
 

 

 

IMAGE TEXTURE ANALYSIS OF 

TRANSVAGINAL ULTRASOUND 

IN THE DIAGNOSIS OF OVARIAN 

LESIONS 
 

Institute of Medical Engineering and Medical Physics, Cardiff School of Engineering, Cardiff 

University. 

 

 
 
 
 

By: Rana Hussain ALdahlawi 

 
 

February 2016 

 

 

 

 

  

A thesis submitted to the Cardiff University in candidature for the degree of Doctor of 

Philosophy 



i 

 

Dedication 

I proudly dedicate my dissertation to my beloved parents, Hussein and Fawziyah, who are the 

soul of my life. Their words of encouragement and constant inspiration to better myself and 

aim higher ring in my ears. Thanks also to my sisters and brothers, who have never left my 

side and have always been there for me and supported me over the years. 

I also dedicate it to my husband, Hatem, and my wonderful children, Lamar, Abdulmalek and 

Lareen, who are the joy of my life and without whom life would never be the same. They 

have been my inspiration in achieving my goal. Special thanks to my Nanny Michelle 

Thomas, who has been very helpful and caring to us throughout the years and made life 

easier for me. 

I dedicate this work and give special thanks to my friends Sameeha, Ma’rab and Eman for 

being there for me throughout the entire doctorate program. 

 

  



ii 

 

Acknowledgments  

First and foremost, praise to almighty ALLAH, the beneficent and the most merciful, for 

giving me the opportunity and strength to go through this study. Without the help and 

guidance of almighty God, this work, or indeed any other work, would not have been possible 

to achieve. 

My gratitude to Prof. Neil Pugh, who was more than generous with his expertise and precious 

time, and for his countless hours of guidance, reflecting, reading, encouraging, and most of 

all patience throughout the entire process. I will be forever influenced by his incisive ideas. 

This extends to Prof. Len Nokes for all his support. I could not wish for better supervisors. 

I would like to acknowledge and thank the Doppler department for allowing me to conduct 

my research and providing any assistance requested in a professional and comfortable 

environment. Special thanks goes to all members of staff, namely, Mrs. Gillian Sullivin, Dr 

Declan Coleman, for his priceless advice on the technical aspects of texture analysis, and Dr. Paul 

Williams, Rhys Morris and Kate Wells for their assistance on technical aspects of ultrasound. 

This appreciation is extended to Dr. Bidi Hamid, who inspired me with his exceptional work, 

gave me guidance to follow his work and assisted me with the technical aspects of texture 

analysis. 

I would also like to thank Mrs. Sally Davey, the senior product specialists in Toshiba machines 

for her help with ASQ. I would also like to acknowledge Dr. Anju Sinha and Dr. Kenneth Lim for 

their assistance in recruiting the participants and in other clinical aspects of the study. 

Lastly, the financial support of King Saud University in Riyadh, which provided a grant for my 

studies, is gratefully acknowledged. 



iii 

 

Abstract 

Ovarian cancer has the highest mortality rate of all gynaecological cancers and is the 

fifth most common cancer to occur in women in the UK. Amongst various imaging 

modalities, ultrasound is considered the main modality for ovarian cancer triage.  As 

with other imaging modalities, the main issue is that the interpretation of ultrasound 

images is subjective and observer dependent. Texture analysis has been shown to 

have potential in the objective assessment of ovarian cancer in a preliminary study. 

Another form of texture analysis is Acoustic Structure Quantification (ASQ), which 

has been documented to have a number of successful uses in liver diseases. However, it 

has not been applied to ovarian lesions. Therefore, the aim of this study was to assess 

prospectively the diagnostic performance of texture analysis methods such as GLCM, 

Wavelet, and ASQ in discriminating between benign and malignant adnexal masses 

and between different types of benign masses and compare it to widely used scoring 

models. 

Prior to applying ASQ to ovarian images, its reliability and repeatability were first 

evaluated. This includes random variation caused by the ultrasound system and the 

operator during image acquisition.  A tissue-equivalent phantom was used in these tests. 

It was found that the ASQ feature demonstrated excellent repeatability for ASQ 

software, with all transducers showing less than 0.4% variance from the mean: thus, 

ASQ software is able to produce reliable ASQ output measures. When testing the 

factors that may influence the performance of the ASQ analysis, the results revealed 

that three factors do not influence the mean of the output curve: the ROI size, depth 

and gain setting. However, focal position has a significant effect on the mean of the 

output curve.  Transducer frequency does not affect the output curve except when 

using high frequencies such as 8 MHz. Other tests were done to determine the 

appropriate parameters in the software to be used on images of ovarian masses. 

Firstly, ASQ was applied to 45 pelvic masses. The preliminary results showed no 

significant difference between benign and malignant masses using the ASQ 

technique: therefore, the study was terminated due to failure to discriminate the 

benign from the malignant masses using ASQ. 
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Secondly, two types of textural features were investigated in this study: grey-level co-

occurrence matrix (GLCM) and wavelet, as recommended by a preliminary study. A 

sample of 169 masses was collected from participants, of which 140 were benign and 

29 were malignant by histology. In addition to texture features, other widely used 

scoring models were applied on the same images for comparison, namely RMI, PMI 

and ADNEX. 

The results revealed excellent discriminatory ability in both GLCM and wavelet 

between malignant and cystic masses and between benign and cystic masses, with 

AUC of .994 and .895 for GLCM and .894 and .814 for wavelet respectively, as well 

as between normal and malignant tissue, with p >.05 and p=.004 in both GLCM and 

wavelet respectively. 

Results also showed that GLCM outperformed RMI and ADNEX in distinguishing 

between benign and malignant masses, even when dividing the study population into 

pre- and postmenopausal groups. In addition, GLCM has the advantage of being 

objective and not operator dependent. Receiver operating characteristic (ROC) curve 

analysis was carried out to determine the discriminatory ability of textural features, 

which was found to be satisfactory. 

The principal conclusion was that GLCM and wavelet features can potentially be used 

as computer aided diagnosis (CAD) tools to help clinicians in the diagnosis of ovarian 

cancer. 
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1. Introduction  

Ovarian cancer is the second most common gynaecological malignancy; however, it 

remains the leading cause of death among these diseases (Givens et al., 2009). In spite 

of the diagnostic and therapeutic advances in the care of women with ovarian cancer, 

the overall five-year survival rate remains unchanged. The reason for this is that most 

cases are diagnosed in the late stages of the disease, when the five-year survival rates 

falls below 20% (Dutta et al., 2010a).  

CA125 is a commonly used tumour marker to assess ovarian cancer. However, the 

usefulness of this marker is limited due to lack of sensitivity, as it is elevated in only 

50% of patients with stage 1 cancer (Ronco et al., 2011) and has poor specificity 

because it is elevated in numerous benign conditions such as endometriosis, 

adenomyosis and pelvic inflammatory disease, as well as several non-gynaecological 

conditions such as diverticulitis, liver and heart failure, and in cancer of the pancreas, 

breast, bladder and liver (Ronco et al., 2011).  

Researchers have combined ultrasound with CA125 to increase the sensitivity and 

specificity of differentiating between benign and malignant masses. As a result, the 

Risk of Malignancy Index (RMI) was created (Jacobs et al., 1990). It became 

recommended by the Royal College of Obstetricians and Gynaecologists. However, it 

has a sensitivity of 89% and a specificity of 73% (RCOG, 2003). 
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A study in 2005 concluded that ultrasound has a high false-positive rate in the 

differential diagnosis of adnexal malignancies, even with using several scoring 

systems (Guerriero et al., 2005). 

Other researchers have used Doppler to differentiate between benign and malignant 

ovarian masses to improve the specificity of ultrasound. Unfortunately, according to 

most of these studies, this approach does not add significant useful information, with 

a reported accuracy of only 35%- 88% (Kinkel et al., 2000, Gentry-Maharaj and 

Menon, 2012).  

Others have tested the usefulness of using four markers as a combined test for early-

stage ovarian cancer detection and showed a sensitivity and specificity of 91.3% and 

88.5% respectively (Gentry-Maharaj and Menon, 2012). These panels, nevertheless, 

have yet to be validated widely in clinical trials. 

Other preoperative methods to differentiate benign from malignant ovarian masses 

have been developed and tested recently, such as ultrasound contrast agents (Fleischer 

et al., 2012, Dutta et al., 2010a), 3D imaging (Huchon et al., 2012) and using CT 

(Palma et al., 2012) or MRI imaging. However, they all have limitations, including 

limited availability, high cost, difficulty with the identification of small tumour 

deposits, cancer extension and the distinction between benign and pathological lesions 

(Iyer and Lee, 2010, Dutta et al., 2010a). 

In recent years, objective diagnostic methods have been proposed to overcome the 

limitations of subjectivity and operator dependence. However, there is no reliable 
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technique available at present. Hence, a new objective method is desired to address 

the above-mentioned issues which will contribute in patient management. 

Texture analysis is a technique for evaluating the structure within an image. In digital 

imaging, texture analysis is the analysis of the distribution of grey level values across 

the pixels of a given region of interest. The variation in intensity reflects some 

physical variation in the underlying structure, as explained by (Szczypiński et al., 

2009); moreover, the image texture of medical images describes the internal structure 

of human tissue or organs. It can also describe pathological changes (Xian, 2010). The 

texture analysis of ultrasound images relies on the principle that, when disease occurs 

and starts to affect the structure of the tissue, the tissue should reflect a different 

ultrasound signal, which will in turn cause the texture feature to give a different value 

to normal tissue (Morris, 1988) 

Texture analysis techniques have been successfully applied to various types of tissues 

and organs (Michail et al., 2007, Giger et al., 2008), including the carotid artery 

(Coleman et al., 2005), breast (Alacam et al., 2003, Chen et al., 2002, Huang et al., 

2008, Ramaraj and Raghavan, 2011), heart (Vince et al., 2000), thyroid gland 

(Smutek et al., 2003), prostate (Basset et al., 1993), pancreas (Das et al., 2008) and 

liver (Lee et al., 2003, Xian, 2010, Vicas et al., 2011, Kumar et al., 2012). However, it 

has not yet been widely tested on ovarian tissue. 

A preliminary study has demonstrated the usefulness of texture analysis in 

differentiating ovarian lesions (Hamid et al., 2011). Therefore, objective 

differentiation between benign and malignant ovarian tissue through texture analysis 
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on a larger sample would be beneficial by validating the accuracy of the method and 

therefore decreasing the rate of unnecessary surgery. 

This is a prospective cross-sectional study of patients with adnexal masses to validate 

texture analysis as a method of objectively differentiating ovarian lesions to overcome 

the subjectivity and operator-dependent limitations of Ultrasound.  

 

1.1. Research hypothesis 

Based on recent developments in ultrasound imaging, computer technology and 

extensive research on texture analysis with a focus on medical images, it is 

hypothesized that the texture analysis technique can be used to characterize and 

quantify ovarian tissue based on B-mode image texture. 

The motivation for this technique is clear: since the output of texture analysis of an 

image can be expressed numerically, it provides a quantitative means of image 

description, which could help in reducing subjectivity. This technique would also 

overcome the reproducibility issue encountered as a result of the subjective 

interpretation of the image. Combining human skills with results from computers to 

aid diagnosis is expected to improve the overall diagnosis of ovarian masses.  
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1.2. Aims and objectives 
 

Study aims: To assess prospectively the diagnostic performance of texture analysis 

on grey-scale transvaginal ultrasound images in discriminating between benign and 

malignant adnexal tumours and to compare it to other widely used scoring systems. 

The primary end-point is the accuracy of diagnosing ovarian cancer when compared 

with histology. 

The secondary end-point is an attempt to correctly classify the pathology and compare 

the sensitivities and specificities of GLCM and Wavelet tissue characterization 

techniques compared with other widely used diagnostic models. 

 

1.2.1. Objectives:  

In achieving the above aim, the following objectives have been set: 

- To estimate the accuracy of texture analysis in differentiating ovarian lesions 

against histology results. 

- To compare texture analysis performance with other widely used scoring 

systems. 

- To improve the sensitivity and specificity of transvaginal ultrasound in the 

diagnosis of ovarian lesions through objective assessment of the ultrasound 

images. 
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1.3. Thesis structure 
 

This study is divided into two parts. The first part focuses on Acoustic Structural 

Quantification (ASQ). This part can be further divided into four main sections: 

section A will include a definition of the new term followed by background 

information and the phantom study in which repeatability and reproducibility will be 

tested; then, section B will study Influence factors such as ROI size, ROI depth, 

Focus, Gain setting, and frequency on ASQ. Then, in section C, the influence of pre-

defined image parameters on ASQ output will be discussed. Lastly, section D will 

demonstrate the application of ASQ on images of benign and malignant masses.  

 

The second part focuses on texture features and consists of materials and methods 

used in the study, results and figures, a discussion of the main results and then the 

conclusion of the study. 

 

This thesis is structured into six main chapters: 

Chapter 1:  this chapter gives an overview of the whole thesis. 

Chapter 2: this chapter critically evaluates current ultrasonic techniques used to 

diagnose ovarian cancer and related issues. Alternative techniques are also reviewed 

in this chapter. 

Chapter 3: this chapter introduces the utilization of ASQ technique for  identification 

of ovarian cancer tissues. 
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Chapter 4:  this chapter focuses firstly features on explaining two of texture analysis 

methods, namely GLCM and wavelet, then applies these methods to ultrasound 

images of ovarian masses. 

Chapter 5: this chapter contains the general discussion of the study results of both 

ASQ and texture analysis in ovarian cancer early diagnosis. 

Chapter 6:  this chapter provides a summary and conclusion of the study and mentions 

its limitations, as well as recommending possible future work. 
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2. Literature Review 

2.1. Background 

Ovarian cancer is the second most common gynaecological malignancy in the 

developed countries and is the fifth leading cause of death due to cancer among 

women (McDonald et al., 2010, Enakpene et al., 2009, Leitzmann et al., 2009, Jemal 

et al., 2009, Ulusoy et al., 2007, Goff et al., 2007, Varras, 2004, Morgante et al., 

1999). Globally, the average lifetime risk of ovarian cancer is about 1 in 70 women, 

and cancer is seen very rarely before the age of 40 (Loubeyre et al., 2012). 

About 21,290 new cases of ovarian cancer are expected in 2015. Moreover, an 

estimated 14,180 deaths are expected in the USA in 2015. It causes more deaths than 

any other cancer of the female reproductive system. The majority of cases (63%) are 

diagnosed in the late stages, with a five-year survival rate of 27%, in comparison with 

a 72% survival rate when detected in the early stages (American Cancer Society, 

2015). In the European Union, an estimated 44,149 new cases were diagnosed and 

29,770 deaths from ovarian cancer occurred in 2012 (International Agency for 

Research on Cancer, 2012). 

In the United Kingdom, just over 7,000 new ovarian cancer cases are diagnosed every 

year (Cancer Research, 2012). According to Cancer Research UK, of all women 

diagnosed with ovarian cancer, 40% will live at least five years after diagnosis: the 

30% diagnosed with stage I cancer will have a 90% five-year survival rate, while the 

15% diagnosed with late stage cancer will have only a 6% 5-year survival rate 

(Cancer Research, 2012). Ovarian cancer becomes more common with increasing age. 
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Three-quarters of new ovarian cancer cases in the UK are diagnosed in women aged 

55 and over. 

 As can be seen from the above, early diagnosis is a vital factor for prognosis. 

Ultrasound is considered the main imaging modality for ovarian cancer triage (Kinkel 

et al., 2000). However, there is concern about the reproducibility of the diagnosis, 

mainly due to the subjective nature of the interpretation of the images and its 

dependency on the experience of the observer. Other methods of diagnosis are tumour 

marker analysis as well as other imaging modalities such as magnetic resonance 

imaging (MRI) and computed tomography (CT). 

2.1.1. Ovarian cancer  

Normally, normal cells grow and divide to form new cells. When uncontrolled and 

abnormal growth and division of the cells occurs, it causes cancer. A mass of tissue of 

these extra cells will form and is called tumour, which can be benign (non-cancerous) 

or malignant (cancerous). Benign tumours do not invade the tissues around them and 

do not spread to other parts of the body (metastasis). Malignant tumours, however, 

have the ability to invade and destroy other tissues surrounding them. Cancer cells are 

able to metastasise via the blood stream or the lymph system and spread to other parts 

of the body. Ovarian cancer refers to cancer of the ovaries (the female reproductive 

organs). 

2.1.1.1. Ovaries: location and appearance 

 The ovaries are a pair of oval-shaped organs that normally measure 2-4 cm in 

diameter and are located in the pelvis, on each side of the uterus. Two individual 



   

10 

 

functions of the ovaries are: (i) to produce eggs, and (ii) to produce the female 

hormones (oestrogen and progesterone). (See figure 1) 

 

Figure 1: Female Reproductive system 

 

Generally, uterine location influences the position of the ovaries. Normal ovaries are 

usually identified laterally or posterolaterally to the uterus. In cases of retroverted 

uterus, the ovaries tend to be located laterally and superiorly, near the fundus. 

Because of their variable position, superiorly or extremely laterally placed ovaries 

may not be visualised using the Transvaginal approach because they are out of the 

field of view.  

The ovaries are ellipsoid in shape, with their craniocaudal axes paralleling the internal 

iliac vessels, which lie posteriorly and serve as a helpful reference. 

On sonography, the normal ovary has a relatively homogenous echo texture with a 

central more echogenic medulla; well-defined, small anechoic or cystic follicles may 
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be seen peripherally to the cortex. The appearance of the ovaries changes with age 

and with the phase of the menstrual cycle (Rumack, 2005, 2011). 

Because of variability in shape, ovarian volume has been considered the best method 

for determining ovarian size. Volume measurement is based on the formula for the 

prolate ellipse (see equation 1). 

(width × height  × thickness × 0.523) or (d1 ×d2 × d3 ×0.532)                      

Equation 1: Ovarian volume  

Adult measurement of the ovary can be as large as 22 cm
3
. Following menopause, the 

ovary decreases in size with increased age. Due to its smaller size and lack of 

follicles, the postmenopausal ovary may be difficult to visualise sonographically. 

Mean ovarian volume ranges from 1.2 cm
3
 to 5.8 cm

3
. Ovarian volume > 8 cm

3
. is 

definitely considered abnormal (Rumack, 2005). Ovarian  masses can  be classified as 

simple cysts, complex cysts, or solid masses. Simple cysts are typically unilocular of 

any size, echo free and thin-walled. Thin septa (<3mm) may be present. The 

probability that a simple cyst will be malignant in a peri- or postmenopausal woman is 

exceptionally low (<1%) (Ekerhovd et al., 2001, Sharma et al., Published Online 

2011). Complex cysts have echogenic content, papillary formation, thick inner septa 

(>3mm), thick walls and might contain solid components. Even though most complex 

cysts are benign when examined histologically, there are no imaging features that can 

differentiate benign from malignant tissue in these lesions. The presence of a solid 

intracystic area increases the likelihood of malignancy. Solid masses usually raise the 

suspicion of malignancy, particularly when extra-pelvic ascites are present 

(Woodward et al., 2004). 
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Generally, ovarian cancer can develop at any age, yet it is most likely to occur in 

older age, between 40 and 65 years (Crum, 2004, Loubeyre et al., 2012). Serous 

adenoma, mucinous adenoma and Brenner tumours are all examples of benign ovarian 

tumours, whereas serous adenocarcinomas and mucinous adenocarcinomas are 

examples of malignant ovarian tumours which originate from epithelial cells. 

According to (Jeong et al., 2000), epithelial cell origin tumours account for 85% of all 

ovarian cancer cases. Commonly, epithelial tumours occur in peri-menopausal and 

post-menopausal women, with a mean age of 55 years (Russell, 1994). 

2.1.1.2. Ovarian cancer: types 

Ovarian cancer is grouped into three major types according to the tissue of the ovary 

it originated from: (i) epithelial tissue, (ii) germ cell and (iii) sex cord-stromal cell. 

The most common type is epithelial, accounting for 85% of cases. Epithelial tumours 

are rare before puberty. Their frequency increases with age and reaches a maximum at 

60 years of age (Jeong et al., 2000). Germ cell tumours are less common, accounting 

for 5-10% of cases. They usually affect younger women, where the peak incidence is 

in the early 20s. Sex cord-stromal tumours are rare, accounting for only less than 5% 

of the total cases. They can be found in all age groups. Sex cord-stromal tumours 

originate in the connective cells that hold the ovaries together and produce female 

hormones. 

2.1.1.3. Ovarian Cancer: Staging 

Staging describes the extent or spread of cancer to other parts of the body at the time 

of diagnosis. Proper staging is essential in determining the type of therapy, such as 

surgery and chemotherapy planning, and in predicting the survival rate. Several 
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different staging systems are used to classify tumours. The TNM staging system 

developed by the International Union Against Cancer (UICC) and the American Joint 

Committee on Cancer (AJCC) evaluates tumours in three ways: the extent of the 

primary tumour (T), the presence or absence of regional lymph node involvement (N) 

and the presence or absence of distant metastases (M). After the T, N and M 

categories are assigned, they can be further grouped into stages I, II, III or IV, with 

stage I being early and stage IV being advanced disease according to the FIGO 

staging system developed by the International Federation of Gynecology and 

Obstetrics (Fischerova, 2011).  

The document that explains the FIGO ovarian cancer staging is available online at: 

(http://www.figo.org/files/figo-corp/docs/staging_booklet.pdf).  Briefly, the four 

stages of ovarian cancer are as follows and the illustrations are given in figure 2(a) to 

2(d): 

Stage 1: the cancer is limited to one or both ovaries and has not spread to other 

organs.  

Stage 2: the cancer can be found outside of the ovary, but has not spread further than 

the pelvic region (uterus, bladder, lower intestine). 

Stage 3: the cancer is limited to the peritoneal cavity. 

Stage 4: the cancer has spread beyond the abdomen to areas such as the liver, lungs 

and brain. 
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(a) 

 

(b) 

 

(c) 

 

 

(d) 

Figure 2:(a) to 2(d) illustrate the extent of the spread for stage 1 to stage 4 of ovarian cancer (adopted from: 

http://www.cancerresearchuk.org/cancer-help/type/ovarian cancer/treatment/stages-of-cancer ) 

 

http://www.cancerresearchuk.org/cancer-help/type/ovarian%20cancer/treatment/stages-of-cancer
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2.1.1.4. Risk Factors 

Although extensive research has been carried out, the aetiology of ovarian cancer is 

poorly understood. Nevertheless, the two most prominent factors associated with the 

risk of developing ovarian cancer are the increase in age and the presence of certain 

gene mutations. 

Several factors, such as oral contraceptive use, parity and breastfeeding are believed 

to be associated with decreased risk (Permuth-Wey and Sellers, 2009). Body mass 

index (BMI), height, family history of ovarian cancer and prolonged use of 

postmenopausal hormonal therapy (HRT) are associated with increased risk of 

ovarian cancer (Givens et al., 2009, Permuth-Wey and Sellers, 2009, Schouten et al., 

2008, McBee et al., 2007, Olsen et al., 2007, Engeland et al., 2003).  

2.1.1.4.1. Age 

Incidence of ovarian cancer increases with age, with a median age at diagnosis of 63 

years. Over 80% of cases occur after the age of 45 years. Okugawa and colleagues 

studied the relationship between age, histological type and the size of ovarian tumours 

and found that tumours in older patients are more likely to be malignant (Okugawa et 

al., 2001). Moreover, McBee and colleagues considered patient age as the most 

important predictor of whether a mass is likely to be malignant or benign (McBee et 

al., 2007). In addition, more than one-third of cases of ovarian cancer occur in women 

older than 65 years of age (McBee et al., 2007, Varras, 2004).  In women under the 

age of 45 years, the risk that an ovarian mass will be a primary malignancy is only 

one in fifteen (Varras, 2004).  It has been reported that the risk of ovarian cancer 
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increases progressively with age, with a higher risk after the menopause (Givens et 

al., 2009). 

2.1.1.4.2. Family History 

One of the most significant risk factors for ovarian cancer is a family history of breast, 

colon or ovarian cancer, especially if multiple first degree relatives (mother or sister) 

are diagnosed with ovarian cancer. Similarly, women with a previous personal history 

of breast cancer have double the risk of ovarian cancer, and the risk is increased 

nearly four-fold for women diagnosed with breast cancer before the age of 40 

(Permuth-Wey and Sellers, 2009, Givens et al., 2009).  

2.1.1.4.3. Height 

When taking the height of women into account as a risk factor, Schouten et al, ( 2008) 

found in their review of twelve prospective cohort studies from North America and 

Europe that height was not associated with an increased risk of cancer in 

postmenopausal women.  Conversely, a Norwegian cohort of 1.1 million women with 

7,882 cases of ovarian cancer reported a positive association between taller women 

(more than 1.75 m) and ovarian cancer compared with women between 1.60 and 1.64 

m in height (Engeland et al., 2003), and a recent Dutch study had similar results, 

finding a positive association in postmenopausal women between height and risk of 

ovarian cancer (Schouten et al., 2008).  

Gunnell conducted a study explaining that height on its own does not cause cancer but 

possibly acts as an indicator for some other exposure factors such as genetics, energy 

intake in early life and exposure to sex and growth hormones (Gunnell, 2001). This 
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concurred with Engeland and colleagues (2003), who demonstrated that height may 

be a sign that early life situations are interrelated with the risk of cancer.  

2.1.1.4.4. Body Mass Index (BMI) 

Studies that observe a relationship between current BMI and ovarian cancer risk in 

postmenopausal women are questionable. A meta-analysis in 2007 reported a 16% 

increase in risk for overweight women with BMI 25-29.9 kg/m
2
 and a 30% increased 

risk for obese women with BMI ≥30 kg/m
2
 in comparison to normal weight women 

with BMI 18.5-24.9 kg/m
2
 (Olsen et al., 2007).  

