ‘envelope peak frequency’. As described in Chapter 2, the envelope peak 

frequency was calculated by bandpass-filtering the individual frequencies between 30–

90 Hz in steps of 0.5 Hz, then calculating the magnitude of the analytic signal, to yield 

the amplitude envelope for this frequency range. The envelopes were baselined, in order 

to express the response as a percentage change from baseline. From the time-frequency 

spectrogram, amplitude was averaged over the stimulus time-range, within each 

frequency, yielding the average amplitude spectrum from which the envelope peak 

frequency was calculated. 

3.3.4 Tiagabine study design and data acquisition 

We re-analysed data from a previous pharmacological MEG study of tiagabine 

(Muthukumaraswamy et al., 2013a). A detailed description of the experimental 
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procedures, including participants, experimental design, MEG acquisition and analysis 

are reported in Muthukumaraswamy et al. (2013a). Here we provide a summary. 

Eighteen healthy volunteers took part in a single-blind, placebo-controlled, crossover 

study. Three women were unable to complete the study (see Hamandi et al., 2014), 

leaving complete datasets from fourteen men and one woman. The study was divided 

into two days, each consisting of four sessions. Each day began with a ‘pre’ 

measurement session, followed by oral administration of either placebo or tiagabine (15 

mg; Gabitril®), and by three ‘post’ measurement sessions at 1, 3, and 5 hours after 

ingestion. 

The visual gamma paradigm was very similar to the one used in the alcohol study 

(Campbell et al., 2014). The visual stimulus (par. 3.3.1) was presented in the lower left 

visual field, covering 8 × 8° of visual angle, for a shorter period compared to the study 

by Campbell et al. (2014), with a jittered duration between 1–1.5 s and an ITI of 1.5 s. 

Participants were instructed to fixate a red dot positioned at the top right-hand edge of 

the grating and to press a button once the grating disappeared, within 750 ms. The 

paradigm consisted of 120 trials, for a total duration of ~10 min. The stimulus 

presentations were programmed in Matlab (The Mathworks) using the Psychophysics 

Toolbox (Kleiner et al., 2007). Stimuli were displayed on a Mitsubishi Diamond Pro 

2070 monitor operating at a refresh rate of 100 Hz. 

The MEG recordings and MEG/MRI co-registration procedures were performed as 

described in the alcohol study (par. 3.3.1). 

3.3.5 Analysis of tiagabine MEG data 

The virtual sensor data that were re-analysed in this study and the SAM beamformer  

images illustrated in Figure 3.8 were courtesy of Dr Suresh Muthukumaraswamy 

(Muthukumaraswamy et al., 2013a). For each dataset, the individual trial epochs (-1–1 



77 
 

s) were visually inspected and trials containing gross artefacts (e.g., head movements 

and muscle clenching) were excluded. For each participant, the number of trials 

included in the analysis of each session was equalised by removing trials from the end 

of each recording. This resulted in an average number of trials for analysis of 105.5 per 

participant (range 82–117). 

The beamformer source localization analysis was performed using SAM (Robinson and 

Vrba, 1999), as described in the alcohol study (par. 3.3.2). The difference in gamma 

power (30–80 Hz) between stimulus (0–1 s) and baseline (-1–0 s) was calculated with a 

paired t-statistic at each voxel location and virtual sensors were generated at the peak 

voxel location in the occipital lobe, for each participant and each session separately. 

To compare the spatial distribution of gamma responses between placebo and tiagabine 

conditions, the SAM beamformer images were averaged, separately for accepted and 

rejected participants (par. 3.4.3 and 3.4.4). These average SAM maps were produced by 

spatially normalising the individual SAM images onto the MNI template brain using 

FMRIB's Linear Affine Registration Tool (Jenkinson and Smith, 2001). The warping 

parameters were first obtained by registering the participant's anatomical MRI with the 

template brain and then applied to each individual SAM image of that participant. 

3.3.6 Quality control of tiagabine data 

The QC analysis was performed as described in the alcohol study (par. 3.3.3). The 

gamma peak frequency was calculated by averaging over bootstrap iterations, using a 

baseline of -0.8 to -0.1 s and a stimulus period of 0.3 to 1.0 s. With this relatively short 

analysis time-range (700 ms), the QC criterion used to calculate the peak frequency 

reliability estimates coincided with the frequency resolution of the periodogram (~1.2 

Hz). Peak frequency was considered reliably estimated if 50% or more of the 
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bootstrapped peaks in a given dataset fell within ± 1.2 Hz around the bootstrap mode, 

otherwise, the dataset was marked as of poor quality. 

For comparison, the analysis of the gamma peak frequency with tiagabine was 

performed also using the ‘envelope peak frequency’, as described for the alcohol study 

(par. 3.3.3). 
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3.4 Results 

3.4.1 Data quality in the alcohol study 

The QC analysis of the alcohol data revealed, according to a QC reliability criterion of 

50% iterations within ± 1.2 Hz, poor estimates of peak frequency in 5 out of 64 datasets, 

across all participants and conditions (Figure 3.1). This resulted in poor-quality data in 4 

out of 16 participants. The same observation was also reported by Campbell et al. 

(2014) based on the absence of a clear peak in at least one of the MEG sessions, within 

participants. Poor-quality datasets were treated as missing observations, and excluded 

from further statistical analysis according to a list-wise deletion approach. 

3.4.2 Peak frequency modulations by alcohol 

To test the effect of alcohol on the frequency of visual gamma oscillations, the gamma 

peak frequency was analysed using a 2×2 repeated measures ANOVA, with factors 

Drug (two levels: placebo and alcohol) and Time (two levels: pre and post), with the 

Drug × Time interaction term being of most interest. To compare how the exclusion of 

participants and the bootstrap approach to peak frequency estimation affected the 

results, the analysis was repeated using the bootstrap peak frequency (Figure 3.2A and 

Figure 3.2B), and the envelope peak frequency (Figure 3.2C and Figure 3.2D), with 

inclusion of good-quality data only (Figure 3.2A and Figure 3.2C), and with all data 

included (Figure 3.2B and Figure 3.2D). For reference, the interaction effect observed 

by Campbell et al. (2014), where the gamma peak frequency was estimated in twelve 

participants using skewed Gaussian function fits, was F(1,11) = 13.31, p = 0.004. 

The bootstrap method in the twelve participants with complete data, illustrated in Figure 

3.2A, resulted in no significant effect of Drug (F(1,11) = 2.44, p = 0.15), a significant 

effect of Time (F(1,11) = 5.34, p = 0.041), and a significant Drug × Time interaction 

effect (F(1,11) = 15.58, p = 0.002). Peak frequency was significantly reduced by 
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alcohol in the post-alcohol session compared to both the pre-alcohol (t(11) = -4.68, p = 

0.001) and the post-placebo session (t(11) = -3.63, p = 0.004). There were no significant 

differences in peak frequency between pre- and post-placebo (t(11) = 0.58, p = 0.57) or 

between pre-placebo and pre-alcohol (t(11) = 0.44, p = 0.67). The absence of a 

significant difference between pre- and post-placebo indicated that the significant main 

effect of Time was driven by the significant difference between pre- and post-alcohol 

alone. 

 

Figure 3.1. Data quality in the alcohol study. 

Individual bootstrap distributions of the gamma peak frequency, calculated over 10,000 

bootstrap iterations. The distributions are arranged column-wise by participants, in the placebo 

(top two rows) and alcohol (bottom two rows) conditions. The QC results are displayed in red 

(poor-quality datasets) and in blue (good-quality datasets). List-wise exclusions are displayed in 

grey. 
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Figure 3.2. Peak frequency modulations with alcohol. 

A) Peak frequency calculated using the bootstrap method, after exclusion of poor-quality data. 

B) The same as in A), but with all participants included. C) Peak frequency calculated using the 

envelope method, after exclusion of poor-quality data. D) The same as in C), but with all 

participants included. The average peak frequency across participants is plotted in blue for 

placebo and in red for alcohol. Vertical bars represent ± 1 SEM. 
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The results of the bootstrap method with inclusion of all sixteen participants (Figure 

3.2B) showed no significant effect of Drug (F(1,15) = 1.04, p = 0.32) or Time (F(1,15) 

= 0.31, p = 0.59), and no significant Drug × Time interaction effect (F(1,15) = 0.58, p = 

0.46). 

The envelope method in the twelve participants with complete data (Figure 3.2C) 

resulted in no significant effect of Drug (F(1,11) = 2.51, p = 0.14) or Time (F(1,11) = 

2.30, p = 0.16), and a significant Drug × Time interaction effect (F(1,11) = 9.16, p = 

0.012). Peak frequency was significantly reduced by alcohol in the post-alcohol session 

compared to both the pre-alcohol (t(11) = -2.57, p = 0.026) and the post-placebo session 

(t(11) = -2.71, p = 0.020). There were no significant differences in peak frequency 

between pre- and post-placebo (t(11) = 0.22, p = 0.83) or between pre-placebo and pre-

alcohol (t(11) = -0.12, p = 0.91). 

The results of the envelope method with inclusion of all sixteen participants (Figure 

3.2D) showed no significant effect of Drug (F(1,15) = 0.40, p = 0.53) or Time (F(1,15) 

= 1.26, p = 0.30), and no significant Drug × Time interaction effect (F(1,15) = 0.05, p = 

0.82). 

To summarise, using the bootstrap method to estimate the gamma peak frequency and 

after exclusion of participants based on the QC approach, the interaction effect reported 

by Campbell et al. (2014) was replicated at a higher level of significance compared to 

both the envelope method and the Gaussian function fits. Furthermore, our QC 

approach resulted in the exclusion of four participants, as also reported by Campbell et 

al. (2014) based on the absence of a clear peak in at least one of the conditions. No 

significant interaction was observed, with either the bootstrap or the envelope method, 

when all participants were included in the analysis. 
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3.4.3 Data quality in the tiagabine study 

In the tiagabine study, the QC reliability criterion of 50% iterations within ± 1.2 Hz was 

not met in 22.5% of the datasets, across all participants and conditions (Figure 3.3). 

Across the eight recording sessions, the rate of within-subject data rejection was as high 

as 62.5% in four participants. Poor-quality datasets were treated as missing 

observations, and excluded from further statistical analysis according to a list-wise 

deletion approach. 

 

Figure 3.3. Data quality in the tiagabine study. 

Individual bootstrap distributions of the gamma peak frequency, calculated over 10,000 

bootstrap iterations. The distributions are arranged column-wise by participants in the placebo 

(top four rows) and tiagabine (bottom four rows) conditions. The QC results are displayed in red 

(poor-quality datasets) and in blue (good-quality datasets). List-wise exclusions are displayed in 

grey. The gamma peak frequency (bootstrap distribution mean) is indicated with a vertical line 

in each dataset. 
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3.4.4 Spectral modulations by tiagabine 

To test the main hypothesis of a shift in the frequency of visual gamma oscillations, the 

bootstrap peak frequency was analysed in the eight participants with complete data 

using a 2×4 repeated measures ANOVA, with factors Drug (two levels: placebo and 

tiagabine) and Time (four levels: pre, 1 h, 3 h, and 5 h). In this analysis design, a 

significant effect of tiagabine is demonstrated by a significant Drug × Time interaction. 

Results, illustrated in Figure 3.4A, showed a significant effect of Drug (F(1,7) = 18.8, p 

= 0.003), a marginally non-significant effect of Time (F(3,21) = 2.9, p = 0.057), and a 

significant Drug × Time interaction effect (F(3,21) = 3.7, p = 0.028). The 

correspondence between bootstrap peak frequencies and peaks in the gamma range of 

the raw spectra, across all participant and conditions, is illustrated in Figure 3.5. 

To investigate the temporal profile of drug modulation, given the significant interaction, 

we analysed the simple effects of Drug using paired-sample t tests at each of the four 

time points. There was no difference in peak frequency between the pre-ingestion 

sessions of the tiagabine and placebo treatments (t(7) = -0.2, p = 0.87). In contrast, the 

gamma peak frequency was significantly reduced with tiagabine, compared to the 

corresponding placebo sessions, at 1 h (t(7) = 2.4, p = 0.048), at 3 h (t(7) = 6.5, p = 

0.0003), and at 5 h post-ingestion (t(7) = 5.0, p = 0.002). 

Next, we analysed the simple effects of Time with two 1×4 repeated measures 

ANOVAs, separately for each of the two treatments. There was no effect of time in the 

placebo treatment (F(3,21) = 0.1, p = 0.97), suggesting that peak frequency was 

estimated reliably over repeated placebo sessions. In contrast, the effect of Time was 

significant in the tiagabine treatment (F(3,21) = 7.3, p = 0.002). Compared to the pre-

tiagabine session, peak frequency was significantly reduced at 1 h (t(7) = 2.6, p = 

0.036), at 3 h (t(7) = 5.2, p = 0.001), and at 5 h post-tiagabine (t(7) = 5.5, p = 0.001). 
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Figure 3.4. Peak frequency modulations with tiagabine. 

A) Peak frequency calculated using the bootstrap method, after exclusion of poor-quality data. 

B) The same as in A), but with all participants included. C) Peak frequency calculated using the 

envelope method, after exclusion of poor-quality data. D) The same as in C), but with all 

participants included. The average peak frequency across participants is plotted in black for 

placebo (PLC) and in red for tiagabine (TGB). Vertical bars represent ± 1 SEM. 
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Figure 3.5. Tiagabine raw spectra. 

Amplitude spectra of baseline (in blue) and stimulus (in red) in the gamma range (30–90 Hz), 

arranged column-wise by participants, in the placebo (top four rows) and tiagabine (bottom four 

rows) conditions. The gamma peak frequency (bootstrap distribution mean) is indicated with a 

vertical line in each dataset. 

The amplitude spectra of percentage change from baseline in the gamma range are 

illustrated in Figure 3.6, averaged across participants. It can be noted that the averaged 

bootstrap peaks (vertical lines) appear just to the left of the peak in the average spectra. 

This effect, which appears particularly marked in the right-hand panels, is a result of the 

averaging procedure. Specifically, the individual spectra of higher amplitude tended to 

peak at higher frequencies, resulting in increased amplitude of the portion of the 

spectrum on the right side of the average peak frequency. The effect is explained with 

an illustrative example in Figure 3.7. 
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Figure 3.6. Tiagabine average spectra. 

Amplitude spectra of percentage change from baseline averaged over participants (n = 8). 

Shaded areas represent ± 1 SEM across participants. Vertical bars indicate the bootstrap peak 

frequency, averaged across participants, in the pre- (blue) and post-drug sessions of placebo 

(PLC; black) and tiagabine (TGB; red). 

 

Figure 3.7. Relationship between individual and average spectra. 

Illustrative example of the relationship between the individual spectra (colour lines) and their 

average (black thick line) in one of the conditions. The vertical lines indicate the bootstrap peak 

frequency. Despite the tight correspondence between the individual bootstrapped peaks and the 

peaks in the individual spectra, because amplitude is higher at higher frequencies, the peak in 

the average spectrum appears shifted rightwards of the actual average peak frequency. 
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Subsidiary to our main hypothesis, we tested the effect of tiagabine on the gamma peak 

amplitude with the same statistical analysis used for the gamma peak frequency (i.e. a 

2×4 repeated measures ANOVA in the eight accepted participants). The results showed 

no significant effect of Drug (F(1,7) = 1.7, p = 0.24), or Time (F(3,21) = 1.5, p = 0.24), 

and no significant Drug × Time interaction (F(3,21) = 2.6, p = 0.08). This null result of 

gamma amplitude was suggested also by the visual inspection of the average SAM 

spatial maps (par. 3.3.5). As illustrated in Figure 3.8, the SAM images did not show any 

apparent difference between tiagabine and placebo, or across measurement sessions. 

However, as expected, the average gamma amplitude in the occipital cortex appears to 

be consistently higher in the QC-accepted participants, compared to those whose data 

were rejected. 

Overall, these results indicated that the gamma peak frequency was significantly 

reduced by tiagabine at each of the three time points measured after drug administration, 

whereas gamma amplitude was not affected. Furthermore, peak frequency did not differ 

statistically across the four measurements in the placebo conditions, or between the pre-

tiagabine and the pre-placebo sessions. Therefore, peak frequency was estimated 

reliably both at repeated intervals of 2 h, and between sessions as far as 1 week apart. 

For comparison, results are shown in Figure 3.4 after the analysis was repeated using 

the bootstrap peak frequency (Figure 3.4A and Figure 3.4B), and the envelope peak 

frequency (Figure 3.4C and Figure 3.4D), with inclusion of good-quality data only 

(Figure 3.4A and Figure 3.4C), and with all data included (Figure 3.4B and Figure 

3.4D). Despite the session of maximal decrease in frequency differed among the four 

combinations of method and sample used, the pattern of results appeared qualitatively 

comparable, apart from when the envelope method was used with inclusion of all 

participants (Muthukumaraswamy et al., 2013a). 
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Figure 3.8. Tiagabine SAM spatial images. 

SAM beamformer images contrasting gamma power (30–80 Hz) between baseline (-1 to 0 s) 

and stimulus (0 to 1 s), at 4 mm isotropic voxel resolution. The t-statistic values were averaged, 

within each condition, separately for accepted and rejected participants (eight and seven, 

respectively) and displayed on the right hemisphere of an inflated grey-matter cortical mesh 

reconstruction of a template-space MRI volume. 
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3.4.5 Correlations of the gamma peak frequency in the tiagabine study 

We asked the question of whether differences in gamma quality could be related to 

differences in the individual peak frequency, across participants. The latter measure has 

been proposed as an index of local GABA concentration (Muthukumaraswamy et al., 

2009) and GABAA receptor density (Kujala et al., 2015), two factors that could 

potentially influence the variability of our peak frequency reliability estimates. We used 

Pearson’s r coefficient to correlate the gamma peak frequency, in each experimental 

session, with the estimates of peak frequency reliability, as measured by the percentage 

of bootstrap iterations within ± 1.2 Hz around the bootstrap distribution mode. As 

illustrated in Figure 3.9A, we found no evidence for a consistent relationship between 

these two measures, suggesting that the estimated reliability of peak gamma frequency 

did not depend on the frequency at which the gamma peaks occurred. 

We also investigated the relationship between gamma quality and the magnitude of 

change in peak frequency. We first calculated the peak frequency change (or so-called 

‘delta peak frequency’) by subtracting the pre-placebo (or pre-tiagabine) peak frequency 

from each of the post-placebo (or post-tiagabine) sessions, and then correlated this 

measure with the peak frequency reliability estimates. For this purpose, the percentage 

of bootstrap iterations in the ‘pre’ and ‘post’ sessions were averaged, separately for each 

correlation. Once again, we found no significant correlations between the reliability of 

peak frequency and the drug-induced changes in peak frequency. The correlation at 1 h 

post-tiagabine was the only positive correlation, and its uncorrected p-value approached 

statistical significance (r = 0.48, p = 0.067). As illustrated in Figure 3.9B (bottom row, 

first plot from the left) participants whose peak frequency decreased the most tended to 

show the lowest reliability estimates, at 1 h post-tiagabine. This would explain why, 

after participant exclusion, the greatest reduction in peak frequency was observed in the 

session at 3 h, rather than 1 h after tiagabine (cf. Figure 3.4A and Figure 3.4B). 
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Figure 3.9. Correlations of the peak frequency reliability estimates. 