The majority of studies have found no relationship between current BMI and 

increased risk of ovarian cancer in postmenopausal women. However, they showed a 

positive correlation of early adulthood high BMI (age 18-20 years) and increased risk 

of ovarian cancer. Their findings suggested that long term, consistent excess weight 

represents a major risk factor for ovarian cancer, especially with no family history of 

ovarian cancer, whereas high BMI with positive family history of ovarian cancer will 

not increase the risk (Leitzmann et al., 2009, Olsen et al., 2008, Lubin et al., 2003, 

Engeland et al., 2003, Rodriguez et al., 2002). This was supported by others, who 

concluded that being overweight or obese in premenopausal years (<50 years) of age 

is associated with an increased risk of ovarian cancer when women become 

postmenopausal (Permuth-Wey and Sellers, 2009). One noteworthy limitation from 

the Leitzmann et al. (2009) study was the limited ethnic/racial diversity of participants 

(Leitzmann et al., 2009). Other studies disagreed with this and concluded that there is 

no association between BMI in early adolescence and the risk of cancer (Permuth-

Wey and Sellers, 2009, Schouten et al., 2008).  
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2.1.1.4.5. Hysterectomy 

Numerous studies have investigated whether hysterectomy or other procedures have 

an effect on the risk of ovarian cancer (Rosenblatt and Thomas, 1996, Green et al., 

1997, Kreiger et al., 1997, Miracle-McMahill et al., 1997, Risch et al., 1994, 

Hankinson et al., 1993). All of them have identified a reduced risk of ovarian cancer 

associated with either hysterectomy or tubal ligation (without oophorectomy). 

Furthermore, tubal ligation has a protective effect on ovarian cancer with an estimated 

reduced risk of between 18% and 70%. Although it is undetermined how these 

procedures reduce the risk of cancer, it has been proposed that the risk of ovarian 

cancer may decrease due to the decrease in blood flow to the ovaries (Permuth-Wey 

and Sellers, 2009).  

2.1.1.4.6. Use of Hormone Replacement Therapy (HRT) 

Hormones such as oestrogens and progesterone are believed to be involved in 

promoting ovarian carcinogenesis (Permuth-Wey and Sellers, 2009).  

A recent study showed an increased risk of ovarian cancer among HRT users. It was 

reported that the risk increased by 30% regardless of duration of use, route of 

administration or type of hormone used, even with a short duration of use (0-4 years) 

(Mørch et al., 2009). In 2009, Permuth-Wey and Sellers illustrated that both current 

and past users of HRT of five or more years had a significantly higher risk compared 

with women who had never used any type of HRT. They concluded that the 

considerable increase in the risk of ovarian cancer was associated with duration rather 

than with status of use. They supported their findings with the UK Million Women 

study results, which found that the incidence of ovarian cancer increased in current 
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HRT users with (prolonged) duration of use but did not differ significantly by type of 

hormone used and that past users were not at increased risk, since the risk diminished 

two years after discontinuing the treatment (Permuth-Wey and Sellers, 2009). Others 

(Greiser et al., 2007) found similar results when available studies were reviewed and 

further determined that the risk is greater in European studies than in North American 

studies.  

Other factors that are alleged to decrease the risk are: 

Parity: the risk of ovarian cancer is lower in women who have children compared to 

women who have never had children (Modan et al., 2001). 

Breastfeeding also reduces the risk of ovarian cancer in women who breastfed, 

compared to those who have never breastfed (Luan et al., 2013). 

Infertility: null gravid women who have been attempting to get pregnant for more than 

five years have an increased risk compared to women who have been trying to 

conceive for less than a year (Rossing et al., 2013). 

Oral contraceptives usage reduces the risk of ovarian cancer. (Modan et al., 2001) 

Web reference: http://info.cancerresearchuk.org/cancerstats/types/ovary/riskfactors/  

2.1.1.5. Symptoms  

According to (Chan and Selman, 2006), the symptoms of ovarian cancer are non-

specific. However, Goff and colleagues studied the possibility of early detection of 

ovarian cancer through the development of an ovarian cancer symptom index. They 

suggested, from their results, that specific symptoms such as abdominal/pelvic pain, 

increased abdominal size/bloating, or difficulty eating/feeling full quickly that are 

http://info.cancerresearchuk.org/cancerstats/types/ovary/riskfactors/
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experienced >12 times per month over a one-year duration should raise the suspicion 

of ovarian cancer (Goff et al., 2007).  This is consistent with a study by Smith et al.  

(2005), who added urinary urgency or frequency to the symptom profile. Other 

studies agreed, such as (Vine et al., 2003) and (Olson et al., 2001), as quoted by 

(Cancer Research, 2012). These studies are in agreement with another (Hamilton et 

al., 2009) which suggested that ovarian cancer should not be called the silent killer 

any longer because of the symptoms mentioned in previous studies. Moreover, their 

study found that there were only minor differences in documented symptoms between 

cases with early and later stages of the disease. 

In another review (McBee et al., 2007) which studied ovarian masses that require 

intervention, it was pointed out that the best predictors of malignant tumours are a 

combination of factors that include patient age, family history, menopausal status, 

symptoms, findings on clinical examination, ultrasound imaging findings and serum 

CA125 level. They listed the symptoms that suggest malignancy in women with 

pelvic mass as abdominal pain/bloating, abnormal vaginal bleeding or discharge, 

change in consistency of stool, decreased appetite, frequent urination, increased 

abdominal girth, nausea or vomiting and significant weight loss. They added that 

other clues could be found on physical examination, such as ascites or upper 

abdominal mass, a mass that is large, firm, irregular or fixed and nodularity on rectal 

examination.  

Evidence shows that to differentiate between women who are experiencing symptoms 

related to ovarian cancer and women who are not, the frequency, persistency, severity 
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and new onset of these symptoms might help (Bankhead et al., 2008, Goff et al., 

2007).   

Other than that, loss of appetite, nausea, lower back pain and shortness of breath may 

also be an indication of ovarian cancer. Nevertheless, it is important to emphasis that 

these symptoms could be due to other diseases. 

In a more recent study in 2012, the author discussed the possibility and the feasibility 

of using computer assisted diagnosis (CAD) to identify the symptoms of ovarian 

cancer by creating a predictive algorithm (Hamilton, 2012). 

2.1.2. Methods of Preoperative Evaluation 

Ovarian cancer is diagnosed at an advanced stage in most patients due to the non-

specific nature of the symptoms and signs of this disease. Several methods have been 

used for the preoperative evaluation of adnexal masses, such as gynaecologic 

examination, blood tests for serum levels of CA-125 (Van Calster et al., 2007), 

imaging procedures such as subjective evaluation of grey-scale and Doppler 

ultrasound findings by an experienced examiner (pattern recognition), CT/ MRI, 

laparoscopy and laparotomy, as well as patient characteristics such as menopausal 

status or age.  

The only way to confirm the diagnosis is to remove a tissue sample form the mass and 

examine it under a microscope: this is called histology (Marshall, 2008, American 

Cancer Society, 2015). 
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Before ultrasound became extensively available, the discovery of a palpable ovary or 

pelvic mass in a postmenopausal woman was considered an indication for surgery 

(Valentin, 2000). Therefore, it is of great importance that the imaging modality has a 

high sensitivity as well as reliable characterization of the lesions to allow accurate and 

consistent diagnosis. This is particularly vital since the symptoms of ovarian cancer 

are non-specific, and the patient management and treatment depend on tumour 

staging. 

2.1.2.1. Tumour markers 

Tumour markers are substances either produced or released by tumour cells or host 

cells, which point out that a tumour is present if identified in serum or other biological 

fluids. Preferably, a marker should be high in both sensitivity and specificity. They 

have the advantage of being non-invasive, quick, widely available and relatively 

cheap (Agarwal et al., 2011, Hellstrom and Hellstrom, 2008). 

2.1.2.1.1. Serum CA125 

CA stands for cancer antigen. CA 125 is a protein that is a so-called tumor marker or 

biomarker, which is a substance that is found in greater concentration in tumor cells 

than in other cells of the body. In particular, CA 125 is present in greater 

concentration in ovarian cancer cells than in other cells. It was first identified in the 

early 1980s. CA 125 is often measured as a blood test (Dong et al., 2008). 

Although CA125 is the most well-known and commonly used serum tumour marker 

in Gynaecology (Moore and MacLaughlan, 2010, McBee et al., 2007, Gadducci et al., 

http://www.medicinenet.com/cancer/article.htm
http://www.medicinenet.com/tumor_grade/article.htm
http://www.medicinenet.com/ovarian_cancer/article.htm
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2004), the role of this biomarker in particular in the diagnosis of ovarian cancer is 

controversial. 

The usefulness of this marker is limited due to lack of sensitivity, as it is elevated in 

only 50% of patients with stage 1 cancer (Ronco et al., 2011) and in 75-90% of 

patients with advanced disease (Moss et al., 2005), as well as having poor specificity 

because it is elevated in numerous benign conditions such as endometriosis, 

adenomyosis and pelvic inflammatory disease as well as several non-gynaecological 

conditions such as diverticulitis, liver and heart failure, pancreatic cancer, and breast, 

bladder and liver cancer (Duffy et al., 2005, Ronco et al., 2011). 

Two studies based on the International Ovarian Tumour Analysis (IOTA) data by 

(Timmerman et al., 2007) and (Van Calster et al., 2007) examined the importance of 

CA125 in comparison with ultrasound, clinical information, and pattern recognition 

respectively. The first study suggested that when combining ultrasound with certain 

clinical information, the addition of serum CA125 level does not improve the 

preoperative classification of a mass or redirect management in either premenopausal 

or postmenopausal women.  

The other study found that pattern recognition by an experienced examiner was 

superior to measuring the level of serum CA125 in differentiating between benign and 

malignant adnexal masses. However, the later study revealed a bias because serum 

CA125 was more likely to be measured in women with suspected malignant masses 

only; moreover, 24% of benign cases did not have a serum CA125 done and were 

diagnosed confidently through pattern recognition alone. These results were agreed in 
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a later study that found that Transvaginal ultrasound done by an expert examiner is 

superior to CA125 analysis in diagnosing ovarian cancer (Alcázar and Guerriero, 

2011). 

Hartman and colleagues carried out a study to assess ultrasound criteria and CA125 as 

predictive variables of ovarian cancer. They described their work as the first study to 

attempt to reproduce the simple rule established by (Timmerman et al., 2008) and 

apply them outside the European centres of the IOTA. They concluded that the simple 

rules allow the correct classification of ovarian masses and added that CA125 

measurement can slightly improve the specificity of ultrasound examination when the 

scan is suggestive of malignancy; however, CA125 measurement should not be used 

alone in diagnosing ovarian tumours (Hartman et al., 2012). 

Moreover, a study commenced by (Givens et al., 2009) suggested that CA125 levels 

should be checked for postmenopausal women with adnexal masses to guide 

treatment options, but should not be used as a screening tool or when a mass is not 

identified. This result was supported later by the recent IOTA recommendation in 

2013 for clinical practice, where measurements of serum CA125 were not necessary 

for the characterization of ovarian pathology in premenopausal women. It also 

showed that measurements of serum CA125 are unlikely to improve the performance 

of experienced ultrasound examiners decision, even in the postmenopausal group 

(Kaijser et al., 2013). 
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2.1.2.1.2. Other Biomarkers 

In a recent study, six different serum markers were tested for their elevation in 

patients with ovarian cancer. This study suggested that human epididymis protein 4 

(HE4) is the best marker for use as a secondary screening test. The HE4 had a higher 

sensitivity in all stages of type 2 ovarian cancer and a lower sensitivity in early stages 

of type 1, including stage 1 and 2, when compared with Transvaginal ultrasound. 

However, these results need to be further validated and confirmed by an independent 

group that the measurement of HE4 outperforms Transvaginal ultrasound as a 

screening test (Urban et al., 2011). Similarly, a study done by Agarwal and 

colleagues, focusing on potential markers for detecting ovarian cancer, found that 

HE4 had a high sensitivity and specificity of 90% and 77.6% respectively. Moreover, 

it possessed the highest sensitivity in detecting stage 1 ovarian cancer, as well as 

fewer false positive results, especially in non-malignant ovarian diseases (Agarwal et 

al., 2011). 

Studies focusing on the potential use of HE4 as a biomarker of ovarian cancer suggest 

that it is elevated in over 50% of ovarian cancer patients with low CA125. In addition, 

HE4 has a greater sensitivity than CA125 in early stage ovarian cancer, as well as 

greater specificity in comparison with benign ovarian masses (Moore and 

MacLaughlan, 2010). Based on these findings, a scoring model was developed by 

Steven Skates and colleagues, called the Risk of Ovarian Malignancy Algorithm 

(ROMA), which uses measurements of CA125 and HE4, combined with menopausal 

status, in order to assign high or low risk of malignancy in women with pelvic mass 

(Moore and MacLaughlan, 2010).  
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Following this, in 2012, a study was commenced to compare CA125, HE4, ROMA 

and RMI in the classification of ovarian masses.  The four methods demonstrated 

similar levels of accuracy in their ability to differentiate adnexal masses, with RMI 

having the lowest sensitivity and HE4 the best overall sensitivity for evaluation of 

malignant tumours (Anton et al., 2012). (RMI will be explained in section 2.1.2.2.1.3. 

Risk of Malignancy Index, later in this chapter) 

More recently, ROMA was evaluated in a prospective, multicentre trial involving 472 

patients and provided a sensitivity of 93.8% and specificity of 74.9%. It performed 

well in premenopausal women, with a sensitivity of 100% and specificity of 74.2%. In 

addition, the study demonstrated a clear benefit of ROMA to ovarian cancer patients 

in terms of mortality and morbidity (Nolen and Lokshin, 2013).  

Another study focused on soluble mesothelin-related proteins (SMRP) and HE4. The 

results showed a comparable sensitivity of HE4 with CA125 but with higher 

specificity. Furthermore, the authors concluded that measuring SMRP and HE4 in 

serum could be useful for patients with ovarian cancer, as they complement CA125 

for diagnosing and monitoring patients. Nevertheless, the need for prospective studies 

to establish the clinical relevance of these findings is obvious (Hellstrom and 

Hellstrom, 2008).  

Another biomarker, called human Kallilrein 10 (hK10), was evaluated for ovarian 

cancer diagnosis and prognosis by (Luo et al., 2003). In this study, it was 

demonstrated that hK10 could identify a significant number of patients who were 

missed when using CA125 analysis alone. Moreover, when combining hK10 with 
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CA125, the achieved sensitivity was 73%, which is superior to hK10 (55%) or CA125 

(60%) alone with the same specificity of 90%. Thus, CA125 and hK10 can be 

combined to increase the diagnostic sensitivity of each of the biomarkers alone (Luo 

et al., 2003). Similarly, another study found that hK10 can be utilized in many 

malignancies but lacks sufficient specificity or sensitivity to be clinically useful when 

used alone (Dutta et al., 2010b). 

Despite recent advances in ovarian cancer biomarkers research, no simple blood test 

with the required sensitivity and specificity has yet been clinically validated (Dutta et 

al., 2010b). This could be explained by the complexity and heterogeneity of ovarian 

cancer. In other words, it is doubtful that a single biomarker will be able to detect all 

subtypes and stages of the disease with high specificity and sensitivity (Gagnon and 

Ye, 2008). 

2.1.2.2. Ultrasound 

Ultrasonography is, at present, the most widely used diagnostic imaging technique for 

the differential diagnosis of adnexal masses. It has been used in medical imaging for 

over half a century (Hangiandreou, 2003), and it is commonly considered as the 

preferred imaging modality in the study of the female pelvis (Derchi et al., 2001). It is 

a non-invasive procedure, with relatively low cost, and is well accepted by most 

women. Visualization of normal ovarian function and ovarian masses has improved 

since the introduction of the transvaginal transducer (Twickler and Moschos, 2010).   

Ultrasound is currently one of the most significant, extensively used, and valuable 

imaging modalities in medicine (Hangiandreou, 2003). According to Kinkel et al. 
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(2000), it is the imaging modality of choice in the evaluation of suspected adnexal 

masses; in addition, ultrasound is the main triage method for ovarian cancer prior to 

treatment. This was supported by a later study by Togashi (Togashi, 2003).  

The main downside of ultrasound is that the accuracy of ultrasound scanning is 

greatly dependent on three variables: operator, equipment and patient. To become an 

ultrasound expert in gynaecology requires extensive practical proficiency, which is 

not acquired easily by every person. To examine patients effectively, a high-end 

ultrasound machine equipped with sensitive Doppler and endocavitary and trans-

abdominal probes are needed. Another significant variable in the accuracy of 

ultrasound is the patient. Although there has been considerable improvement in 

scanning technology, there are nevertheless limitations in some cases such as obese 

patients and postoperative adherent intestinal loops causing acoustic shadowing 

(Fischerova, 2011). 

B-Mode or brightness mode is a two-dimensional ultrasound image display composed 

of bright dots representing the ultrasound echoes. The brightness of each dot is 

determined by the amplitude of the returned echo signal (Rumack, 2005). 

Doppler ultrasound is used to detect the motion of blood. It is based on the concept of 

Doppler shift, which is the change in frequency for a reflector moving relative to the 

source. When reflector is moving toward the transducer waves are closer together 

gives high frequency higher than the transmitted one. The difference between the 

transmitted and the received frequency is called Doppler shift (Horskin, 2010). 
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Ultrasound-based assessment for ovarian mass characterizations can be divided into 

the following techniques: morphologic information, which is based on B-mode 

images, and blood flow information, which is based on Doppler imaging. 

The level of performance of ultrasound examination in ovarian cancer diagnosis has 

been studied and reported to have a wide range. Kinkel et al. (2000), for example, 

reported that the accuracy of ultrasound is 65%- 94% for B-mode ultrasound and 

35%- 88% for colour Doppler flow imaging.  On the other hand, the Royal College of 

Obstetricians and Gynaecologists (RCOG), in its document “Guideline No. 34: 

ovarian cysts in postmenopausal women”, referred to sensitivity of 89% and 

specificity of 73% of ultrasound performance when using a morphology index in 

(DePriest et al., 1994) study (RCOG, 2003) 

(Kinkel et al., 2000) assert that although extensive studies have been done on 

ultrasound techniques and they have been found to be the best means of lesion 

characterization, this approach remains inconclusive. Nevertheless, it has been 

demonstrated that ultrasound techniques that combine grey-scale ultrasound 

morphology assessments with tumour vascularity imaging information (colour 

Doppler flow imaging) in a diagnostic system are significantly better in ovarian lesion 

characterization compared to using power Doppler, colour Doppler flow imaging, or 

grey-scale ultrasound morphologic imaging alone (Kinkel et al., 2000, Togashi, 

2003). 
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2.1.2.2.1. B-mode (brightness-mode) Ultrasound: (see figure 3) 

B-mode ultrasound uses morphological features to diagnose ovarian cancer. These 

features include cystic and solid tumour structure, the presence of septation and 

papillarities. Aletti et al. (2007) proposed that the presence of complex ovarian mass 

with both cystic and solid components and septation are highly suggestive of ovarian 

cancer. Other researchers (Twickler and Moschos, 2010) have found that the 

increased size of the mass is a significant factor in predicting malignancy. More 

recently, Valentin and colleagues confirmed in their study that unilocular adnexal 

cysts with papillation are more difficult to classify as benign or malignant using 

subjective assessment even when an experienced ultrasound examiner performs the 

scan (Valentin et al., 2013). 

 

Figure 3: examples of B-mode images of ovarian tumours. 

 

Although ultrasound findings are an excellent method for discriminating between 

benign and malignant adnexal tumours (Ameye et al., 2009), one of the main 

problems with this approach is that it is highly operator and equipment dependent and 
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therefore subjective (Wang et al., 2002, Shung, 2006). Therefore, the general concern 

in gynaecological ultrasound is the lack of standardized terms and procedures in the 

interpretations of the images (Timmerman, 2000). In order to provide a more 

standardized terminology and procedure, a group of investigators from the 

International Ovarian Tumour Analysis (IOTA) group has produced a paper entitled 

“Terms, definitions and measurements to describe the sonographic features of 

adnexal tumours: a consensus opinion from the International Ovarian Tumour Group 

analysis (IOTA) group” (Timmerman, 2000). Several scoring systems were 

developed to overcome the operator-dependent limitations and to increase the test 

performance, as well as allowing more dependable assessment of inter-observer and 

intra-observer variability and the comparison of results from different centres 

(Alcázar et al., 2003).  According to Van Holsbeke et al. (2009), the main benefit of 

using scoring systems is to provide a helpful tool to allow less experienced ultrasound 

examiners to achieve the same diagnostic performance as an expert. 

A study in China in 2011 showed that the operator’ level of confidence is positively 

associated with diagnostic performance. In addition, the conclusion was made that the 

accuracy of diagnosing ovarian tumours is greatly influenced by working experience 

and confidence score (Haiyan and Min, 2011). 

Numerous studies have shown that the morphological appearance of adnexal masses 

on ultrasound can be used to predict malignancy (Timmerman et al., 2007, Varras, 

2004, Berlanda et al., 2002, Morgante et al., 1999, Ferrazzi et al., 1997, Lerner et al., 

1994). Both Lee and colleagues Lee et al. (2005) and Alcázar et al. (2003) reported 

that when using a morphological scoring systems, less experienced operators who 
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lack the expertise to make subjective assessments of adnexal masses would achieve a 

higher diagnostic accuracy that is comparable with the results of more experienced 

examiners.  

A more recent prospective study (Alcazar et al., 2008) which included both pre- and 

post-menopausal asymptomatic women with adnexal masses found that an ultrasound 

scoring system provided good results with sensitivity and specificity of 95% in both 

of them, which was similar to previous reports (Guerriero et al., 2005, Berlanda et al., 

2002), confirming that ultrasound-based triage is an excellent method of classifying 

adnexal masses. However, the scoring system misclassified adnexal masses when 

tumour size was > 10 cm, thus limiting its accuracy for large tumours. Alcàzar (2008) 

concluded that even in highly skilled hands, when using grey scale and Doppler 

ultrasound triage, a false-positive rate of 5-10% has to be anticipated in discriminating 

benign from malignant adnexal masses. Furthermore, the false-positive rate in using 

an ultrasound-based scoring system in the largest multicentre study was 24%. This 

was supported by Sokalaska et. al., which demonstrated that, even in the hands of an 

experienced examiner, it was not possible to make a conclusive diagnosis in adnexal 

pathology using subjective evaluation of grey-scale and Doppler ultrasound (Sokalska 

et al., 2009). 

A study commenced in 2008 by Timmerman and colleagues (Timmerman et al., 

2008) has been described as the largest study to analyse the ultrasound features of 

benign and malignant adnexal masses. They introduced a simple rule for describing 

adnexal masses, consisting of five ultrasound features of malignancy (M-features) and 
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five ultrasound features suggestive of benign mass (B-features). These features are 

presented in Table 1. 

  

A mass is classified as malignant if at least one M-feature and none of the B-features 

are present, and vice versa. If no B- or M-features are present, or if both B- and M-

features are present, then the rules are considered inconclusive (unclassifiable mass) 

and a different diagnostic method should be used. They found that to accurately 

determine the nature of an adnexal mass, subjective impression of the ultrasound 

morphology can be used. They agreed with previous studies (Modesitt et al., 2003) in 

that unilocular adnexal cysts have a very low risk of malignancy and that any other 

morphological appearance was associated with an increased risk of malignancy. 

However, a significant limitation to this study was that this rule cannot be applied to 

nearly 25% of tumours, since not all masses will present features clearly predictive of 

benignity or malignancy. The rule worked well for advanced invasive malignancies, 

but not for stage I borderline tumours and stage I primary invasive malignancies 

(Timmerman et al., 2008). In other words, it was applicable to tumours that were 

easily classifiable using operator pattern recognition but less apparent in more 

difficult tumours. Therefore, their results were incomplete.  

Later, in 2013, Alcázar and colleagues commenced an external validation of the IOTA 

simple rule in a prospective study for which ultrasound scanning was performed by 

non-expert examiners. They concluded that the IOTA simple rule are undeniably 

simple, easy to learn and user friendly; additionally, their data yielded acceptable 
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results in terms of specificity (97.5%) in the hands of non-expert examiners. 

However, there was a 12% false-positive rate, which is relatively high, where 4 of 33 

(12%) malignant masses were misdiagnosed as benign. This could be concerning if 

the simple rules were applied to triage for conservative management (Alcázar et al., 

2013b). 

B-features M-features 

B1: Unilocular cyst M1: Irregular solid tumour 

B2: Presence of solid components with 

largest diameter <7 mm 

M2: Presence of ascites 

B3: Presence of acoustic shadows M3: At least four papillary structures 

B4: Smooth multilocular tumour, with largest 

diameter <100 mm 

M4: Irregular multilocular solid tumour with 

largest diameter ≥ 100 mm 

B5: No blood flow (colour score 1) M5: Very strong blood flow (colour score 4) 

Table 1: Ultrasound features used in the International Ovarian Tumour Analysis (IOTA) simple rules. 

 

 2.1.2.2.1.1. Sassone Scoring System (see Table 2) 

Sassone and colleagues (Sassone et al., 1991) devised a scoring system to characterize 

ovarian lesions using traditional grey-scale transvaginal ultrasonography relating 

ovarian morphology directly to risk of malignancy. It assigned a numeric value to 
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specific morphologic criteria, including inner wall structure, wall thickness, septal 

structure and echogenicity. The total score varies between 4 and 15, with a threshold 

value of 9 used to distinguish benign from malignant tumours. The researchers 

applied this scoring system in 143 women undergoing surgery for clinically detected 

pelvic masses, 20 of whom had ovarian malignancy. Using a score of ≥ 9 as indicative 

of cancer, the Sassone scoring was able to distinguish benign from malignant lesions 

with a sensitivity of 100%, specificity of 83%, positive predictive value (PPV) of 37% 

and negative predictive value (NPV) of 100%.  

       

Table 2: The original Sassone scoring system for adnexal masses (Sassone et al., 1991) 

 

Ferrazzi et al. (1997) agreed with this finding and added that it has the advantage of 

being more descriptive and helpful for routine examination. Sassone’s model was 

described by Geomini et al. (2009) as the most frequently validated scoring system. 

Furthermore, it has been reported and validated in numerous recent studies (Rossi et 

al., 2011, Geomini et al., 2009, Tempe et al., 2006, Alcázar et al., 2003, Mol et al., 

Value
Inner Wall 

Structure

Wall Thickness 

(mm)
Septa (mm) Echogenicity

1 Smooth Thin ≤3 mm No septa Sonolucent

2 Irregular ≤3 mm Thick >3 mm Thin ≤3 mm Low echogenicity

3
Papillaries >3 

mm

Not applicable, 

mostly solid
Thick >3 mm

Low echogenicity with 

echogenic core

4
Not applicable, 

mostly solid
Mixed echogenicity

5 High echogenicity
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2001, Buckshee et al., 1998). However, several other studies that used Sassone 

scoring were excluded from the current study because the articles were published in 

languages other than English. 

 2.1.2.2.1.2. DePriest Scoring System (Kentucky score, see 

table 3) 

Another similar scoring method was the morphology index described by DePriest et 

al. (1993). This index was based on tumour volume, wall structure and septal 

structure. A five-point scale (0-4) was developed within each category for specific 

criteria with the total points per evaluation varying from 0 to 12. Using a morphology 

index score of ≥ 5 as indicative of malignancy. In this study, this system had 

sensitivity of 89%, specificity of 73%, PPV of 46%, and NPV of 96% in 

postmenopausal women. The most reliable morphologic criterion in differentiating 

ovarian cancer from benign lesions was the wall structure (Varras, 2004, Geomini et 

al., 2009). 

  

Table 3: The DePriest scoring system (DePriest et al., 1993) 

 

Category 0 1 2 3 4

Volume <10 cm
3

10-50 cm
3

>50-200 cm
3

>200-500 cm
3

>500 cm
3

Cyst Wall 

Structure

Smooth <3 mm 

Thickness

Smooth  >3 

mm Thickness

Papillary Projection   

<3 mm

Papillary Projection 

≥3 mm

Predominantly 

Solid

Septa 

Structure
No Septal

Thin Septal <3 

mm

Thick Septal 3-10 

mm
Solid Area ≥10 mm

Predominantly 

Solid
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In 2003, Ueland and his colleagues (Ueland et al., 2003) demonstrated that De Priest’s 

Kentucky scoring system was an accurate and inexpensive method for distinguishing 

benign from malignant tumours. They explained that its only limitation was that the 

index was subject to interobserver variation.  

Similar to Sassone, many groups have validated and compared the Kentucky scoring 

system with other scoring systems (Lee et al., 2005, Varras, 2004, Ueland et al., 2003, 

Van Nagell Jr and Ueland, 1999, Ferrazzi et al., 1997).  

Although the use of a scoring system helps to improve test performance, the existence 

of multiple scoring systems may pose problems in clinical practice, mainly because 

there are too many of them and some of the parameters to be considered are often 

very complex. 

 2.1.2.2.1.3. Risk of Malignancy Index (see equation 2)  

To improve the preoperative assessment of adnexal masses, most of these parameters 

(menopausal status, ultrasound findings and serum CA125) have been combined into 

diagnostic models. Such models have been developed to guide clinicians to identify 

patients with pelvic masses who are likely to have ovarian cancer. Risk of Malignancy 

Index (RMI)  is a useful way of triaging women into low, moderate and high risk of 

malignancy (RCOG, 2003),which has been evaluated in numerous primary studies. 

Jacobs and colleagues developed the Risk of Malignancy Index (RMI) for referral of 

relevant women to gynaecologic oncologic centres (Jacobs et al., 1990) based on 

transabdominal ultrasound scan. Since then, various versions of the Risk of 

Malignancy Index have been published. However, the most commonly used version 
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in the UK is that published by the royal college of obstetricians and gynaecologists in 

October 2003 (RCOG, 2003) 

RMI= U x M x CA125    

  Equation 2: RMI model 

Where, U is an ultrasound score, and M is manoposal status, and the serum level of 

CA125 was applied directly to the formula. 

 

Each of the following grey-scale morphological features was given one point when 

present: bilateral lesions, multilocular lesions, solid areas, intra-abdominal metastases 

and ascites. If the sum of these points was 0, an ultrasound score U=0 was given, 

while a sum of 1 point an ultrasound score U=1, and a score of U=3 was given when 

the sum of ultrasound points ≥2 (Jacobs et al., 1990, Yazbek et al., 2006).  

 

RMI < 25 

RMI 

between  25 - 250 

RMI > 250 

 

Low Risk < 3% Moderate Risk 20% High Risk 75% 

 

Table 4: RMI categories as illustrated by (Prys Davies et al., 1993) 

 

M is menopausal status, where Premenopausal status yielded M = 1 and 

postmenopausal status yielded M = 3. 

 

The RMI was the first diagnostic model that combined demographics, sonographic 

and biochemical data in the assessment of women with adnexal masses. It provides a 

quantitative assessment of the risk of malignancy and can be used to differentiate 
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between benign and malignant lesions. At a cut-off level of 200, the sensitivity is 85% 

and the specificity is 97%.  

The main advantages of the RMI in comparison with others are that it is a simple 

scoring system and a reliable, cheap, convenient and cost-effective method of 

preoperative discrimination between benign and malignant adnexal masses (van den 

Akker et al., 2010, Harry et al., 2009, Chia et al., 2008, Bailey et al., 2006, Andersen 

et al., 2003, Tingulstad et al., 1999, Jacobs et al., 1990). 

It is worth noting that one of the issues of the RMI is that it is dependent on serum 

CA125, which is a non-specific marker for ovarian cancer: hence, it can lead to 

unnecessary surgical intervention (Ortashi, 2008). 

Yazbek and colleagues (Yazbek et al., 2006) used the same cut-off value in their 

prospective observational study. In addition, they combined the RMI with another test 

called the Ovarian Crescent Sign (OCS) to diagnose ovarian malignancy. They 

concluded that both RMI and OCS are useful tests to discriminate between invasive 

and non-invasive ovarian tumours.  

Tingulstad (1996) introduced RMI II by modifying the RMI scoring system described 

by Jacobs and re-evaluated its ability to differentiate benign from malignant ovarian 

lesions by utilizing Transvaginal instead of Transabdominal ultrasound, adjusting the 

ultrasound score to U=1 if no or one abnormality was seen rather than U= 0 for no 

abnormality. The reason for this was that Jacobs did not consider the value of serum 

CA125 level or the menopausal status in the case of no abnormality detected on 
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ultrasound with U = 0, will result in RMI =0, regardless of the other parameters 

(Tingulstad et al., 1996).  

Both RMI I and RMI II have been studied extensively in recent years and have been 

validated  retrospectively and prospectively in numerous clinical studies where a cut-

off value of 200 showed the best discrimination between benign and malignant 

adnexal masses, with high sensitivity 51-90% and specificity 51-97% levels (van den 

Akker et al., 2010, Lou et al., 2010, Geomini et al., 2009, Enakpene et al., 2009, 

Moolthiya et al., 2009, Harry et al., 2009, Ulusoy et al., 2007, Manjunath et al., 2001, 

Morgante et al., 1999).  

Another study compared the accuracy of RMI I and RMI II, finding that RMI II is 

more sensitive than RMI I with higher specificity of 89% to 92%. In addition, it 

recommended the use of the RMI II scoring system due to its simplicity and 

reproducibility (Le et al., 2009). 

Although two recent studies (Akdeniz et al., 2009, Moolthiya et al., 2009) agreed with 

the previous ones, they were excluded from this project because of the misuse of RMI 

I and RMI II. In the first study, the author applied an incorrect scoring for calculating 

the RMI, as he gave a score of U= 1 if no or one ultrasound feature was detected and a 

score of U= 3 if two or more of these features were detected, as well as giving a score 

of 2 for postmenopausal status instead of 3, which does not correspond to any of the 

RMI versions. The other study was excluded because the authors were trying to study 

the difference between RMI I and RMI II, except that they failed to identify the RMI 
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II correctly; they gave a score of U=0 for no features detected on ultrasound instead of 

U=1.  

In 1999, Tingulstad further modified the RMI II by combining the ultrasound score of 

zero or one to give U=1, whereas for two or more features, U=3 was used in the 

equation. This was described as RMI III, and had a sensitivity of 78% and specificity 

of 92%. The authors concluded that RMI III was the ideal scoring system for referral 

of women with suspected malignant pelvic masses (Tingulstad et al., 1999).  

A more recent study (Kader Ali Mohan et al., 2010),  undertaken in an Australian 

population, compared the performance of all three versions of RMI (I, II and III) and 

reported that the best results were obtained with RMI II, which had 79% sensitivity 

and 88% specificity, compared to 71% sensitivity and 89% specificity for RMI I and 

RMI III, respectively. The authors also concluded that no statistical differences were 

observed in sensitivity and specificity values between the three versions of RMI. 

Similar results were found in a previous study by (Clarke et al., 2009). 

Another study (Yamamoto et al., 2009) described a fourth RMI model (RMI 4) with 

the addition of tumour size score (S) as a fourth parameter. RMI 4 = U x M x S x 

CA125, where a total ultrasound score of 0 or 1 yielded U = 1, and a score of 2 

yielded U = 4. Premenopausal status yielded M = 1 and postmenopausal status 

yielded M = 4. A tumour size (single greatest diameter) of < 7 cm yielded S = 1, and 

≥ 7 cm yielded S= 2. The authors compared the performance of RMI 4 with the 

previous three versions and concluded that RMI 4 was more reliable in discriminating 

malignant tumours from benign than RMI I, II or III when a cut-off value of 450 was 
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used. Nevertheless, due to the retrospective nature of the study, RMI 4 requires 

further validation with a prospective study (Yamamoto et al., 2009).  

It has been recommended that a cut-off value of 200 is to be used for the RMI I in 

District General hospitals and health centres to increase referral to tertiary centres, 

and a cut-off value of 250 in specialized centres to maximize specificity and decrease 

false positives, thus reducing the number of interventions (Enakpene et al., 2009, Chia 

et al., 2008).  

It is documented that scoring systems are beneficial in estimating the risk of 

malignancy in adnexal mass; however, they perform less well when they are used by 

inexperienced examiners compared to experts, as concluded by Van Holsbeke et al. 

(2009).  

In 2011, an evidence review was published for NICE (National Institute for Health 

and Care Excellence) by the National Collaboration Centre for Cancer with the title of 

'Ovarian Cancer: the Recognition and Initial Management of Ovarian Cancer'. The 

recommendation was made in this review to use the RMI I as a malignancy index for 

women with suspected ovarian cancer based on the findings of the recent systematic 

review of diagnostic studies, which indicated that RMI I was superior in term of 

sensitivity and specificity to other comparators (Geomini et al., 2009) (NICE, 2011). 

To summarise, scoring systems still suffer limitation of subjectivity. This is supported 

by the finding of the recent IOTA study, which recommended that simple rule should 

be used as the principal test to characterize masses as benign or malignant in 
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premenopausal women because they perform superiorly to RMI in this particular 

group (Kaijser et al., 2013). 

2.1.2.2.1.4. PMI (Pelvic Mass Index) 

This scoring system combines transvaginal ultrasonography with Doppler; it is 

independent of CA125. PMI assesses grey scale features such as size, laterality, 

presence of solid elements, septae and free fluid, all scoring one point each. The 

presence or absence of positive blood flow on Doppler ultrasound within the septa 

and/or solid component scores 2 points or -2 accordingly. Peripheral blood flow 

within ovarian stroma is not considered significant. The maximum score is 7 and the 

minimum is -2. Scores between -2 and 0 are considered low risk, scores between 1 

and 2 intermediate and scores of greater than 3 are associated with high risk of 

malignancy. Sinha A. et al. (2015) aimed to validate the accuracy of PMI by 

comparing it to the RMI in a large patient cohort. They used 1,486 patients in a 

retrospective study over a seven-year period in a dedicated pelvic masses clinic in 

Wales. The authors explained that PMI is a fast way of estimating the risk of 

malignancy that leads to an accurate and reproducible diagnosis of the mass. They 

concluded that PMI is a useful tool in triaging patients with suspicious ovarian masses 

due to its high sensitivity (90.4%) and NPV (96.9%). When compared to RMI, it 

significantly outperforms RMI in diagnosing malignancy (AUC 0.823 vs. 0.770 

respectively: (Sinha A et al., 2015) 

2.1.2.2.1.5. ADNEX model 

Recently the IOTA group developed a new model called the ADNEX model (the 

Assessment of Different NEoplasias in the adneXa). This model contains three 
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clinical and six ultrasound predictors: age, serum CA125 level, type of centre 

(oncology centres vs. other hospitals), maximum diameter of lesion, proportion of 

solid tissue, more than ten cyst locules, number of papillary projections, acoustic 

shadows, and ascites. Their aim was to develop a risk prediction model to 

preoperatively distinguish between benign, borderline, stage 1 invasive, stage 2 to 4 

invasive, and secondary metastatic ovarian tumours. This huge study was performed 

in twenty-four ultrasound centres in ten different countries with a total of 5,909 

patients (Van Calster et al., 2014). 

Their final ADNEX model is available online at (www.iotagroup.org/adnexmodel/). 

This application has the advantage of calculating the risk even if the serum CA125 

level information is unavailable, despite the decrease in performance. It was found 

that the ADNEX model has the potential to optimize management of women with 

adnexal masses in addition to offering excellent discrimination between benign and 

malignant masses, as alleged by (Van Calster et al., 2014). Moreover, the study 

showed that the proportion of solid tissue and serum CA125 level were the strongest 

predictors, while the type of centre was the weakest predictor, indicating that other 

predictors were determining the malignancy rate. However, in this study, the 

histology results were obtained in all masses because the model was based on patients 

who were selected for surgery, and therefore, the test performance could decrease if 

applied to tumours which were managed expectantly.  

http://www.iotagroup.org/adnexmodel/
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2.1.2.2.2. Three-dimensional ultrasound 

Three-dimensional (3D) ultrasound was first used in 1989. In gynaecological imaging, 

the advantage of 3D over 2D ultrasound is that it improves the ability to visualize 

complex 3D structures (Prager et al., 2010). 

According to (Kurjak et al., 2000a), three-dimensional display allows the operator to 

visualize many overlapping vessels easily and quickly as well as to assess their 

relationship to other vessels or surrounding tissues. It permits viewing of the 

structures in three dimensions interactively, rather than having to assemble the 

sectional images in the operator’s mind.  

(Kurjak et al., 2003) alleged that 3D sonography, when combined with 3D power 

Doppler, can significantly improve diagnostic accuracy in the assessment of suspected 

ovarian lesions, and supported their conclusion by citing previous studies 

demonstrating that 3D volume acquisition allows for careful evaluation of the internal 

surfaces of the cyst walls for outgrowths not seen by 2D technology (Bonilla-Musoles 

et al., 1995, Merz, 1999). 

Another study that concurred with these findings found that evaluation with 3D 

ultrasound and 3D power Doppler can improve the diagnostic accuracy of ovarian 

tumours, where they had sensitivity of 90%, specificity of 89% and accuracy of 88% 

for prediction of ovarian malignancy when using 3D ultrasound (Laban et al., 2007). 

In contrast, in the most recent review of three-dimensional ultrasound in 

gynaecological clinical practice, Alcazar disclosed that this technique is affected by 

some factors such as machine settings and attenuation, where there is a needs for 
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standardization.  Therefore, it cannot yet be introduced into general practice. In 

addition, the author claims that there is a lack of robust data to support routine use of 

3D ultrasound (Alcázar et al., 2012).  

According to Wu and his colleagues, in their recent review to evaluate the present 

status and development of 3D ultrasonography in imaging the ovary, the three 

dimensions imaging improve spatial orientation and access multiplanar views, which 

provide additional information that can detect lesions not easily diagnosed by two-

dimensional ultrasound. Moreover, they added that 3D ultrasound is a reproducible 

technique that improves the diagnostic accuracy for assessing ovarian cancer. 

However, it still needs more experience in training and operating than 2D ultrasound 

(Wu et al., 2012).  

The role of 3D ultrasound in adnexal pathology is controversial and further research is 

needed in these areas to explore more potential uses of 3D ultrasound, as asserted by 

(Alcázar et al., 2012) and (Wu et al., 2012). 

   2.1.2.2.3. Contrast Ultrasound  

In 2009, a study was conducted to examine the efficiency of intravenous contrast 

ultrasound called SonoVue to discriminate between benign and malignant adnexal 

masses. The authors concluded that ultrasound contrast examination is not superior to 

B-mode ultrasound techniques. Although SonoVue is a safe drug, it is rather 

expensive and the technique involves an intravenous injection. Furthermore, the 

acquisition of the information from the ultrasound image is difficult and the analysis 

is time-consuming, as asserted by the researchers, which makes this technique 
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impractical to use in differentiating benign from malignant masses (Testa et al., 

2009). 

2.1.2.2.4. Doppler 

The Doppler effect enables ultrasound to be used to detect the motion of blood 

(Horskin, 2010). Doppler ultrasound has been used in medicine for almost forty years 

(Boote, 2003). It is used to measure blood velocity by means of Doppler frequency 

shift of the echoes received from red blood cells and allows the assessment of tumour 

vascularity (Rubin, 1994). The concept of Doppler is that malignant neoplasms have 

active blood vessel creation (angiogenesis) compared to normal or benign neoplasms. 

Benign lesions tend to form new tumour blood vessels peripherally from pre-existing 

blood vessels, whereas malignant tumours tend to form new tumour blood vessels 

centrally, as explained by (Jeong et al., 2000). 

There is conflicting evidence as to whether adding colour Doppler imaging to 

ultrasound screening can reduce the rate of false positive test results or not (Tate et 

al., 2010). This is due to two issues that arise from colour Doppler ultrasound: first, 

the assessments are subjective, and second, the assessments depend on the quality of 

the equipment and the settings used (Timmerman, 2000). 

Studies by Guerriero (2001, 1998) focused on the benefits of colour and power 

Doppler imaging to diagnose ovarian cancer. The earlier study explained that 

malignancy is suspected by power Doppler when arterial flow is visualized in an 

echogenic portion of a mass, unlike benign masses that have no similar arterial flow 

or when flow is seen only at the wall of the mass. It was concluded from that study 
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that power Doppler is helpful when B-mode is indecisive and that it could reduce the 

number of false positives and thus increase the diagnostic accuracy in atypical cases.  

In the later study, it was recommended that at least one of the two Doppler techniques 

(conventional or power) should be used in conjunction with B-mode imaging as a 

secondary test (Guerriero et al., 2001, Guerriero et al., 1998).  

A later study by (Tempe et al., 2006) examined the usefulness of colour Doppler in 

the preoperative assessment of ovarian tumours. They concluded that the overall 

effectiveness in diagnosing the type of lesion is enhanced when adding colour 

Doppler to ovarian morphology data.  

All the studies on colour Doppler imaging revealed a significant overlap in Doppler 

flow indices between benign and malignant ovarian tumours (Alcázar et al., 2003, 

Ueland et al., 2003, Van Nagell Jr and Ueland, 1999, Guerriero et al., 1998). 

Furthermore, Ueland (2003) concluded that the addition of Doppler flow studies did 

not improve the diagnostic accuracy of the morphologic index.  

In 2007, a book was published with a chapter titled: Ultrasound in ovarian carcinoma, 

in which the author discussed the performance of ultrasound in detecting 

malignancies based on morphological features and concluded that combining 

morphological and Doppler ultrasound assessment produces an ideal first imaging test 

for possible ovarian malignancies. However, the lower specificity of ultrasound 

requires further imaging evaluation, such as MRI, in patients where ultrasound is 

inconclusive (Webb, 2007).  
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2.1.2.2.4.1. Doppler indices 

In Doppler arterial resistance techniques (Doppler signal analysis), a threshold value 

is used to characterise the mass. Parameters such as Pulsatility index (PI), resistive 

index (RI), and peak systolic velocity (PSV) have been used.  A recent systematic 

review of the accuracy of ultrasonography with colour Doppler in ovarian tumours 

(Medeiros et al., 2009), showed that Doppler can detect malignancy or borderline 

lesions when RI is below 0.5 with a sensitivity of 87% and specificity of 90%. The 

authors concluded that Doppler is a useful preoperative test for predicting the 

diagnosis of pelvic masses and supported an earlier study (Kurjak and Predanic, 

1993), which reported that the presence of vessels in the central, septal, or papillary 

projections, in conjunction with a diffuse vascular arrangement, and RI of less than 

0.4, indicated that the mass was expected to be malignant. A possible limitation of 

this systematic review is the potential bias could be claimed due to all trials included 

were retrospective and there was a lack of blinding in their assessment.  

These results were in agreement with another study (Erdogan et al., 2005) using 

Doppler ultrasound assessment in the diagnosis of ovarian tumours which showed that 

detection of Doppler signals in a solid component offered a precise preoperative 

method to differentiate between benign and malignant ovarian masses.  

The major limitation of RI, PI and PSV is that the range of observed measurements in 

malignant masses overlaps with that observed in benign masses (Kurjak et al., 2003, 

Myers ER. et al., 2006). Therefore, Valentin et al. (1994) described Doppler as an 

impractical approach for diagnosing ovarian cancer from a clinical point of view. This 

argument is supported by another study (Laban et al., 2007), which concluded that RI 

measurements cannot be used alone for the detection of malignant ovarian tumours.  
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Furthermore, the authors explained that the reason for this is that there is considerable 

overlap between the RI measurements of benign and malignant ovarian masses. In 

addition, the overlap in RI range value between benign and malignant masses limits 

the efficiency of the application of threshold values: thus, cut-off values are not used. 

 

Jeong et al. (2000) explained in their study that a comparison of different studies 

shows that no standard has been set concerning which Doppler index to use or what 

cut-off value is most appropriate. However, they found from previous literature that 

resistive indexes (RI) less than 0.4 and pulsatility indexes (PI) less than 1.0 are 

generally considered to be suspicious for malignancy. Additionally, the authors 

disclosed the problems that are associated with Doppler ultrasound, which include 

operator dependence and lack of standard criteria in distinguishing benign from 

malignant waveforms. Moreover, certain Doppler indexes can be misleading in 

premenopausal women due to physiologic alteration in the ovary during the menstrual 

cycle that cause lowered blood vessel resistance, thereby mimicking malignancy. 

2.1.2.2.4.2. Three-dimensional Doppler 

A new technique of Doppler ultrasound provides three-dimensional (3D) imaging. 

Three-dimensional ultrasound was first used in 1989 (Prager et al., 2010). Three-

dimensional ultrasound utilizes the real-time capability of ultrasound to build a 

volume that can be constructed using high-performance work stations. (Hamid et al., 

2011, Nelson, 2006). 
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To date, not enough information has been presented to determine whether 3D imaging 

of the adnexa adds significant information that is not available from conventional 

two-dimensional (2D) scanning (Benacerraf, 2008). 

There are studies reporting that 3D power Doppler ultrasound may be useful for 

distinguishing benign from malignant ovarian tumours (Kurjak et al., 2003, Alcázar et 

al., 2005, Testa et al., 2005, Alcázar and Castillo, 2005). For example, Kurjak and 

colleagues claimed in their study that 3D power Doppler, when combined with the use 

of 3D sonography, will significantly improve the diagnostic accuracy of detecting 

stage 1 ovarian cancer, and supported their conclusion by citing evidence from a 

previous study conducted by (Cohen et al., 2001), which reported that 3D power 

Doppler better defines the morphological and vascular characteristics of ovarian 

lesions.  Another study supported these finding and disclosed that the accuracy of 

diagnosing suspected ovarian lesions is significantly enhanced when using 3D 

ultrasound in combination with 3D power Doppler, and that this approach provides 

better visualization of tumour vascularity and could significantly improve the 

diagnostic accuracy in preoperative sonographic assessment in suspected ovarian 

lesions (Laban et al., 2007). 

Alcazar studied tumour vascularity using 3D power Doppler in the early and 

advanced stages of ovarian cancer and found in his preliminary results that 

vascularization is higher in advanced stage and metastatic ovarian cancer than in the 

early stages (Alcázar, 2006). 
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In a previous group of studies in 1999, the researcher and his colleagues found that 

3D power Doppler imaging can detect structural abnormalities of malignant tumour 

vessels, such as arteriovenous shunts. Therefore, it improves and facilitates the 

morphological and functional evaluation of benign as well as malignant pelvic 

tumours (Kurjak and Kupešić, 1999, Kurjak et al., 2000a, Kurjak et al., 2000b). Later, 

the same group of researchers demonstrated the ability of 3D Doppler ultrasound to 

perform as a secondary test in screening for ovarian cancer and described it as a novel 

approach for early detection of ovarian cancer (Kurjak et al., 2005). 