A) Correlations between the gamma peak frequency and the estimates of peak frequency 

reliability (percentage of iterations within ± 1.2 Hz around the bootstrap mode). Observations 

falling below the horizontal dashed line in each plot, the horizontal dashed (i.e. the QC 

criterion) represent poor-quality estimates. B) Correlations between the change in peak 

frequency (i.e. peak frequency in the ‘pre’ session subtracted from the ‘post’ session), and the 

reliability estimates, averaged between ‘pre’ and ‘post’ sessions. Circles plotted in red represent 

participants with poor-quality estimates in either one or both of the ‘pre’ and ‘post’ sessions 

being correlated. 
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Finally, in the hypothesis that baseline GABA levels (as indexed by the gamma peak 

frequency in the pre-tiagabine session) could have an influence on the peak frequency 

modulations by tiagabine, we also tested whether the change in peak frequency was 

correlated with the gamma peak frequency in the pre-tiagabine session. As illustrated in 

Figure 3.10A, we found two significant negative correlations, indicating that individuals 

with a higher peak frequency at baseline showed larger reductions after tiagabine, 

particularly in the sessions at 3 h (r = -0.77, p = 0.004) and at 5 h post-tiagabine (r = -

0.81, p = 0.008). However, the statistical significance of these correlations appeared to 

be determined by a single observation (cf. Figure 3.10B). This individual represented an 

outlier in terms of the gamma peak frequency in the pre-tiagabine session (~35 Hz) and 

showed an increase in frequency after tiagabine, rather than a decrease. It could be 

hypothesised that for this individual a high-beta peak prevailed (i.e. gamma amplitude 

was low in the pre-tiagabine session) and their gamma peak (~45–50 Hz) was revealed 

only in the post-tiagabine sessions, by a tiagabine-induced boost in gamma amplitude. 

However, we neither found evidence for an increase in gamma amplitude with tiagabine 

(par. 3.4.4), nor had a chance to test this hypothesis more formally, given the limited 

sample size in this study. 
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Figure 3.10. Correlations of peak frequency at baseline. 

A) Correlations between the change in gamma peak frequency and the gamma peak frequency 

at baseline (TGB Pre). Circles plotted in red represent participants with poor-quality estimates 

in either one or both of the ‘pre’ and ‘post’ sessions being correlated. B) The same as in A), but 

after exclusion of one observation. 
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3.5 Discussion 

The true nature of neuronal oscillations in the gamma frequency range has been long 

disputed in neuroscience (Brunet et al., 2014b). Correspondingly, the choice of spectral 

method for the analysis of electrophysiological data has also been highly debated 

(Bruns, 2004; Le Van Quyen and Bragin, 2007; Le Van Quyen et al., 2001; van Vugt et 

al., 2007). In this work, we used a newly developed method based on bootstrapping 

across trials, which served two purposes. First, we used a measure of spread in the 

distribution of bootstrapped peaks to estimate the reliability of the gamma peak 

frequency, which in turn allowed the identification of poorly estimated data. Second, we 

measured the gamma peak frequency by averaging across the bootstrapped samples, as 

this measure was demonstrated more robust compared to a more conventional 

alternative approach (see Chapter 2). This QC method was used to re-analyse data from 

two pharmacological MEG studies, one in which alcohol was demonstrated to produce a 

marked decrease in the peak frequency of visual gamma oscillations (Campbell et al., 

2014), and one in which tiagabine was reported to modulate stimulus-evoked responses, 

but to have no effect on neuronal oscillatory dynamics (Muthukumaraswamy et al., 

2013a). 

3.5.1 Methodological considerations 

The pharmacological MEG dataset that we re-analysed in the first part of this work, i.e. 

the alcohol data by Campbell et al. (2014), was considered as a benchmark to test the 

validity of our QC approach on real data. In the original publication, the peak frequency 

and amplitude parameters were estimated by fitting skewed Gaussian functions to the 

gamma range of the power spectra. In our analysis, the success of the QC approach was 

demonstrated in two ways. First, it revealed the presence of poor-quality data in the 

same number of participants as originally reported by the authors, who blind-screened 
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the data for low-amplitude gamma responses with no clear peak (Campbell et al., 2014). 

Second, it replicated the drug-induced modulations, which consisted of a decrease in the 

peak frequency of visual gamma with alcohol. Together, the results of our validation 

study on simulated data presented in the previous chapter of this thesis (Chapter 2) and 

our replication of the findings by Campbell et al. (2014) supported the validity of our 

QC approach to fulfil two purposes; first, to identify reliably measured data in the study 

by Muthukumaraswamy et al. (2013a) and, second, to re-test the effect of tiagabine 

using optimal estimates of peak frequency. 

In our re-analysis of these two pharmacological MEG studies, the use of ANOVA tests 

required the inclusion of complete data from each participant. This resulted in good-

quality data being excluded from both the alcohol (11 out of 48) and the tiagabine 

datasets (29 out of 120). In other words, approximately 25% of the recorded sessions 

provided reliable peak frequency estimates, but had to be excluded from analysis 

according to the list-wise deletion approach. It should be noticed that, by applying a 

standard analysis pipeline and avoiding participant exclusion, Muthukumaraswamy et 

al. (2013a) adopted the least biased approach possible. On the one hand, the rejection of 

complete datasets is questionable when each individual represents a precious or rare 

observation and the sample size cannot be readily increased. On the other hand, our 

proposed approach offers the advantage of basing statistical inference on reliably 

estimated peak frequency measures. However, if missing observations (i.e. unreliable 

peak frequency estimates) are handled by list-wise deletion (i.e. only participants with 

complete data are included in the analysis), it is important to consider whether the 

probability of the data missing is related to other independent variables or on the 

dependent variable itself. 
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Our QC approach circumvents the limits of setting simple rejection criteria based on the 

amplitude of the response, which could remove sources of intra- and inter-individual 

variability, such as drug-induced reductions in amplitude or disease-related impairments 

of oscillatory rhythms. Nevertheless, rejecting datasets based on the estimates of peak 

frequency reliability is still dependent on the signal-to-noise ratio and hence amplitude 

(see Chapter 2). Any QC approach is thus vulnerable to low generalizability of results. 

In this study, in particular, the peak frequency reduction induced by tiagabine can be 

demonstrated only for those participants who showed gamma responses of high 

consistency across trials. Despite the comparability of results illustrated in Figure 3.4A 

and Figure 3.4B, the gamma peak frequency measures must be of sufficient quality in 

order for the drug-induced modulations to be statistically significant. Results, instead, 

cannot be generalised to individuals who showed high inter-trial variability in their 

response frequency. The factors underlying such differences in the variability of the 

gamma response frequency are largely unexplored, and remain an open question for 

future research. 

3.5.2 Gamma peak frequency reduction by tiagabine 

After identification and exclusion of datasets that yielded unreliable estimates of peak 

frequency, we observed a marked tiagabine-induced reduction in visual gamma 

frequency. The gamma peak frequency appeared to be significantly reduced both at 1 

hour and at 3 hours after oral administration (par. 3.4.4), in line with the 

pharmacokinetics of tiagabine showing maximum plasma concentrations occurring 

between 45 and 150 minutes after drug ingestion (Leach and Brodie, 1998; Murphy, 

2011; Snel et al., 1997). The average decrease in frequency induced by tiagabine, as 

measured with the bootstrap method (Figure 3.4A) relative to a pre-tiagabine peak 

frequency of 52.9 ± 5.0 Hz (mean ± SD across participants), was 2.8 Hz, 4.1 Hz and 3.8 

Hz at 1 h, 3 h and 5 h, respectively. Interestingly, a comparable effect was observed 
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with alcohol, with the gamma peak frequency being reduced on average by 2.4 Hz at 

less than 1 h after drug consumption, relative to a pre-alcohol peak frequency of 52.6 ± 

5.9 Hz (Figure 3.2A). 

Overall, these novel tiagabine results are strongly supportive of previous studies of 

animal models, which demonstrate a close dependency of gamma frequency on the time 

constants of GABAergic inhibition (Faulkner et al., 1998; Oke et al., 2010; Traub et al., 

1996; Whittington et al., 1995, 1996; Xing et al., 2012a). In relatively simple models, 

the generative mechanisms of gamma oscillations consist of pyramidal cells firing 

synchronously under the inhibitory control of GABAergic interneurons (Bartos et al., 

2007; Buzsáki and Wang, 2012; Gonzalez-Burgos and Lewis, 2012; Tiesinga and 

Sejnowski, 2009). At the synaptic level, tiagabine exerts its effects by selectively 

inhibiting GAT-1, the most abundantly expressed GABA transporter in the cerebral 

cortex (Borden et al., 1994; Conti et al., 2004). By blocking the reuptake of GABA 

from the synapse, tiagabine elevates the synaptic concentrations of GABA (Dalby, 

2000; Fink-Jensen et al., 1992) and increases the duration of the GABAA receptor-

induced IPSCs (Roepstorff and Lambert, 1994; Thompson and Gähwiler, 1992). Thus, 

IPSCs of prolonged duration result in synchronization of neuronal firing at slower 

rhythms, which in turn translates to LFP oscillations at lower gamma frequencies. 

3.5.3 Relationship between gamma frequency and GABA 

In non-invasive human studies, the use of MRS to measure the relationship between 

GABA and gamma frequency has produced controversial results (cf. Cousijn et al., 

2014; Muthukumaraswamy et al., 2009). Invigorating this debate, a very recent 

flumazenil-PET study demonstrated a positive correlation between the frequency of 

visually induced gamma oscillations and the density of GABAA receptors in early visual 

areas (Kujala et al., 2015). Further contribution to the translation of animal models to 
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humans has come from studies combining MEG, to record cortical activity, with the use 

of pharmacological agents, to modulate neurotransmission (Hall et al., 2010; 

Muthukumaraswamy, 2014). Decreased visual gamma frequency in humans was 

observed after administration of alcohol, which affects GABA and NMDA receptor 

activity (Campbell et al., 2014), and lorazepam, a positive allosteric GABAA modulator 

(Lozano-Soldevilla et al., 2014). More recently, comparable results were obtained with 

the NMDA receptor antagonist ketamine (Shaw et al., 2015). In addition to the 

frequency modulation, these studies found gamma responses of increased amplitude 

with GABAergic enhancement, replicating previous results obtained with 

administration of the GABAA agonist propofol (Saxena et al., 2013). 

Increased gamma amplitude accompanying a shift towards lower gamma frequencies 

may be related to the recruitment of larger pyramidal cell populations achieved under 

longer periods of inhibition (Gonzalez-Burgos and Lewis, 2012). In the current study, 

however, no significant effects were observed when, subsidiary to our main hypothesis, 

gamma amplitude was tested with the same analysis used for peak frequency. This 

could suggest that tiagabine has a specific effect on oscillation frequency via 

modulation of inhibitory time constants, while leaving other network parameters 

unaltered. In support of this, animal studies have demonstrated that the duration of 

IPSCs is prolonged by tiagabine, but IPSC amplitude is not increased (Roepstorff and 

Lambert, 1994; Thompson and Gähwiler, 1992). Alternatively, the absence of an effect 

of drug on gamma amplitude might be explained by a lack of sensitivity of the 

amplitude measures themselves. Compared to gamma frequency, gamma amplitude is a 

less repeatable measure (Tan et al., 2016) and could be more vulnerable to noise, 

particularly when differences in head movement or head distance from the sensor array 

in repeated recording sessions are not explicitly controlled for. 
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3.5.4 Relationship between gamma frequency and other parameters 

A partially unresolved question is whether the changes in frequency associated with 

GABAergic neurotransmission are unique to gamma oscillations, or extend to other 

frequency ranges. Likewise, it is unclear whether the GABAergic influences on 

oscillatory dynamics are specific to visual areas or extend to other cortices. In 

sensorimotor regions, administration of a benzodiazepine GABAA positive allosteric 

modulator produced an alteration of the beta rhythm consisting of decreased frequency 

and increased amplitude (Jensen et al., 2005). In other studies, no differences in gamma 

frequency were observed over motor regions using alcohol (Campbell et al., 2014), 

lorazepam (Lozano-Soldevilla et al., 2014), ketamine (Shaw et al., 2015), or tiagabine 

(Muthukumaraswamy et al., 2013b). Overall, therefore, the functional significance of 

shifts in oscillation frequency remains a subject of significant interest. 

The frequency of gamma oscillations has been previously related to differences in 

behavioural performance (Dickinson et al., 2015; Edden et al., 2009), and in cognitive 

traits of possible clinical relevance (Dickinson et al., 2015; Kahlbrock et al., 2012a). For 

example, a recent study showed that the normal velocity-dependent modulation of 

visual gamma frequency appeared to be impaired in children with autism spectrum 

disorders (Stroganova et al., 2015). Although the inter-individual differences in visual 

gamma frequency have been related to the structural properties of visual cortical areas 

(Muthukumaraswamy et al., 2010; Schwarzkopf et al., 2012), other studies do not show 

a clear dependence (Kujala et al., 2015; Robson et al., 2015). Gamma frequency in 

visual cortex is modulated by sensory input strength, increasing monotonically with 

respect to stimulus contrast (Jia et al., 2013; Perry, 2015; Perry et al., 2015; Ray and 

Maunsell, 2010; Roberts et al., 2013). Increased peak gamma frequency has been 

reported also for stimuli of smaller size, in both LFP (Gieselmann and Thiele, 2008; Jia 

et al., 2013; Ray and Maunsell, 2011) and MEG recordings (van Pelt and Fries, 2013; 
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although, see also Perry et al., 2013). This could be explained with smaller stimuli being 

represented by smaller neuronal ensembles, which in turn could be synchronized at a 

higher frequency over a shorter cortical distance (Gieselmann and Thiele, 2008). 

Interestingly, gamma responses in monkey visual areas are induced at higher 

frequencies in response to repeated stimulus presentations compared to novel stimuli 

(Brunet et al., 2014a), and functionally synchronous networks appear to be tuned to 

higher frequencies when representing stimuli that are under the focus of attention 

(Bosman et al., 2012). Attentional modulations of narrow-band gamma oscillations in 

early visual areas are not typically observed with MEG (e.g., Koelewijn et al., 2013), 

perhaps due to the different sensitivity of MEG compared to LFPs. However, since 

GABAergic drugs can be expected to induced altered cognitive states, the next chapter 

(Chapter 4) will explore the suggested link between attention and gamma frequency 

(Bosman et al., 2012). 

3.5.5 Conclusions 

The work presented here highlights the potential impact of objective data quality 

quantification and paves the way for future methodological developments in this 

direction. Using our novel approach to peak frequency estimation, we demonstrated a 

reduction in gamma frequency by tiagabine, in those participants with reliable peak 

frequency estimates. This result is supported by animal models, and provides additional 

translational evidence of the GABAergic mechanisms generating gamma oscillations in 

humans. 

  



 

102 
 

  



103 
 

4 Chapter 4. 

Changes in peak gamma amplitude and frequency with 

visual spatial attention assessed using optimised 

quality-control procedures 
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4.1 Abstract 

Oscillatory synchronization in the gamma frequency range has been proposed as a 

neuronal mechanism to prioritize processing of relevant stimuli over competing ones. 

Recent studies in animals found that selective spatial attention enhanced gamma-band 

synchronization in high-order visual areas (V4) and increased the gamma peak 

frequency in V1. The existence of such mechanisms in the human visual system is yet 

to be fully demonstrated. In this study, we used MEG, in combination with an optimised 

stimulus design, to record visual gamma oscillations from human early visual cortex, 

while participants performed a visuospatial attention cueing task. First, we 

reconstructed virtual sensors in V1/V2, where gamma oscillations were strongly 

induced by visual stimulation alone. Second, following the results of a statistical 

comparison between conditions of attention, we reconstructed cortical activity in 

inferior occipital-temporal regions (V4). The results indicated that gamma amplitude 

was modulated by spatial attention across the cortical hierarchy, both in the early visual 

cortex and in higher-order regions of the ventral visual pathway. Attentional effects in 

V1/V2 preceded those in V4 by approximately 70 ms, consistent with a feed-forward 

role of gamma-band activity in propagating sensory representations across the visual 

cortical hierarchy. Although we found no evidence for an increase in the gamma peak 

frequency in V1/V2 with attention, the centroid of the power spectra tended to shift 

towards higher frequencies by ~1 Hz, on average. Across individuals, the gamma peak 

frequency correlated negatively with the response time in the attention task, suggesting 

a link between this oscillatory parameter and behaviour. Together, these findings 

suggest that differences in experimental design or methodology can account for the 

inconsistencies in previous animal and human studies. Furthermore, our results support 

the hypothesis of enhanced gamma-band synchronization as an attentional mechanism 

in the human visual cortex.  
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4.2 Introduction 

The ability to direct attention to selected, relevant stimuli in a visual scene is crucial to 

adaptive behaviour. One proposed mechanism by which visual spatial attention is 

implemented at the cortical level is oscillatory synchronization in the gamma frequency 

range (~30–80 Hz). The action potentials of synchronized pre-synaptic neurons arrive at 

the post-synaptic dendrites closer in time and sum up more effectively than those from 

asynchronous pre-synaptic neurons, hence increasing their downstream impact. For this 

reason, synchronization of neuronal firing could represent a top-down attentional 

mechanism to prioritize processing of attended, relevant stimuli over competing, 

irrelevant ones (see Fries, 2015; Gregoriou et al., 2015 for recent reviews). 

The evidence in support of this model comes from studies of monkey visual area V4, 

where local gamma-band synchronization, measured as spectral power in the LFP (Fries 

et al., 2001; Taylor et al., 2005), spike-field coherence (Bichot et al., 2005; Fries et al., 

2001) or spike-spike coherence of MUA (Fries et al., 2008b), is consistently stronger 

for attended, compared to ignored stimuli. Yet, the attentional modulation of visual 

gamma oscillations in the primary visual cortex is less clear. One study in monkey 

unexpectedly found a small, but statistically significant, increase in gamma amplitude in 

V1 when spatial attention was directed to stimuli outside, rather than inside, the 

receptive field of the recorded neurons (Chalk et al., 2010). Other studies have found no 

obvious effects of attention on gamma amplitude in V1 (Bosman et al., 2012; Buffalo et 

al., 2011). One study also found that attention modulated the gamma peak frequency in 

V1, which was higher in response to relevant, compared to irrelevant stimuli (Bosman 

et al., 2012). 

Across studies in human, the effect of spatial attention on gamma-band oscillatory 

activity in the early visual cortex is variable and unclear. In MEG studies, the amplitude 
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of visually induced gamma oscillations is typically reported to increase with attention in 

the occipital lobe contralateral to the attended hemi-field, with sources normally 

extending from high-order extrastriate areas to lateral occipital and parietal cortices 

(Bauer et al., 2012, 2014, Marshall et al., 2015a, 2015b; Siegel et al., 2008). In the early 

visual cortical areas, i.e. presumed V1/V2, gamma oscillations are often reported to be 

unaffected by attention (e.g., Siegel et al., 2008). Although one study reported 

attentional modulations of the high-frequency gamma-band response (~60–90 Hz) in the 

medial visual cortex (Koelewijn et al., 2013), this frequency range is thought to reflect 

different neuronal mechanisms, compared to those underlying narrow-band visual 

gamma oscillations (Ray and Maunsell, 2011). 

Overall, the effects of spatial attention on gamma oscillations in the human early visual 

cortex, and in particular on the spectral properties of the V1 response, remain largely 

unexplored. As the uncertainties in the geometry of the source distribution can be partly 

attributed to the choice of stimulus configuration (see Koelewijn et al., 2013), the 

visuospatial attention cueing paradigm used in this MEG study was designed to induce 

sustained visual gamma oscillations with clear sources in the contralateral visual cortex. 