Other studies suggested the need for further research (Alcázar, 2006, Rieck et al., 

2006) and that it should be used as an adjunct to morphologic assessment (Wilson et 

al., 2006). Although Fishman et. al. (2001) stated that the clinical value of 3D 

ultrasound is promising for early detection of ovarian carcinoma and need to be 

investigated deeply, Dai et al. (2008) concluded that it did not improve the diagnostic 

accuracy for the prediction of malignancy in adnexal masses. Moreover, they further 

highlighted that 2D transvaginal sonography may still remain an important modality 

for the prediction of adnexal malignancy. In a preliminary study on 3D analysis of the 

vascularization of solid masses in the adnexal area, the authors justified the purpose of 

the study by citing the inaccuracy of 2D B-mode and colour/power Doppler to 

differentiate between benign and malignant tumours. They concluded that 3D 

quantitative analysis did not significantly improve the accuracy appreciated by 2D 

Doppler imaging (Testa et al., 2005). 

 In addition, Jokubkiene et al. (2007) found that objective quantification of colour 

signals of the tumour using 3D ultrasound did not appear to add more to B-mode 
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imaging when compared to subjective quantification using 2D power Doppler 

ultrasound. In a recent review, Alcázar and Jurado (2011) determined that additional 

studies are necessary to establish the role of 3D ultrasound in clinical practice in 

gynaecological oncology.   

2.1.2.3. CT imaging 
 

CT has several advantages: it is widely available and can be done rapidly and easily. 

Moreover, CT of the abdomen or pelvis allows comprehensive evaluation of all 

possible sites of the primary tumour. This modality has a major advantage over US 

and MRI imaging, as it allows oral contrast agents to mark the bowel and help 

differentiate bowel from peritoneal implants. Therefore, CT is a very attractive 

method for evaluating the spread of the disease in women with adnexal malignancy. 

Nevertheless, available studies have not proven that CT is significantly superior to 

other modalities in staging ovarian malignancy.  

Jeong et al. (2000) pointed out that many studies have revealed that CT is neither 

sensitive enough nor specific enough to replace laparotomy and that the largest study 

to date comparing US, CT and MRI in the staging of ovarian cancer demonstrated 

little difference between the modalities (Kurtz et al., 1999). 

In contrast, a recent study demonstrated a higher sensitivity and specificity (79.2%, 

91.6%) when compared to transvaginal ultrasound (51.9%, 87.9%) respectively 

(Firoozabadi et al., 2011). However, this study has some pitfalls: for example, the 

examination and interpretation of the scans were carried out by different people, but 

their level of experience was not mentioned, and the sample size was relatively small 

(139 patients) compared to other similar studies.  
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Another study described CT and MRI as complementary imaging techniques and 

further explained that they can be used as an adjunct to ultrasound in specific cases 

but cannot be used as a first imaging modality of choice in tumour staging 

(Fischerova, 2011).  

 

2.1.2.4. Magnetic Resonance Imaging (MRI) 
 

The principle advantage of MR imaging is that it combines some of the best features 

of CT and US. Numerous types of tissue and fluid can be discriminated using MR 

imaging using their signal intensity characteristics. Jeong and his colleagues stated 

that malignant tumours do not have specific MR imaging signal intensity 

characteristics, so these tumours must be distinguished based on morphological 

criteria (Jeong et al., 2000). 

 

In most studies, MR imaging has proved superior and more accurate than endovaginal 

US in differentiation between benign and malignant adnexal masses; however, it is 

more expensive, time consuming and impractical to perform MR imaging in all 

patients with abnormalities (Yamashita et al., 1995, Komatsu et al., 1996, Yamashita 

et al., 1997). 

In 1999, Kurtz and colleagues performed a comparative study to determine the 

optimal imaging modality for diagnosing and staging ovarian cancer. Their results 

showed a noticeable accuracy in demonstrating the extent of the malignant spread for 

all the three imaging modalities (US, CT and MRI) and they all had high staging 

accuracies at ROC curve analysis of 0.91. However, they further explained that MRI 
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is superior to Doppler and CT in accurately diagnosing complex or solid ovarian 

masses at stage 3 malignant lesions (Kurtz et al., 1999).  

In a prospective study of women with suspected adnexal masses, both Doppler 

ultrasound and MRI were highly sensitive for identifying malignant lesions 

(ultrasound 100%, MRI 96.6%); however, the specificity of MRI was significantly 

greater (ultrasound 39.5%, MRI 83.7%): therefore, women who clinically have a low 

risk of malignancy but who have complex sonographic morphology may benefit from 

MRI (Sohaib et al., 2005). 

Similarly, a more recent study by Iyer and Lee described the role of MR, CT and 

PET/CT in detecting ovarian cancer. They found that MR imaging is useful as a 

secondary imaging technique for further investigating masses to define the extent of 

the disease when ultrasound is indecisive.  Lesions that are indeterminate on 

ultrasound can often be diagnosed with high specificity by MRI  (Iyer and Lee, 2010). 

 

A recent systematic review and meta-analysis of the preoperative identification of 

suspicious adnexal masses by Dodge and his colleague is presented in Table 5. The 

results showed that 3D ultrasound has higher sensitivity and specificity when 

compared to 2D ultrasound. Furthermore, morphological scoring systems revealed a 

respectable performance in their sensitivity and specificity. In contrast, colour 

Doppler was neither sensitive nor specific in the assessment of adnexal masses when 

compared to ultrasound. The combination of morphology and Doppler assessment had 

a higher sensitivity and specificity than either modality alone. In addition, of the three 

imaging modalities considered, MRI appeared to perform the best, even though the 

results were not statistically different from CT. Finally, the measurement of the 
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CA125 tumour marker seems to be less reliable than other available preoperative 

methods (Dodge et al., 2012). 

 

Method Pooled 

Sensitivity 

Pooled 

Specificity 
 

Sassone scoring system 

(cut-off point of 9) 

88.6% 77.5% 

Lerner scoring system 

 

90% 63% 

DePriest scoring system 

 

91% 69% 

Risk of malignancy 

index (RMI) 

RMI I  

(Cut off of 200) 

79.2% 91.7% 

RMI II 

(Cut off of 200) 

79% 81% 

RMI III 

(Cut off of 200) 

74% 91% 

Doppler 

sonography 

2D power Doppler 

 

49-100% 74-100% 

3D power Doppler 

 

68%-100% 40-98% 

Resistance index 

(RI) 

77.2% 89.8% 

Pulsatility index (PI) 80.6% 79.9% 

Combined 

morphology and 

Doppler 

2D ultrasound plus 

Doppler 

91% 91.7% 

3D ultrasound plus 

Doppler 

97.8- 100% 79.2- 84.2% 

Other imaging 

modalities 

MRI 

 

91.9% 88.4% 

CT 

 

87.2% 84% 

CA125 

Cut off of 35 U/ml 

78.7% 77.9% 

 

Table 5: Summary of the systemic review of preoperative methods to diagnose adnexal masses (Dodge et al., 

2012). 

Moreover, the most recent systematic review and meta-analysis, performed by Kaijser 

and his colleagues, which focused on the presurgical diagnosis of adnexal masses 

using mathematical models and scoring systems, update the results of previous 

systematic review (Dodge et al., 2012). The findings of this study are summarised in 
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Table 6. This update of the previous systematic review and meta-analysis 

demonstrates that the IOTA simple rule is currently the best diagnostic test available 

for diagnosing ovarian masses in premenopausal women (Kaijser et al., 2014). 

 

Model Cut-off Sensitivity Specificity 

Sassone >9 85% 80% 

Lerner >3 80% 61% 

Depriest >5 90% 68% 

Simple rule n/a 93% 81% 

RMI I 200 72% 92% 

RMI II 200 75% 875 

RMI III 200 70% 91% 

RMI IV 450 68% 94% 

 

Table 6: Pooled summary estimates of sensitivity and specificity in the new systematic review (Kaijser et al., 

2014)
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2.1.2.5. Laparoscopy and Laparotomy 
 

Laparoscopy is the insertion of a thin lighted tube (called a laparoscope) through the 

abdominal wall in order to inspect the inside of the abdomen and to remove tissue 

samples, while laparotomy is a surgical incision made in the wall of the abdomen 

(Myers ER. et al., 2006). The decision for surgery depends on the probability of 

malignancy (Kinkel et al., 2000). Furthermore, laparotomy is performed if there is a 

strong suspicion of malignancy (Benedet et al., 2000), while laparoscopy is frequently 

used in the diagnostic evaluation of adnexal masses. However, laparoscopic diagnosis 

raises concerns about the possibility of tumour spillage due to cyst rupture, which 

correlates with a worse prognosis. In addition, laparoscopy may lead to the diagnosis 

and resection of large numbers of functional cysts and other lesions that could have 

been followed up clinically without surgery. For these reasons, laparoscopy is 

reserved for patients with masses that are non-suspicious based on imaging findings 

(Jeong et al., 2000). 

 

In young women with non-malignant ovarian lesions such as endometriosis and 

benign cysts, treatment with laparoscopy can avoid laparotomy procedures (Jeong et 

al., 2000). Unlike young women, in postmenopausal women who are not suitable for 

conservative management, oophorectomy is recommended by RCOG even when the 

risk of malignancy is low (RCOG, 2003). According to Jeong et al. (2000), 

exploratory laparotomy is necessary in all cases of suspected ovarian cancer to 

confirm the diagnosis, determine the extent of the disease, and to resect the tumour.  
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Recently, a prospective observational study was commenced to assess long-term 

outcomes of expectant management for persistent adnexal masses in asymptomatic 

premenopausal women. They found that expectant management of cysts with benign 

ultrasound morphology is an option, especially as a significant proportion of masses 

resolved spontaneously with a very low risk of torsion (0.4%) and of cancer (0.9%: 

(Alcázar et al., 2013a). 

2.1.2.6. Texture analysis 
 

Image analysis methods are important to assist in detection and diagnosis. They have 

been developed to help physicians acquire diagnostic information and improve 

clinical decisions. Studies show that radiologists do not detect all abnormalities on 

images that are visible on retrospective review and do not always characterize the 

abnormality correctly. This can be caused by limitations in the human eye-brain 

visual system, reader fatigue, distraction, the presence of overlapping structures that 

camouflage disease in images, and the large number of normal cases seen in screening 

programs (Giger et al., 2008). 

 

Therefore, researchers have started to investigate computerized image analysis that 

aims to automate the detection of abnormalities, including analysis of breast images 

and chest radiographs (Toriwaki et al., 1973). However, it has been difficult to 

achieve the accuracy and the acceptance required for clinical use, as asserted by  

Giger et al. (2008). 
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Later, in the mid-1980s, a team of researchers at the University of Chicago dedicated 

their efforts to computer-aided diagnosis (CAD), which means using computer output 

as an aid to radiologists rather than completely automatic computer interpretation 

(Chan et al., 1987, Giger et al., 1987). Furthermore, Giger et al. (2008) defined CAD 

as a diagnosis made by a radiologist who uses the output from a computer analysis of 

the image data in their decision-making process, so that the final medical decision is 

made by the radiologist, not the computer. They explained further that the role of the 

computer analysis is not to replace the radiologist, but rather to aid him/her in image 

interpretation and decision making. 

 

Since then, the growth of CAD has been tremendous over the past twenty years. It has 

spread widely and quickly (Doi, 2007). Currently, CAD has been extended to include 

image analysis of various disease types, such as breast cancer, lung cancer, interstitial 

disease, colon cancer, osteoporosis, and vascular plaque aneurysms, using images 

acquired by different modalities, such as ultrasound, CT, PET, MRI and others. 

 

The goal of CAD is to reduce search, interpretation errors, and variation between and 

within observers. In an ultrasonic image, different tissues always have significantly 

different textures. 

 

Generally, texture of images refers to the appearance, structure and arrangement of 

the parts of an object within the image (Castellano et al., 2004). Texture cannot be 

precisely defined due to its wide variability (Mathias et al., 1999). In digital images, 

the concept of texture may be attributed to the distribution of grey-level values across 
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the pixels of a given region of interest in an image. In other words, texture analysis is 

a technique for evaluating the position and signal intensity characteristics of pixels. 

(Livens et al., 1997, page 581) revealed a more formal definition of texture as “the set 

of local neighbourhood properties of the grey levels of an image region.”  

According to Srinivasan and Shobha, texture analysis refers to a class of mathematical 

procedures and models that characterize the spatial variations within imagery as a 

means of extracting information. They explained in their study that there is no single 

method of texture representation that is adequate for a variety of textures, since 

texture has so many different dimensions (Sirinivasan and Shobha, 2008). 

Texture analysis can be divided into categories such as structural, model-based, 

statistical, and transform, depending on the means utilized to evaluate the 

interrelationship of the pixels (Castellano et al., 2004, Holli et al., 2010). Please refer 

to Figure 4 for an illustration. 
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                                                     Figure 4: Types and sub-types of texture analysis. 

 

In medical images, statistical methods are the most widely used. These methods 

analyse the spatial distribution of grey values by computing local features at each 

point in the image (Sirinivasan and Shobha, 2008). According to Tuceryan and Jain 

(1998), statistics are classified as a first-, second- or higher-order statistics according 

to the number of points which define the local feature. In first-order statistics, image 

properties depend merely on a singular pixel value, whereas second-order statistics 

are properties of pixel pairs.  
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First-order statistics do not consider pixel neighbourhood relationships. Common 

features include mean grey scale, standard deviation of the mean, skewness (deviation 

of the pixel distribution) and kurtosis (steepness of the pixel distribution), all of which 

can usually be detected visually. The limitation of this method is that it provides no 

information about the position of pixels relative to each other, due to texture analysis 

being based solely on the grey level of the histogram (Sirinivasan and Shobha, 2008). 

The second order statistical method uses grey-level run-length measures and the grey-

level co-occurrence matrix (GLCM). The latter shows how often each grey level 

occurs at a pixel located at a fixed geometric position relative to each other pixel, as a 

function of grey level. In this method, higher discrimination indices are obtained and 

cannot be visually detected. For that reason, second or higher order statistical methods 

are used in medical images texture analysis (Holli et al., 2010). The grey level co-

occurrence matrix (GLCM) is a measurement of an image’s statistical properties, 

visual characteristics, using information theory measure and correlation based 

information. (Xian, 2010) 

The co-occurrence matrix is the joint probability occurrence of grey level of two 

pixels within a defined spatial relationship in an image (Sharma and Singh, 2001). 

This feature will be explained in more depth in Chapter 4. 
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2.1.2.6.1. Application of texture analysis to medical images 

Numerous studies have demonstrated the value of texture analysis in the medical 

field. Image texture of medical images defines the internal structure of human tissue 

or organs (Szczypiński et al., 2009) as well as pathological changes (Xian, 2010).  

Texture analysis techniques in medical images were first reported in the 1960s, and 

acknowledged by Doi (2007). They have been useful in various types of diseases, 

such as diseases of the liver (Lee et al., 2003), thyroid (Smutek et al., 2003), breast 

(Alacam et al., 2003, Ramos et al., 2012), kidney, pancreas (Das et al., 2008), heart 

(Tsai and Kojima, 2005) and coronary arteries (Nailon et al., 1996) as well as brain 

tumours (Herlidou-Même et al., 2003). 

Texture analysis has also been applied to several imaging modalities such as 

ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), 

conventional x-ray and mammography. According to (Tsai and Kojima, 2005), the 

employment of texture analysis in medical imaging has proven to be valuable, 

especially for MRI, CT and ultrasound. Most of the previous works done in texture 

analysis encompass MRI images due to the great amount of details provided by this 

technique (Castellano et al., 2004). Texture analysis of all kinds of images is possible 

and has been achieved in literature. 

2.1.2.6.1.1. Texture analysis of ultrasound images 

Many researchers have focused their studies on quantifying the echo signal in B-mode 

scans. The principle of texture analysis in ultrasound images was explained by 

(Morris, 1988): if the structure of the tissue is affected by the disease process, this will 
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result in alteration of the ultrasound signal, meaning that the statistical measures will 

differ from those of normal tissue. For example, the transformation of cancerous 

tissue will change the tissue characteristics, such as density and elasticity. Therefore, 

textural features derived from cancerous tissue will differ from normal tissue based on 

the above-mentioned principle. 

Nailon and Spencer investigated the use of the statistical texture analysis technique to 

assess intravascular ultrasound in order to characterize intracoronary thrombus. 

Results from their study were difficult to interpret due to their relatively small data set 

(Nailon et al., 1996). 

Similarly, Vince and colleagues conducted a study that aimed to evaluate five texture 

analysis techniques and determine their ability to distinguish between plaque lesions 

of different compositions and found two of them to be adequate (Vince et al., 2000). 

In 2003, Smutek and colleagues used texture analysis in ultrasound to diagnose 

chronic inflammation of the thyroid gland. Their results showed that it is possible to 

gain objective, quantitative characteristics of the thyroid gland and use it for tissue 

classification (Smutek et al., 2003). 

Similarly, texture analysis was used to aid in the classification of breast tumours using 

ultrasound (Huang et al., 2008). Their results showed that analysis of sonographic 

characteristics can assist in differentiating between benign and malignant lesions. This 

study was in agreement with an early preliminary study done in 1988, which 

explained that texture analysis systems were applied successfully to tissue 

characterization in breast tumours. It concluded that applying texture analysis to a 
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binary classification of tumours into benign and positive classes was possible. 

Moreover, the application of texture analysis to the population studied reduced the 

incidence of false positive diagnosis by 40% when compared to cases of tumours that 

were readable by ultrasound. They also suggested that texture analysis is superior to 

professional radiologist working with the same images.  

In another study conducted by Chen et al. (2002), wavelet transform was used to 

diagnose solid breast masses and this performed well for breast tumour diagnosis. 

Texture analysis has also been studied extensively on liver-related diseases. A recent 

study by Xian (2010), using ultrasound, showed that the grey-level texture features 

technique was a feasible and excellent classification of liver tumours. Texture analysis 

can improve the diagnostic rule of the B-mode ultrasound images, as asserted by 

Vicas et al. (2011), who studied texture analysis as a non-invasive tool for the 

assessment of chronic hepatitis C. However, the role of human experts could not be 

reduced or eliminated in this study. 

In a slightly different field of ultrasound, a study was conducted to evaluate some of 

the analysis techniques in monitoring follicular response in ovulation induction. It 

demonstrated that analysis of ultrasound images can aid in developing a reliable non-

invasive technique to improve the clinical management of women undergoing ovarian 

stimulation (Pierson and Adams, 1995). 

Texture analysis of ultrasound images has also been applied to prostate cancer. In 

1993, Basset and colleagues used second-order statistics, namely co-occurrence 

matrices, to identify prostate tumours. Their results yielded fairly good tissue 
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signatures obtained with parameters derived from these matrices. In addition, 78% of 

the samples were classified with success, which was a high score considering that the 

images could not be discriminated visually (Basset et al., 1993). 

Braeckman and colleagues studied computer-aided ultrasonography for detecting 

prostate cancer using an ultrasound-based technology called HistoScanning. This is a 

technology that detects specific changes in tissue morphology by extracting and 

quantifying statistical features from backscattered ultrasound data. Furthermore, it has 

been developed to distinguish cancerous and noncancerous tissues in solid organs. 

They concluded that HistoScanning is an accurate non-invasive method to detect 

cancer foci and suggested that it might be useful as a triage test for prostate cancer 

(Braeckman et al., 2008b, Braeckman et al., 2008a). 

More recently, an attempt to create an online paradigm to characterise ovarian 

tumours was made by Acharya and colleagues. They used 3D transvaginal images in 

their analysis and applied several texture features including GLCM and Run Length 

Matrix (RLM). It was concluded that the use of CAD techniques using a combination 

of four texture features techniques has a good sensitivity of 94.3% and specificity of 

99.7% and has the advantage of being objective. However, this system has been tested 

on only twenty cases and needs to be clinically validated to assess the diagnostic 

accuracy of this method (Acharya et al., 2013). 

2.1.2.6.1.2. Texture analysis of CT images 

Texture analysis has also proven to be beneficial in improving the interpretation of 

CT images. For example, Gletsos et al. ( 2003) studied the grey level co-occurrence 
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matrix technique as a method to classify four types of liver tissue: normal liver, 

hepatic cysts, haemangioma and hepatocellular carcinomas. Another study 

investigated the feasibility of the same technique on CT images of interstitial lung 

diseases and reported a sensitivity and specificity of 73-93% and 90-98% respectively 

(Xu et al., 2006). 

Two most recent studies were initiated by the same group (Kumar and Moni): the 

first, in 2010, studied the characterization of liver tumours by CT and disclosed 

promising results, recommending the technique to be applied in the diagnosis of other 

types of liver disease. The second study, in 2012, proposed an automated computer-

aided diagnosis (CAD) system for recognizing different types of liver tumours by 

analyzing tumour texture images using texture recognition techniques. They achieved 

94% accuracy of the classifier when compared to other methods. In addition, they 

suggested that the proposed system can be extended to the diagnosis of other types of 

liver diseases as well (Kumar et al., 2012). 

2.1.2.6.1.3. Texture analysis on MRI images 

Similar to CT images, texture analysis has been also demonstrated to be useful in 

improving the interpretation of MRI images. It was first applied in the early 1980s 

(Herlidou-Même et al., 2003). Texture analysis has the advantage of discriminating 

complexity and offers information that is not visible to the human eye (Herlidou-

Même et al., 2003). 

Texture analysis on MRI images has been applied to multiple sclerosis related studies. 

In 1999, a study commenced using texture analysis to quantify the pathological 
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changes that occur within the spinal cord associated with multiple sclerosis. The 

spatial grey-level co-occurrence method was used in this study, justifying it from 

previous studies that applied this method in relevant application and because it 

performed well for small regions. Their results showed significant differences in 

texture between normal and multiple sclerosis images. Furthermore, texture is 

valuable in detecting changes in pathology early in the disease before spinal cord 

atrophy occurs (Mathias et al., 1999). Another recent study on multiple sclerosis 

achieved an accuracy of 88.4% (Theocharakis et al., 2009). 

According to Harrison et al. (2010), when classification of white matter and multiple 

sclerosis lesions were studied, excellent distinction was achieved when using texture 

measures with an accuracy between 96% and 100%. In the same year, another study 

demonstrated significant changes in texture measures of cerebral tissue between 

hemispheres and corpus callosum segments in traumatic brain injury patients. It was 

suggested that this technique may be used as a novel additional tool for identifying the 

invisible changes in cerebral tissue in mild traumatic brain injury, aiding clinicians to 

make an early diagnosis (Holli et al., 2010). 

2.1.2.6.1.4. Texture analysis on Mammography images 

A recent study conducted by (Ramaraj and Raghavan, 2011), which focused on 

wavelet techniques for cancer diagnosis, found that the wavelet transform is an 

excellent tool to investigate mammograms, MRI and ultrasound breast images. These 

results are in agreement with a previous study in 2007 where a high accuracy rate was 

found (89%) when investigating the feasibility of texture analysis in differentiating 

benign from malignant breast tissue (Karahaliou et al., 2007). 



   

70 

 

Beside ultrasound, CT, MRI and mammography, texture analysis techniques have 

also been applied to other imaging modalities, such as colposcopic imaging (Ji et al., 

2000) optical tomography (Baroni et al., 2007, Gossage et al., 2003) and capsule 

endoscopy (Li and Meng, 2009).  
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2.2. Summary 

Ovarian cancer is the second most common gynaecological malignancy; however, it 

remains the leading cause of death among these diseases. In spite of the diagnostic 

and therapeutic advances in the care of women with ovarian cancer, the overall five-

year survival rate remains unchanged. The reason for this is that most cases are 

diagnosed in the late stages of the disease, when the five-year survival rate falls below 

20%.  

Therefore, early detection of ovarian malignancy is of great clinical importance. 

Ultrasonography is currently considered the primary imaging modality for diagnosing 

adnexal masses. However, ultrasound is operator-dependent and thus the accuracy and 

reproducibility of the diagnosis are subject to the experience of the operator. 

In order to reduce operator dependency, texture analysis, which is able to 

quantitatively characterize tissue through texture content, will be used in this study to 

objectively differentiate between normal, benign and malignant ovarian tissue.  

Texture analysis is defined as the spatial distribution of the pixel grey value 

(intensity) of B-mode images. It is a descriptor of local brightness variation from pixel 

to pixel in a small neighbourhood through an image. Two features of texture analysis 

were tested in previous pilot research and suggested to be robust and demonstrated 

good repeatability in characterizing ovarian malignancy: these are grey level co-

occurrence matrix (GLCM) and wavelet analysis. Therefore, they will be used in this 

study, along with applying another modality called Acoustic Structural Quantification 

(ASQ). 
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A previous pilot study suggested that texture analysis is beneficial in objectively 

differentiating ovarian lesions (Hamid, 2011).  This study will involve a large number 

of patients and is expected to help confirm and validate the sensitivity and specificity 

of this method. 

The texture analysis technique will be compared to widely-used scoring systems such 

as the Risk of Malignancy Index (RMI), the Pelvic Mass Index (PMI) and the 

ADNEX model, and the ASQ texture analysis technique, will also be applied. 
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3. Acoustic Structure Quantification 

(ASQ) 

 

This chapter will introduce and test a new method called ASQ. It is divided into four 

main sections: section A will include a definition of the new term, followed by some 

background information and a phantom study where the repeatability and 

reproducibility will be tested, while section B will study the influence factors, such as 

ROI size, ROI depth, Focus, Gain setting and frequency, on ASQ. Then, in section C, 

the influence of pre-defined image parameters on ASQ output will be discussed. 

Lastly, section D will demonstrate the application of ASQ to images of benign and 

malignant masses. 