The accurate choice of stimulus parameters, such as size (Jia et al., 2013), spatial 

frequency (Adjamian et al., 2004b) and eccentricity (van Pelt and Fries, 2013), allowed 

us to record gamma responses with a clearly quantifiable spectral profile and to test the 

effect of attention also on the gamma peak frequency. 
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4.3 Materials and Methods 

4.3.1 Participants 

Twenty healthy volunteers took part in the study (mean age, 28.6 years; range, 22–42 

years; seven males; two left-handed). All participants provided informed consent and 

received monetary reimbursement in agreement with the guidelines of the local ethics 

committee. Two participants showed no measurable gamma response to visual 

stimulation (par 4.3.8) and hence they were excluded from the analysis. The eye-tracker 

data were not recorded in one participant due to technical difficulties (par. 4.3.4). 

4.3.2 Experimental design and paradigm 

Participants performed a visuospatial attention cueing paradigm, the task consisting of 

discriminating the change in orientation of the attended stimulus. The trial structure is 

illustrated in Figure 4.1. Each trial started with a cue, an arrow pointing either to the left 

or to the right side of the screen, presented centrally for 500 ms and followed by a 

fixation cross (0.3° of visual angle). After a jittered interval of 1–1.5 s, two stimuli (a 

grating and a vertical line; par. 4.3.3) were presented, one in the left and one in the right 

visual hemi-field, centred horizontally at an eccentricity of 3°. Participants were 

instructed to attend the stimulus in the cued hemi-field, whilst fixating centrally 

throughout the trial. After an unpredictable interval of 1–3 s, the attended stimulus, i.e. 

the one in the cued hemi-field, changed from the vertical to a tilted orientation, either 

clockwise or counter-clockwise. The tilted stimulus was presented for 30 ms and, to 

increase task difficulty, it was followed by a mask (a plaid or a cross; par. 4.3.3), 

presented for 120 ms. After a further 350 ms, a question mark prompted participants to 

perform a forced-choice orientation discrimination. Participants indicated whether the 

stimulus orientation had changed counter-clockwise or clockwise via a button-press, 

using the index and middle fingers of their right hand, respectively. Participants were 
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allowed up to 1.5 s to respond and, if they had not perceived the direction of the 

orientation change, they were instructed to guess it. Participants were also instructed to 

withhold their response to any trial in which they had not complied with the task (e.g., if 

they had not attended the cued hemi-field). After an inter-trial interval of 1.5 s, the next 

trial started. 

 

Figure 4.1. Trial structure of the experimental paradigm. 

The trials started with a cue, presented for 500 ms, instructing participants which hemi-field to 

attend. After 1–1.5 s, two stimuli were presented, a grating and a line. After 1–3 s, the stimulus 

in the cued hemi-field was first presented at a tilted orientation (30 ms) and then replaced by a 

mask (120 ms), a plaid or a cross, depending on which stimulus was presented in the cued hemi-

field. After 350 ms, participants were prompted to respond to the task by indicating whether the 

attended stimulus was tilted counter-clockwise or clockwise. For convenience, only the attend-

left condition is illustrated in this figure, however, all four possible combinations of cue hemi-

field (attend-left and attend-right) and stimulus hemi-field (grating-left and grating-right) were 

presented. 
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The experimental session consisted of 400 trials in total, divided into four blocks. 

Within each block, trials were counterbalanced across all possible combinations of four 

factors, namely, stimulus hemi-field (grating left vs. grating right), cued hemi-field 

(attend left vs. attend right), change direction (counter-clockwise vs. clockwise) and 

change magnitude (par. 4.3.3). Importantly, depending on which hemi-field was cued to 

attend and in which hemi-field the grating was presented, each trial fell into one of two 

main conditions of interest (attend grating vs. ignore grating), which were also 

counterbalanced. Trials were presented in pseudo-random order. To prevent habituation 

effects, the same combination of stimulus hemi-field and cued hemi-field was never 

presented for more than five times consecutively. Participants were allowed to take 

breaks between blocks. Each participant completed between two and four blocks (3.5 

blocks on average), for a total duration of the experimental session of up to 1 hour. 

4.3.3 Stimuli 

The stimuli consisted of a grating and a line, the grating being the stimulus of interest 

for the analysis of visual gamma. The grating stimulus consisted of a vertical square-

wave grating (maximum contrast, three cycles per degree), presented through a circular 

aperture with a diameter of 4°. The line stimulus consisted of a vertical black line (0.9° 

length, 0.05° width) enclosed in a black circle (1.1° diameter, 0.05° width). The 

parameters of the grating stimulus, such as size and eccentricity (4° and 3°, 

respectively), were designed to induce gamma oscillations with both unambiguous 

cortical sources (i.e. in the contralateral visual cortex; e.g., Muthukumaraswamy et al., 

2009) and clearly measurable spectral properties (i.e. high-amplitude responses; see van 

Pelt and Fries, 2013). In contrast, the absence of high-contrast edges and the smaller 

size of the line stimulus were chosen to produce gamma responses of only minimal, or 

non-measurable, amplitude. This prevented the gamma response to the grating from 

being contaminated by sources in the other hemisphere, as would have happened, for 
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example, if gratings were presented in both visual hemi-fields. Therefore, by carefully 

designing the psychophysical properties of both the relevant and the irrelevant stimulus, 

we were able to obtain uncontaminated gamma responses to the grating, whilst 

preserving the behavioural relevance of both stimuli to the attention task. 

The difficulty of the task was varied on a trial-by-trial basis, with five possible 

magnitudes of orientation change increasing logarithmically from 0.3° to 5° to the 

vertical. To account for the different properties of the two stimuli and based on 

behavioural piloting, the magnitudes of orientation change of the line stimulus were 

increased by a factor of four compared to the grating stimulus (i.e. orientation change 

from 1.2° to 20° to the vertical). To increase task difficulty and hence engage 

participants further in the allocation of spatial attention, the orientation change was 

backward masked. The grating was masked by a plaid and the line was masked by a 

cross, both masks being presented at a tilted orientation of 45° to the vertical. 

Stimuli were displayed on a gamma-corrected Mitsubishi Diamond Pro 2070 CRT 

monitor placed at a viewing distance of 2 m. The refresh rate was 100 Hz. Stimuli were 

programmed in Matlab (The Mathworks) using the Psychophysics Toolbox (Kleiner et 

al., 2007). 

4.3.4 Eye-tracker data acquisition and analysis 

To monitor eye movements, monocular recordings were obtained from the right eye 

with an iViewX MEG250 eye-tracker (SensoMotoric Instruments) in nineteen out of 

twenty participants (par. 4.3.1). The video camera, operating at a sampling rate of 250 

Hz, was positioned at a distance of 120 cm in front of the participant, with an infrared 

light placed 60 cm to the right of the camera. The gaze direction was determined based 

on the position of the pupil. The system was initially calibrated before the beginning of 
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the first experimental block and then recalibrated between blocks if the head position 

had changed after the break. 

The eye-tracker data were analysed to identify and exclude trials in which the eye gaze 

position deviated from the central fixation. In principle, eye gaze position or eye 

movements could differ between conditions, depending on which hemi-field is cued to 

attend. If so, any difference between the visual gamma response to attended and ignored 

gratings could be a spurious result of an associated difference in stimulus eccentricity 

(van Pelt and Fries, 2013), rather than a true effect of attention. In particular, if 

participants were to move their gaze towards the cued hemi-field, the eccentricity of the 

grating would decrease when the grating is attended, compared to when it is ignored. As 

such, the analysis explained below ensured that eye gaze position did not differ when 

participants attended the left or the right hemi-field and, consequently, towards or away 

from the grating (both for left- and right-presented gratings; see counterbalancing 

procedures, par. 4.3.2). Thus, we ruled out the possibility that differences in visual 

gamma could arise from differences in stimulus eccentricity. 

The eye-tracker data analysis was performed using the EYE-EEG extension (Dimigen et 

al., 2011) of EEGLAB (Delorme and Makeig, 2004) and custom Matlab scripts. The 

raw data were cut into 2–2.5 s epochs, from cue offset (between -1 and -1.5 s) to 1 s 

around stimulus onset. The same pre-processing parameters were applied separately to 

the X and Y coordinates of gaze position, with the horizontal component being the one 

of interest in the analysis, for the reasons explained above. First, the data were 

demeaned based on the median position within each epoch. Second, short segments of 

missing data caused by blinks or temporary signal loss were reconstructed by linear 

interpolation. Third, high-frequency noise was suppressed by smoothing the data with a 

moving average over a window of 10 data samples. Finally, the epochs were shortened 
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to include only the time-range in which the visual gamma response could be affected, 

i.e. 0–1 s around stimulus onset (par. 4.3.8). To identify trials containing artefactual 

ocular activity, two measures were derived using these stimulus epochs. First, the 

horizontal gaze position (hereafter referred to as ‘horizontal fixation’) was calculated as 

the within-trial median X coordinate and trials were excluded if the horizontal fixation 

deviated more than ± 2.5 SD (from the average horizontal fixation across trials). 

Second, horizontal eye movements (e.g., saccades) were defined as X coordinate values 

in a trial larger than ± 2.5 SD (SD measured on the concatenated trials) and trials were 

excluded if they contained horizontal eye movements. The outcome of these two control 

procedures was visually inspected for each participant and stricter SD-based thresholds 

were implemented if necessary (e.g., ± 1.5 SD in one participant). Additionally, the 

horizontal fixation was compared between cue conditions (attend left vs. attend right), 

within each participant. For this purpose, trials surviving artefact rejection were first 

pooled according to their condition and then contrasted with unpaired t-tests. This 

resulted in no significant difference in eye gaze position of right vs. left cue conditions, 

in any of the participants (mean t = -0.44 across participants). Altogether, therefore, 

these procedures ensured that the eccentricity of the gratings did not differ, because of 

fixation or eye movements, when they were presented in the attended or ignored hemi-

field. 

4.3.5 MEG data acquisition 

The MEG recordings were performed using a 275-channel axial gradiometer CTF 

system (VSM MedTech), located inside a magnetically shielded room. The data were 

acquired continuously, with a sampling rate of 1200 Hz (low-pass filtered online at 300 

Hz). An additional 29 reference channels were recorded for noise cancellation purposes 

and the primary sensors were analysed as synthetic third-order gradiometers (Vrba and 

Robinson, 2001). Three electromagnetic coils were placed on three fiduciary locations 
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(nasion, left and right pre-auricular) and their position relative to the MEG sensors was 

recorded continuously during each experimental block. 

4.3.6 MEG/MRI co-registration 

An anatomical MR image (1-mm isotropic, T1-weighted FSPGR) acquired with a 3.0 T 

MRI scanner (General Electric) was available for each participant. For source-

localization purposes, the anatomical MRI and the MEG data were co-registered by 

marking the voxels on the MR image corresponding to the position of the three fiducial 

coils (par. 4.3.5). 

4.3.7 MEG data pre-processing 

For each participant, the data were concatenated over experimental blocks and the 

median head position was used as reference position for the entire dataset. The 

continuous dataset was then cut into epochs (± 1.5 s around stimulus onset), the epochs 

were visually inspected and trials containing gross artefacts (e.g., muscular activity) 

were excluded. The position of the head within and between blocks was also visually 

inspected, by concatenating the continuous head position data over trials. Trials were 

excluded if, at any time within the trial, the distance of any of the coils from the 

reference position exceeded a threshold. This threshold, for the maximum distance of 

the head from the reference position, was defined individually for each participant 

(mean threshold 4.65 mm, range 2.5–7.5 mm), based on the amount of head motion. 

Trial exclusion did not result in a different number of trials between attend-grating and 

ignore-grating conditions. 

4.3.8 Source localization 

Source analysis was performed in Matlab, using the FieldTrip toolbox (Oostenveld et 

al., 2011). In order to reconstruct oscillatory activity at brain locations directly 



 

116 
 

comparable across participants, 1) the MNI template brain was divided into a 5 mm 

isotropic voxel resolution grid, 2) the individual anatomical MRI was warped to the 

template MRI and 3) the inverse transformation matrix was used to warp the template 

grid onto an individual grid for each participant. The leadfield was calculated using a 

semi-realistic volume conduction model based on the individual anatomy (Nolte, 2003). 

The optimal dipole orientation at each voxel was calculated by SVD and power was 

estimated using an LCMV beamformer algorithm (Van Veen et al., 1997). 

To localize the sources of visual gamma oscillations in each hemisphere optimally, the 

beamformer weights were calculated separately for left- and right-presented gratings. 

For each participant, trials were combined according to the stimulus hemi-field (left-

grating or right-grating trials) and irrespective of the attention condition (both attend-

grating and ignore-grating trials). To compute the weights, the covariance matrices were 

calculated on a time-range from -1 to 1 s around stimulus onset, between 30–70 Hz. The 

peak voxel in each hemisphere was then identified by selecting the voxel of greatest 

increase in gamma power (30–70 Hz), measured as percentage change between stimulus 

(0.3–1 s) and baseline (-0.7–0 s). The use of two separate sets of weights allowed for 

optimal localization of the gamma source in each hemisphere. Yet, when reconstructing 

the virtual sensor data (par. 4.3.10), the same weights were used to reconstruct trials of 

both conditions, within each hemisphere, thereby allowing the responses to attended and 

ignored gratings to be compared. 

To compare the spatial localization of the visual gamma response to attend-grating and 

ignore-grating trials, the difference between the two conditions was quantified as a 

percentage change at each voxel location. In line with the previous source localization 

procedure, gamma power (30–70 Hz) was estimated during the stimulus epoch (0.3–1 s) 

and contrasted between attended and ignored gratings. This procedure was performed 
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separately for left- and right-presented gratings, using the two sets of optimised weights, 

as described above. 

4.3.9 Statistical analysis at the source level 

The consistency of the visual gamma response across participants was tested 

statistically using a non-parametric cluster-based permutation approach, which controls 

for multiple comparisons across voxels (Maris and Oostenveld, 2007). First, the 

estimates of gamma power (30–70 Hz) in the baseline (-0.7–0 s) and stimulus (0.3–1 s) 

epochs were contrasted with paired-sample t-tests across participants at each voxel 

location. Second, significant t-statistics (p < 0.05) were grouped into clusters based on 

spatial adjacency and the t-values summed within clusters to produce a cluster-level 

statistic. Third, the maximum cluster-level statistic was measured in each of 10,000 

Monte Carlo permutations, yielding a non-parametric null distribution that was then 

used to calculate the p-value of the clusters observed in the original data. 

This method was applied using two different approaches. First, to compare the response 

to attended and ignored gratings in each hemisphere, gamma power (30–70 Hz) in the 

stimulus epoch (0.3–1 s) was contrasted between attend-grating and ignore-grating 

conditions, separately for left- and right-presented gratings. Second, to test for any 

sources of visual gamma insensitive to the stimulus hemi-field, the beamformer weights 

were re-computed after pooling trials across all conditions (calculating the covariance 

matrix from -1 to 1 s, between 30–70 Hz) and gamma power (30–70 Hz; 0.3–1 s) was 

contrasted between the two conditions of attention, irrespective of the grating hemi-

field. In both procedures, the number of trials was equalized between conditions by 

random sub-sampling. 
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4.3.10 Source reconstruction 

To analyse the effect of attention on the spectral properties of gamma oscillations in the 

early visual cortex (i.e. V1/V2; par. 4.4.3), virtual sensors were reconstructed, 

individually for each participant and separately for each of the two peak voxel locations, 

by multiplying the sensor-level data by the corresponding set of optimised weights. The 

reconstructed single-trial time-series were first combined between left- and right-

hemisphere virtual sensors and then sorted between attend-grating and ignore-grating 

trials. The effect of attention was analysed statistically both in the time-frequency (par. 

4.3.11) and in the frequency domain (par. 4.3.12). 

To investigate the time-course of gamma activity in downstream regions and based on 

the results of the statistical comparison between attention conditions, virtual sensors 

were reconstructed also in higher-order visual cortex. For this purpose, target locations 

were identified within the V4 complex (Bartels and Zeki, 2000) by selecting the voxel 

in the fusiform gyrus that was closest to the observed peak t-statistic, separately in the 

left (MNI coordinates: [-38 -65 -15]) and in the right hemisphere (MNI coordinates: [38 

-45 -10]). To remove the effect of possible spatial leakage between V1/V2 and V4, , the 

raw virtual sensor time-series were first orthogonalised to remove zero-lag correlation 

(Colclough et al., 2015). 

4.3.11 Time-frequency analysis and statistics 

To investigate the spectral evolution of the visual gamma response over time, the virtual 

sensor data were represented in the time-frequency domain. For this purpose, the 

orthogonalised time-series from -1.5 to 1.5 s were bandpass-filtered at each frequency 

between 4–100 Hz, in steps of 0.5 Hz (8 Hz bandpass, 3rd order Butterworth filter) and 

the amplitude envelope of the analytic signal (Matlab function hilbert) averaged across 

trials (e.g., Muthukumaraswamy et al., 2010). The time-frequency maps were calculated 
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separately for attend-grating and ignore-grating trials. A non-parametric cluster-based 

permutation test was then used to compare the two conditions statistically, whilst 

controlling for multiple comparisons across time and frequency bins (Maris and 

Oostenveld, 2007). In brief, first, the two conditions were contrasted with paired-sample 

t-tests across participants at each time-frequency bin (from -0.5 to 1 s, between 4–100 

Hz). Second, significant t-statistics (p < 0.05) were grouped into clusters based on 

temporal and spectral adjacency and then summed within clusters to produce a cluster-

level statistic. Third, the maximum cluster-level statistic was measured in each of 

10,000 Monte Carlo permutations, yielding a non-parametric null distribution that was 

then used to calculate the p-value of the clusters observed in the original data. 

To illustrate the changes in gamma power over time, the amplitude values from -0.5 to 1 

s were averaged between 30–70 Hz, converted into percentage change from baseline (-

0.5–0 s) and averaged across participants, separately for attend-grating and ignore-

grating conditions. 

4.3.12 Spectral analysis and quality control 

The peak frequency and peak amplitude parameters of sustained visual gamma 

oscillations were calculated using the bootstrap procedure illustrated in the first 

experimental chapter of this thesis (Chapter 2), which allowed also for inspection of 

data quality (Magazzini et al., 2016). Spectral analysis was performed using a Fourier 

method, the smoothed periodogram, separately for baseline (-0.7–0 s) and stimulus 

(0.3–1 s) epochs. The power spectrum was calculated as percentage change from 

baseline and the gamma peak frequency was measured, in the 30–70 Hz range, by 

averaging across 10,000 bootstrap iterations. The QC was performed by calculating the 

width in frequency that was necessary to accommodate at least 50% of the bootstrap 

iterations around the bootstrap distribution mode. The data were considered of poor 



 

120 
 

quality if less than 50% of the bootstrap iterations fell within ± 1.2 Hz around the 

distribution mode (i.e. based on the frequency resolution of the periodogram). 

4.3.13 Behavioural data and correlational analysis 

The behavioural data were analysed in terms of accuracy rates, measured as percentage 

of correct orientation discriminations, and RTs, calculated as time in seconds from the 

onset of the tilted stimulus (par. 4.3.2). Trials with omissions were excluded from the 

analysis. Accuracy rates and RTs were calculated separately for attend-grating and 

attend-line (i.e. ignore-grating) conditions and separately for each magnitude of 

orientation change. The relationship between accuracy/RT and the gamma peak 

amplitude/frequency parameters was measured using the Pearson’s correlation 

coefficient (r). For this purpose, and based on the results of the QC analysis (par. 4.4.7), 

the gamma peak amplitude and peak frequency were measured in the attend-grating 

condition only, using data from all eighteen participants, and the accuracy and RT 

measures were averaged across the five magnitudes of orientation change. 
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4.4 Results 

4.4.1 Behavioural results 

The behavioural responses were analysed in order to remove trials with omissions 

(mean ± SEM, 4 ± 1%; range, 0–20%) from the analysis of both the behavioural and the 

MEG data. Trials containing gross artefacts in the MEG data, excessive head motion, or 

eye movements (par. 4.3.7 and 4.3.4) were also excluded from the MEG data analysis. 

The orientation of the tilted stimulus was reported correctly in 84 ± 3% (mean ± SEM) 

of the attend-grating trials and in 75 ± 3% (mean ± SEM) of the attend-line (i.e. ignore-

grating) trials. The accuracy rates were clearly modulated by the magnitude of 

orientation change of both grating and line stimuli (Figure 4.12A), demonstrating that 

participants complied with the task. The RTs were highly comparable between attend-

grating (750 ± 5 ms, mean ± SEM) and ignore-grating trials (800 ± 5 ms, mean ± SEM) 

and were slightly modulated by the magnitude of orientation change (Figure 4.12D). 

4.4.2 Source localization 

The results of the source analyses reported below refer to the localization of the 

sustained component (0.3–1 s) of visual gamma oscillations, as opposed to the transient 

gamma response (0–0.3 s), which was not the focus of this investigation. Anatomical 

labels were defined by integrating the AAL atlas (Tzourio-Mazoyer et al., 2002), the 

Anatomy Toolbox probabilistic atlas (Eickhoff et al., 2005) and the Talairach atlas 

(Lancaster et al., 2007). MNI coordinates are expressed in mm throughout. 

4.4.3 Visual gamma sources in left and right visual cortex irrespective of attention 

The source analysis was performed separately for left- and right-presented gratings, by 

contrasting stimulus and baseline epochs irrespective of the attended hemi-field (Figure 

4.2). The left and right peak voxels were identified individually for each participant (see 
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Table 4.1 and Figure 4.4). Here, results refer to the average across participants. When 

grating stimuli were presented in the left visual hemi-field (Figure 4.2A), the gamma 

peak response (~38% increase from baseline) was localized to the calcarine fissure and 

surrounding cortex in the right hemisphere (MNI coordinates: [12 -96 -2]). When 

gratings were presented in the right hemi-field (Figure 4.2B), the gamma peak response 

(~43% increase from baseline) was localized to the calcarine fissure and surrounding 

cortex in the left hemisphere (MNI coordinates: [-14 -96 -2]). The peaks of these visual 

gamma responses are illustrated on orthogonal slices in Figure 4.3. 

These results confirmed the effectiveness of the stimulus parameters (e.g., size and 

eccentricity of the grating) in eliciting visual gamma oscillations of clearly measurable 

amplitude in eighteen out of twenty participants (par. 4.3.1). Out of these eighteen 

participants, the right peak voxel was localized in V1 (BA17) in five and in V2 (BA18) 

in twelve; the left peak voxel was localized in V1 (BA17) in ten and in V2 (BA18) in 

eight participants. Sporadic variations in the localization of these sources (e.g., BA19 in 

one participants) were most likely caused by MEG-MRI co-registration errors or 

imperfect co-registration to the MNI template (Perry et al., 2011). Thus, to summarise, 

the gamma sources were unambiguously localized in the hemisphere contralateral to the 

stimulus hemi-field, with peaks in close proximity to V1. Hereafter, these sources will 

be also referred to as the “early visual cortex”. 
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Figure 4.2. Visual gamma response in V1/V2 irrespective of the attended hemi-field. 

Beamformer source localization, projected onto the surface of an MNI template brain (left 

medial, bilateral inferior and right medial views, respectively). The effect of visual stimulation 

was measured as percentage change in gamma power (30–70 Hz) between stimulus (0.3–1 s) 

and baseline (-0.7–0 s), irrespective of attention and separately for gratings presented in the left 

(A) and in the right hemi-field (B). For visualization purposes, percentage values between ±10% 

were masked. P, Posterior; L, Left; R, Right. 

  



 

124 
 

 

Figure 4.3. Visual gamma response in V1/V2 irrespective of attention (orthogonal slices). 

Beamformer source localization of gamma power (30–70 Hz), measured as percentage change 

between stimulus (0.3–1 s) and baseline (-0.7–0 s), for gratings presented in the left (A) and 

right hemi-field (B). Trials were pooled irrespective of whether the grating was attended or 

ignored. The individual responses were averaged across participants and plotted on orthogonal 

slices of a template brain. The crosshairs indicate the voxel of greatest increase in gamma power 

(MNI coordinates in mm). The results were also projected onto the brain surface (posterior 

view). For visualisation purposes, only values higher than 10% increase were projected. 

Table 4.1. Individual peak voxel coordinates. 

Grating Left  Grating Right 
x y z BA  x y z BA 
8 -90 10 18  -28 -100 10 17 
8 -90 10 18  -12 -100 -4 17 
8 -90 -4 17  -18 -90 -4 18 

12 -94 -10 18  -12 -94 -14 18 
18 -90 10 18  -8 -84 6 17 
12 -94 16 18  -12 -90 10 17 
22 -90 10 18  -12 -100 6 17 
22 -100 10 17  -2 -100 0 17 
12 -100 -10 18  -12 -94 16 18 
12 -94 6 17  -22 -90 20 18 
22 -94 -4 18  -8 -100 0 17 
12 -70 40 19  -12 -74 26 18 
22 -94 10 18  -18 -94 6 18 
8 -100 26 18  -18 -94 0 18 

28 -90 -10 18  -18 -94 -14 18 
12 -90 10 17  -12 -94 0 17 
18 -100 0 17  -12 -94 0 17 
22 -94 6 18  -12 -100 0 17 
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Figure 4.4. Individual source localization images. 

Beamformer source localization of gamma power (30–70 Hz), measured as percentage change 

between stimulus (0.3–1 s) and baseline (-0.7–0 s). Results were plotted on orthogonal slices of 

a template brain, individually for each participant, separately for gratings presented in the left 

(top) and right hemi-field (bottom). Trials were pooled irrespective of whether the grating was 

attended or ignored. For visualisation purposes, colours were scaled to the maximum in each 

participant and negative values were masked. 
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4.4.4 Attentional modulation of visual gamma sources in left and right visual cortices 

The effect of attention on the visual gamma sources in the left and right hemispheres 

was tested by comparing the response to attended and ignored gratings, separately for 

left- and right-presented stimuli. On average, attending the grating resulted in a 5–10% 

increase in gamma power in V1/V2, compared to attending the line stimulus in the 

opposite hemi-field (Figure 4.7). The increase in gamma power with attention peaked in 

the right calcarine (MNI coordinates: [22 -96 4]), when gratings were presented in the 

left hemi-field (Figure 4.7A), and in the left middle occipital gyrus (MNI coordinates: [-

28 -96 14]), when gratings were presented in the right hemi-field (Figure 4.7B). These 

peak locations were ~1 cm more lateral, compared to the peaks identified for the effect 

of visual stimulation irrespective of the attended hemi-field (par. 4.4.3). Nevertheless, 

this increase in gamma power with attention is consistent with sources in contralateral 

V1/V2. These results are illustrated also in Figure 4.5. 

To quantify the effect statistically at the source level, the contrast between attend-

grating and ignore-grating conditions was performed using a cluster-based permutation 

test (par. 4.3.9), separately for left- and right-presented gratings. This analysis revealed 

a significant difference between conditions, for both left-presented (Figure 4.6A, 

associated cluster: p = 0.014) and right-presented gratings (Figure 4.6B, associated 

cluster: p = 0.041). When gratings were presented in the left hemi-field (Figure 4.6A), 

the greatest difference within the cluster was observed in close proximity to the right 

inferior/middle temporal, right fusiform and right inferior occipital gyri (t = 5.14, MNI 

coordinates: [44 -44 4]) and the voxels within the cluster extended to the right calcarine 

and surrounding cortex. When gratings were presented in the right hemi-field (Figure 

4.6B), the greatest differences were observed in the posterior portion of the left fusiform 

gyrus (t = 5.17, MNI coordinates: [-44 -80 -14]). Figure 4.8 illustrates these results on 

multiple axial slices. 
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Figure 4.5. Percentage change in gamma power with attention at source level. 

The same as in Figure 4.2, but for the contrast between attended and ignored gratings. 

 

Figure 4.6. Cluster-based statistics of the effect of attention at source level. 

Results of the non-parametric permutation test contrasting gamma power (30–70 Hz; 0.3–1 s) 

between attended and ignored gratings, separately for gratings presented in the left (A) and in 

the right hemi-field (B). The significant paired-sample t-statistics (p < 0.05, uncorrected) were 

masked according to the results of the cluster-based permutation (p < 0.05, corrected) and 

projected onto the surface of an MNI template brain (left medial, bilateral inferior and right 

medial views, respectively). P, Posterior; L, Left; R, Right.  
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Figure 4.7. Increased visual gamma response in V1/V2 with attention (orthogonal slices). 

Beamformer source localization of gamma power (30–70 Hz; 0.3–1 s), measured as percentage 

change between attend-grating and ignore-grating conditions, for gratings presented in the left 

(A) and right (B) hemi-field. The individual responses were averaged across participants and 

plotted on orthogonal slices of an MNI template brain. The crosshairs indicate the voxel of 

greatest increase in gamma power. For visualisation purposes, only values higher than 3% 

increase were projected onto the brain surface (posterior view). 

 

Figure 4.8. Statistical analysis of the effect of attention (axial slices). 

The same results as in Figure 4.6, but plotted on axial slices of an MNI template brain.  
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4.4.5 Attentional modulation of visual gamma sources irrespective of stimulus hemi-

field 

To test whether any sources of gamma oscillations were modulated in a non-lateralised 

fashion (i.e. irrespective of the stimulus hemi-field), the effect of attention was tested 

statistically at source level by first pooling left-grating and right-grating trials and then 

contrasting the gamma response to attend-grating and ignore-grating conditions. The 

effect was tested statistically using a cluster-based permutation approach (par. 4.3.9). 

Results are illustrated in Figure 4.9. The cluster with the lowest associated p-value (p = 

0.078) comprised voxels confined to the early visual cortex bilaterally and the greatest 

difference between conditions (t = 4.99) was localized to the calcarine fissure (MNI 

coordinates: [0 -82 14]). In other words, V1 (BA17) showed an increase in gamma 

power with attention that was consistent across stimulation of both left and right 

hemispheres. 

It should be clarified here that this analysis approach cannot be used to infer the spatial 

localization of the visual gamma sources. By pooling trials across left and right grating 

presentations, statistical significance is biased towards those voxels showing an increase 

in amplitude consistently across the two hemispheres, rather than those voxels showing 

the strongest response to either of the two conditions. In other words, this statistical 

approach ‘favoured’ statistical significance for voxels that are closest to the midline 

and, thus, will not be discussed further. 
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Figure 4.9. Statistical analysis 

irrespective of the grating hemi-field. 

A) Results of the statistical 

analysis of gamma power (30–70 Hz; 

0.3–1 s), contrasting attended and 

ignored gratings, irrespective of the 

hemi-field (i.e. trials pooled across 

left and right grating presentations). 

The paired t-values were masked 

according to the results of the 

permutation test (cluster p = 0.078, 

corrected). The crosshairs indicate the 

voxel with largest t-value (t = 4.99, 

MNI: [0 -82 14]). In the bottom-right 

panel, results were projected onto the 

surface of an MNI template brain. B) 

Medial views of the surface 

projection, right (R) and left (L) 

hemispheres. 

4.4.6 Attentional modulations in the time-frequency domain 

The time-frequency analysis of the virtual sensor time-series reconstructed in left and 

right early visual cortex (par. 4.4.3) was performed separately for attend-grating and 

ignore-grating conditions (Figure 4.10A and Figure 4.10B). The effect of attention was 

tested using a cluster-based permutation approach, which revealed a significant 

difference between the response to attended and ignored gratings (Figure 4.10C), with 

two associated positive clusters (p = 0.006, ~200–600 ms, ~50–65 Hz and p = 0.018, 

500–800 ms, ~48–60 Hz) and one associated negative cluster (p = 0.002, ~0.35–1, ~4–

18 Hz). To understand the nature of the difference between conditions, this result was 

followed up by performing a spectral analysis of the sustained visual gamma response 

in V1/V2 (par. 4.4.7). 



131 
 

The cluster-based permutation approach also revealed that the visual gamma response in 

V4 (Figure 4.10D and Figure 4.10E) was significantly higher in power when gratings 

were attended (Figure 4.10F), with one associated positive cluster (p = 0.042, ~200–400 

ms, ~30–45 Hz) and one positive cluster approaching statistical significance (p = 0.092, 

~300–500 ms, ~50–60 Hz). This increase in V4 gamma is unlikely to reflect spatial 

leakage from V1 for two reasons. First, the time-series were orthogonalised to remove 

any zero-lag correlation between the signals. Second, the evolution of gamma power 

(30–70 Hz) over time differed between the two regions, with the gamma response to 

attended gratings showing a peak earlier in V1/V2 (~170 ms; Figure 4.10G) and later in 

V4 (~240 ms; Figure 4.10H). 

4.4.7 Spectral modulations by attention and data quality control 

The QC analysis revealed that the spectral data in V1/V2 were generally of very good 

quality, with poor estimates of the gamma peak frequency in only 2 out of 36 datasets. 

The individual bootstrap peak frequency distributions are illustrated in Figure 4.11A, 

separately for attend-grating and ignore-grating conditions. The individual spectra of 

percentage change from baseline in the gamma frequency range (30–70 Hz) are 

illustrated in Figure 4.11B. The effect of attention on the gamma peak amplitude and 

peak frequency in early visual cortex was tested after exclusion of the two participants 

with poorly estimated gamma. Attending to the grating resulted in visual gamma 

responses of significantly higher amplitude (t(15) = 4.04, p = 0.001), compared to 

attending to the line stimulus in the opposite hemi-field. On the contrary, no significant 

effect of attention on the gamma peak frequency was observed (t(15) = 0.94, p = 0.36). 

The same pattern of results was found when all eighteen participants were included in 

the analysis, for both gamma amplitude (t(17) = 4.61, p = 0.0002) and gamma 

frequency (t(17) = -0.14, p = 0.89). 
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Figure 4.10. Time-frequency analysis of the visual gamma response in V1/V2 and V4. 

The virtual sensor data were reconstructed at the left and right peak voxel locations in V1/V2 

(A, B, C and G) and in left and right V4 (D, E, F and H). The data were analysed separately for 

attended (A, D, red line in G and H) and ignored gratings (B, E, blue line in G and H) and 

compared statistically with a cluster-based permutation test (C, F). The clusters (p < 0.05, 

corrected) were highlighted by changing the transparency value of the colours in the plots. Note 

that p = 0.09 for one of the two clusters in F. The thick lines in G and H represent the 

percentage change in gamma power (averaged between 30–70 Hz) and the shaded areas 

represent ±1 SEM, across participants. 
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Figure 4.11. Quality control and spectral analysis of visual gamma responses in V1/V2. 

A) Individual bootstrap peak frequency distributions, calculated separately in the attend-grating 

and ignore-grating conditions. Poor-quality data are shown in red, list-wise rejections are shown 

in grey. The width in frequency necessary to accommodate 50% or more of the bootstrap 

iterations is shown at the top of each individual panel. B) Individual spectra of percentage 

change from baseline in the gamma frequency range (30–70 Hz). The vertical line in each 

individual panel indicates the bootstrap peak frequency (i.e. averaged across bootstrap 

iterations). The colours are the same as in A). C) Power spectra of percentage change from 

baseline in the attend-grating and ignore-grating conditions, grand-averaged across participants, 

separately for the two conditions. D) Bar graph illustrating the average peak gamma amplitude 

(top) and peak gamma frequency (bottom), in the two conditions. The error bars indicate +1 

SEM. E) The same as in D), but illustrating the individual participants. 
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To test whether the change in peak frequency co-varied with the change in gamma 

amplitude in V1/V2 (see Discussion), we calculated the difference in peak amplitude 

and peak frequency between attended and ignored stimuli and correlated the two 

measures across participants. This resulted in no evidence of a linear relationship 

between the two variables (r = 0.16, p = 0.55). 

After visual inspection of the data, we tested the hypothesis that attention could 

modulate the so-called “centre of mass” or “spectral centroid” of the power spectra, 

rather than the gamma peak frequency. This measure differs from the peak frequency in 

that it weighs frequency (30–70 Hz) by its power across the gamma spectrum (see 

Lozano-Soldevilla et al., 2014 for a more detailed explanation). The result of a paired-

sample t-test revealed a tendency for the centroid of the response to attended gratings 

(mean = 51.3 Hz) to be higher than the centroid of the response to ignored gratings 

(mean = 50.5 Hz; t(15) = 1.95, p = 0.070). This indicates that attention tended to shift 

the power spectra to higher frequencies by ~1 Hz, on average, without producing an 

evident change in the peak frequency of the response. 

4.4.8 Correlations between visual gamma and behaviour 

The relationship between behavioural performance at the orientation discrimination task 

and the oscillatory parameters in early visual cortex was tested by correlating accuracy 

and RT with the gamma peak amplitude and peak frequency. The accuracy rate showed 

a trend for a positive correlation with gamma amplitude (r = 0.43, p = 0.078; Figure 

4.12B) and no relationship with gamma frequency (r = 0.02, p = 0.94; Figure 4.12C). 

The RT showed a non-significant negative correlation with gamma amplitude (r = -

0.20, p = 0.42; Figure 4.12E) and a significant negative correlation with gamma 

frequency (r = -0.48, p = 0.045). Although the latter correlation would not survive 
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correction for multiple comparisons, it suggests that individuals whose visual gamma 

peaked at higher frequency tended to respond faster to the discrimination task. 

As the sample size was not particularly large in this study, the correlations were 

followed up with median split tests. The gamma peak amplitude and peak frequency 

values were sorted across participants according to high/low accuracy rates and 

fast/slow RTs and the difference in amplitude and frequency between the resulting 

groups was tested with independent-sample t-tests. It is worth noting that the trend 

towards a positive linear relationship between amplitude and accuracy was most likely 

driven by an outlier value of gamma amplitude (Figure 4.12B; see also the correlation 

between amplitude and RT, Figure 4.12E). However, also the median split t-test 

approached statistical significance, as gamma amplitude tended to be higher for those 

participants who performed with better accuracy at the task (t(16) = 1.91, p = 0.074). In 

addition, the significant negative correlation between gamma frequency and RT was 

supported by a statistically significant difference in peak frequency between participants 

with fast and slow RTs (t(16) = -2.71, p = 0.015). 
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Figure 4.12. Behavioural data and correlations. 