3.1. (A) Introduction, how ASQ works and 

background  
 

Ultrasonography represents an excellent examination modality that is non-invasive, 

inexpensive and can be performed repeatedly with no risk to the patient. However, the 

diagnostic performance of ultrasonography in general depends on the empirical and 

qualitative reading skills of the examiner (Kuroda et al., 2012). The human eye cannot 

distinguish between more than fifteen to twenty shades of grey in ultrasound images 

(Lagalla and Midiri, 1998): it is therefore worthwhile developing a new technique that 

can overcome these limitations. 
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Acoustic structure quantification (ASQ) is new software that analyses the statistical 

information of the acquired (receiving) echo signals (Toshiba Medical Systems, 

Europe). This is accomplished by looking at the speckle pattern in a certain region of 

interest (ROI) (De Kant, 2011). It is a non-invasive tool that can assist the ultrasound 

operator in the assessment, characterisation and follow-up of fibrotic disease during a 

standard ultrasound scan. Liver ASQ assesses tissue homogeneity quantitatively and 

depicts tissue properties in a convenient colour-coded display. Therefore, the aim of 

this chapter is to investigate the suitability of ASQ in diagnosing ovarian cancer. 

3.1.1 How ASQ works 
 

Although ASQ is ready-to-use software, it was thought that a brief explanation of how 

it works is necessary.  It is a software that analyses the statistical information 

contained in the received echo signals: it takes the raw data in a ROI and then 

analyses the speckle pattern, which produces a parametric image and quantification of 

tissue type for tissue characterization. Some basic concepts of ultrasound have to be 

introduced to understand the ASQ concept. These include the origin of ultrasound 

speckle, the Probability Density Function (PDF), the χ
2 

function, and the modified χ
2 

function called C
2
.
 
Having explained these concepts, the process of how ASQ works 

can be understood. First, the ultrasound speckle is a random, deterministic 

interference pattern in an image formed when ultrasound interacts with many sub-

resolution scatterers. This speckle pattern is an interference pattern formed as a result 

of ultrasound scatter. 
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In general, for a simple reflection, the dimensions of the reflecting surface must be 

greater than several wavelengths of the ultrasound wave. When small targets, smaller 

than the wavelength of ultrasound, are scanned, it will cause scatter called Rayleigh 

Scattering. Please refer to Figure 5: 

 

 

 

 

 

 

 

 

 

 

Figure 5: Rayleigh scattering (adopted from Toshiba catalogue)  

 

Therefore, a tissue composed of structures < λ of the ultrasound will produce a 

speckle pattern. The texture of the observed speckle pattern as a result of scattering 

does not correspond to the underlying structure, which means no spatial information. 

The local brightness (amplitude) of the speckle pattern, however, does reflect the local 

echogenicity of the underlying scatterers. 

 

Because speckle is random, the echo signal from scatterers alone has a zero mean, 

two-dimensional Gaussian probability density function (PDF). This is the Rayleigh 

PDF, a function that describes the relative likelihood that this random variable will 

take on a given value (De Kant, 2011). Please see Figure 6. 
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Figure 6: Rayleigh PDF 

 

This means in practice that if tissue is made up of scatterers alone (no reflective 

surfaces), the resulting image is a representation of the PDF for that tissue. 

Second, the χ
2
 function is simply a statistical test which compares one distribution 

against another. Please refer to equation 3. 

 

 

Where  

 

                                                                 Equation 3: The χ2 function 

If the sample is exactly the same as the normal population, χ
2
  = 1. 
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Therefore, when ASQ is first applied, it uses a modified χ
2
 called C

2
. Where C

2
 is 

divided by degree of freedom (n-1) to get the averaging and normalize the test. Please 

see equation 4. 

 

         

 

Equation 4: C
2 

equation 

Secondly, a population variance is required that corresponds to normal liver; however, 

it is difficult to achieve in a diseased liver, and it is also difficult to use a standard 

value from the normal livers of other patients, because the variance changes due to 

machine settings, overlying tissue etc. 

So to overcome this problem, we calculate an approximate value from the average of 

samples taken in the user defined ROI by applying certain thresholds, then: 

 

Equation 5 

 Thresholds are also applied to calculate a modified     , so  
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Finally we get ASQ: 

 

                                   

 

Equation 7: ASQ equation 

 

To produce Cm
2
 a large ROI is drawn, avoiding reflective surfaces. Many (~300) 

small secondary ROIs (about twice the size of the resolution of the system) are 

automatically created within the large ROI. This raw data is stored as a 2x2 matrix for 

and the mean and variance in each small ROI is then calculated. A histogram of Cm
2 

to then produced.   

 

If the tissue is completely homogenous, then Cm
2
 =1 and the histogram will show a 

normal distribution because the sample (numerator) and the normal tissue 

(denominator) will be the same. Please see Figure 7. 

 

Figure 7: normal distribution in histogram of a homogenous phantom. 
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However, if the sample variance (numerator) is different due to heterogeneity in the 

sample, Cm
2
 >1 the bandwidth of the histogram will increase and the curve will be 

shifted to the right: please refer to Figure 8. 

 

               

Figure 8: Example of homogenous tissue histogram and non-homogenous tissue. 

 

If there is a point reflector in the image, it will show as discrete, high amplitude 

signals, which will affect the Cm
2
 curve (produce a tail to the curve). This tail is 

removed from the analysis and displayed as a separate entity called the blue curve. 

Please refer to figures 9 and 10. 

 

Figure 9: The tail in the curve produced by a discrete high amplitude signals. 
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Figure 10: The blue curve in the histogram. 

 

Additional analysis information produced in the ASQ software is the Q-Q graph. This 

graph shows the variation between the “normalised” PDF (calculated denominator) 

and a theoretical PDF. The more closely these lines are matched, the better the 

denominator value used in the         (Please refer to Figure 11). 

 

Figure 11: The Q-Q graph in ASQ window. 
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ASQ offers two modes of presentation: the first is a statistical graph, which draws 

distribution curve parameters in response to the fibre structure that reflects the 

ultrasound beam (shown in figure10). The second display is like familiar images with 

colour Doppler of the different values superimposed on a B-mode image (Hung, 

2010). See figure 9. 

 

A PDF (probability density function) graph is similar to a histogram: it is of a random 

variable and is a function which describes the density of probability at each point in 

the sample space (De Kant, 2011) 

     

3.1.2. ASQ background 
 

This valuable diagnostic tool allows the clinician to perform comprehensive 

ultrasound diagnostic in specific regions of the body, such as the abdomen (Toshiba 

Medical Systems, Europe).  

Toshiba Medical Systems Europe introduced the new ASQ technology in Zoetermeer 

in the Netherlands in October 2009. It is a newly developed advanced clinical 

application that can analyse echo signal data at more than 100 times higher resolution 

than normal greyscale or colour flow images using a special hardware extension 

(Toshiba Ultrasound raw data interface). 
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Naohisa Kamiyama, the designer of ASQ, explained that most ultrasound units are 

unable to accept pure acoustical radio frequency (RF) data: instead, only selected 

segments of this signal are extracted for display on the typical B-mode image seen on 

the screen. Moreover, ASQ begins with a signal processor that receives the raw RF 

signal and extracts data that possibly indicate extremely small structures or fibre 

strands (Brosky, 2009). 

 

“ASQ analyses the spatial echo patterns in a region of interest 

selected by the user on a greyscale image acquired during the 

normal ultrasound examination. ASQ operates in the background 

with the raw data from this region and extracts a parameter and 

its complete probability distribution curve, related to the 

homogeneity or smoothness of the structures reflecting the 

ultrasound beam sent by the Aplio AG into the body”. 

(Explains Dr. Noahisa Kamiyama from Toshiba ultrasound R&D 

who has designed the ASQ algorithm). The parameter may 

indicate pathologic changes of tissue, e.g. fibrotic transformation 

of liver paranchyma. (Medical Physics, 2009 (online)) 

 

ASQ is expected to be less subjective and operator dependent than conventional 

ultrasound imaging. ASQ offer qualitative visual results (parametric imaging) as well 

as quantitative results (De Kant, 2011). 

Since 2009, several studies have tested the efficiency of ASQ on liver diseases. 

Toyoda and Kumada 2009 conducted a study in late 2009 that reports the relationship 

between data analysis by ASQ and liver histology results for 148 cases. They 
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confirmed that ASQ results closely match histological classification of patients 

(Toyoda et al., 2009). 

In early 2013, a study was performed in China to assess the diagnostic value of ASQ 

technology in both homogeneous fatty liver and chronic hepatitis B infected liver. A 

total of 205 patients were included in this study. The researchers in this study 

concluded that ASQ quantitative parameters can reflect the severity of homogenous 

fatty liver to a certain extent (Wang et al., 2013). Later in the same year, a similar 

study was done in Italy but on hepatic fibrosis. ASQ diagnostic accuracy was 

compared against liver biopsy and it was concluded that ASQ is a promising new 

technology which offers encouraging results in the diagnosis of both liver cirrhosis 

and fibrosis. Nevertheless, to date, it has not reached sufficient diagnostic 

performance to replace current methods (Ricci et al., 2013). 

A similar study to test the efficacy of ASQ was carried out on Japanese patients with 

hepatic stenosis, with a relatively small sample of 42 patients. The results suggest that 

ASQ is a useful technology for evaluating tissue characteristics of hepatic stenosis 

and its follow-up (Onodera, 2013). 

However, no research has been done on the reliability and reproducibility of this new 

technique. Therefore, this chapter will test ASQ for repeatability and reproducibility 

and determine factors that affect ASQ output. 
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3.2. Repeatability and reproducibility (Phantom 

studies) 
 

The objective of this section is to determine the variability and reliability of image 

ASQ caused by random variation during image acquisition, which will affect the 

reliability of the ASQ technique. This will include three subsections, which are to 

determine: 

I. The repeatability (consistency) of the image produced due to variation caused 

by the ASQ software. 

II. The repeatability (consistency) of the image produced due to the random 

variation caused by the operator. 

III. The reproducibility (agreement) of the images acquired by two operators 

under identical conditions: by how much are the two likely to differ? 

Intra- and inter-operator repeatability and reproducibility are important variables that 

permit investigation and examination. The reliability of the imaging technique may 

affect the accuracy of the diagnosis: therefore, it is essential to understand the 

reproducibility and repeatability of the ultrasound image (Li et al., 2004). In addition, 

it is necessary to confirm that a single operator can obtain the same results when 

repeated measurements are made using the same method under identical conditions, 

as asserted by (Bailey et al., 2007). Since ultrasound is an operator-dependent 

modality, the degree of variation caused by the operator (intra-operator) must also be 

recognised to ensure that the application of the ASQ technique in ultrasound is 

reliable. 
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The B-mode ultrasound image is exposed to many confounders, which include 

instrumentation, scanning and reading protocols and operator variables. Therefore, the 

validity and reliability of imaging assessments are very important aspects for use in 

routine clinical practice and research. 

In this study, repeatability refers to the reliability of the instrument (ASQ software) 

and the operator in producing a consistent image (in terms of its texture) when 

repeated within a short period of time under identical conditions, while reproducibility 

refers to the agreement between two operators performing a similar scan. 

3.2.1. Materials, methodology and statistical analysis 

The aim of this section is to describe the key topics related to this study. It is divided 

into two main sections. The first section describes the materials used in this study 

with an overview of the equipment and the statistical tests used. This includes 

Ultrasound principles and Transvaginal transducer. The second section discusses the 

methods used and the procedures followed to accomplish this study, and then briefly 

explains both the Coefficient of Variation (CoV) and the Bland-Altman plot, which 

are the statistical methods used in this section. 

3.1.3.1. Materials 

3.1.3.1.1. Ultrasound scanner:  

Ultrasound is an effective and safe investigation tool that can answer a number of 

clinical questions without the use of ionising radiation (Guy, 2008). It has the 

advantage of being non-invasive, safe, readily available and inexpensive when 

compared to other imaging modalities (Lee et al., 2005). Moreover, Barnett (2000) 
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disclosed that in general, simple B-mode imaging does not produce harmful 

temperature increases in tissue. 

Ultrasound scanner machines were first used in the medical field in the late 1960s, 

and it is becoming increasingly important as a diagnostic imaging device. Toshiba 

Aplio (Toshiba Medical System, Europe) was used to scan the participants and 

acquire the images for this study (see Figure 12). The specifications of this scanner 

are given in Appendix I.   

                  ………………  

 Figure 12: Ultrasound machine by Toshiba. 

 

3.1.3.1.2. Ultrasound Transducer:  
 

An ultrasound scanner works by sending high frequency sound pulses into the 

patient’s body. The sound waves travel through the patient’s body, passing through 

different types of tissue. The speed of sound varies with different tissue types: for 
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instance, the average speed of sound through human tissues is 1540 m/s; the speed of 

sound through fat is 1459 m/s and it passes through bone at 4080 m/s. Whenever 

sound encounters two adjacent tissue types with different acoustic properties, a 

proportion of the sound energy is reflected. These boundaries between different tissue 

types are called acoustic interfaces. The physical property of tissue that describes how 

much resistance an ultrasound beam encounters as it passes through a tissue is called 

Acoustic impedance. It depends on: the density of the tissue (d, in kg/m3) and the 

speed of the sound wave (c, in m/s), and they are related by: 

Z = d × c                 Equation 8: Acoustic impedance 

 

So, if the density of a tissue increases, impedance increases and if the speed of sound 

increases, then impedance also increases. The ability of an ultrasound wave to transfer 

from one tissue type to another depends on the difference in impedance of the two 

tissues. If the difference is large, then the sound is reflected (Rumack, 2005) 

 The scanner calculates the distance from the probe to the acoustic interfaces based on 

the time taken for echoes to return to the probe. The distances and intensities are then 

displayed on a screen to form a two-dimensional (2D) image (see Figure 13). 
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Figure 13: how an Ultrasound scanner works 

 

An ultrasound image is composed of array of pixels of different density. Each pixel 

represents a discrete intensity that results from the reflection of the ultrasound beam. 

An image is composed of thousands of pixels. It is represented by one of 256 (0 to 

255) shades of grey ranging from black (represented as ‘0’) to white (represented as 

‘255’ – (Sanders, 1998). 

The transducer probe is any device that converts one form of energy to another. In 

the case of ultrasound, the transducer converts electrical energy to mechanical energy 

and vice versa.  In other words, it is the part of the machine that produces the sound 

waves and receives the echoes (Rumack, 2005, Sanders, 1998). It consists of one or 

more crystals in a plastic housing. These crystals are called piezoelectric (PZ) 
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crystals. Transducers used in medical ultrasound employ the piezoelectric effect to 

generate sound waves and detect echo signals. The piezoelectric effect was discovered 

in the 1880s. Langevin found that when a force is applied perpendicular to the faces 

of quartz crystal, an electrical charge results (Rumack, 2005). This charge can be 

detected and amplified, producing a useful electrical signal. Conversely, if an 

electrical signal is applied to the crystal, the crystal vibrates, sending a sound wave 

into the medium: hence the dual action of the piezoelectric transducer as a detector 

and transmitter of acoustic signals (Zagzebski, 1996, Rumack, 2011). This signal is 

then processed to form the ultrasound image and displayed on a screen. The same 

piezoelectric crystals are used for sending and receiving the ultrasound pulses: 

therefore, they have to operate in a switched or pulsed mode. This means that they 

emit a quick sound pulse, rest and then listen for the echo. This switching between 

transmitting and receiving modes happens many thousands of times a second 

(Sanders, 1998). The most commonly used crystals are lead zirconate titanate. The 

matching layers (plastic nose) lie in front of the transducer element and provide an 

acoustic impedance difference between the transducer element and the skin. A 

damping material such as rubber is attached to the back of the transducer element to 

decrease secondary reverberations of the crystal with the returning signals. 

Decreasing the ring time results in an increase in depth resolution – see Figure 14. 
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Figure 14: Ultrasound Probe components 

 

Ultrasound probes are designed so that they can be positioned as close to the subject 

tissue as possible so that resolution can be kept as high as possible. For this reason, 

specially designed probes are available that can be inserted through different cavities 

of the body, such as the oesophagus for examination of the stomach, the vagina for 

examination of the uterus and the ovaries and the rectum for examination of the 

prostate gland. 

The Transvaginal transducer is widely used for scanning the female reproductive 

system in general and for ovarian cancer diagnosis in specific. It has several 

advantages over the Transabdominal transducer, as summarised in Table 7. The Royal 

College of Obstetricians and Gynaecologists suggested in its guidelines that ovarian 

cysts should normally be assessed using Transvaginal ultrasound: the reason for this is 

that it provides superior quality (more detail) than the Transabdominal method 

(RCOG, 2003). 
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In the present study, a 6.0 MHz Toshiba Transvaginal transducer model PVT-661VT 

was used to scan the participants (see Figure 15) 

 

 

Figure 15: Transvaginal Ultrasound probe 

 

Advantages of Transvaginal Sonography 
 

 

Use of higher-frequency transducer with better resolution. 

Examination of patients who are unable to fill their bladder. 

Examination of obese patients. 

Evaluation of retroverted uterus. 

Better distinction between adnexal masses and bowel loops. 

Better characterisation of the internal characteristics of a pelvic mass. 

Better detail of a pelvic lesion. 

Better detail of the endometrium. 

 

Table 7: Advantages of transvaginal transducer (Rumack, 2011) 

According to (Lagalla and Midiri, 1998), the quality of an ultrasound image is 

associated with its ability to represent the real anatomy of the structures being 

examined as closely as possible. This capability depends on the axial spatial 

resolution, the lateral spatial resolution and the contrast resolution. 
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The axial spatial resolution refers to the capability of the ultrasound system to 

represent separately objects which are arranged along the axis of the beam. This 

parameter is highly dependent on the transducer frequency: the higher the transducer 

frequency, the better the axial resolution. However, this causes a decrease in the depth 

of beam penetration.  

The lateral spatial resolution refers to the system’s ability to discriminate between two 

objects situated at the same depth perpendicular to the ultrasound beam. This 

parameter is dependent on the dimension of the US beam and it can be improved by 

using a narrow beam (Lagalla and Midiri, 1998). 

The contrast resolution refers to the US system’s ability to distinguish differences 

between neighbouring tissue regions. This parameter is dependent on the spatial 

resolution and the image noise. 

Similar to other types of endo-cavity transducer, the advantage of the Transvaginal 

transducer is that it can be placed in close proximity to the organ under investigation 

(please refer to Table 7). Hence, there is less attenuation from overriding tissue, and a 

higher frequency can be used to increase the axial resolution. Furthermore, image 

distortion and artefacts due to tissue heterogeneity or a strongly reflecting interface 

between the transducer and the organ are also reduced (Whittingham and Martin, 

2010). 
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3.1.3.2. Methods  

An original guide document by the National Physical Laboratory (2005) was used for 

the experimental setup for the repeatability test. It was titled: “Measurement Good 

Practice Guide No. 52” (Laboratory, 2005). 

“The repeatability of the measurement can be quantified in either 

of 2 ways: 

I. Set the equipment to perform a number of consecutive tests 

(e.g. 10) using identical conditions and without removing 

the specimen between measurements. In this case, the only 

variables are those relating to the performance of the 

measurement system and associated statistical (random) 

effects in data capturing and analysis by the software. For 

simplicity, this will be referred to as ‘instrument-only 

repeatability’. 

II. As above, but with the specimen removed completely in 

between measurements. In this case, effects due to 

variability in the test set-up are introduced. This will 

include resetting the device and the precision of 

repositioning the sample. This will be referred as the 

‘instrument-operator repeatability’“ 

 

3.1.3.2.1. Intra-operator Repeatability  
 

The objective of this section is to assess the reliability (consistency) of the images 

produced in ASQ due to the random variation caused by the operator. 
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The operator acquired a series of ten images using the Toshiba Aplio scanner using 

three different transducers; the 6.0 MHz Transvaginal transducer (model PVT-

661VT), the linear transducer (model PLT-7045BT) with 7.5 MHz and the curve 

transducer (model PVT-375BT) with 3.5 MHz. The transducer was removed from the 

test object in between scans, where 10 images are acquired for each transducer. Please 

refer to Figures 17, 18 and 19 for images of the different types of transducers. 

An RMI phantom model 403 GS LE was used as a test object (see Figure 20). The 

machine setting was kept constant across image acquisition processes; it was set to the 

manufacturer’s pre-defined setting: Endo-Vaginal-Gynae. The ASQ button was 

enabled before taking the images. They were then saved as raw data images on the 

machine. The images then were transferred to the PC in DICOM files for further 

analysis. A large ROI (see Figure 16) was drawn in the centre of the image using PC-

ASQR version 1.11R001 software. 

 

Figure 16: ASQ window with large ROI 
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A coefficient of variation (CoV) was calculated for each transducer. The ultrasound 

repeatability CoV reflects the variability of the images due to random variation in the 

scans caused by the operator. The lower the COV, the smaller the variation between 

repeats, and therefore the higher the repeatability (Bailey et al., 2007). 

To assess the reliability of the ASQ software, ten consecutive ROI were drawn in the 

same image in the ASQ window after images were transferred as a DICOM file to a 

PC. The Mean (µ)  and Standard Deviation (SD) were calculated as well as the CoV 

for each transducer image. 

 

Figure 17: Linear Probe                                      Figure 18: Convex probe 

 



   

96 

 

 

Figure 19: Transvaginal Probe (TV) 

 

 

Figure 20: Images of RMI phantom model 403 GS LE 

 

 

3.1.3.2.2. Inter-operator Reproducibility  
 

To assess the reproducibility, all scanning procedures were performed by two 

operators. The first operator performed the scan, and after he finished, the second 

operator performed his scan. Between scans, the transducer was repositioned. This 

procedure was repeated for the three different transducers. All machine variables were 

kept constant, such as transducer frequency, focal position and gain setting, as well as 

the depth and size of the ROI when using the ASQ software to draw the ROI. 
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3.1.3.2.3. Coefficient of Variation (CoV) 
 

 The standard deviation (SD) of a set of measurements is often used to describe the 

variability by expressing the SD as a percentage of the mean. The resulting measure is 

called the Coefficient of Variation (Armitage et al., 2009, lang and Secic, 2006a). See 

equation 8. 

CoV = (SD/mean) x 100% 

Equation 9:  Coefficient of Variation 

The Coefficient of Variation (Cov) is used to measure the consistency of the data (the 

uniformity in the data from the mean) (Bruton et al., 2000). It has the advantage of 

being independent of the units of observation (Altman, 1995). Furthermore, the CoV 

is widely used to measure random error (Dudely, 2010). In this study, CoV was used 

to determine the variation (consistency) in the ASQ software repeatability, intra-

operator repeatability and influence of the ROI size variance on the mean. 

 

3.1.3.2.4. Bland-Altman plot 
 

The Bland-Altman plot is used for assessing the agreement between two methods of 

clinical measurement. It is a scatter plot with the difference of the two measurements 

for each sample on the vertical axis and the average of the two measurements on the 

horizontal axis. Three horizontal reference lines are superimposed on the scatter plot: 

one of them at the average difference between means (x-axis values), along with two 
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lines to mark the upper and lower control limits of plus and minus 1.96   

respectively, where  is the SD of the measurements mean differences. The graphical 

approach that plots differences against means is the most informative approach 

(Bassani et al., 2007). The presentation of the 95% limits of agreement is for visual 

judgement of how well two methods of measurement agree: the smaller the range 

between these two limits, the better the agreement is (Myles and Cui, 2007). 

 

In this study, the Bland-Altman plot was used to show the amount of disagreement 

between two different operators and to represent reproducibility visually. 

  



   

99 

 

3.1.3.3. Results 
 

3.1.3.3.1. Intra-operator repeatability  
 

Ten consecutive images were acquired from the test object.  The CoVs for the three 

different transducers ranged from 1.4% to 2.2%, with the linear probe showing the 

smallest variation (1.4%) and the curved probe showing the largest variation (2.2%). 

Table 8 summarises the mean, standard deviation (SD) and the CoV for the three 

different transducers used. 

 

Probe Type Mean SD CoV (%) 

Linear 102.4 1.4 1.37% 

Curve 96.1 2.1 2.2% 

TV 101.7 1.6 1.6% 

Table 8: Intra-operator repeatability (different images). 

 

3.1.3.3.2. Repeatability of ASQ software  
 

Ten consecutive ROI were drawn on the same image in the ASQ window. The CoVs 

for the three different transducers range from 0% to 0.32% with the linear probe 

showing the largest variation (0.32%), while both the TV and the curved probe 

showed no variation (0%). Table 9 summarises the mean, standard deviation (SD) and 

the CoV for the three different transducers used. 
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Probe Type Mean SD CoV (%) 

Linear 100.1 .32 0.32% 

Curve 93 0 0 % 

TV 102 0 0% 

 

Table 9: ASQ software repeatability (same image)  

 

3.1.3.3.3. Inter-operator reproducibility  
 

The inter-observer mean differences  SD between paired images for the three different 

transducer types tested are presented in Table 10. P-values were calculated using the 

Mann-Whitney U test as the data were non-normally distributed. For all three probes, 

there were no significance differences between operator 1 and operator 2, with p-

values of .436 for the linear probe and .579 for both the curved and the TV probes.  

 

Bland-Altman plots were drawn for the three probes and tested for graphic evaluation 

of the agreement between ASQ feature derived from the images obtained by the two 

operators. Figures 21, 22 and 23 are examples of Bland-Altman plots showing the 

distribution of the mean values in the three probes. All probes show different patterns: 

i.e. there is random variation in the difference between the two operators. The 

difference in the paired derived ASQ means between the two operators do not exhibit 

any systematic pattern, as the mean value increases for all three probe types. In other 

words, the difference between the two operators does not increase (or decrease) 

systematically as the mean value increases. 
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The mean CoV for inter-operator repeatability are 1.03, 1.2 and 2.1% for the linear, 

curved and TV probe respectively. All three probes show very low variation, with 

values below 2.5%. The mean CoVs for all three probes are presented in Table 11. 