A) Accuracy (i.e. percentage of correct orientation discriminations) at each magnitude of 

orientation change, plotted separately for each participant and also as a group average (thick 

lines). The error bars indicate ±1 SEM. Note that each magnitude of orientation change was 

increased by a factor of four, for the line stimulus (par. 4.3.3). B) Scatter plot and line of best fit 

for the correlation between the V1/V2 gamma peak amplitude and accuracy. C) Scatter plot and 

line of best fit for the correlation between the V1/V2 gamma peak frequency and accuracy. D), 

E) and F) The same as in A), B) and C), respectively, but for RT instead of accuracy.  
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4.5 Discussion 

In this study, we investigated the effects of visual spatial attention on human visual 

gamma oscillations. We tested the hypothesis that attention can modulate the spectral 

profile of the gamma response induced by visual stimulation. Despite the use of an 

optimal method for robust peak frequency estimation (Magazzini et al., 2016), however, 

we found no evidence of an increase in the gamma peak frequency with attention. 

Instead, we found that attention modulated the amplitude of sustained visual gamma 

oscillations in V1/V2, as well as in V4, and shifted the centroid of the power spectra in 

V1/V2 towards higher frequencies by ~1 Hz on average. Together, these findings can 

provide a reconciling solution to the inconsistent results of previous research in both 

animals and humans. 

By combining a beamformer approach to source localization with careful design of the 

visual stimulus properties, we were able to record gamma oscillations from the early 

visual cortex contralateral to the hemi-field in which a grating stimulus was presented 

(Figure 4.2). As expected based on evidence from previous studies in humans (e.g., 

Hoogenboom et al., 2006; Muthukumaraswamy et al., 2009), the individual visual 

gamma responses peaked in contralateral V1 or V2. The spectral analysis of the gamma 

response in V1/V2 revealed an increase in amplitude to attended gratings (i.e. gratings 

presented in the cued hemi-field) compared to ignored gratings (i.e. gratings presented 

contralateral to the attended hemi-field), whereas the gamma peak frequency resulted 

unaffected by attention. The spatial localization of this increase in gamma amplitude 

with attention was largely consistent with the sources of the gamma response induced 

by visual stimulation irrespective of attention (i.e. V1/V2; see Figure 4.7). Furthermore, 

a direct statistical comparison at source level revealed that the gamma response in 

higher-order visual cortices (i.e. V4) was also significantly modulated by attention 

(Figure 4.6). By reconstructing virtual sensors in V1/V2 and in V4, after removing the 
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effect of signal leakage with an orthogonalisation procedure (Colclough et al., 2015), 

these regions were confirmed as separate visual gamma sources. Thus, we can conclude 

that spatial attention modulates the amplitude of visual gamma oscillations across the 

human visual cortical hierarchy, both in the early visual cortex and in higher-order 

downstream regions. 

These results are in line with recent theories on the role of gamma-band synchronization 

in attentional processing. From a theoretical perspective, post-synaptic processing 

stages would benefit from strongly synchronized pre-synaptic input (Engel et al., 2001). 

In particular, pre-synaptic neuronal groups that synchronize their firing more efficiently 

in response to attended stimuli can increase their post-synaptic drive, thereby facilitating 

the processing of attended stimulus features in downstream regions (Gregoriou et al., 

2015). The attentional enhancement of gamma power in V4 observed here could thus 

reflect the increased efficacy by which the representation of attended stimuli in early 

visual cortex is propagated onto higher-order visual areas (Fries, 2015). In this view, the 

power increase in the early visual cortex could reflect either enhanced input from the 

thalamus, which would elicit the generation of higher amplitude gamma oscillations in 

V1 (van Kerkoerle et al., 2014), or stronger coupling between V1 and V2 (Roberts et 

al., 2013). Overall, this would be in line with recent theories of gamma-band activity as 

a mechanism for propagating sensory representations in a feedforward manner across 

the visual cortical hierarchy (e.g., Michalareas et al., 2016; van Kerkoerle et al., 2014). 

In previous studies in animals, the strongest enhancements of gamma amplitude and 

gamma-band synchronization by attention have been reported in high-order visual areas, 

such as V4 (Bichot et al., 2005; Buffalo et al., 2011; Fries et al., 2001, 2008b; Taylor et 

al., 2005). Although not to such a large extent, attentional modulations of gamma 

synchrony have been observed also in V2 (Buffalo et al., 2011). In V1, gamma power 
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appears to be either decreased (Chalk et al., 2010) or unaffected by attention (Bosman et 

al., 2012; Buffalo et al., 2011), although the latter observation could be a result of 

response saturation effects due to the use of high-contrast stimuli (see Bosman et al., 

2012). In the human early visual cortex, modulatory effects of gamma-band power by 

attention have been reported by one recent study (Koelewijn et al., 2013), though the 

frequency range of the effect (~60–90 Hz) could reflect an underlying increase in 

neuronal firing rate, rather than in rhythmic synchronization (see Ray and Maunsell, 

2011). Attentional enhancement of narrow-band gamma oscillations, instead, has been 

observed in early visual cortex with manipulation of attention between different sensory 

modalities, rather than between different locations of the visual field (Kahlbrock et al., 

2012b). Since other studies have not been able to implicate the early visual cortex as a 

source of gamma-band attentional modulations, we have identified hereafter a number 

of factors that could explain the (dis)similarities between our results and the existing 

evidence from both animals and humans. 

In the human MEG literature, one study by Siegel et al. (2008), namely the first study to 

apply beamformer source localization in this context, investigated the effect of spatial 

attention on gamma oscillations induced by visual motion. The results revealed a 

relative increase in gamma power by attention, with extended sources in high-order 

visual areas that did not include the presumed V1/V2 (Siegel et al., 2008). This 

discrepancy with our results could be explained by the different stimulus used (i.e. 

random dot patterns vs. static gratings) and task required (i.e. motion direction vs. 

orientation discrimination) and both these factors also explain the involvement of 

ventral regions in our study, as opposed to the dorsal visual pathway in the study by 

Siegel et al. (2008). Furthermore, interpreting the sources in Siegel et al. (2008), as well 

as those reported by other studies (e.g., Bauer et al., 2012, 2014, Marshall et al., 2015a, 

2015b), is complicated by the uncertainties in the source geometry underlying the 
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response to bilateral stimuli, a configuration that may lead to self-cancellation of medial 

bilateral sources, when reconstructed with a beamformer (Sekihara et al., 2002; see also 

Koelewijn et al., 2013). 

The increase in gamma amplitude in V1/V2 could also be explained by our paradigm 

design. The behavioural results indicated that the orientation discrimination task was 

harder for the line stimulus than the grating, suggesting that the task demand was high 

not only in the attend-grating but also in the attend-line condition. Successful allocation 

of spatial attention was thus required both towards and away from the grating stimulus, 

in order to perform the task accurately. This, together with an eccentricity of the 

stimulus that was unlikely to cause response saturation effects (van Pelt and Fries, 

2013), may have played an important role in revealing the attentional modulation of 

gamma amplitude in the early visual cortex. At the same time, though, this 

consideration also highlights one limitation of the study, namely that the effect we refer 

to as an increase in amplitude with attention could in theory be driven by an underlying 

decrease in gamma amplitude when grating stimuli were ignored. Future studies will 

have the opportunity to address this concern by including an experimental condition in 

which attention is not cued to either hemi-field. Despite this, the interpretation of an 

enhancement in V1/V2 gamma by attention appears the most consistent with the 

literature (Buffalo et al., 2011; Kahlbrock et al., 2012b). 

One potential confounding factor in the interpretation of the gamma amplitude increase 

in V1/V2 is related to eye movements and gaze position, which, in principle, could 

introduce systematic differences in stimulus eccentricity between attention conditions. 

The visual gamma response is reduced for peripheral compared to foveal stimuli (van 

Pelt and Fries, 2013). For static gratings similar to those used in this study, gamma 

amplitude is drastically reduced at an eccentricity of 6° and less so for 3° eccentricity. 
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As estimated by Van Pelt and Fries (2013), the decrease in power is accompanied by a 

decrease in peak frequency of ~1 Hz/°. In our study, however, we did not observe a 

significant change in peak frequency with attention. In addition, the increase in gamma 

amplitude with attention was not significantly correlated with the change in peak 

frequency, across participants. For these reasons, we concluded that the procedure of 

trial exclusion based on changes in eye gaze position, as measured by eye-tracking, was 

successful in removing the possible influence of eye movements on the properties of the 

visual gamma response. 

The second main hypothesis tested in this study concerned the peak frequency of visual 

gamma oscillations in V1/V2. Contrary to the effect on gamma amplitude, we found no 

evidence for an effect of spatial attention on the gamma peak frequency. Testing for this 

hypothesis was motivated by two recent studies, which reported increased gamma-band 

inter-areal synchronization across the visual cortical hierarchy (between V1 and V4) 

with selective spatial attention (Bosman et al., 2012; Grothe et al., 2012). In particular, 

Bosman et al. (2012) found that the gamma peak frequency in V1 was increased in 

response to relevant, compared to irrelevant stimuli. This suggested that the modulation 

of gamma frequency by top-down attentional mechanisms could serve to enhance the 

impact of selected upstream neurons (e.g., those in the V1 retinotopic space that 

represent the attended part of the visual field) on downstream neuronal groups (Cannon 

et al., 2014; Fries, 2015). Crucially, the shift to a higher gamma frequency with 

attention is thought to occur only when more than one neuronal group in V1 compete 

for the influence on the same neuronal group in a downstream area, such as V4 (Fries, 

2015). Hence, the difference in experimental paradigm could explain why this effect 

was not observed here. In the study by Bosman et al. (2012; see also Grothe et al., 

2012), monkeys were presented with two visual stimuli, each activating a separate 

recording site in V1 and the same site in V4. Due to the technical limitations of MEG, 
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however, it would be hard to achieve a stimulus configuration that can both activate two 

separate, unambiguous sites in V1 and produce gamma responses of measurable 

amplitude in humans. Additionally, although separate activations could be achieved by 

stimulating both hemispheres, the use of bilateral grating stimuli would have introduced 

possible source cancellation problems, which, as discussed above, may have obscured 

the gamma response in the early visual cortex. Overall, therefore, the absence of 

competition among different V1 neuronal groups could well explain the lack of 

evidence of an increase in peak frequency with attention. 

In light of the different methodologies used in animal and human electrophysiology, the 

discrepancy between the result by Bosman et al. (2012) and our null finding could also 

arise from the difference in spatial resolution itself. The oscillations recorded invasively 

with LFPs in monkeys are very finely resolved in space, whereas the signals recorded in 

humans with MEG reflect the spatial summation of synchronous neurons across larger 

patches of the cortical sheet (reviewed in Muthukumaraswamy, 2014). Therefore, if the 

gamma peak frequency measured in this study reflected the contribution of spatially 

distributed sources, it is possible that the modulation by attention, if any at all, was not 

sufficiently consistent across the visual cortex to be detected in the spatially summated 

response. Speculatively, it could be hypothesized that smaller neuronal groups 

generated spectral power at higher frequencies in response to attended stimuli, while the 

dominating response frequency of larger neuronal groups remained unaltered. In line 

with this hypothesis, the centroid (centre of mass) of the power spectra tended to higher 

frequencies by ~1 Hz in response to attended stimuli, compared to ignored ones. 

Despite substantial inter-individual differences (see the individual spectra in Figure 

4.11B) this effect can be observed also in the power spectra of attended and ignored 

gratings, grand-averaged across participants (Figure 4.11C). It is also worth noting that 

the gamma peak frequency differed remarkably between the two conditions of attention 
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in some participants, although not consistently across the sample (Figure 4.11E). While 

part of this variation is likely to reflect measurement error, the peak frequency reliability 

estimates obtained with our QC approach (Magazzini et al., 2016) were generally very 

high, within each condition. At the same time, though, the gamma peak frequency is 

also known to be highly repeatable within participants (Muthukumaraswamy et al., 

2010; Tan et al., 2016), which leaves the individual between-condition variations 

observed here difficult to interpret. 

Finally, we attempted to link the inter-individual differences in behavioural 

performance with the spectral properties of visual gamma oscillations. This was 

motivated by the evidence of a relationship between gamma-band synchronization and 

behaviour (e.g., response times) in both monkeys (Womelsdorf et al., 2006) and humans 

(Hoogenboom et al., 2010). In this study, we found a tendency for participants who 

performed better at discriminating the change in stimulus orientation to show higher-

amplitude gamma oscillations in V1/V2 (Figure 4.12B). However, the positive linear 

relationship between these two variables appeared to be driven by one outlier 

observation and a follow-up median split test only approached statistical significance. 

The other behavioural measure considered, the RT, showed a more robust negative 

correlation with the gamma peak frequency in V1/V2 (Figure 4.12F). In a follow-up 

median split test, the gamma peak frequency of participants who responded faster to the 

task was significantly higher than that of slow responders. In previous studies, the 

gamma peak frequency has been shown to correlate with parameters of psychophysical 

performance, such as the individual orientation discrimination threshold (Dickinson et 

al., 2015; Edden et al., 2009). Overall, therefore, although the non-specificity of the RT 

as a measure of performance complicates the interpretation of this result, it suggests the 

existence of a link between the gamma peak frequency and functionally relevant 

parameters of behavioural performance. 
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5 Chapter 5. 

A multi-site study of visual gamma oscillations using 

quality-control measures to compare data across three 

different MEG systems 
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5.1 Abstract 

Recently, neuroimaging research has witnessed a rapid increase in sample size. This 

trend has been partly influenced by the benefits of data sharing, but driven primarily by 

criticisms of a lack of statistical power in cognitive neuroscience research and an 

associated failure to reproduce the findings of small studies. In this study, we describe 

the first multi-site collaborative project in the UK for the collection of standardised 

MEG protocols. We pooled data from a total of 80 individuals across four research 

centres and three different MEG systems (CTF, Elekta and 4-D). The data consisted of a 

visual gamma paradigm, which offered clear reference criteria for comparing the data 

among the four sites. The different data formats were brought to a common ground by 

applying the same source analysis pipeline to each MEG system. To test for differences 

among the four sites, we compared the classic oscillatory parameters such as the gamma 

peak amplitude and peak frequency and used the QC approach developed in the first 

experimental chapter of this thesis (Chapter 2) to compare data quality, measured as the 

reliability of peak frequency. While the gamma peak frequency was highly comparable 

among sites, the data from Glasgow resulted in higher gamma amplitude, which might 

be attributed to differences in sensor type between 4-D and the other MEG systems. 

Although gamma amplitude correlated positively with the estimates of peak frequency 

reliability, data quality did not differ remarkably among sites. Additionally, results were 

highly comparable when source analysis was performed with the LCMV and DICS 

beamformer algorithms. Although still preliminary, our results suggest that the gamma 

peak frequency is a suitable measure for the purpose of combining multi-site datasets. 

In contrast, differences in MEG sensor type may need to be controlled for, before 

measures of gamma amplitude can be pooled. Overall, the present work provides the 

first proof-of-concept for the establishment of shared multi-site MEG databases and the 

development of new large-scale collaborative MEG projects.  
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5.2 Introduction 

In recent years, the field of neuroimaging has benefitted from very rapid advances in the 

methodological and theoretical approaches to studying brain structure and function, 

which together have led to increased interest in the collection of much larger samples, 

compared to the few dozen participants typical of studies from a decade ago (Eickhoff 

et al., 2016). While smaller samples still represent a pragmatic solution, for example 

when specific research questions need to be addressed, the advantages of large sample 

sizes are conspicuous. First and foremost, the increased statistical power and reduced 

vulnerability to spurious effects paves the way for transparent and reproducible science 

(Eickhoff et al., 2016), which is most effectively achieved by making not only the data 

but also the analysis code available to other researchers (Gorgolewski and Poldrack, 

2016). As highlighted in a recent special issue of the journal NeuroImage (Eickhoff et 

al., 2016), data sharing has seen a rapid growth in the field of neuroimaging. In some 

cases, sharing neuroimaging data is aimed at establishing normative databases for 

clinical use (Poline et al., 2012), whereas in other circumstances the use of large 

samples simply facilitates the generation of novel hypotheses, which can be rigorously 

tested with the necessary statistical power (Milham, 2012). Furthermore, shared datasets 

can serve as a test bed for new analysis methods, providing benchmarks against which 

novel approaches can be compared, thereby enhancing the reproducibility of results 

(Poldrack and Gorgolewski, 2014).  

To date, the majority of the existing large-scale collaborative studies and shared 

neuroimaging repositories consist primarily of structural or functional MRI data (e.g., 

Herrick et al., 2016; Hodge et al., 2016; Poldrack and Gorgolewski, 2015; Walker et al., 

2016). However, there are several reasons for also establishing similar large-scale 

databases for MEG data. For example, MEG data consist of complex and mixed neural 

signals, which are not yet fully understood and would be best interpreted by the 
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development of new advanced analysis methods. Furthermore, although some first steps 

have been made towards establishing recommended practices in MEG research (Gross 

et al., 2013), there is still no standardised approach to data analysis. For the reasons 

mentioned above, collaborative work on shared data could thus both facilitate and 

accelerate the achievement of this goal. To date, no large-scale MEG databases have 

been established. However, two large shared databases involving some MEG data are 

available. The first, the Human Connectome Project (HCP), consists of both task-based 

and task-free MEG recordings from approximately 100 individuals (Larson-Prior et al., 

2013), as well as structural and functional MRI, behavioural and genetics data (Van 

Essen et al., 2013). The second, the Omega project, offers a similar sample size to that 

of the HCP, but consists of resting-state MEG data only (Niso et al., 2016). 

In the UK, the first whole-head MEG system was installed at Aston University in 2001 

and since then research in this field has been expanding rapidly, with the establishment 

of nine (prospectively ten) other MEG laboratories in the following fifteen years. In 

chronological order, MEG centres have opened in York, London, Cardiff, Nottingham, 

Glasgow, Oxford, Cambridge and Ulster, with the University of Birmingham being 

currently in the process of establishing the tenth MEG laboratory in the UK (the second 

in the city of Birmingham). In 2013, eight of these Universities started a collaborative 

project known as the ‘UK MEG Partnership’. By coming together as a research 

partnership, the sites have been facilitated in their academic networking activities, 

including setting up collaborative training programmes and PhD studentships. One of 

the aims was to agree on standard experimental paradigms to be collected from a cohort 

of healthy individuals. In principle, these standard protocols could be used for clinical 

research purposes, thereby overcoming the challenges associated with recruiting large 

numbers of patients at a single site. 
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As well as adopting a unified approach to data collection, the Partnership also aimed at 

building a shared multi-site MEG database from a large number of healthy volunteers 

and to establish common pipelines for the analysis of each standard protocol. The idea 

was to provide a proof of principle for future large-scale collaborative projects on 

specific clinical populations, where data might be collected at different sites and with 

different MEG systems. In the present work, we aimed to demonstrate the feasibility of 

such an approach. We combined data from three different systems, providing an initial 

proof-of-concept for the establishment of shared MEG databases, which we believe will 

show the way forward in clinical MEG research. 
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5.3 Materials and Methods 

5.3.1 The UK MEG Partnership project 

The UK MEG Partnership is a large multi-site study led by Prof Krish Singh, Head of 

Human Electrophysiology at Cardiff University. The project was established in 2013 in 

collaboration among eight MEG laboratories in the UK and is supported by a five-year 

grant of £1.5 million from the Medical Research Council (MRC; Grant Numbers: 

MR/K005464/1 and MR/K501086/1). One of the key research goals of the collaboration 

is to establish a normative MEG database, yielding a total of 640 datasets (80 

participants at each site) across three different MEG systems (CTF, Elekta Neuromag 

and 4-D Neuroimaging). 