 

 

 Linear Probe Curve Probe TV Probe 

Mean Diff   -.60 -.80 -1.0 

Std. Dev. 2.27 4.44 4.87 

 

Table 10: Inter-operator mean difference and standard deviation 

 

 

Mean Coefficient of Variation (CoV %) 

Linear Probe Curve probe TV probe 

1.03 2.1 1.2 

 

Table 11: Coefficient of variation for inter-operator reproducibility. 
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Figure 21: Example of Bland-Altman plot showing the random distribution of the difference between the two 

operators (curve probe) 

 

 

 

Figure 22: Example of Bland-Altman plot showing the random distribution of the difference between the two 

operators (linear probe). 
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Figure 23: Example of Bland-Altman plot showing the random distribution of the difference between the two 

operators (TV probe). 

3.1.3.4. Discussion  
 

Repeated measurements are most likely to vary (Swinscow, 1997). The degree of the 

variation will determine the reliability of the measurements acquired. Bruton et al. 

(2000) specified that reliability refers to the consistency or repeatability of such 

measurements, and is usually performed to assess the performance of the instrument 

and the operator. De Vet et al. (2006), pointed out that reliability is an essential 

requirement for measuring outcomes in medical disciplines, such as the assessment of 

radiographs.  

 

In this chapter, a set of experiments were carried out to evaluate the reliability of B-

mode images with the ASQ feature enabled, particularly in the random variation 

inherited from the ASQ software and from the operator. Since the reliability of the 

measurement (image acquisition) determines the sensitivity and the specificity when 
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used for classifications or predictions, establishing the degree of these variations is 

essential. The scatter (variation) in the extracted ASQ feature was evaluated as a 

measure to determine reliability of the image texture. According to Fry (2002), the 

scatter in the data is a useful measure for quantifying the effect each parameter has on 

the accuracy of the measurement. The variation caused by image acquisition 

procedure can be further divided into ASQ software variation and operator variation. 

 

Generally, ASQ features in all three transducers evaluated demonstrated excellent 

repeatability for ASQ software, with all transducers showing less than 0.4% variance 

from the mean. The results indicate that ASQ software is able to produce reliable 

ASQ output measures. 

 

In this section, we also assessed the intra- and inter-operator reliability in image 

acquisition. It was observed that for all types of transducers, their intra-operator CoVs 

are 1.37% - 2.2%, which are higher than the ASQ software CoVs. This can be 

explained by the fact that the variations in the scanning process are a combination of 

both the ultrasound system and the operator. However, CoV of 2.2% or less is 

considered very low and indicates that this is a reliable technique. 

 

Regarding inter-operator reproducibility, the Bland-Altman plots clearly illustrate that 

the differences between the two operators did not appear to increase as the mean value 

of the ASQ increases using the linear probe and are due to random variation. The 

same pattern was observed for the two other probes: the curved and TV probes. In 

other words, there is no obvious relationship noted between the differences of the two 
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operators and their means for all probes evaluated. This indicates that the increases in 

the derived ASQ mean values do not affect the difference between the two operators. 

According to Bland and Altman (2010), if the differences are proportional to the 

mean, a logarithmic transformation of the data has to be performed before analysis is 

carried out. 

 

The CoV calculated to measure the consistency of the image produced by two 

different operators shows a very small variation (excellent agreement). 

 

From the results above, it can be concluded that the ultrasound system with ASQ 

features is able to produce consistent images. Since the results show that scanning 

using a phantom is able to produce consistent images, it is worth continuing to an 

assessment of other factors that might influence the reliability of ASQ output 

measurements. This is addressed in the next section.  
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3.3. (B) Influence of ROI size, ROI depth, 

Focus, Gain setting and transducer 

frequency on ASQ 
 

The objective of this section is to assess factors that potentially affect the ASQ curve, 

namely the ROI size, ROI depth, focus, gain setting, and transducer frequency. 

Subsection 1 reviews the influence of those five factors on the ASQ curve. Subsection 

2 contains the methodology and statistical analysis, while subsection 3 presents the 

results, which are discussed in subsection 4. Finally, subsection 5 summarises this 

chapter. 

3.3.1.  Background 
It was reported that besides the variation in the imaged tissue itself, the output 

measurement may also vary due to other factors. Since there were no available articles 

or publications on ASQ image properties, studies of texture analysis were considered 

as a reference for background information for ASQ. This is due to the similar nature 

of ASQ and texture analysis in the fact that they are both statistically analysed by 

computer software.  

 

According to Castellano et al. (2004), the effect of external factors on some texture 

parameters must be taken into consideration before using texture analysis techniques. 

If this is not addressed, then the value obtained may not reflect the actual texture of 

the tissue, which may in turn influence the performance of the texture analysis 

technique when applied for classification, as pointed out by Chan and McCarty 

(1990). 
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In previous work on a tissue-equivalent phantom, it was reported that some texture 

features exhibit a dependency on the size of the area from which the features were 

extracted (He et al., 2004).  

 

In the same way, the influence of the ROI size has been reported in clinical image 

studies. For example, a study was done to discriminate prostate tissue from the 

ultrasound images. It was found that results from using smaller ROI were not as good 

as results using larger ROI. This demonstrates that the size of ROI will affect the 

performance of the extracted feature (Basset et al., 1993). Furthermore, He et al. 

(2004)  argued that determining the appropriate ROI size is crucial due to the 

variation that might be in the pathological area and that the tumour size is generally 

larger than the size of the normal area. 

 

Beside the ROI size, another factor that needs to be considered when acquiring the 

ASQ images is the depth of the ROI. In 1988, Morris conducted a study which 

revealed that some features of the texture analysis are dependent on the ROI depth 

(Morris, 1988). To overcome this limitation, some studies used a fixed ROI depth. 

However, this approach restricts the flexibility of the technique because real-life 

lesions may appear at various depths. 

 

It has been reported by several studies that even when imaging the same tissue, the 

value of the extracted features may vary under different scanner settings (Collewet et 

al., 2004, Chan and McCarty, 1990). Gain and focus position are examples of such 

factors. Therefore, in this section, the five main factors that may influence the 
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performance of the ASQ will be tested in a set of experiments to acknowledge the 

factors that have an effect on ASQ and to use them with caution in tissue studies.   

3.3.2. Methodology and statistical analysis 

3.3.2.1. Influence of ROI size 
 

The objective of this section is to evaluate the influence of the ROI size on the ASQ 

feature, particularly on the mean of the output curve. 

 

Ten images were acquired using a Toshiba Aplio 500 scanner with three different 

transducers: a 6.0 MHZ Transvaginal transducer (model PVT-661VT), a curve 

transducer (model PVT-375BT) at 3.5 MHz and a linear transducer (model PLT-

7045BT) at 7.5 MHz (as seen in Figures 17, 18 and 19 respectively). An RMI model 

403 GS LE phantom was used as a test object (please refer to Figure 20). 

 

The machine settings were kept constant by using the manufacturer’s pre-defined 

setting: Endo-Vaginal-Gynae. The ASQ button was enabled in the machine before 

taking the images. The set of ten images were saved as raw data on the ultrasound 

machine hardware and then transferred to the PC in a DICOM file for further analysis. 

Figure 24 illustrates the experimental setup. 

 

ASQ software, PC-ASQR Version 1.11R001, was used to draw the different ROI 

sizes on the images and acquire the output curve. The same process was repeated for 

the three different transducers. The mean of the output curve was documented from 

two different ROI sizes: large ROI and small ROI. The significance of the difference 
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was calculated in each transducer using the Mann-Whitney U test p-value to test for 

significance because of the  non-parametric data found when tested for normality. 

 

 

3.3.2.2. Influence of ROI Depth 
 

The objective of this section is to evaluate the influence of the ROI depth on the ASQ; 

whether as the depth of the ROI increases, the value of the mean of the output curve 

tends to increase/decrease as well. The procedure carried out for the image acquisition 

was similar to the ROI size assessment (see previous paragraph). The focus was kept 

constant in all images, while the ROI were drawn at two different depths (2cm and 4 

cm) in each image. The p-value were calculated to determine the relationship between 

the ROI depth and the ASQ mean of the output curve, i.e. whether there is a 

significant difference when changing the ROI depth regarding the focus. 

3.3.2.3. Influence of Gain setting 
 

The objective of this section is to evaluate the influence of the scanner gain setting on 

the ASQ output curve, i.e. whether there is a significant difference of the mean when 

changing the gain setting. 

Ten images were acquired using a Toshiba Aplio 500 scanner with three different 

transducers; a 6.0 MHZ Transvaginal transducer (model PVT-661VT), a 3.5 MHz 

curved transducer (model PVT-375BT) with and a 7.5 MHz linear transducer (model 

PLT-7045BT). An RMI model 403 GS LE phantom was used as a test object. The 

machine settings were kept constant by using the manufacturer’s pre-defined setting: 
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ASQ setting (except for the gain). The ASQ button was enabled in the machine before 

taking the images. The images were acquired at two different gain settings: 85 % 

(low) and 100 % (high). The set of ten images were saved as raw data on the 

ultrasound machine hardware and then transferred to the PC in a DICOM file for 

further analysis. Please refer to Figure 24 for the experimental setup and the process 

flow illustration. A relatively large ROI was drawn in the centre of the image for the 

output curve using the ASQ software version 1.11R001. 

 

 

 

 

    

 

Figure 24: Experiment process flow illustration. 

 

 

 

 

ASQ ASQ software 
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3.3.2.4. Influence of focus position 

The objective of this section is to evaluate the influence of the focal position in the 

ultrasound image on the ASQ output curve, i.e. whether there is a significant 

difference of the mean when changing the focal position. 

The same procedure was followed with the same ultrasound machine and type of 

transducers used as in the gain setting experiment (see previous section). The only 

part of the procedure that was different is that the gain was kept constant along with 

the other factors and ten images were acquired with two different focal positions, one 

at 2 cm and the other at 4 cm. 

 

3.3.2.5. Influence of transducer frequency 
 

The objective of this section is to have an understanding of the influence of transducer 

frequency on the ASQ output curve. 

A similar procedure was followed using the same ultrasound machine and type of 

transducers as in the gain setting experiment (see gain section). All variables were 

kept constant, i.e. the gain setting, focal position, depth of ROI and size of ROI. The 

only difference here is the frequency of the transducer. For the linear transducer, three 

different frequencies were tested: 8.4, 7.2 and 6.2 MHz; for the curved transducer, 

four different frequencies were tested: 6, 5, 4 and 3 MHz. For the TV transducer, 

three frequencies were tested: 8, 7.2 and 6 MHz. For each frequency, ten images were 

acquired and saved as raw data. These images were then transferred to the PC in a 
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DICOM file for further analysis. A relatively large ROI was drawn in the centre of the 

image for output curve using the ASQ software version 1.11R001. 

3.3.3. Results  

3.3.3.1. Sample characteristics 
 

A Shapiro-Wilk normality test (p >.05) and a visual inspection of the histograms, 

normal Q-Q plots and box plots showed that some of the variables were not normally 

distributed when calculating the z-value, by dividing the skewness and kurtosis values 

over the standard error for each of them. Therefore, a non-parametric test (Mann-

Whiteny U) was used to calculate the p-values for all of the variables to keep the 

results consistent.  

3.3.3.2. Influence of ROI size  
The median was calculated for each transducer from the output curve in each image. 

These results are presented in Tables 12, 13 and 14. These results show that there is a 

significant difference between the large ROI and the small ROI in the linear 

transducer with p-value <.001, while in the curved and TV transducers, the difference 

is not significant, with p-values of 0.105 and  0.912 respectively (see Figures 25 and 

26). 
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         Figure 25: ASQ window with large ROI                  Figure 26: ASQ window with small ROI      

 

 Median  p-value Significance? 

Large ROI 110 

<.001 Yes  

Small ROI 112 

Table 12: Summary of the influence of the ROI size on the mean of output curve using Linear Probe 

 

 Median p-value Significance? 

Large ROI 98.50 

0.105 No 

Small ROI 97.50 

Table 13: Summary of the influence of the ROI size on the mean of output curve using Curve Probe. 

 

 Median p-value Significance? 

Large ROI 103 

0.912 No 

Small ROI 103 

Table 14: Summary of the influence of the ROI size on the mean of output curve using TV Probe. 

3.3.3.3. Influence of the ROI depth 
The median was calculated for each transducer due to the non-normal distribution of 

some of the variable data from the output curve in each image. These results are 
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presented in Tables 15, 16 and 17. Furthermore, it shows that there is no significant 

difference for either the curved or the TV probe, with p-values of .769 and .631 

respectively, when placing the ROI at depths of 2cm or 4cm. On the other hand, the 

linear probe showed a significant difference in the median when drawing the ROI at 2 

cm and 4 cm with p-value <.001 using the Mann-Whitney U test (see Figures 27 and 

28). 

 

 

    

Figure 27: ASQ window with ROI at 2cm depth      Figure 28: ASQ window with ROI at 4cm depth 

 

 Median p-value Significance? 

2cm depth 112 

<.001 Yes  

4cm depth 103 

Table 15: Summary of the influence of the ROI depth on the mean of output curve using linear probe. 

 

 Median p-value Significance? 

2cm depth 98.5 

0.769 No  

4cm depth 99 

Table 16: Summary of the influence of the ROI depth on the mean of output curve using curved probe. 
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 Mean p-value Significance? 

2cm depth 104 

0.631 No  

4cm depth 103.5 

Table 17: Summary of the influence of the ROI depth on the mean of output curve using TV probe. 

 

3.3.3.4. Influence of the focus setting 
 The results of the influence of the focus on the output curve are summarised in 

Tables 18, 19 and 20. The linear and TV probes showed a significant difference in the 

output curve mean when changing the focus from 2 cm to 4 cm, with p-values of .003 

and <.001 respectively. In contrast, there was no significant difference in the output 

curve mean when changing the focus from 2cm to 4cm in the curved transducer, with 

a p-value of .579.  

 

Figures 29 and 30 illustrate how the images were taken with different focal positions 

prior to saving and transferring them to PC in a DICOM file. 

 

  

     Figure 29: ASQ window with focus at 2 cm.                   Figure 30: ASQ window with focus at 4 cm. 
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 Median p-value Significance? 

Focus at 2cm  112 

0.003 Yes  

Focus at 4cm  109 

Table 18: Summary of the influence of the Focus setting on the mean of output curve using linear probe 

 

 Median p-value Significance? 

Focus at 2cm 98.5 

0.579 No  

Focus at 4cm 100 

Table 19: Summary of the influence of the focus setting on the mean of output curve using curved probe 

 

 Median p-value Significance? 

Focus at 2cm 103 

<.001 Yes   

Focus at 4cm 106 

Table 20: Summary of the influence of the focus setting on the mean of output curve using TV probe. 

3.3.3.5. Influence of gain setting 
Tables 21, 22 and 23 show the results when changing the gain settings on the three 

different transducers respectively. The median was calculated. In all three transducers, 

the gain setting did not give any significant difference in the mean of the output curve, 

with p-values of .393 for the linear probe and .853 for both the curved and TV probes 

(see Figures 31 and 32). 
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Figure 31: ASQ window with High Gain of 100 %            Figure 32: ASQ window with low Gain of 85 % 

 

 Median p-value Significance? 

High gain 112 

0.393 No  

Low gain 110 

Table 21: Summary of the influence of the gain setting on the mean of output curve using linear Probe. 

 

 Median p-value Significance? 

High gain 101 

0.853 No  

Low gain 101 

Table 22: Summary of the influence of the gain setting on the mean of output curve using curve Probe. 

 

 Median p-value Significance? 

High gain 102 

0.853 No  

Low gain 102.5 

Table 23: Summary of the influence of the gain setting on the mean of output curve using TV Probe. 
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3.3.3.6. Influence of transducer frequency 
 

The influence of frequency on the output curve is summarised in Tables 24, 25 and 

26. The mean and median of the ASQ output curve were calculated for all 

frequencies. For the linear probe, the 8.4 MHz frequency was significantly different 

when compared to the 7.2 MHz frequency as well as when compared to the 6.2 MHz 

frequency, with both p-values of < .001. However, there was no significant difference 

seen when comparing the p-values of 7.2 with 6.2 MHz, with a p-value of .739. 

For the curved probe, four different frequencies were tested against each other. In all 

frequencies, no significance difference was seen when compared to each other, with 

p-values ranging from .165 to .796 using the Mann-Whitney U test. 

 

When testing the TV probe, no significant differences were seen between the 

frequencies 8 and 7 MHz and between frequencies 7 and 6 MHz, with p-values .280 

and .089 respectively. The only significant difference shown was between 8 and 6 

MHz, with a p-value of .003. 
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Frequency 

(MHz) 

Mean Median P-value Significance? 

8.4 71.6 72 (8.4 with 7.2) 

<.001 

Yes  

7.2 103.6 104 (7.2 with 6.2) 

.739 

No 

6.2 103.3 103.5 (8.4 with 6.2) 

<.001 

Yes  

 

Table 24: Influence of frequency in linear transducer. 

 

Frequency 

(MHz) 

Mean Median P-value Significance? 

6 96.4 97 (6 with 5) .436 

 

No 

5 95.6 95.5 (5 with 4) .739 

 

4 95 95 (4 with 3) .796 

 

3 93.8 95 (6 with 3) .353 

 

(6 with 4) .165 

 

Table 25: influence of frequency in curved transducer. 
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Frequency 

(MHz) 

Mean Median P-value Significance? 

8 104.5 105 (8 with 7.2) 

.280 

No 

  

7.2 103.1 104.5 (7.2 with 6) 

.089 

No  

 

6 101.1 101 (8 with 6) .003 Yes  

Table 26: influence of frequency in TV transducer. 

 

3.3.4. Discussion  
 

The success of applying the ASQ technique is subject, among other factors, to the 

reliability of the extracted features. Five factors associated with the reliability were 

considered in this section: (i) ROI size, (ii) ROI depth, (iii) focus, (iv) gain setting and 

(v) transducer frequency. 

 

The results for the influence of ROI size on the mean of the output curve show that 

the size of the ROI does not affect the occurrence curve mean. This can be clearly 

seen in both the TV transducer and the curved transducer. Yet, in the linear 

transducer, the variation is inversely proportional to the size of the ROI. In other 

words, the larger the ROI size, the more reliable the mean of the output curve, with 

less variation, and the smaller the ROI, the more variation can be seen in the mean. 

This indicates that the linear transducer is ROI-size dependent. This could be 

explained by the fact that a smaller number of samples are used in the smaller ROI, 

which gives more variation. In other words, a small ROI would have an insufficient 
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numbers of pixels to reliably compute the ASQ mean output. As different lesions may 

have different sizes, a minimum size that ensures that the variation in ASQ parameters 

in each ROI is captured needs to be established. 

 

It is important to note that a relatively large ROI size should be used for any particular 

study using the linear probe to avoid misleading results due to the difference in the 

ROI size. This transducer, however, was not used in the study of images of ovarian 

masses. 

These results do not apply to the TV or the curved transducer. It has been shown that 

the ROI size does not affect the mean of the output curve. Moreover, the mean of the 

output curve will have minimal variation when using different ROI sizes that will not 

affect its reliability.  

 

ROI depth is another determinant of the mean of the output curve. The ultrasound 

beam causes a depth dependence of the B-mode image texture, as described by 

Oosterveld et al. (1991). This can be explained by the fact that the intensity 

progressively decreases as the beam passes though tissues as a result of scattering, 

refraction and absorption phenomena (Lagalla and Midiri, 1998).  

 

The attenuation on the ultrasound signal as it advances through the tissue is one of the 

underlying factors that affect the B-mode image texture. According to Morris (1988), 

the correction of this variation in the raw image is not straightforward and might not 

even be possible.  To overcome this problem, some studies have confined the ROI 
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position to a fixed depth to avoid depth dependency. For instance, (Bader et al., 2000) 

stated in their study that all tumours were located at depths between 2 cm and 3 cm.  

 

Since the position of the lesion may vary, it is crucial to understand the influence of 

the ROI depth on the mean of the output curve. We have evaluated the effect of ROI 

depth on the mean of the output curve on three different transducer types. In both the 

TV and the curved transducers, the depth did not significantly affect the mean of the 

output curve, while in the linear transducer, a significant difference was seen when 

using different depths for the ROI. 

 

The third factor that may affect the ASQ output curve is the position of the focus. 

Generally, the ultrasound beam spreads out, or undergoes divergence, as it moves 

away from the transducer  (International Society of Radiology: (Tole, 2005)): 

therefore, it is possible to focus the ultrasound beam to cause narrowing of the beam 

and thus improve (lateral) resolution. The beam can be narrowed at a predetermined 

distance from the transducer. The point at which the beam is at its narrowest is the 

focal point or focal zone and is the point of greatest intensity and best lateral 

resolution (George, 2006).  

The fact that the focus position does affect the mean of the output curve in the TV 

probe led us to decide to keep the focus position at the level of the drawn ROI to 

acquire the greatest intensity and the best lateral resolution to ensure reliable results. 

 

The fourth factor that may influence the mean of the output curve in the ASQ 

software is the gain setting. The results of testing the effect of high gain (100 %) and 
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low gain (85 %) showed that all three probes are independent of the gain setting. This 

means that using either high or low gain when acquiring the raw data on the 

ultrasound machine will not affect the mean of the output curve in the ASQ software. 

This could be explained by the fact that the ASQ software uses the raw data, which is 

initially not affected by the gain setting.  

 

Transducer frequency results showed that the mean of the output curve is not affected 

by the frequency chosen to capture the ultrasound images except when choosing 8.4 

or 8 MHz in the linear and the TV probe respectively. These higher frequencies seem 

to affect the mean of the output curve in the ASQ. 

 

Based on the findings from this chapter, three factors do not influence the mean of the 

output curve in the ASQ software using the TV probe: these are ROI size, ROI depth 

and the gain setting. Nevertheless, the focal position does have a significant effect on 

the output curve. Moreover, transducer frequency does affect the mean of the output 

curve only if a high frequency is chosen (8 MHz); otherwise lower frequencies do not 

influence the mean of the output curve. These findings permit us to use the ASQ 

software on ovarian masses with confidence that these factors will not affect the 

reliability of the reading, while taking caution when positioning the focus on the 

image before storing the raw data as well as using low transducer frequencies. 

3.3.5. Testing ASQ settings  
 

Since ASQ is a new and evolving technique, further exploration was needed to 

understand the correct procedure to be used. Usually only Toshiba Aplio 500 
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machines come with an ASQ pre-setting and an ASQ button. However, it was worth 

testing different Toshiba models to acquire raw images that could be used in the ASQ 

window and analysed using the ASQ software. 

 

For this purpose, the aim of this test is to compare the Toshiba Aplio 400 to the 500 

model as well as to test three different pre-settings on the same machine. Using a 

linear probe, ten images were acquired in the Aplio 500 and stored as raw data, and 

then copied as a DICOM file to be analysed using the ASQ software. In the Aplio 

400, the machine was set up by a Toshiba engineer to enable raw data store button in 

the control panel. Then ten images were acquired using a similar technique and stored 

as a raw file. These images were then transferred as a DICOM file to a personal PC to 

be analysed using ASQ software. 

 

Then three different pre-settings were tested: these are pre-set off (the raw data) with 

ASQ on, pre-set on with ASQ on and pre-set on with ASQ off. In each setting, ten 

images were acquired and stored as raw data, all other variables were kept constant 

throughout the test. Images then were copied to a flash memory drive as a DICOM 

file to be analysed using the ASQ software. 

3.3.5.1. Results   
 

Two different tests were done to investigate the most reliable setting of the machine to 

acquire the images before transferring them to be analysed using ASQ. First, the 

different machine models (Aplio 500 and Aplio 400) were compared when saving 

images as a raw store without enabling the ASQ button. The p-value was .912, 
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indicating no significant difference between the two models when storing the images 

as a raw store without enabling the ASQ button before saving the images. Table 27 

summarises the results. 

Second, three different pre-settings of the machine were compared: these are pre-set 

button off with ASQ on, pre-set button on with ASQ on and pre-set button on with 

ASQ off. Surprisingly, there were no significant differences between pre-set button on 

and off when the ASQ button was on, with a p-value of .796, while there was a 

significant difference when the ASQ button was on compared to when the ASQ 

button was off even when the pre-set button was on, with a p-value <.001. (Please 

refer to Table 28 for results). 

 

Machine Model  Median  P-value  Significant? 

Aplio 500 72 

.912 No  

Aplio 400 72 

 

Table 27: The difference between Toshiba model Ultrasound machines  
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Machine setting Mean Median P-value Significance? 

Pre-set OFF 

ASQ on 

105.1 

 

.796 No 

Pre-set on 

ASQ on 

104.9 

 

  

Pre-set on 

ASQ off 

71.3 71 <.001 Yes 

 

Table 28: Summary of the results of ASQ machine settings. 

 

3.3.5.2. Discussion and Conclusion  
 

ASQ software was initially designed to work with Toshiba Aplio 500 machines. 

However, further testing had to be done on the Toshiba machines to investigate the 

right setting to acquire images before analysing it using ASQ software. It was possible 

to acquire images on Aplio 400 after setting a raw store button on the machine. 

Unfortunately, this gave misleading results when analysed using ASQ software. 

Because we used a phantom that consisted of uniform tissue, we expected the mean 

and median of the output curve to be around 100 to represent the uniformity of the 

tissue, but the mean and median of the output curve were shifted to the 70s.  

 

When testing the machine setting, it was found that the pre-set button on the control 

panel screen was not significantly affecting the raw stored images when analysed 

using ASQ software. On the other hand, the ASQ button had a major influence on the 

image property before storing. This could be explained by the fact that the pre-set 

105 

105 
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button only enabled the machine to switch on precision; Precision is defined as an 

adaptive processing algorithm which looks at the returning echo signals and uses 

image processing techniques to extract the real information from the background 

noise. This has the effect of reducing the clutter in the image and producing an image 

with finer detail (Brosky, 2009). 

 However, the precision button was found to have no effect on the raw store images. 

Another reason is that the manufacturer of the ASQ has set this button to enable some 

filters that are not available on older Aplio models. 

 

From these tests, it can be concluded that ASQ software will not work properly and 

reliably on images taken from machines other than Aplio 500. Moreover, the ASQ 

button has to be enabled on the machine before storing images in raw form.  
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3.4.  (C) Influence of pre-defined image 

parameters on ASQ output 
 

In the ASQ software window, there is a bar of multiple pre-defined parameters that 

can be altered before selecting the ROI. These parameters have a dramatic effect on 

the output graph shape, average, mode and SD values. 

 

These parameters are the x and y values for the sample chosen, the sample steps, 

sweep intervals and the total number of samples. The software comes with default 

settings for these parameters, which are shown in Table 29. However, these default 

settings were originally created to be used on liver tissue. Therefore, in this section, 

the default setting will be tested on a phantom used in Ultrasound in an attempt to 

create a set of parameters that are most useful to be used on images of ovarian masses. 

 

Samples  

x 21 y 19 

Sample steps 

x 0 y 2 

Sweep intervals  

x 2 y 4 

Actual size 

Number of samples 315 
 

Table 29: The default settings in the ASQ software window 

 

The large ROI is the region that is drawn within the area of interest, while the small 

ROI is the sample areas, within the large ROI, that are used to determine the cm
2
 

value, as explained by Toshiba engineer. The size of the small ROIs is determined by 

the value of X and Y in the toolbar setting. 
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In other words, when drawing a ROI on an image, it consists of number of small ROI 

next to each other, and samples x and y represent a pre-set number of scan lines that 

will be used on both the x axis and the y axis in the small ROI. Within the large ROI, 

at least 100 small ROIs are needed in order for the statistics to be meaningful. The 

sample steps represent the number of un-sampled pixels between each sampled pixel 

in the small ROI. This can be determined in the x and y planes independently. When 

the SS is 0 in each plane, every pixel in the ROI is used for the analysis. The smaller 

the sample steps, the greater the number of sampled pixels within the small ROI. The 

sweep interval determines how close the small ROIs are, as they are being 

interrogated: in other words, it represents the gap between two small ROI. For our 

small pathological structures, we need them to be as close as possible, so that we can 

detect very small areas of speckle variation. 

 

Finally, the number of samples gives the actual number of small ROI that will be 

calculated when drawing the ROI on an image. It is controlled by the values of x and 

y. Furthermore, it needs to be adjusted to more than 100, as advised by the Toshiba 

engineer. 

3.4.1. Methodology  
The goal of these experiments is to define a set of parameters that can allow us to 

draw the smallest ROI (e.g. 1 x 1 cm) without affecting the reliability of the output 

graph and at the same time ensuring reliable values. 
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Ten images were acquired using a Toshiba Aplio scanner. A linear transducer (model 

PLT-7045BT) with 7.5 MHz was used for this section to establish new parameter 

settings to be used later on images of ovarian masses. The reason for this is that the 

linear transducer has the simplest image and gives a square shaped ROI that is easier 

to draw and measure.  

 

An RMI model 403 GS LE phantom was used as a test object. The machine settings 

were kept constant by using the manufacturer’s pre-defined setting: Endo-Vaginal-

Gynae. The ASQ button was enabled in the machine before taking the images. The set 

of ten images were saved as a raw store on the ultrasound hardware and then 

transferred to the PC in a DICOM file for further analysis. Figure 33 illustrates the 

experimental setup. 

 

The same set of ten images were used throughout this section while changing the pre-

defined parameters from the left bar shown on the software window (please refer to 

Figure 33).  In the ten images, the ROI were drawn twice: once with the default 

parameter setting and the other with changing the steps x, y and sweeps x, y to 0, 0 

and 1, 1 respectively. The mean and SD were calculated for both sets of data and 

compared using t-tests to calculate the p-value for the significance of the difference.  

 

As advised by Toshiba engineers, to ensure reliable results, the actual sample size 

should not fall below 100. Therefore, several different parameters were used to reach 

the optimum set with at least a sample size of 100. To achieve that, a set of 

experiments were done (please see the flow chart in Figure 34). 
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Figure 33: Block diagram of ASQ parameter assessment. 
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Figure 34: Flow chart of experiments 
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3.4.2. Results  
When altering the x and y values of the sample, the values of (x 11 and y 13) were 

found to give an actual size of 115 samples (see Figure 35) and simultaneously allow 

us to draw the smallest ROI required (1 x 1 cm): please refer to Table 30 for a 

summary of the different values with their corresponding actual number of samples. 

 

Sample values Mean  Number of samples 

x 17   y 19 101 255 

x 15   y 17 101 207 

x 13   y 15 99 151 

x 11   y 13 98 115 

x 9    y 11 96 79 

x 7    y 9 91 51 

 

Table 30: Summary of different x and y samples with their corresponding numbers of samples. 

 

 

Figure 35: ASQ window with the chosen set of parameters. 
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After defining the best set of parameters, it was tested against tissue images 

(inhomogeneous tissue) to test for significance. When comparing the default setting 

with the decrease in sample steps and sweep interval to minimum, there was a 

significant difference between them, with a p-value of .004 (see Table 31). Similarly, 

when applying the decreased sample steps and sweep intervals setting to human tissue 

there was a significance difference, with a p-value of 0.043 (see Table 32).  

 

Subsequently, the phantom images (homogenous) were compared to tissue images 

(inhomogeneous: see Figure 36) and found to have a significant difference between 

the means, with p-values of .001 in both the default and the decreased setting, which 

are summarised in Table 33. 

 

 Median  P-VALUE Significant? 

Default setting 103 

0.004 Yes Decrease steps 0,0 

Sweeps 1,1 

101 

 

Table 31: ASQ Phantom images (homogeneous) 
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Figure 36: ASQ window for tissue image with default setting. 

 

 Default setting Decrease steps 

0,0 sweeps 1 ,1 

P-value 

 Median                 Median   

Red 119.5 113  0.043 

Blue  163.5 167  0.912 

 

Table 32: ASQ tissue images (inhomogeneous) 

 

 Homogeneous  Inhomogeneous P-value 

 Median                             Median   

Default 103 119.5   <.001 

 Steps0,0 

sweeps 1,1 

101 113   <.001 

 

Table 33: The significance of the difference between the phantom images and the tissue images. 
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When using the pre-defined default settings, which are sample size of 299 with x 21 

and y 19, the equipment will not allow the operator to draw a small ROI: hence, we 

had to find out which sample values of x and y would allow the drawing of small ROI 

(1 x 1 cm) without decreasing the sample size below 100, as advised by Toshiba 

engineers. All possible x and y values were tested to reach the required values. The 

resulting sample values were x 11 and y 13, which gives a sample size of 115. 

Afterwards, the chosen values were compared to the default sample size in tissue to 

test for significance. The p-value was .001, indicating a significant difference between 

the default sample size and the chosen one (please refer to Table 34). 

 

 

 

 

Setting 

 

(x21,y19) 

Sample size 299 

Steps 0,0 sweeps 

1,1 

(x11,y13) 

Sample size 115 

Steps 0,0 sweeps 

1,1 

 

P-value 

 Median                   Median 

 

 

Red 113 105.5 <.001 

blue 167 172 0.529 

 

Table 34:  The effect of the sample size parameter on the mean of the curve in tissue images. 
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Figure 37: ASQ window for tissue image with chosen pre-set parameters. 

 

To ensure that the new chosen parameters are reliable, we compared drawing large 

ROI to the desired small ROI (1 x 1 cm). There was no significant difference in the 

mean when using a small ROI or a large ROI with a p-value of .143 (see Table 35). 

Further testing was done on tissue images by applying the newly chosen parameters 

and comparing the large ROI with the anticipated small ROI (see Figure 37). No 

significant difference was seen, with a p-value of .165 (shown in Table 36). 

 

Setting: (x11,y13) 

Sample size 115 

Steps 0,0 sweeps 1,1 

 

Large ROI 

 

Small ROI 

 (1 x1 cm) 

 

P-value 

 

Median 

 

97 

 

99 

 

.143 

 

Table 35: Comparison between drawing large ROI and smallest ROI with the new chosen setting on phantom 

images. 
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Setting (x11,y13) 

Sample size 115 

Steps 0,0 sweeps 1,1 

 

Large ROI 

 

Small ROI 

 (1 x1 cm) 

 

P-value 

         Median                        Median 

 

 

Red 105.5 96.5 .165 

blue 172 170 0.739 

 

 

Table 36: Comparison between drawing large ROI and smallest ROI with the new chosen setting on tissue images. 

 

3.4.3. Discussion  
ASQ is a new, advanced technique that was introduced by Toshiba Medical Systems 

in 2009 to give a considerably higher resolution of ultrasound images. It has been 

proven, by several studies in the past few years, to be useful in diagnosing certain 

liver diseases (Onodera, 2013, Ricci et al., 2013, Wang et al., 2013). However, to 

apply this new method to other parts or organs of the body, such as the ovaries, it is 

essential to test it, as different organs have different normal textures and hence give 

different speckle patterns. 

 

Testing the parameters of ASQ images was not an easy task. The reason for this is 

that very little information is available about this evolving application. Therefore, 

improvisation was needed to acquire the best results possible from the ultrasound 

images.  
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As seen from the results section, a set of parameters were chosen to be used on 

ovarian masses that allowed the drawing of small ROI (1 x 1 cm) without 

compromising the sample size. The reason for this is that the ovaries are much smaller 

in size than the liver: therefore, a smaller ROI was needed. No differences were 

observed when drawing small and large ROI, which ensured that the chosen 

parameters were reliable. When comparing the mean of phantom images to tissue 

images, a significant difference was observed as expected. This proves that the newly 

chosen set of parameters can be useful on inhomogeneous tissue and is not only 

applicable to phantoms. 
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3.5. (D) Applying ASQ to Images of Benign and 

Malignant Masses  

 

The previous three sections explored ASQ and tested it for robustness as well as 

reliability and repeatability. They also tested the factors that could affect the output 

curve of the ASQ, and determined the best predefined parameters to be used. 

Consequently, we want to apply this new method of analysis to pelvic masses in an 

attempt to distinguish benign from malignant tissue. The aim of this section is to 

conduct a small study in which we apply ASQ analysis to images of pelvic masses to 

document the ability of ASQ in discriminating benign from malignant ovarian masses. 

 

3.5.1.  Methodology and Statistical analysis 
To get the ethical approval, a full protocol for the proposed study of image texture 

analysis of Transvaginal ultrasound in diagnosing ovarian cancer was submitted to the 

Dyfed Powys Research Ethics Committee. The study received full ethical approval on 

18
th

 July 2013 (Ref. 13/WA/0206), as shown in appendix III. This project was also 

submitted to Cardiff and Vale NHS trust research and development committee, and 

was approved for commencement on 26
th

 April 2013, as shown in appendix II.  

 

Toshiba Aplio 500 was used in this study after it had been tested for reliability and 

repeatability (see section A in this chapter). However, only the Transvaginal probe (6 

MHz) was used to acquire the images of pelvic masses.  

 



   

141 

 

ASQ software, PC-ASQR Version 1.11R001, was used to draw the different ROI 

sizes on the images and acquire the output curve. The statistical analysis (Q-Q plot, 

Shapiro Wilk test and Mann-Whitney U test) was performed using SPSS 17.0 for 

windows (SPSS Inc, Chicago, Illinois, USA). 

3.5.1.1. Participants  
Study population: women age 18 and above with known pelvic masses. 

Inclusion criteria: All patients with confirmed pelvic masses and scheduled for 

surgery. Exclusion criteria:  Patients with other Gynaecological malignancy, i.e. not 

pelvic masses, pregnant patients, patients with a previous history of bilateral 

oophorectomy, difficult scans and unclear scan images and age less than 18 years old. 

Any patient with normal morphology or incomplete/ missing ultrasound results data 

were excluded from this study. 

Patient withdrawal during the study: participants were free to withdraw from the study 

at any time.  

3.5.1.2. Procedure:  Recruitment and Consent 
 

Participants were selected from a pelvic mass clinic and Gynaecology oncology 

clinics. All patients with known adnexal mass and scheduled for surgery were 

identified by members of the research team. The researcher approached the potential 

participant and informed them of the research study.  
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The study was explained and written information provided.  Patients were given up to 

24 hours to decide if they wanted to participate in the study, and then, after answering 

any question they had regarding the study, an appointment was booked for the scan. 

On the day of the scan, written consent was obtained before starting the scan. All 

participants were booked for an ultrasound scan of the pelvis prior to their surgery. 

 

The scanning procedure was the same for all participants in this study. A transvaginal 

transducer was used to perform the scan, and then, once the pelvic mass was 

identified on the screen, the ASQ button was enabled and the pre-set was on the ASQ 

setting. Images were stored as raw store clips on the machine hard drive. After the 

patients had left, images were transferred as DICOM files to a personal computer for 

off-line analysis. Then ASQ software was used to download the images. A ROI was 

drawn on the mass, which gives a graph that represents the normal and abnormal 

tissue in the ROI. The readings of the red and blue curves as well as the ratio between 

them were documented for each mass.  

3.5.2. Results 
A total of 45 masses were collected from 44 participants for the purpose of this study. 

Twenty-seven participants were premenopausal and seventeen were postmenopausal. 

Their ages ranged from 26 to 53 years in the premenopausal group (mean 41, median 

43) and from 52 to 90 years (mean 64, median 58) in the postmenopausal group. 

 

Histological specimens in all masses (n=45) included thirty-four benign masses, such 

as serous cystadenoma, mucinous cystadenoma, cystadenofibroma, dermoid, fibroid 

and endometrioma, and eleven malignant masses. 
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The output mean curves were categorised into two groups according to the type of 

lesion: benign or malignant. A Q-Q plot was used to determine the normality of the 

data by visual inspection. For normally distributed data, the plot should show a linear 

relationship; furthermore, the Shapiro-Wilk test was also used to test for normality. 

Figure 38 shows an example of normally distributed data (red curve - technique 2) 

while Figure 39 shows an example of non-normally distributed (blue curve - 

technique 1).  

 

Figure 38: Example of Q-Q plot for normally distributed data (Red curve- technique 2) 
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Figure 39: Example of Q-Q plot for a non-Normally distributed data (the ratio between the red and blue curve- 

technique 1) 

 

 Shapiro-Wilk Sig. Normally distributed? 

Red curve (all mass 

included) 

.119 Yes 

Blue curve (all mass 

included) 

.874 Yes 

Ratio (all mass included) <.05 No 

Red curve (only solid 

area) 

.963 Yes 

Blue curve (only solid 

area) 

.993 Yes 

Ratio (only solid area) <.05 No 

 

Table 37: Shapiro-Wilk test results for normality of the data. 
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Two analysis techniques were used. The first included the whole mass in the ROI for 

analysis, while the second technique only included the solid area of the mass in the 

ROI. 

The results of the Shapiro-Wilk test for normality are summarised in Table 37. They 

show that the red and blue curves both have normally distributed data in both 

techniques used (when >.05 is considered normal data), while the ratio between red 

and blue curves shows non-normally distributed data values <.05 in both techniques. 

 

The mean and standard deviation of both the red and the blue curve and the ratio 

between them were calculated and are summarised in Tables 38 and 39 for the two 

different techniques respectively. 

 

Type of curve Mass type Mean  SD 

Red curve with all mass in 

ROI 

Benign 123 30.8 

Malignant 123.5 14.4 

Blue curve with all mass in 

ROI 

Benign 175 39 

Malignant 184 24.4 

The ratio between Red and 

Blue 

Benign .77 .99 

Malignant 1.02 1.08 

 

Table 38: Summary of mean and standard deviation of the curves (ROI including the whole mass) 
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Type of curve Mass type Mean  SD 

Red curve with only solid 

area in ROI 

Benign 117.5 12.9 

Malignant 120.6 7.5 

Blue curve with only solid 

area in ROI 

Benign 168 22 

Malignant 177 25 

Ratio between Red and 

Blue 

Benign .65 .9 

Malignant .55 .4 

 

Table 39: Summary of mean and standard deviation of the curves (ROI including the solid area only) 

 

In the first technique, the means were similar in the benign and malignant masses, but 

they were different in the blue curve, with the malignant masses having the higher 

mean (184). In the ratio between the red and the blue curve, the malignant masses had 

higher mean (1.02) than the benign masses (.77). 

 

In the second technique there were no similarities in mean values in all three groups 

(red, blue and ratio). Malignant masses had higher mean in the red and blue curve but 

lower mean in the ratio (.55) when compared to the benign masses. 
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Type of curve Mass type P-value Significant 

different? 

Red curve with all mass 

in ROI 

Benign-Malignant .956 NO 

  

Blue curve with all mass 

in ROI 

Benign-Malignant .471 NO 

  

The ratio between Red 

and Blue 

Benign-Malignant .489 NO 

  

 

Table 40: Summary results of the significance test (ROI includes the whole mass) 

 

 

 

Type of curve Mass type P-value Significant 

different? 

Red curve with only solid 

in ROI 

Benign-Malignant .518 NO 

  

Blue curve with only solid 

in ROI 

Benign-Malignant .323 NO 

  

The ratio between Red and 

Blue 

Benign-Malignant .748 NO 

  

 

Table 41: Summary results of the significance test (ROI includes only the solid area). 

 

The non-parametric Mann-Whitney U test was used to calculate the significance 

between the benign and malignant masses on data from both techniques. The results 
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when including the whole mass in the ROI show that the two groups were not 

significantly different in red, blue and the ratio between red and blue, with p-values > 

0.05.  

 

When using the second technique, which only included the solid area of the mass in 

the ROI, there were still no significance difference between the benign and the 

malignant masses in any of the curves, with p-values of .51, .32 and .74 for the red 

curve, the blue curve and the ratio between them respectively. The results for both 

techniques used are summarised in Tables 40 and 41. 

 

An attempt to analyse a simple cyst was performed; however, there were no curves 

produced when applying the ROI on a simple cyst or any anechoic area. Therefore, 

the images of a simple cyst were not included in the analysis. 

 

No further statistical tests were performed due to the non-significant differences 

between the two groups, with all p-values >.05. 

 

3.5.3. Discussion and Conclusion 
 

Acoustic structural quantification (ASQ) was originally designed by Toshiba Medical 

Systems to help in the diagnosis of liver diseases. It has been demonstrated to have 

the ability to separate homogenous from inhomogeneous tissue. In this section, an 

attempt was made to apply the ASQ analysis to pelvic masses in order to assess the 
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diagnosis of the nature of the mass by defining the difference between homogeneity 

of benign and malignant tissue. 

 

Tissue characterisation can be used in conjunction with a visual interpretation of an 

ultrasound image to improve diagnosis. The aim of this section was to determine the 

ability of ASQ analysis in characterising ovarian tissue. In particular, we investigated 

the appropriateness of this method in discriminating benign from malignant tissue. 

  

At the beginning of the study, the calculation of sample size was based on the 

assumption that ASQ  may distinguish between benign and malignant masses with 5% 

significance level and 80% power: thus, a total of 200 women (100 participants with 

benign masses and 100 with malignant) were required for the study to demonstrate a 

significant difference. However, recruitment of participants for this study was 

somewhat difficult and slow. This was because we were dealing with women who had 

a suspicious mass and were waiting for surgery to have it removed: they were all very 

anxious, some were very ill and most of them did not want to have an additional 

internal scan, which can be uncomfortable in some cases when repeated in short 

period of time. Over a period of 18 months, only 44 women agreed to participate in 

this study, and after reviewing the preliminary results, a decision was made to stop the 

recruitment due to non-significant results. 

 

 It was agreed that there was no point in increasing the sample size if the results were 

not showing any discrimination ability between benign and malignant masses. 
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It is unknown whether a statistically significant difference between any of the 

parameters would have been found if it was practically possible to recruit a greater 

number of patients. 

 

There were variations observed in all of the output curves values extracted from the 

same tissue type. For example, the SD of the extracted values from the red curve for 

benign tissue was 30.8 for technique 1 and 12.9 for technique 2. Similarly, the SD for 

the blue curve was 39 and 22 for technique 1 and technique 2 respectively. 

 

In this study, two techniques for drawing the ROI were adopted. It can be seen from 

the results that selecting only the solid area from the mass did not improve the 

discrimination between benign and malignant masses. This is confirmed by the 

significance test results, whereby for technique 2, all output curve values were not 

statistically significant despite the fact that the mean values were different in both the 

benign and malignant groups (117.5 and 120.8 for the red curve and 168 and 177 for 

the blue curve). The results indicate that excluding the anechoic area from the analysis 

does not improve the diagnosis: this could be explained by the fact that the anechoic 

area originally does not give output curve values when analysed alone because only 

the images with raw data were used in the ASQ software. 

 

This failure to discriminate the benign from the malignant masses using ASQ could 

be because most of the masses in both groups were fibrotic in nature, such as 

cystadenofibroma, fibroids, and adenocarcinoma. 
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This study has shown that quantitative ASQ analysis of B-mode images demonstrates 

an insignificant difference between benign and malignant tissue. This means that ASQ 

does not work on pelvic masses because both benign and malignant masses exhibit 

homogeneity and heterogeneity in the same way. 

  



   

152 

 

3.6. Summary 
 

In this chapter, a new technique called ASQ was explored in four main sections. 

Section A provided background information about this new software and how it 

works, followed by a repeatability and reproducibility study, while section B tested 

the influence of four main factors on the ASQ output. Section C determined the pre-

defined parameters of the ASQ software that can be used on ovarian tissue without 

compromising the image quality. Finally, section D explained the study that was done 

by analysing pelvic masses images using ASQ analysis. 

3.6.1. Section A 
A brief explanation of how ASQ works was introduced at the beginning of this 

chapter. The consistency of the image texture is an important factor in ASQ. The 

repeatability and reproducibility issues were therefore assessed to determine the 

consistency in the image texture, to which random variations inherent in the 

ultrasound scanner and the scanning process could contribute. This was done by 

calculating the CoV. A tissue-equivalent phantom was used for this purpose. This 

section also evaluated the agreement in the repeatability produced by two different 

operators. The results for the ASQ software repeatability show very low variation in 

the images produced under identical conditions, and good agreement was found in the 

images obtained by two different operators for all three probes used. 

 

Based on finding from this section, it can be concluded that ASQ software is able to 

produce consistent images. This section has also established that intra-operator 

repeatability and good agreement between two operators are achievable. Therefore, it 
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is worth continuing to a similar assessment in a clinical setting, which involves more 

complex scanning processes: this is done in the next section. 

 

3.6.2 Section B 
The experimental evaluation of three transducers presented in this section aims to 

determine the robustness of ASQ software. A tissue-equivalent phantom was used as 

a test object. Several key factors that may affect the performance of ASQ were 

considered, namely ROI size, ROI depth, focal position, gain setting and transducer 

frequency. These factors were evaluated using p-values to determine significance. The 

ROI size was evaluated using two different sizes: large and small. The ROI depth 

dependency was evaluated by drawing ROI at two different depths: 2 cm and 4 cm. 

The focus was positioned at 2 cm and then at 4 cm to test for significance on the mean 

of the output curve. The gain was set at 100 % and 85 % to evaluate its effect on the 

mean of the output curve. All available frequencies in each transducer were tested. 

Three frequencies were found for the linear probe (8.4, 7.2 and 6.2 MHz) while four 

frequency setting were available for the curved probe (6, 5, 4 and 3 MHz). In the TV 

probe, three frequencies were available for testing (8, 7.2 and 6 MHz). 

 

Of the four factors that might influence the ASQ output, focal position was found to 

significantly affect the output in the images from the TV probe. On the other hand, the 

linear probe was significantly dependant on three of the factors, namely ROI size, 

ROI depth and focus position. Interestingly, the curve transducer was independent 

from all factors. In other words, the mean of the output curve was not affected by any 

of the four factors in the images acquired by the curved probe. Transducer frequency 
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did not affect the mean of the output curve in all three transducers except when using 

high frequencies such as 8 MHz. 

 

The findings from this section permit further study in a clinical setting with the TV 

probe with confidence that the output measurements are reliable, with caution when 

using focal position. 

3.6.3 Section C  
The pre-defined parameters of the ASQ window were tested in this section to 

determine the appropriate parameters values to be used on ovarian masses. (Please 

refer to Figure 27 for the flow chart of the experiment). Since the default setting was 

provided originally with the software to be used on liver tissue, it was necessary to 

find out the best parameters to be used with ovaries. The values of x 11, y 13, sample 

steps of 0, 0 and sweep intervals of 1, 1 with an actual sample size of 115, were found 

to be suitable for the application of ASQ on ovarian masses. Further testing of a 

smaller ROI size (1 x 1 cm) was done on both phantom and tissue images to test for 

significance. There were no significant differences between larger ROI and the 

desired smaller ROI in both phantom and tissue images, which permit the use of those 

chosen parameters in the clinical setting and their application to smaller masses. 