The project is based at the Cardiff University Brain Research Imaging Centre 

(CUBRIC) and the original seven partner sites are, in alphabetical order: the Aston 

Brain Centre (ABC) at Aston University; the Centre for Cognitive Neuroimaging 

(CCNi) at the University of Glasgow; the Cognition and Brain Sciences Unit (CBU), in 

collaboration with the University of Cambridge; the Oxford Centre for Human Brain 

Activity (OHBA) at the University of Oxford; the Sir Peter Mansfield Imaging Centre 

(SPMIC) at the University of Nottingham; the Wellcome Trust Centre for 

Neuroimaging (WTCN) at University College London (UCL); and the York 

Neuroimaging Centre (YNiC) at the University of York.  

As of 2016, the University of Birmingham and the University of Ulster have also 

established, or are expected to establish, new MEG laboratories. These two UK 

Universities may thus join the MEG Partnership in the near future. 
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5.3.2 Participants 

The participants of the UK MEG Partnership consisted of healthy individuals with no 

history of psychiatric or neurological conditions, who reported no use of psychoactive 

drugs and had normal or corrected vision. For the purpose of merging the data with the 

100 Brains study (see Chapter 2), participants recruited at Cardiff University were 

required to be right-handed and of Caucasian ethnicity. Additionally, each recruitment 

site could choose whether or not to include site-specific psychometric questionnaires 

ahead of the MEG scan. On the day of the MEG scan, all sites screened their 

participants for caffeine, nicotine and alcohol intake, medications and hours of sleep. 

In this study, we pooled data from four different MEG centres (Cardiff, Nottingham, 

Aston and Glasgow), twenty participants each, for a total of 80 participants. One 

individual from Nottingham had to be excluded (par. 5.4.1), for a total of 79 participants 

included in the analysis. The mean, SD and range of age of the participants recruited at 

each site is illustrated in Table 5.1. 

Table 5.1. Participants’ age (mean, SD and range, in years). 

MEG site Mean 
(years) 

SD 
(years) 

Range 
(years) 

Cardiff 30.3 8.1 21–55 

Nottingham 30.5 10.4 19–56 

Aston 23.2 5.2 18–37 
Glasgow 26.5 4.8 19–35 
 

5.3.3 Visual gamma paradigm 

The visual gamma paradigm was standardised across MEG centres in order to control 

for the physical properties of the stimuli that could influence the spectral properties of 

the visual gamma response. The paradigm is illustrated schematically in Figure 5.1. The 
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visual stimulus consisted of a vertical, stationary, maximum contrast, three cycles per 

degree, square-wave grating, presented in the lower left visual field, subtending 4° of 

visual angle both horizontally and vertically. The grating was presented on a mean 

luminance background for a jittered duration between 1.5–2 s. The ITI was 4 s in one 

half and 8 s in the other half of the trials. Although this was not the focus of the present 

investigation, the use of both long and short ITIs was aimed at fully capturing the 

temporal dynamics of the post-movement beta rebound (e.g., Fry et al., 2016), whilst 

optimising the total duration of the paradigm. Short and long ITIs were presented in 

random order. Participants were instructed to fixate a red dot positioned at the top right-

hand edge of the grating and to perform a simple abduction of the index finger of their 

right hand once the grating disappeared. The paradigm consisted of 100 trials, for a total 

duration of ~13 min. 

 

Figure 5.1. Visual gamma paradigm. 

Schematic illustration of the visual gamma paradigm. Participants were instructed to perform 

the index finger abduction movement as soon as the grating disappeared. The stimulus duration 

was jittered (1.5–2 s) to prevent participants from anticipating the response. The ITI (4 or 8 s) 

started at stimulus offset. 
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The stimulus presentations were programmed in Matlab (The Mathworks) using the 

Psychophysics Toolbox (Kleiner et al., 2007). The projection systems used to display 

the stimuli differed among the four MEG centres, but all projectors were gamma-

corrected and operated at the same refresh rate of 60 Hz. 

5.3.4 Data acquisition in Cardiff 

The MEG recordings at Cardiff University were performed using a 275-channel axial 

gradiometer CTF system (VSM MedTech), located inside a magnetically shielded 

room. An additional 29 reference channels were recorded for noise cancellation 

purposes and the primary sensors were analysed as synthetic third-order gradiometers 

(Vrba and Robinson, 2001). The sampling rate was 1200 Hz. Three electromagnetic 

coils were placed on three fiduciary locations (nasion, left and right pre-auricular) and 

their position relative to the MEG sensors was localized before and after each session. 

For source-localization purposes, the MEG data were co-registered to the individual 

anatomical MRI of each participant by marking the MRI voxels corresponding to the 

position of the three fiducial coils. The individual anatomical MRIs (1-mm isotropic, 

T1-weighted FSPGR) were acquired using a 3.0 T MRI scanner (General Electric). 

5.3.5 Data acquisition in Nottingham 

The MEG data collected at the University of Nottingham were courtesy of PhD Student 

Benjamin Hunt, who also performed the MEG/MRI co-registration and MEG source 

analysis. The MEG recordings were performed using a 275-channel axial gradiometer 

CTF system identical to the one used in Cardiff (par. 5.3.4). The position of three 

electromagnetic coils (nasion, left and right pre-auricular) was first measured relative to 

the subject's head shape using a Polhemus Isotrak 3D digitiser (Kaiser Aerospace Inc.)  

and then co-registered by matching the digitised head surface to the head surface 
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extracted from the individual anatomical MRI. The individual anatomical MRIs (1-mm 

isotropic, T1-weighted MPRAGE) were acquired using a 3.0 T MRI scanner (Philips). 

5.3.6 Data acquisition in Aston 

The MEG data collected at Aston University were courtesy of PhD Student Michael 

Hall, who also performed the MEG/MRI co-registration and MEG source analysis and 

contributed to developing the Matlab code for analysis of Elekta MEG data in Fieldtrip. 

The MEG recordings were performed using a 306-channel magnetometer and planar 

gradiometer system (Elekta Neuromag), located inside a magnetically shielded room. 

The data were sampled at 1 kHz, bandpass-filtered online between 1–300 Hz. The 

position of five electromagnetic coils was measured using a Polhemus Isotrak 3D 

digitiser (Kaiser Aerospace Inc.) and the subject's digitised head shape was co-

registered to the head surface extracted from the individual anatomical MRI using a 

modified version of a multiple-iteration, least-error, surface-matching algorithm 

(Adjamian et al., 2004a). The individual anatomical MRIs (1-mm isotropic, T1-

weighted) were acquired using a 3.0 T MRI scanner (Siemens). 

5.3.7 Data acquisition in Glasgow 

The MEG data collected at the University of Glasgow were courtesy of PhD Student 

Kevin Prinsloo, who also performed the MEG/MRI co-registration and MEG source 

analysis and contributed to developing the Matlab code for analysis of 4-D MEG data in 

Fieldtrip. The MEG recordings were performed using a 248-channel magnetometer 

system (MAGNES 3600 WH, 4-D Neuroimaging). An additional 28 reference channels 

were recorded for noise cancellation purposes. The data were sampled at 1017 Hz, 

highpass-filtered online at 0.1 Hz. The position of five electromagnetic coils was 

measured using a Fastrak 3D digitiser (Polhemus Inc.) and the subject's digitised head 

shape was co-registered to the individual anatomical MRI of each participant using a 



 

158 
 

semi-automatic procedure based on a modified version of the ICP algorithm (Besl and 

McKay, 1992). The individual anatomical MRIs (1-mm isotropic, T1-weighted) were 

acquired using a 3.0 T MRI scanner (Siemens). 

5.3.8 MEG data pre-processing 

For data collected with CTF MEG systems (Cardiff and Nottingham), environmental 

noise was reduced by transforming the primary sensors into third-order gradients (par. 

5.3.4). The individual trial epochs were then visually inspected and trials containing 

large artefacts (e.g., muscle clenching) were excluded from the analysis. 

The data collected with the Elekta MEG system (Aston) were pre-processed using 

Elekta software. Environmental noise was reduced using a temporal Signal Space 

Separation algorithm (tSSS; MaxFilter v2.2), with a subspace correlation limit of 0.9, 

and static bad channels were identified with Xscan 3.0. Trials were then visually 

inspected and epochs containing large artefacts removed. 

The data collected with the 4-D MEG system (Glasgow) were de-noised by performing 

a PCA of the reference channels and regressing the principal components out of the 

primary MEG sensors. 

Trials were cut into epochs from -2 to 2 s around stimulus onset and the pre-processed 

data were down-sampled to 300 Hz prior to covariance or CSD matrix computation 

(par. 5.3.9), but not prior to virtual sensor reconstruction. For the purpose of 

reconstructing virtual sensor data with the same number of trial samples, the pre-

processed data from Elekta and 4-D were linearly interpolated to match the sampling 

rate of CTF, i.e. 1200 Hz. 
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5.3.9 Source localization analysis 

Source analysis was performed in Matlab, using the Fieldtrip toolbox (Oostenveld et al., 

2011) and with the same analysis pipeline for CTF, Elekta and 4-D data. In order to 

reconstruct oscillatory activity at brain locations directly comparable across participants, 

1) the MNI template brain was divided into a 5 mm isotropic voxel resolution grid, 2) 

the individual anatomical MRI was warped to the template MRI and 3) the inverse 

transformation matrix was used to warp the template grid onto an individual grid for 

each participant. The leadfield was calculated using a semi-realistic volume conduction 

model based on the individual anatomy (Nolte, 2003) and source power was estimated 

twice, using two different  beamformer algorithms, namely LCMV (Van Veen et al., 

1997) and DICS (Gross et al., 2001). 

For source analysis with LCMV, the covariance matrix was calculated on a time-range 

from -1.5 to 1.5 s around stimulus onset, after bandpass-filtering the data between 35–

75 Hz. The optimal dipole orientation at each voxel was calculated by SVD. For each 

participant, the peak voxel was identified by selecting the voxel of greatest difference in 

gamma power (35–75 Hz), calculated with paired-sample t-test at each voxel location 

contrasting stimulus (0.3–1.5 s) and baseline (-1.2–0 s). Virtual sensors were 

reconstructed at the peak voxel location by multiplying the sensor-level data by the 

beamformer weights for that location. 

For DICS, the frequency analysis was performed using multi-taper FFT with Slepian 

tapers, centred at 55 Hz with ±20 Hz smoothing, and the CSD was calculated from -1.5 

to 1.5 s around stimulus onset. For each participant, the peak voxel was identified by 

selecting the greatest t-statistic across voxels, and virtual sensors were reconstructed at 

this location in the same way as the LCMV analysis (see above). 
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5.3.10 Time-frequency analysis 

To illustrate the spectral evolution of the visual gamma response over time, the virtual 

sensor data were represented in the time-frequency domain. For this purpose, the time-

series from -1.5 to 1.5 s were bandpass-filtered at each frequency between 4–100 Hz, in 

steps of 0.5 Hz (8 Hz bandpass, 3rd order Butterworth filter), the amplitude envelope of 

the analytic signal (Matlab function hilbert) was averaged across trials and expressed as 

percentage change from baseline (-1.5–0 s). 

5.3.11 Spectral analysis and quality control 

The peak frequency and peak amplitude parameters of sustained visual gamma 

oscillations were calculated using the bootstrap procedure illustrated in Chapter 2, 

which allowed also for inspection of data quality (Magazzini et al., 2016). Spectral 

analysis was performed using a Fourier method, the smoothed periodogram, separately 

for baseline (-0.7–0 s) and stimulus (0.3–1 s) epochs. The power spectrum was 

calculated as percentage change between stimulus (0.3–1.5 s) and baseline (-1.2–0 s) 

and the gamma peak frequency was measured in the 35–75 Hz range. The peak 

frequency reliability estimates were obtained by calculating the percentage of iterations 

falling within ±0.6 Hz around the bootstrap distribution mode, consistently with the 

analysis performed in Chapter 2. 
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5.4 Results 

5.4.1 Visual gamma responses 

The results of the source localization analysis are illustrated in Figure 5.2A, for LCMV, 

and in Figure 5.2B, for DICS. The difference in gamma power (35–75 Hz) between 

stimulus (0.3–1.5 s; sustained gamma) and baseline (-1.2–0 s) was calculated separately 

for each participant with a paired-sample t-tests across trials. The t-statistic values at 

each voxel location were then averaged across participants, separately for participants 

from each of the four sites (Cardiff, Nottingham, Aston and Glasgow). 

The source topographies of the data from Cardiff, Aston and Glasgow were highly 

comparable. In these three sites, positive t-statistic values were confined to the occipital 

lobe bilaterally and peaked in the right calcarine fissure, i.e. contralateral to the visual 

hemi-field in which the grating was presented. The Glasgow data showed the highest 

average t-values and the Aston data the lowest. The data from Nottingham showed a 

similar lateralised pattern of activation, but the positive t-values were more broadly 

spread across the occipital and parietal lobes. After visual inspection of the individual 

source topographies, one participant from Nottingham was excluded from further 

analysis, as they did not show a clear gamma peak in the occipital lobe. 
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Figure 5.2. Source localization of visual gamma with LCMV and DICS. 

A) LCMV beamformer source localization illustrating the difference in gamma power between 

stimulus and baseline, measured with paired-sample t-tests at each voxel location. The t-

statistics were averaged over participants, separately for the twenty participants from each of the 

four MEG centres, and projected onto the surface of an MNI template brain. For illustration 

purposes, negative t-statistics were masked. B) The same as in A), but for the DICS 

beamformer. 
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5.4.2 Data comparison between beamformers 

As illustrated in Figure 5.2, the results of the source analysis were highly comparable 

between LCMV (Figure 5.2A) and DICS (Figure 5.2B), for each of the four sites. At the 

group level, the source topographies produced by the two beamformer algorithms did 

not show any marked differences. 

In line with the similarity observed in the spatial domain, the spectro-temporal 

properties of the visual gamma response reconstructed by the LCMV and DICS 

beamformers were also highly comparable. As illustrated by the time-frequency 

analysis of the virtual sensor time-series reconstructions (Figure 5.3A), the temporal 

evolution of the visual gamma response, averaged over participants, showed no marked 

differences between LCMV and DICS beamformers. The individual time-frequency 

maps are illustrated in Figure 5.4.  

The power spectra derived from the LCMV and DICS virtual sensors are illustrated in 

Figure 5.3B, averaged over participants. Similar to the results of the time-frequency 

comparison, the results of spectral analysis performed with the smoothed periodogram 

method were also highly comparable between the two beamformer algorithms. The 

comparison of the gamma peak amplitude and peak frequency parameters between 

LCMV and DICS at the individual level is illustrated in Figure 5.5. This confirmed the 

tight correspondence of the peak parameter estimates obtained with the two 

beamformers. 
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Figure 5.3. Group-level virtual sensor time-frequency and spectral analysis. 

A) Time-frequency representation of the virtual sensors reconstructed in visual cortex, 

calculated as percentage change from baseline (-1–0 s) and averaged over participants, 

separately for each site. The virtual sensor time-series were reconstructed using beamformer 

weights calculated with the LCMV (top four panels) and DICS (bottom four panels) algorithm. 

B) Power spectra, calculated as percentage change of stimulus (0.3–1.5 s) from baseline (-1.2–0 

s) and averaged over participants, separately for each site and separately for LCMV and DICS 

virtual sensors. Note the different y-axis amplitude scale of the Glasgow data. 
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Figure 5.4. Individual time-frequency plots of the LCMV and DICS virtual sensors. 

Time-frequency representations plotted individually for each participant and separately for 

LCMV (left) and DICS (right). For each MEG site, participants are arranged from top to bottom 

by their average value of percentage change in sustained gamma power (35–75 Hz; 0.3–1.5 s). 

 

Figure 5.5. Comparison of peak amplitude and peak frequency between beamformers. 

A) Scatter plot illustrating the positive linear relationship between the peak amplitude estimates 

obtained from the LCMV and DICS virtual sensor reconstructions. Participants from different 

sites are coded with different colours. B) The same as in A), but for the peak frequency. 
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5.4.3 Gamma peak amplitude and peak frequency across sites 

To test for differences in the visual gamma data collected at different MEG centres and 

with different MEG systems, we first compared the gamma peak amplitude and peak 

frequency parameters across sites. The distributions of these two peak parameters are 

illustrated in Table 5.2, Figure 5.6 and Figure 5.7, separately for LCMV and DICS. 

Table 5.2. Gamma peak amplitude and peak frequency parameters at each site (mean ± SD). 

  LCMV  DICS 

MEG system 
 Amplitude 

(% change) 
Frequency 

(Hz) 
 Amplitude 

(% change) 
Frequency 

(Hz) 

CTF (Cardiff)  118 ± 70 53 ± 5  118 ± 68 52 ± 4 

CTF (Nottingham)  140 ± 125 52 ± 5  138 ± 125 51 ± 5 
Elekta (Aston)  102 ± 78 53 ± 6  98 ± 82 53 ± 6 

4-D (Glasgow)  250 ± 212 52 ± 7  272 ± 230 52 ± 7 
 

 

Figure 5.6. Distribution of the gamma peak amplitude and peak frequency across sites. 

A) and B) Bar charts of the gamma peak amplitude and peak frequency, respectively. The error 

bars represent 1 SD. C) Scatter plot of the individual peak amplitude and peak frequency values 

across sites. Note that the amplitude values are plotted on a logarithmic scale. D), E) and F) The 

same as in A), B) and C), but for DICS instead of LCMV. 
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Figure 5.7. Distribution 

of gamma amplitude 

across participants, for 

each site. 

In each plot, the 

histogram bars illustrate 

the distribution of the 

gamma peak amplitude 

(in percentage change 

from baseline) across 

participants, separately 

for each site and for 

LCMV (left column) and 

DICS (right column) 

beamformers. 

 

To test for a statistical difference in gamma amplitude among sites, we used a one-way 

between-subject ANOVA with factor ‘MEG site’ (four levels: Cardiff, Nottingham, 

Aston and Glasgow). The analysis was repeated separately for the estimates of peak 

amplitude derived with the LCMV and DICS beamformers. The results revealed a 

significant effect of MEG site on peak amplitude, both for LCMV (F(3,39.6) = 2.93, p = 

0.045; reporting Welch’s test as homogeneity could not be assumed, Levene’s test p < 

0.05) and DICS (F(3,39.4) = 3.38, p = 0.027; Welch’s test). 

For LCMV, Games-Howell post-hoc tests revealed a significantly higher amplitude for 

Glasgow compared to Aston (p = 0.034) and a trend towards a significant difference 

between Glasgow and Cardiff (p = 0.063). The difference was not significant between 

Glasgow and Nottingham (p = 0.22). For DICS, Games-Howell post-hoc tests revealed 
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significant differences between Glasgow and Aston (p = 0.020) and between Glasgow 

and Cardiff (p = 0.042), but not between Glasgow and Nottingham (p = 0.13). 

The same ANOVA analysis approach used to test gamma amplitude was used also to 

test the effect of ‘MEG site’ on the gamma peak frequency. This resulted in no 

significant difference in peak frequency among sites, neither with LCMV (F(3,75) = 

1.08, p = 0.36), nor with DICS (F(3,75) = 1.15, p = 0.34). 

5.4.4 Data quality across sites 

The peak frequency reliability estimates (par. 5.3.11) were used to compare the quality 

of the data collected at different MEG sites. As illustrated in Figure 5.8, the data 

appeared to be of comparable quality across sites. On average, the percentage of 

iterations within ±0.6 Hz was higher for Glasgow (LCMV, 63±24%; DICS, 64±25%) 

compared to Cardiff (LCMV, 57±25%; DICS, 56±25%), Nottingham (LCMV, 56±24%; 

DICS, 56±25%) and Aston (LCMV, 58±26%; DICS, 56±25%). However, a one-way 

between-subject ANOVA with factor ‘MEG site’ resulted in no significant differences 

among sites (LCMV, F(3,75) = 0.27, p = 0.85; DICS, F(3,75) = 0.57, p = 0.64). 

Next, as the Glasgow data showed both significantly higher gamma amplitude values 

and a tendency for more reliable peak frequency estimates, the relationship between 

these two parameters was tested using Pearson’s r. For this purpose, the data were 

pooled across all four sites, for a total of 79 pairs of observations. As illustrated in 

Figure 5.8, the percentage of iterations within ±0.6 Hz was positively correlated with 

the gamma peak amplitude, both with LCMV (r = 0.57, p < 0.001) and with DICS (r = 

0.58, p < 0.001). 

Since, in principle, a difference in amplitude/percentage values among sites could drive 

this correlation, the analysis was repeated separately for each site. As illustrated in 
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Table 5.3, the results revealed significant positive correlations for all sites apart from 

Cardiff, which only showed a positive trend. Once again, the correlation results were 

highly consistent between LCMV and DICS beamformers. The correspondence 

between the peak frequency reliability estimates obtained with the two beamformers is 

illustrated in Figure 5.9. 

 

Figure 5.8. Data quality comparison across sites. 

A) Bar chart illustrating the mean percentage of iterations falling within ±0.6 Hz around the 

bootstrap distribution mode, separately for the four MEG systems. The error bars represent 1 

SD. B) Scatter plot illustrating the positive linear relationship between the gamma peak 

amplitude and the peak frequency reliability estimates. Note that the amplitude values are 

plotted on a logarithmic scale. Participants are colour-coded according to the colours of the bars 

in A). C) and D) The same as in A) and B), but for DICS instead of LCMV. 
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Table 5.3. Correlations between percentage of iterations (±0.6 Hz) and peak amplitude. 

  LCMV  DICS 
MEG system  r p  r p 

CTF (Cardiff)  0.32 0.17  0.32 0.17 

CTF (Nottingham)  0.64 0.003  0.56 0.01 

Elekta (Aston)  0.64 0.002  0.63 0.003 
4-D (Glasgow)  0.79 < 10-5  0.81 < 10-5 
 

 

Figure 5.9. Comparison of peak frequency reliability between beamformers 

Scatter plot illustrating the positive linear relationship between the gamma peak frequency 

reliability estimates obtained from the virtual sensors reconstructed with the LCMV and DICS 

beamformers. The different colours represent participants from different sites.  
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5.5 Discussion 

In this study, we used the QC approach developed in the first experimental chapter of 

this thesis (Chapter 2) to analyse MEG data that were collected as part of a multi-site 

study known as the ‘UK MEG Partnership’. We pooled data from four different MEG 

laboratories (Cardiff, Nottingham, Aston and Glasgow) and three different MEG 

systems (CTF, Elekta and 4-D), with the aim to test the comparability of visual gamma 

data collected at different sites and with different systems. For this purpose, we 

performed across-site comparisons of classic oscillatory parameters such as the gamma 

peak amplitude and peak frequency and used our novel approach to control data quality 

by estimating the reliability of the gamma peak frequency (Magazzini et al., 2016). 

The data from the three different MEG systems were processed keeping between-

platform discrepancies to a minimum and bringing the different data formats to a 

common ground. To achieve this, we designed a common analysis pipeline in Fieldtrip, 

which applied the same forward and inverse solutions to the three different sensor-level 

data formats and returned source-level processed data directly comparable across sites. 

This approach was particularly beneficial to overcoming the limitations of combining 

three different types of sensors, i.e. axial gradiometers in CTF, planar gradiometers in 

Elekta and magnetometers in Elekta and 4-D, which also differ in their layout 

configuration relative to the scalp. Ultimately, therefore, the aim was to test whether 

multi-site datasets can be pooled simply by adopting common analysis pipelines that 

bring results to a common, comparable data format. 

5.5.1 Across-site comparison 

One of the main findings of this study is the higher amplitude of visual gamma 

oscillations recorded with the 4-D MEG system at Glasgow. The ANOVA analysis 

showed a significant effect of the main factor ‘MEG site’ on the gamma peak 
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amplitude, estimated by spectral analysis of the virtual sensor time-series. This effect 

was remarkably visible also in the time-frequency spectrograms, both averaged (Figure 

5.3A) and individually for each participant (Figure 5.4). The post-hoc comparisons 

revealed that gamma amplitude with the 4-D system differed significantly from the 

Elekta system at Aston and the CTF system at Cardiff (for DICS only; par. 5.4.3), but 

not from the CTF system at Nottingham. This latter result, however, may be due to the 

high variability observed for both the Nottingham and the Glasgow data (cf. Table 5.2). 

Rather than reflecting differences in the properties of the neuronal response of 

participants recruited at Glasgow, we argue that the higher amplitude of the Glasgow 

data might be related to differences between 4-D and the other MEG systems. The 

sensor array of the 4-D MEG system is made of magnetometers, which have a different 

sensitivity profile compared to both the axial gradiometers of CTF and the planar 

gradiometers of Elekta. Magnetometers are more sensitive to distant sources, which 

makes them more vulnerable to noise, compared to gradiometers. This property could 

though result in higher SNR, when appropriate noise-suppression techniques are used. 

The higher sensitivity of magnetometers, however, should also be accounted for, at least 

partly, by the leadfield. As such, testing for differences in the absolute amplitude of the 

current sources, in nAm rather than in percentage signal change, would clarify whether 

the observed results are driven by lower levels of noise or higher amplitude signals.  

One way to test the hypothesis of a different sensitivity profile between magnetometers 

and other types of sensors would be to analyse the Elekta data twice, using once 

magnetometers and once gradiometers only, rather than combining the two sensor types 

as we did in this study. Alternatively, another approach would be to measure visual 

gamma oscillations in a smaller sample, recording from the same participants with each 

of the three MEG systems and testing for differences in gamma amplitude in a within-
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subject design. In addition to this interpretation, it is also possible that the higher 

gamma amplitude values of the 4-D system are a spurious result of the low sample size 

used in this study, i.e. only twenty participants from each site. After a visual comparison 

of the participants’ amplitude distribution at each site, illustrated in Figure 5.7, it 

appears that only a small proportion of participants from Glasgow show markedly 

higher amplitude values, compared to the other sites. It is thus possible that this small 

number of participants biased the Glasgow sample towards the higher end of the 

population, which will become visible also for the other sites, once their samples are 

extended. If this was the case, then we would expect to find no difference in gamma 

amplitude among sites, once all eighty participants from each site are included in the 

analysis. 

As reported in Chapter 2 for the visual gamma data of the 100 Brains study, the gamma 

peak amplitude was positively correlated with the estimates of peak frequency 

reliability, calculated as the percentage of iterations falling within a window of width 

1.2 Hz around the distribution mode (par. 5.3.11). Despite this relationship between 

gamma amplitude and data quality, however, the reliability estimates were only 

marginally higher for the Glasgow data and did not differ significantly among the four 

sites (Figure 5.8A and Figure 5.8C). Similarly, the gamma peak frequency was also 

highly comparable among sites (Figure 5.6B and Figure 5.6D), suggesting that the peak 

frequency of visual gamma oscillations might be a better candidate measures for 

repeated measures or multi-site studies, compared to the gamma peak amplitude (see 

also Muthukumaraswamy et al., 2010; Tan et al., 2016). Additionally, this result 

suggests that the information provided by our QC approach is complimentary to that 

indexed merely by the response amplitude, particularly for the purpose of assessing or 

comparing gamma peak frequency measures. Finally, we noted previously that the 

estimates of gamma amplitude obtained with the periodogram method differed, in 
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absolute but not relative terms, from those extracted by averaging over the time 

dimension of the time-frequency spectrograms (see Chapter 2). As such, the amplitude 

results outlined above should be interpreted with caution until they are replicated with 

more conventional analysis approaches. 

Another difference that we observed in the comparison among the four MEG sites is the 

source topography of the CTF data collected at Nottingham (Figure 5.2). One 

hypothesis is that the widespread activation pattern of the Nottingham data might be 

caused by imperfect co-registration of the head shape digitised with the Polhemus to the 

head surface extracted from the participant’s MRI. The main consequence of such a 

computational error is that the leadfield would be calculated incorrectly. This, in turn, 

would be expected to result in lower amplitude values, which, however, have not been 

observed for the Nottingham data. On this note, it seems interesting also that the 

‘manual’ approach to MEG/MRI co-registration implemented at Cardiff performed, on 

average, as accurately as the (semi-)automatic algorithms used for the other sites. 

Although head movement was not formally assessed in this work, follow-up studies will 

have the opportunity to assess the impact of head motion and position on the accuracy 

of the source estimates, for example by calculating the Euclidian distance between the 

peak voxel and V1/V2. 

Finally, another remarkable result was the absence of a negative impact on the quality 

of the Glasgow data that could have been caused by the lack of visual inspection 

procedures aimed at identifying and excluding bad trials, which were instead adopted by 

every other MEG site. It is possible that visual gamma oscillations recorded with MEG 

are relatively insensitive to the influence of ocular activity (e.g., eye blinks) and robust 

against the noise introduced by low levels of muscular activity (for a review, see 

Muthukumaraswamy, 2013). In either case, our QC approach offers a tool to test the 
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effect of these factors, as well as of different analysis approaches, on the reliability of 

the gamma peak frequency. Importantly, once the whole multi-site sample will become 

available, these analyses can be repeated with higher statistical power. For this purpose, 

a fundamental aspect that will need to be considered is the establishment of fully 

standardised pipelines that minimise the differences between sites at each and every 

processing steps. For example, MEG/MRI co-registration could be performed with the 

same surface-matching algorithm at each site, ICA routines could be used to pre-process 

and clean the data consistently across MEG systems, and so on. Once again, the impact 

of alternative choices at each analysis step can in principle be evaluated using our QC 

method, or by developing similar approaches aimed at evaluating dependent variables 

other than the gamma peak frequency. 

5.5.2 Between-beamformer comparison 

With respect to the source analysis, one secondary aim of this work was to compare the 

results obtained with two different beamformer algorithms. Our comparison between 

LCMV and DICS revealed no remarkable differences between the two beamformers. 

This is not surprising considering that the two algorithms reflect the same 

methodological approach in two different domains, i.e. in time and in frequency, 

respectively. The LCMV and DICS analyses produced highly comparable source 

topographies (Figure 5.2) and the virtual sensor reconstructions resulted in very similar 

time-frequency maps (Figure 5.3A). The peak amplitude and peak frequency parameters 

were highly correlated between the two beamformers (Figure 5.5) and so were the 

estimates of peak frequency reliability (Figure 5.9). 

Although sporadic individual variations could be observed, these were most likely 

caused by minor methodological differences between the two approaches. For example, 

differences in the peak parameters estimates could have arisen from the selection of 
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different peak voxels for virtual sensor reconstruction or from different processing 

parameters prior to computation of the beamformer weights, namely bandpass-filtering 

the time-series (for the covariance matrix with LCMV) or performing multi-taper 

frequency analysis (for the CSD matrix with DICS). Most importantly, however, this 

analysis demonstrated the applicability of our QC approach to the comparison of 

different data analysis approaches. By expanding the sample to the full multi-site 

dataset, the comparison could be extended not only to alternative beamformer 

algorithms, such as SAM (Robinson and Vrba, 1999), but also to different source 

localization approaches, such as MNE. 

5.5.3 Considerations on the visual paradigm design 

We had multiple reasons for choosing the visual gamma paradigm over other tasks of 

the MEG Partnership to perform this multi-site comparison. First, the paradigm allows 

the characterisation of basic and robust sensory-motor responses and was thus included 

as part of the MEG protocol at every partner site. Second, the visual gamma response 

was considered an ideal test bed because it offers relatively clear benchmarks such as its 

spatial localization (Fries et al., 2008a; Hoogenboom et al., 2006; Muthukumaraswamy 

et al., 2010) and parameter distribution (see Chapter 2). 

The criteria adopted for the design of the visual gamma paradigm in the UK MEG 

Partnership study were in part based on previous experimental work 

(Muthukumaraswamy and Singh, 2013) and in part aimed at meeting the research 

interests of the MEG groups of all partner sites. In particular, our choice was informed 

by the results of Muthukumaraswamy and Singh (2013), who compared the effect of 

different stimulus configurations (i.e. square-wave vs. annular grating, four quadrants 

vs. lower left quadrant, moving vs. stationary) on the properties of the visual gamma 

response. In their study, on the one hand, four-quadrant moving stimuli resulted in 
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sustained responses with both the largest amplitudes and the most reliable gamma peak 

frequency estimates, compared to static single-quadrant gratings. On the other hand, 

however, the spatial activation patterns of the latter type of stimuli was more focal and 

appeared thus better suited to studies aimed at the optimisation of source-reconstruction 

algorithms. 

5.5.4 Conclusions 

To conclude, this work aimed to provide a proof of concept for combining MEG data 

collected at different research centres and with different MEG systems. In particular, for 

the first time, we demonstrated the feasibility of bringing different types of data to a 

standard format using common analysis pipelines, for subsequent pooling of the results. 

Although the results presented here are still preliminary, we note that when data are 

collected with different MEG systems, differences in sensor type should be considered 

and evaluated carefully before estimates of gamma amplitude can be combined. The 

gamma peak frequency, instead, appeared unaffected by the type of MEG system. 

Additionally, the three MEG systems evaluated here seemed to provide data of 

comparable quality, as far as the gamma peak frequency is concerned. Interestingly, the 

estimates of data quality obtained with our QC approach were complimentary to those 

provided, for example, simply by measuring the response amplitude. In principle, we 

believe that the development and adoption of QC approaches similar to the one used 

here could pave the way forward for the establishment of large-scale MEG databases 

and will facilitate the development of new multi-site collaborations.  
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6 Chapter 6. 

General discussion 
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6.1 Rationale behind the development of a method for quality control 

The aim of this thesis was to demonstrate the use of the peak frequency of visual 

gamma oscillations in a range of different scenarios. In Chapter 2, we first presented a 

novel method for estimating the gamma peak frequency and its robustness. The gamma 

peak frequency is, in fact, often considered a robust spectral ‘signature’ of the visual 

response recorded invasively in non-human primates (Lima et al., 2010; see also 

Roberts et al., 2013). This holds for oscillatory signals measured from the same cortical 

location (i.e. peak frequency can differ between nearby locations) in response to specific 

types of visual stimuli, such as gratings (Ray and Maunsell, 2015), so long as the 

physical properties of the stimulus are not changed (e.g., contrast, motion, size, 

eccentricity, etc.) and the internal state of the animal is not altered (e.g., level of 

sedation, attention, etc.). The gamma peak frequency is a stable measure also in 

humans, although the signal-to-noise ratio (SNR) of MEG is usually insufficient to 

characterise this parameter at the level of single trials. The repeatability of peak 

frequency has been demonstrated over repeated recording sessions, for up to 5 weeks, 

with intra-class correlation coefficients (ICCs) of ~0.9–1 (Muthukumaraswamy et al., 

2010). Furthermore, estimating the peak frequency at the source level, as we did in our 

experiments, provides higher ICC values, compared to using sensor-level parameter 

estimates (Tan et al., 2016). 

Together, therefore, both animal and human studies suggest that the visual gamma 

response can be expected to peak at the same frequency over repeated presentations of 

the same stimulus (although, see Brunet et al., 2014a for a contrasting result). In our 

view, trials that deviate significantly from the individual’s gamma peak frequency, in 

the absence of controlled exogenous or endogenous perturbations, are likely to reflect 

contamination by artefacts (e.g., measurement noise, electro-myogenic activity, eye 

movements and changes in ocular fixation, etc.). The rationale behind our quality-
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control (QC) approach was thus the following: if the oscillation frequency is highly 

variable within a given set of trials, the gamma peak frequency derived from the 

averaged trials will be noisy and potentially unreliable. Measures of variability such as 

the variance of the trials, though, are difficult to calculate with limited SNR. In our 

approach, therefore, a measure of dispersion across trials was obtained via 

bootstrapping. 

In this procedure, the gamma peak frequency was measured over 10,000 iterations, in 

each of which trials were resampled with replacement. The distribution of peak 

frequency over bootstrap iterations thus indexed the distribution of peak frequency 

across the original set of trials. Bootstrapping simply offered a strategy to obtain 

estimates of both central tendency and variability. While the mode of the distribution 

indicated the oscillation frequency most prevalent in the data, the shape, or width, of the 

distribution indexed the variability of peak frequency, across trials. In practical terms, a 

reliability index was quantified by calculating the percentage of bootstrap iterations that 

either matched the mode of the bootstrap distribution or deviated from it, with a margin 

of measurement error determined by the resolution of the spectral analysis method. If an 

excessive proportion of iterations resulted in an estimate of peak frequency inconsistent 

with the bootstrap mode, i.e. if the width of the bootstrap distribution was too large, 

then the measured peak frequency was considered unreliable in that dataset. 

Alternatively, if the dataset was estimated as reliable, the gamma peak frequency was 

measured by averaging over the 10,000 bootstrap iterations. 

The validity of the peak frequency measure calculated by averaging over bootstrap 

iterations was demonstrated using synthetically generated data (Magazzini et al., 2016). 

In this simulation study, the consistency (standard deviation) of peak frequency across 

trials was varied systematically, while controlling for the mean and mode of the trial 
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distribution. In addition, the gamma peak frequency and other parameters obtained with 

the QC approach were estimated in a large-sample dataset, the ‘100 Brains’. This 

allowed us to illustrate how these parameters are distributed across individuals, in real 

MEG data, and compare the bootstrap peak frequency with a standard measure, the 

‘envelope’ peak frequency. 

Throughout this thesis, the bootstrap mode was considered as a reference measure in the 

calculation of the peak frequency reliability estimates, whereas the bootstrap mean was 

used as an optimal measure of the gamma peak frequency. It is worth noting, though, 

that while mean and mode of the distribution can be expected to overlap for highly 

consistent oscillation frequencies across trials, the two measures are instead likely to 

diverge for asymmetric bootstrap distributions. This occurs, for example, when a 

secondary spectral peak is measured in a number of trials sufficient to produce a 

secondary peak also in the bootstrap distribution. It may thus appear theoretically more 

appropriate to use the mode of the distribution, rather than its mean, as an optimal 

measure of peak frequency. However, unbiased measures of the mean are guaranteed by 

the adoption of an additional constraint, i.e. discarding datasets in which an insufficient 

number of bootstrap iterations gathers in close proximity to the distribution mode. The 

bootstrap mean, in addition, offers the advantage of ‘weighting’ the frequencies by their 

prevalence across bootstrap samples and, therefore, across trials. The visual gamma 

response in fact not always reveals only one ‘real’ peak frequency, especially if the 

response amplitude is low. In real MEG recordings, the increase in spectral power often 

spans a relatively broad range of frequencies across the gamma spectrum. In similar 

circumstances, therefore, the relative contribution of different gamma frequencies 

would be pictured more accurately by the mean of the bootstrap distribution, not by its 

mode. 
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An alternative measure of central tendency, conceptually similar to the bootstrap 

distribution mean, is the centre of mass. In the centre of mass, the frequencies are 

weighted (multiplied) by their power, summed and divided by the total power across the 

frequency range of interest. This measure is particularly useful when a clear spectral 

peak cannot be identified and has been used to assess the gamma peak frequency both in 

humans (Lozano-Soldevilla et al., 2014) and animals (Brunet et al., 2014a). Other 

approaches consist of fitting Gaussian functions to the power spectrum (van Albada and 

Robinson, 2013), a method that has been used not only for gamma (Campbell et al., 

2014), but also alpha oscillations (Haegens et al., 2014). One major difference between 

high and low oscillation frequencies is that power in the gamma range is typically 

calculated as a percentage change relative to a reference condition. This can reveal 

peaks that would otherwise be difficult to characterise, given the relatively low SNR of 

the MEG raw spectra and their power-law scaling (Miller et al., 2009). Alternatively, in 

more advanced approaches, the frequency and amplitude axes of the power spectrum 

can be log-transformed to remove the typical 1/f component. As a result, the power-law 

curve is reshaped into a straight line (y = -x + a). The slope of this line can then be 

removed by fitting a linear regression model, allowing for the characterisation of the 

spectral peaks of interest (Lega et al., 2012; Manning et al., 2009).  

The approaches illustrated above represent only a limited portion of the many different 

methods available for spectral estimation. Any time-series can be decomposed into its 

frequency components using the Fourier transform. In other approaches, though, the 

power spectrum is reconstructed by averaging over the time dimension of a time-

frequency spectrogram, which can be particularly useful when the time-range of interest 

is not known a priori. In the ‘envelope’ method described in Chapter 2, for example, the 

analytic signal is computed to yield an amplitude envelope (Muthukumaraswamy et al., 

2010). Once again, several methods are available also for representing a time-series in 
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the time-frequency domain. The data can be convolved in the time domain using 

Morlet's wavelets (Tallon-Baudry et al., 1997), or smoothed in the frequency domain 

with multi-tapering (Mitra and Pesaran, 1999). Irrespective of the approach chosen, 

however, our proposed QC routine can in principle be applied to any of these methods, 

thereby offering flexibility for its integration in the analysis pipeline of other research 

groups, or in open-source toolboxes such as Fieldtrip (Oostenveld et al., 2011). 
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6.2 Peak frequency modulations and quality control in pharmaco-MEG data 

A long-standing goal of neuroscience has been that of understanding the mechanisms of 

normal brain function in order to restore them in pathological conditions. While human 

neuroimaging bears the potential for contributing to the former achievement, 

pharmacological intervention is likely one of the most potent approaches for clinical 

treatment. For these reasons, neuroimaging techniques such as functional magnetic 

resonance imaging (fMRI) have recently gained attention by the pharmaceutical 

industry as a possible tool for efficient drug discovery and development (Wise and 

Preston, 2010). In particular, the identification of early biomarkers of drug action can 

accelerate the process of drug development, while hugely reducing the associated costs. 

In order to bear clinical relevance, though, the indices of brain activity obtained with 

neuroimaging need to be robustly linked to specific mechanisms of brain function, so 

that disease- and drug-related changes can be reliably identified. For this purpose, the 

blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) changes 

measured by fMRI offer an exquisitely spatially resolved approach to look at brain 

activity. However, the interpretation of drug-induced changes in fMRI measures can be 

complicated by the interplay between cerebral vasculature and neuronal activity 

(Muthukumaraswamy, 2014; see also Iannetti and Wise, 2007).  

In the context of pharmacological studies, where a clear understanding of the nature of 

the measured signal is crucial (see Singh, 2012), some of the limitations of fMRI can be 

overcome by the use of MEG. Magnetoencephalography is sensitive to the summation 

of synchronous post-synaptic potentials, offering not only direct but also highly 

translatable measures of neuronal activity (Hall et al., 2005; Fries et al., 2008a). The 

evidence from pre-clinical models can thus be evaluated at early stages of clinical trials 

in humans, making pharmacological MEG studies a useful tool for drug development. 
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In Chapter 3, we proceeded to test the potential applications of the QC approach by re-

analysing two previous pharmaco-MEG studies of visual gamma from our lab, one with 

alcohol (Campbell et al., 2014) and one with tiagabine (Muthukumaraswamy et al., 

2013a). Our re-analysis of the alcohol data from Campbell et al. (2014), in particular, 

provided two insightful results. First, the unreliable estimates of peak frequency 

identified by our QC approach converged with the quality assessment reported by the 

authors in the original publication (Campbell et al., 2014). Second, after exclusion of 

four participants, the alcohol-induced reduction in gamma frequency was replicated 

using our bootstrap measure of peak frequency. Together, these results corroborated 

those of the simulation study (Chapter 2), supporting the validity of our QC approach in 

two ways: first, as a tool for identification of poor-quality data; second, as an optimal 

method for peak frequency estimation. In light of these considerations, and also of the 

literature described below, we were able to accept with confidence the novel results of 

our re-analysis of the tiagabine data from Muthukumaraswamy et al. (2013a). 

In the original study, tiagabine was found to have a null effect on visual gamma 

oscillations, a surprising result that contrasted with the authors’ initial predictions 

(Muthukumaraswamy et al., 2013a). It is worth noting that their result was obtained 

with the adoption of the most impartial approach possible, i.e. a standard analysis 

pipeline applied to every participant. In our study, instead, by combining objective 

exclusion of poor-quality data and improved estimation of peak frequency, tiagabine 

was found to induce a marked reduction of the gamma peak frequency (Magazzini et al., 

2016). Such a modulation of the gamma oscillatory dynamics is in line with models of 

the role of gamma-aminobutyric acid (GABA)-ergic transmission in generating gamma 

oscillations. Tiagabine is a drug with a well-known mechanism of action, which, as 

demonstrated by in vivo micro-dialysis (Fink-Jensen et al., 1992), results in increased 

extra-cellular (i.e. synaptic) GABA concentrations. By blocking the re-uptake of GABA 
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into the pre-synaptic terminal, the drug prolongs the duration of the inhibitory post-

synaptic potentials (IPSPs). As predicted by both in vitro and in vivo studies (Traub et 

al., 1996; Whittington et al., 1995), the decrease in gamma oscillation frequency would 

thus result from the increase in the decay-time constant of GABAergic transmission. 

Currently, the possibility of measuring the relationship between gamma oscillations and 

GABAergic transmission, in humans, is partly still an open debate. In a recent study 

(Myers et al., 2014), enhancing the synaptic levels of GABA with tiagabine did not 

produce an increase in the neurotransmitter concentrations measured with magnetic 

resonance spectroscopy (MRS). It is in fact thought that MRS can only measure total 

GABA concentrations, without discerning between the synaptic and intra-cellular 

compartments (Muthukumaraswamy, 2014). This limitation of MRS may have 

contributed also to the notorious discrepancy between two studies in which MRS and 

MEG were used to test the relationship between GABA concentrations and gamma 

oscillation frequency (Cousijn et al., 2014; Muthukumaraswamy et al., 2009). Recently, 

however, the positive correlation between GABA and gamma frequency first reported 

by Muthukumaraswamy et al. (2009), which Cousijn et al. (2014) failed to replicate, has 

received support using alternative approaches. In a combined MEG and positron-

emission tomography (PET) study, for example, the density of GABAA receptors in 

primary visual cortex correlated positively with the frequency and negatively with the 

amplitude of visual gamma oscillations (Kujala et al., 2015). Furthermore, various 

pharmacological agents have now been demonstrated to modulate the amplitude and/or 

frequency of visual gamma (Campbell et al., 2014; Lozano-Soldevilla et al., 2014; 

Muthukumaraswamy et al., 2016; Saxena et al., 2013; Shaw et al., 2015), including the 

recently published results of tiagabine (Magazzini et al., 2016). Multiple lines of 

research thus converge to support the role of GABAergic inhibition, and its balance 

with the glutamatergic system, in shaping the human gamma oscillatory dynamics. 
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At present, the pharmaco-MEG approach (Muthukumaraswamy, 2014) appears by far 

the most promising translational tool for studying the generative mechanisms of gamma 

oscillations in humans. In Chapter 3, however, we have demonstrated the importance of 

adopting appropriate QC routines to guarantee the robustness of the results. It is thus 

worth considering what factors may have contributed to determining the quality of the 

visual gamma data in the two re-analysed datasets. In the tiagabine dataset, the gamma 

peak frequency was estimated as poorly reliable in a remarkably large proportion of the 

recorded sessions, i.e. ~25%, compared to ~8% in the alcohol dataset. A number of 

factors that could have driven this disparity in overall data quality, including 

methodological differences between the two studies, are discussed below. 

In each of the two measurement days (placebo and drug), participants of the tiagabine 

study were tested once before drug/placebo ingestion and three times after, for a total of 

eight recording sessions per participants. In the alcohol study, instead, only four 

sessions were recorded per participant, i.e. once before and once after alcohol/placebo 

consumption. Any time-varying drug effects were thus more likely to be manifested in 

the tiagabine data, which consisted of three times as many post-drug sessions. In fact, 

despite the relatively short duration of each MEG session (~10 min), drug-induced 

spectral changes on such short time scales have been demonstrated with the GABAA 

modulator diazepam (Hall et al., 2010). The repetition of the visual gamma protocol 

multiple times after drug administration would thus increase the likelihood of 

‘capturing’ such rapid changes within a given recording session. One hypothetical 

possibility is that the effectiveness of tiagabine in blocking the GABA reuptake 

increased or decreased during the course of the visual gamma paradigm. As a 

consequence, the gamma oscillation frequency would have shifted, from trial to trial, 

towards lower or higher frequencies, respectively. In such a case, therefore, the high 
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variability of peak frequency across trials would have resulted in a poor estimates of 

peak frequency reliability. 

The scenario hypothesised above, however, cannot fully account for the differences in 

data quality observed between the two studies. If only the first two sessions are 

considered, one before and one at 1 hour after tiagabine/placebo administration, 

unreliable peak frequency estimates are still observed in 10 out of 60 sessions (~17%), 

i.e. in twice as many sessions as in the alcohol study. One major difference between the 

two dataset is intrinsically related to the type of drug used, not only for their different 

pharmacodynamics, but also for the ability of participants to tolerate their effects. 

Typically, a healthy individual would be expected to comply with the demands of an 

experimental task more easily after consumption of alcohol, whose effects would 

probably be predictable and thus expected, than after taking a potent sedative such as 

tiagabine (see Hamandi et al., 2014). The level of participants’ compliance can in fact 

determine the quality of an MEG session in many ways. For example, the levels of 

high-frequency noise in the recording can depend on the amount of movement and 

muscular tension (Muthukumaraswamy, 2013). Alternatively, inadequate or unstable 

ocular fixation could result, indirectly, in a change of stimulus eccentricity, a physical 

property that is known to affect the peak frequency of visual gamma oscillations (van 

Pelt and Fries, 2013). 

In relation to the parameters of visual stimulation and their influence on the visual 

gamma response, the tiagabine and alcohol studies differed also by two properties of the 

visual stimulus. First, while the grating used in the alcohol study was presented 

centrally, in the tiagabine study it covered only the lower left portion of the visual field. 

Second, the grating of the tiagabine study stimulated a larger portion of the peripheral 

visual field (up to 8° horizontally), compared to the alcohol study (up to 4° 
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horizontally). In a recent study in monkey V1, the visual gamma response was recorded 

simultaneously at cortical locations representing different eccentricities of the 

retinotopic space (Lima et al., 2010). Between central (~3°) and peripheral (~10°) 

locations, the oscillations showed marked differences, decreasing in frequency with 

increasing eccentricity of the receptive field. This indicates that visual stimuli spanning 

large portions of the visual field can induce oscillatory responses at different gamma 

frequencies. The presence of multiple oscillation frequencies can be particularly 

problematic in the case of MEG, where the data are likely to reflect a spatially 

summated response. As discussed above (par. 6.1), the presence of multiple peaks in the 

power spectrum can complicate the estimation of a single, reliable gamma peak. The 

larger portion of peripheral visual field stimulated in the tiagabine study may thus have 

introduced a greater prevalence of secondary spectral peaks, resulting in a higher ratio 

of datasets with unreliable estimates of peak frequency.  

Overall, numerous parameters related to the stimulus, the study design or the 

participants can theoretically produce drastic changes in the quality of the data recorded. 

In the future, studies providing an empirical demonstration of how these factors can 

impact the robustness of the gamma oscillatory parameters will contribute to 

establishing ‘gold standard’ rules for both the collection and the analysis of visual 

gamma data. In combination with the adoption of appropriate QC routines, such as our 

proposed approach, this will help to demonstrate the potential of MEG in identifying 

reliable biomarkers of drug action. The robustness of such biomarkers will attract the 

interest of pharmaceutical companies in investing in MEG research, thereby increasing 

the likelihood of successful drug discovery. In turn, the development of new effective 

pharmacological compounds will contribute to advancing our understanding of the 

neuronal mechanisms that support brain functions and their impairment in diseases such 

as epilepsy, autism and schizophrenia (Lewis et al., 2005; Uhlhaas and Singer, 2006).  
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6.3 Peak frequency and amplitude modulations by attention 

In the first two experimental chapters of this thesis (Chapters 2 and 3), we concluded 

that the use of optimal measures and appropriate QC approaches can occasionally be 

necessary to reveal the effects of an experimental manipulation on the oscillatory 

parameters of interest. In addition, a comparison of the QC results in different studies 

sparked a number of speculative observations on the determinants of data quality in 

visual gamma datasets recorded with MEG (par. 6.2). In Chapter 4, one of the 

methodological aspects that was incorporated in our experimental design concerned the 

identification of the physical properties of the stimulus that were more likely to provide 

robust estimates of peak frequency. Although far from being exhaustive, the instructions 

available from the literature on the topic were sufficiently detailed for making an 

informed decision on such parameters.  

In our study on gamma and attention (Chapter 4), the main research question that we 

wanted to address was related to a recent theoretical proposal on the possible functional 

role of shifts in oscillation frequency under different task demands. Specifically, by 

increasing their oscillation frequency, a group of synchronised neurons in primary 

visual cortex is thought to gain an advantage over competing neuronal groups (Fries, 

2015). In brief, this would allow the faster oscillating neurons to enhance their impact 

on a group of neurons that oscillate coherently in a downstream area. In contrast, input 

to the same downstream neurons converging from the slower oscillating neurons would 

arrive at less excitable phases of the oscillation cycle and would thus be less effective. 

Such a modulation of the gamma oscillation frequency has been hypothesised to serve 

as a mechanism for attentional selection of visual representations, and is compatible 

with recent evidence from a study in monkeys (Bosman et al., 2012). 
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In our study, however, we found no evidence for an increase in the peak frequency of 

visual gamma oscillations in early visual cortex. However, as we found some partial 

evidence for a shift of the centre of mass towards higher frequencies, our results should 

probably be considered inconclusive. Despite this, by implementing some of the 

methodological considerations outlined above, we obtained visual gamma data of the 

highest quality, compared to all other experimental chapters of this thesis. As illustrated 

in Chapter 4, unreliable estimates of the gamma peak frequency were observed in only 2 

out of 36 datasets. In addition, the modulation of gamma amplitude in both early 

(V1/V2) and late (V4) visual areas was consistent with recent theories that hypothesise 

a possible role for gamma-band synchronisation in propagating feed-forward signals 

across the visual cortical hierarchy (Michalareas et al., 2016; van Kerkoerle et al., 

2014). 

Although beyond the scope of this thesis, future analyses of this dataset of visual 

gamma with spatial attention will try to elucidate the temporal and spectral dynamics of 

inter-areal communication between V1/V2 and V4. In particular, this could be achieved 

by correlating the trial-by-trial amplitude fluctuations between the two regions, or by 

computing the cross-correlogram of the amplitude envelopes. Additionally, our data 

suggested that alpha oscillations were also significantly modulated by attention, in V1. 

In the abovementioned framework of feed-forward and feed-back effects, alpha 

oscillations could reflect the top-down influence of higher-order region controlling the 

oscillatory dynamics of lower areas, potentially via cross-frequency coupling 

mechanisms (Jensen et al., 2014). 
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6.4 Concluding remarks and future work 

In the last experimental chapter of this thesis (Chapter 5), the QC approach was applied 

to a large multi-site dataset from the UK MEG Partnership. This study bears the greatest 

potential for extension of the preliminary work presented here, as the sample will 

eventually be expanded to 80 participants at each site, for a total of 640 individual 

visual gamma datasets. The larger sample will also allow to clarify the reasons behind 

the apparent difference in gamma amplitude between the data collected with the 

magnetometer system at Glasgow (4-D Neuroimaging) and the other MEG systems 

(CTF and Elekta Neuromag). In addition, it will allow to explore the inter-individual 

differences in the gamma oscillatory parameters and their relationship with other 

measures of cortical activity, brain structure, behaviour and even genetics. 

The establishment of a shared MEG data repository will encourage new collaborations 

and facilitate large-scale, possibly multi-site, clinical studies, or pharmacological 

studies on smaller scales. The database will in fact provide normative distributions of 

basic sensory neurophysiological parameters in a healthy population, against which 

specific clinical groups or drug-induced modulations can be compared. It will also offer 

new opportunities for testing novel hypothesis with the necessary statistical power and 

for comparing newly developed analytical tools with existing, well-established methods. 

In principle, it could also serve as a testbed for the validation of recently developed 

technologies, such as optically-pumped magnetometers (OPMs). This type of sensors 

may soon kick-start a new branch of research within the field of non-invasive 

electrophysiology, offering higher portability and versatility at relatively low 

maintenance costs (Knappe et al., 2014). In a recent study, simulated whole-head OPM 

systems resulted in greater sensitivity, spatial resolution and reconstruction accuracy, 

compared to traditional SQUID-based systems (Boto et al., 2016). If such systems were 

to be made commercially available to the research community, they would certainly 
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benefit from a comparative analysis with real data from three of the most popular MEG 

systems currently in use. 

Finally, a number of possible methodological developments can be considered also for 

our QC approach. For example, the method can be applied to sensor-level data, for 

objective and data-driven selection of the sensors for analysis. The QC metrics in the 

spectral domain could be compared and combined with other QC measures, e.g., in the 

spatial domain, to achieve a multi-dimensional representation of data quality. In the 

current implementation, the peak frequency reliability estimates obtained via 

bootstrapping indexed the consistency of peak frequency across trials. If the peak 

frequency within a given set of trials was estimated as too variable, the dataset was 

marked as of poor quality and then discarded. One potential development for future QC 

approaches would consist of algorithms that attempt to ‘rescue’ poor-quality datasets, 

moving away from the rejection of entire sets of trials and towards the exclusion of 

individual trials only. This could be achieved by tracking the bootstrap iterations that 

deviate most from the distribution mode and working backwards to identify which trials 

were included, more than others, in the resampling of those iterations. 

In summary, the work presented in this thesis has contributed to our understanding of 

the biological basis of the human gamma peak frequency (Chapter 3), by proposing a 

novel QC approach for optimal estimation of this oscillatory parameter (Chapter 2). The 

results of the study of visual gamma with spatial attention (Chapter 4) provided new 

evidence of the possible functional role of these oscillations in the human visual system. 

The multi-site comparative analysis (Chapter 5) served as a proof-of-concept for the 

development of new collaborations and the establishment of large-scale MEG data 

repositories. We believe that this represents the future of MEG research and will allow 

to advance our understanding of human brain function in both health and disease.  
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