 

The phantom images were then compared to tissue images and demonstrated to have 

significant differences between the means, which shows that these sets of parameters 

are applicable to human tissue and not only valid on phantom images. 
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3.6.4. Section D 
In this section, a prospective study was conducted by applying ASQ to images of 

pelvic masses. An explanation of the recruitment procedure was given, followed by 

the results of the study. Forty-five masses were saved as raw images to be analysed 

using ASQ software. Data were tested for normality using both the Shapiro-Wilk test 

and Q-Q plot. Then when non-normally distributed data were identified, a non-

parametric statistical test was used (Mann-Whitney U test) to calculate the p-value for 

the significance of the difference. Lastly, a discussion and conclusion to the study was 

provided, concluding that ASQ cannot differentiate between the homogeneity of 

benign and malignant tissues. 
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4. Texture Analysis Features 
This chapter will investigate the possible use of texture analysis features in the 

diagnosis of pelvic masses by applying these features to ultrasound images of the 

masses. The chapter is divided into three main sections. Section A will explain the 

materials and methods used in this research; then section B will show the results 

produced after collecting and analyzing the data, and section C will discuss these 

results and compare them to other studies done in the same field. 

The aim of this chapter is to investigate the use of texture analysis features, namely 

the Grey Level Co-occurrence Matrix (GLCM) and the Wavelet feature, as previous 

research Hamid (2011) has concluded that they are the best features to be used to 

diagnose ovarian masses. 

In this previous preliminary study, the author investigated the robustness of five 

different texture analysis features using phantom. It was found that GLCM and 

wavelet were not affected by factors such as, ROI size, ROI depth and gain setting. 

After that the chosen texture analysis features were applied to thirty ultrasound 

images (ten normal ovaries, nine cysts and eleven malignant masses). A significant 

difference was found between all categories with 91% sensitivity between normal 

tissue and malignant and between cysts and malignant using GLCM and 89, 90% 

using wavelet feature, respectively (Hamid, 2011). However, Hamid did not consider 

comparing the malignant masses with benign masses.  
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Therefor, this current study will use a larger number of prospective participants and 

compare benign and malignant masses using GLCM and wavelet as well as 

comparing the benign subgroups such as: endometrioma, fibroids and dermoids to 

malignant masses. After that the results will be compared  to other widely used 

scoring systems  such as, RMI, PMI and ADNEX, which has not been done before in 

any other study. As well  as dividing the data into pre- and postmenopausal groups 

and analyse them separately. 

(A) Materials and Methods 
The materials used in this study were introduced and explained in the previous 

chapter, which provided an overview of the equipment and the principles of 

Ultrasound and transvaginal transducers (Please refer to Chapter 3, section A). 

In this chapter, texture analysis concepts and texture analysis software (MaZda 4.6, 

Institute of Electronics, Technical University of Lodz, Poland) are described. After 

that the methods used and the procedures followed to accomplish this study, including 

the study design, sample size and recruitment of participants, are explained. 

4.1. Materials 

4.1.1. MaZda Software 

In order to extract the textural features from the ultrasound images, MaZda software 

version 4.6 (Institute of Electronics, University of Lodz, Poland) was used in this 

study. A brief explanation for this software is given in this section. More details about 

this software are available online at: http://www.eletel.p.lodz.pl/mazda/ 

http://www.eletel.p.lodz.pl/mazda/
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MaZda is an abbreviation derived from the term ‘Macierz Zdarzen’, which means ‘co-

occurrence matrix’ in Polish. It was developed in 1996 specifically for the analysis of 

image texture (Szczypiński et al., 2009). It was the first program created to conduct a 

quantitative analysis of texture within a freely selected region of interest (ROI) and to 

provide an interpretation of computed results. At first, the use of MaZda was aimed at 

analysis of MRI images. Nevertheless, it revealed its effectiveness in analysis of other 

types of images such as x-ray, CT and ultrasound images (please refer to Figure 40). 

This program is the most widely used for texture analysis. There are only few other 

examples of image texture analysis of software available. The other non-commercial 

packages, such as KeyRes and LS2W, provide only a limited set of the functions that 

are present in MaZda (Szczypiński et al., 2009). 

MaZda is used for texture analysis in 2D and 3D images. It provides a complete path 

for quantitative analysis of image textures, including computation of texture features, 

procedures for feature selection and extraction, data classification methods, and 

various data visualization and image segmentation tools. 

The MaZda package is a reliable and robust tool for the analysis of image textures, as 

confirmed by (Szczypiński et al., 2009). 

4.1.2. Region of interest (ROI) selection 

Region of interest are sets of pixels in 2D images selected to be analysed. In order to 

avoid unnecessary processing, defining a specific region of interest (ROI) will 

concentrate the computation effort on the part of the image that is under investigation. 

This is supported by a study done in 2003 about an automatic technique for 
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morphological analysis, which found that better performance was seen when ROIs 

were obtained manually. This was explained by the fact that using a fully automatic 

algorithm would involve an additional error factor (the process of automatically 

finding the margins of the mass): (Zimmer et al., 2003). 

MaZda software ROIs can be of arbitrary shape. It allows up to sixteen ROIs within a 

single image. These regions can be overlapped if needed. In this study, only one ROI 

is drawn around the mass and used in the analysis, with some cases of drawing several 

ROIs around the cystic areas to be excluded from the analysis of the complex mass, as 

performed by (Hamid et al., 2011). 

 

Figure 40:  flowchart of analysis pathways in Mazda package (adopted from (Szczypiński et al., 2009) 
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4.1.3. Texture features 

MaZda software computes six types of textural features: Histogram-based (first-order 

statistics), GLCM, RLM, Gradient, AR and Wavelet. Based on previous preliminary 

research (Hamid et al., 2011) only two of the six features, which are GLCM and 

Wavelet, were used in this study. Hamid and colleagues explained that the histogram-

based features were not included in their study because they are computed from the 

intensity of pixels without considering any spatial relations between pixels within the 

image and supported their choice using findings from Bader et al. ( 2000) that showed 

insignificant results when using a histogram-based texture feature to distinguish 

benign tumours from carcinomas. 

4.1.3.1. Grey level Co-occurrence matrix (GLCM) 

Harliack (1979) was the primary author who proposed the co-occurrence matrix 

parameters. GLCM is a second-order statistical technique that allows for the 

extraction of statistical information from the image regarding the distribution of pairs 

of pixels. It is computed by defining a direction, a distance and a pair of pixels 

separated by this distance, computed across the defined direction, which are analysed. 

(M. Hajek et al., 2006, Alqahtani et al., 2010, Singh et al., 1997, Beekman and Visser, 

2004). Numerous co-occurrence matrices can be computed for a single image, one for 

each pair of pixels with a defined distance and direction. 
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Figure 41: Showing computation of co-occurrence matrix with pixel of interest (Lu et al., 2006) 

 

Normally a set of 220 co-occurrence matrices are computed, for five different pixels 

distances from 1 to 5 pixels, and four different directions (Ɵ=0°, 45°, 90° and 135°) 

(see Figure 41). Please refer to section 2.1.2.6 in Chapter 2 for background 

information.  

 

 

4.1.3.2. Wavelet  

This is a transform method of texture analysis. The principle of transform methods is 

that the texture properties are represented in space where the coordinate system is 

closely related to the feature of texture, such as frequency and size (Materka A and M, 

1998). The wavelet images are scaled up to five times in both horizontal and vertical 

directions: this results in image transformation into twenty frequency channels. 

Energies computed within the channels provide data on texture frequency components 
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and are used as texture characterizing features (Szczypiński et al., 2009, Castellano et 

al., 2004). 

4.1.3.3. Tissue characterisation 

It is evident from the available literature that visual inspection alone for the diagnosis 

of tissue pathologies can be prone to bias and can lack sensitivity and reliability. One 

main reason for this is that diagnosis largely depends on the sonographer, who 

observes tissue characteristics from the image and compares them with images of 

different pathologies to come out with a diagnosis. The other alternative to this 

method is the application of invasive methodologies, such as needle-guided biopsy. 

Although this is a very robust technique with less chance of error, it has the 

disadvantage of being invasive in nature and is therefore too impractical to be the 

method of choice for all patients.  

To address this problem, researchers have developed quantitative criteria with the 

help of computer systems to aid diagnosis. The use of texture analysis described in 

this chapter attempts to address this shortcoming of subjective analysis and provide a 

better diagnostic tool to distinguish benign from malignant ovarian masses. As 

described in the section above, the commonly used texture analysis methods are based 

on grey level distribution of individual pixels and their relationship with adjacent 

pixels. 
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4.1.4. Data acquisition and image analysis 

The role of texture analysis of medical images has become increasingly important in 

the field of diagnostic imaging. Many researchers have focused on assisting texture 

analysis through the development of computer-aided diagnosis systems. These 

systems have the ability to enhance the precision and accuracy of image 

characterisation. 

A computer-aided quantitative evaluation system for adnexal masses may be divided 

into five parts: 

1. Acquiring an image: a device such as MRI, CT or ultrasound can be used to 

generate the digital image. In this study, an ultrasound machine was used. 

2. Defining the region of interest (ROI) within the image. A different size and 

shape of the ROI can be defined within an image as well as multiple ROI per 

image. 

3. Extraction of the texture features from the defined ROI in the image. 

4. Determination of the most suitable texture parameters to analyse the image for 

the purpose required. 

5. Data analysis and classification of the texture features within the image. 

4.2. Method 

In this section, subject recruitment is described, an overview of patient management is 

considered and the statistical methods used in data entry and analysis are described. 
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4.2.1. Study Design 
 

This study was a quantitative prospective cross-sectional study on women with known 

pelvic masses who were booked for surgery. 

4.2.1.1. Choice of Methods 

4.2.1.1.1. Sample size 

In setting up the study, it was important to recruit a sufficient number of participants 

to demonstrate the differences between the two groups. 

Statistical advice was obtained to determine the required number for each arm, in 

order to test the null hypothesis (the primary end point): i.e. the ability of GLCM and 

wavelet features to analyse images of ovarian masses and categorise them as benign 

or malignant. However, there have been no previous studies on texture analysis to 

distinguish between benign and malignant ovarian masses. Moreover, studies which 

used other morphological scores have suffered from limitations, including the 

subjectivity of the score, because it depends on the sonographer’s experience. In view 

of these factors, the calculation of sample size was based on the assumption that 

texture analysis may distinguish between benign and malignant masses with 5% 

significance level and 80% power: thus, a total of 200 women (100 participants in 

each arm) were required for the study to demonstrate a significant difference.  

The use of power calculation provides a scientific basis for the number of subjects 

required to make up the sample size that is needed to reject the null hypothesis with a 

given level of significance (usually 80%). 
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4.2.2. Participants  
 

Study population: women aged eighteen and above with known pelvic masses. 

Inclusion criteria: All patients with confirmed pelvic masses and scheduled for 

surgery.  

Exclusion criteria: Patients with other Gynaecological malignancy, i.e. not pelvic 

masses, pregnant patients, patients with a previous history of bilateral oophorectomy, 

difficult scans and unclear scan images and patients aged less than eighteen years old. 

Postmenopausal status, defined as amenorrhea of twelve months following natural or 

surgical menopause, or one year or greater of hormone-replacement therapy begun for 

menopausal symptoms (Menon et al., 2008, 2009). In the current study, only women 

with confirmed adnexal masses were included. Any patient with normal morphology 

or incomplete/missing ultrasound data was excluded from this study. 

Patient withdrawal during the study: participants were at liberty to withdraw from the 

study at any time.  

4.2.3. Procedure: Recruitment and Consent 

Participants were selected from a pelvic mass clinic and Gynaecology oncology 

clinics. All patients with known adnexal mass were identified by members of the 

research team. The researcher approached  the potential participants and informed 

them of the research study.  
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The study was explained and written information was provided. Participant 

information sheets and consent forms were provided so that the patients could find out 

more about the study before deciding whether or not to participate. (Please see 

Appendices IV and V). Patients were given up to 24 hours to decide if they wanted to 

participate in the study, and then, after answering any questions they had regarding 

the study, an appointment was booked for the scan. 

On the day of the scan, written consent was obtained before starting the scan. All 

participants were booked for an ultrasound scan of the pelvis prior to their surgery. 

Randomization/ treatment assignment: the researcher was blinded from any 

ultrasound scan reports done for the participants in clinics to avoid bias in the 

diagnosis of ovarian lesions.  

Side effect:  Ultrasound is a safe modality with no documented side effects. 

Transvaginal scanning is a routine procedure that does not raise any problems except 

slight discomfort by some patients. To handle any other side effects that might arise, a 

qualified healthcare professional was present at all times during scanning. 

 

4.2.4. Demographic Data 

The following demographic data were obtained for all study women: age, menopausal 

status, history of previous hysterectomy.  

Postmenopausal status was defined as the absence of menses for a minimum of twelve 

months or an age of more than fifty years in women who had a prior hysterectomy. 
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Family history was considered positive if the patient had a first-degree relative (i.e. 

mother, sister, or daughter) or a second-degree relative (i.e. grandmother, 

granddaughter, aunt or niece) with documented ovarian or breast cancer. 

4.2.5. Ultrasound 

The scanning procedure was the same in all participants in this study. All ultrasound 

procedures were undertaken by the researcher or the co-researchers only for the 

purpose of this study.  

Ovarian morphology dimensions and volume were reviewed. The volume was 

determined using the formula for an ovoid (d1 × d2 × d3 × 0.532).  

 

Ovarian morphology was classified on ultrasound as:  

Normal: - ovary of uniform hypoechogenicity and with a smooth outline with 

or without a single inclusion cyst or spots of calcifications 

- Inclusion cyst must be single, less than 10 mm in diameter and not 

distorting the outline of the ovary; 

- Simple cyst: a single, thin-walled, anechoic cyst with no septa or 

papillary projections; 

- Complex: any case in which the ovary has any non-uniform ovarian 

echogenicity, excluding single simple or inclusion cysts. (Menon et al., 

2009); 
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In women with bilateral ovarian masses, data from both sides were used for the 

analysis, i.e. complex morphology and simple cyst or dermoid on one side and a 

complex mass on the other one. 

The following morphological ultrasound information was recorded in each case: 

volume of the ovary, site and volume of the cyst, cystic wall structure, and cystic wall 

thickness, presence of septation and septal thickness, presence of solid areas within 

the cyst, papillation height if present and echogenicity.  

Presence or absence of Doppler signal and the site of the signal were documented for 

each cyst.  

In addition to applying texture analysis features (GLCM and wavelet), RMI, PMI and 

ADNEX scoring systems were calculated for the masses in this study for comparison 

of the diagnostic performance. Please refer to Chapter 2 for a brief explanation and 

tables of scores of the RMI, PMI and the ADNEX model. 

Histopathological diagnosis was obtained in women who underwent surgery and used 

as the gold standard. In cases where participants were managed conservatively and no 

histology results were available, ultrasound diagnosis by an expert examiner was used 

in typical adnexal masses (endometrioma, typical dermoid and simple cyst) as well as 

the use of a second diagnostic model such as MRI or CT where appropriate. In 

addition, for those with no histology, follow-up at a minimum of twelve months after 

the ultrasound scan was used as recommended in the ROCkeTS study protocol. This 

project is a new ongoing study that aims to develop and validate new risk prediction 
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models that estimate the probability of having ovarian cancer in women with 

symptoms (unpublished) (Saundar et al., 2015). 

4.2.6. Data Analysis 

All data were statistically analysed using the Statistical Package for Social Sciences 

(SPSS) program version 17.0 for windows (SPSS Inc, Chicago, Illinois, USA), 

Database Access 2010 and Microsoft Excel 2010 software in order to calculate the 

statistical differences and measure the variances. This software is widely used 

instrument in statistiscs and social sciences. Therefore, the researcher considers the 

two software applications as appropriate to be used for this piece of research.  

Assumed Sensitivity 97% (95% CI 91.5% to 99.0%) based on 100 malignant. 

Assumed Specificity 85% (95% CI 76.7% to 90.7%) based on 100 benign. 

Obtaining these figures would serve as proof of the principle that the new method is 

capable of performing at least as well as existing methods, and it has the advantage of 

being objective, with minimal operator dependence anticipated. These assumptions 

were calculated by a professional medical statistician prior to commencing the study. 

As long as the data is normally distributed, the use of parametric tests is the 

appropriate method to test independent data (Lang and Secic, 2006b).  

The nonparametric statistical technique known as chi-square was used to examine the 

categorical demographic variables. The Mann-Whitney U test was used in this study, 

as it is often viewed as the nonparametric correspondent of the Student t-test and can 
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be used where the data is suspected to be not normally distributed. Moreover, the 

Mann-Whitney test is less likely than the t-test to falsely indicate significance if 

outliers are present (Motulsky and Brown, 2006). Continuous demographic variables 

were compared using independent t-tests if data were normally distributed and non-

parametric tests when the data were not normally distributed. 

Ninety-five percent confidence intervals were calculated where appropriate. The alpha 

level was set at 0.05 and any p-value less than the alpha level is considered 

statistically significant. This is a conventionally used level to ascertain differences and 

confirm significance between groups, which therefore, by definition, is statistically 

significant (Lang and Secic, 2006b).  

In statistics, logistic regression is used to estimate the possibility that a specific event 

will occur by using a number of predictor variables which might be either numerical 

or categorical and fitting the data to a logit function (logistic curve) (Kleinbaum, 

2010). Logistic regression has a down-side of overestimating the Odds ratio if the 

sample size is less than 500. By increasing the sample size, this overestimation 

contracts until it reaches the true population value. However, in a single study, 

overestimation due to the small sample size might not affect the interpretation of the 

results due to the fact that this will be much lower than the standard error of the 

estimate (Kleinbaum, 2010). In this study, logistic regression was used at the end of 

the analysis to explore a different way of analysing the data by using the variables in a 

logistic regression model. 
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4.2.6.1. Performance measures 

Sensitivity, specificity, positive predictive value (PPV), and accuracy were calculated 

to evaluate the performance of the texture features. The true negative (TN) is the 

number of benign samples identified as benign. The true positive (TP) is the number 

of malignant images identified as malignant. The number of malignant masses 

detected as benign is quantified by the false-negative (FN) measure. False-positive 

(FP) is the number of benign samples identified as malignant. 

The sensitivity is the proportion of actual positive (malignant) cases which are 

correctly identified, while the specificity is the proportion of actual negative (benign) 

cases which are correctly identified. The PPV is the ratio of true positives to 

combined true and false positives, and the accuracy is the ratio of the number of 

correctly classified samples to the total number of samples. (Please refer to Table 42 

for the calculation of the performance tests). 

 

 

    

 

 

 

Table 42:  Calculation of statistical performance tests. (TP is true positive, FP is false positive, TN is true negative 

and FN is false negative) 

 

 

PPV 𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

 

Sensitivity 𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

 

NPV 𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

  



   

172 

 

4.2.7. Location of Study and Access Arrangements 
 

This study took place in the Medical Physics and Clinical Engineering Department 

and Doppler Department at the University Hospital of Wales (UHW), Cardiff, UK. As 

well as Pelvic mass clinic in UHW . No other departments or laboratories were 

included. 

 

4.2.8. Ethical Considerations 
 

This study uses human participants: therefore, there are several important ethical 

issues relating to the design and implementation of the study. The ethical principle 

governing research is that patients should not be harmed as a result of participating in 

the research (Silverman, 1985). Moreover, the dignity, rights, safety and well-being of 

participants in research must be of primary consideration (Power and Kuyken, 1998). 

The ethical committee provides independent expert opinion on whether the proposed 

research is ethical and respects the dignity, rights, safety and well-being of 

participants. For this reason, a full protocol for the proposed study of image texture 

analysis of Transvaginal ultrasound in diagnosing ovarian cancer was submitted to the 

Dyfed Powys Research Ethics Committee. The study received full ethical approval on 

18
th

 July 2013 (Ref. 13/WA/0206), as shown in appendix III. This project was also 

submitted to Cardiff and Vale NHS trust research and development committee, and 

was approved for commencement on 26
th

 April 2013, as shown in appendix II.  
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4.3. Results: texture analysis 
 

A total of 226 patients fitted  the criteria and were recruited for this study in the 

period between November 2013 and May 2015. Of these patients, 63 (27.8%) were 

then excluded from the analysis for several reasons, such as participants refusing to 

have the internal scan (n=20), incomplete data required for the analysis (n=7), no 

histology found (n=34) three months after the scan due to participants being managed 

conservatively and not proceeding to surgery, and finally participants agreeing to have 

the scan and then cancelling (n=2). 

Therefore, only 163 patients (169 masses) were analysed for the purpose of this study, 

of whom 95 were premenopausal and 68 postmenopausal. Their ages ranged from 18 

to 53 years in the premenopausal group (mean 41, median 42) and from 52 to 91 years 

(mean 67, median 66) in the postmenopausal group. In total, 169 ovarian masses were 

used for texture analysis.  

Histopathology results of the masses showed 116 benign, 29 malignant and 24 simple 

cysts.  

A total of 81 of the benign masses were premenopausal and 35 postmenopausal. Of 

the malignant masses, 8 were premenopausal and 21 postmenopausal and of the 

simple cyst, 9 were premenopausal and 15 postmenopausal.  

For the purpose of the analysis, the benign group were further divided into subgroups 

using ultrasound diagnosis, including 32 mature teratomas (dermoid), 27 

endometriomas, 24 fibroids and 33 other suspicious benign masses. The histology  
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results of these suspicious masses were documented and are summarised in Table 43. 

The most commonly identified of these suspicious benign masses were the fibroma 

(18%) and both the serous and mucinous cystadenoma (15%) as well as the cyst 

adenofibroma (15%). 

The malignant tumours were classified using histopathology and the results are 

summarised in Table 44. They include both serous and mucinous adenocarcinoma, 

adult granulosa cells, poorly differentiated adenocarcinoma and borderline serous and 

mucinous cystadenoma and a couple of unknown malignant classification. The most 

commonly found type was the borderline serous cystadenoma (24%) followed by the 

high grade serous adenocarcinoma (17%) and the grade 3 carcinoma (14%). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 43: Summary of histology results of 33 suspicious benign masses. 

Type of mass Frequency Percentage (%) 

Fibroma 6 18.2 

Serous 

cystadenoma 
5 15.2 

Cyst 

adenofibroma 
5 15.2 

Adenofibroma 2 6 

Mucinous 

cystadenoma 
5 15.2 

Leiomyoma 2 6 

Epithelial cysts 2 6 

Adenomyosis 1 3 

Endometriosis 1 3 

Degenerated 

fibroid 
1 3 

Pedunculated 

fibroid 
1 3 

Benign 

unknown type 
2 6 

Total 33 100% 
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Table 44: Summary of histology results of 29 malignant masses 

 

For each group (cyst, benign and malignant masses), the mean, median, standard 

deviation and standard error of the mean (s.e.) of the extracted features were 

calculated and summarised in Table 45. The mean values of the GLCM and wavelet 

features are presented visually in Figure 42 and Figure 43, respectively. 

Type of mass Frequency Percentage (%) 

High grade serous 

adenocarcinoma 
5 17.2% 

Invasive 

squamous cell 

carcinoma 

1 3.5% 

Adult granulosa 

cell 
2 6.9% 

Poorly 

differentiated 

adenocarcinoma 

2 6.9% 

Appendicle 

mucinous 

neoplasm 

1 3.5% 

Endometrial 

adenocarcinoma 
1 3.5% 

Grade 3 

carcinoma 
4 13.8% 

Borderline serous 

cystadenoma 
7 24% 

Borderline 

mucinous 

cystadenoma 

3 10.3% 

Borderline serous 

epithelia 

neoplasm 

1 3.5% 

Unknown 

classification 
2 6.9% 

Total 29 100% 
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Of the three groups, the malignant tissue exhibited the highest GLCM mean value 

(512), while cysts exhibited the lowest GLCM value (90). The mean value for the 

benign tissue is 320. The same pattern was observed in the wavelet feature, with the 

malignant tissue having the highest mean value (30809) and the cyst having the 

lowest mean value (3823). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 45: Summary of the mean, median, standard deviation, and standard error of the mean of the extracted 

features. 

 

 

Texture 

feature 

Tissue type Mean Median SD S.E. 

GLCM Cyst 90 60 82 18 

Benign 320 250 229 21 

Malignant 512 376 341 63 

Wavelet Cyst 3823 7714 4360 930 

Benign 21642 17191 15286 1407 

Malignant 30809 26337 21036 3906 
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Figure 43: Graph showing mean values of wavelet feature for benign, malignant and simple cyst tissue. 

 
Figure 42: Graph showing mean value of GLCM feature for benign, malignant and simple cyst tissue. 
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4.3.1. Normality testing  

Before testing the significance of the difference between means, it is important to 

know whether the data is normally distributed in order to decide which test to use: 

either parametric statistical tests such as t-tests for normally distributed data or the 

non-parametric tests such as the Mann-Whitney U test for non-normally distributed 

data. 

The Shapiro-Wilk test was used to test for normality and it was found that most of the 

data in this study were not normally distributed, except for the wavelet feature in the 

cysts, which appeared to be normally distributed (.427). Results are summarised in 

Table 46. 

Furthermore, a Q-Q plot was used to visually inspect the normality of the data. It was 

noticed that in the GLCM feature, not all tissue types were following the line, which 

means that they were not normally distributed. Please refer to Figures 44 to 49 for Q-

Q plots of different types of tissue in both the GLCM feature and the wavelet feature. 

Texture 

feature 
Tissue type 

Shapiro-

Wilk test 

(sig.) 

Normally 

distributed? 

GLCM 

Cyst <.05 No 

Benign <.05 No 

Malignant .031 No 

Wavelet 

Cyst .427 Yes 

Benign <.05 No 

Malignant .007 No 

                                        

                                Table 46: Shapiro-Wilk test for normality 
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Figure 43: Q-Q plot for GLCM in the simple cyst tissue. 

 
Figure 44: Q-Q plot for GLCM in the benign tissue. 
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Figure 45: Q-Q plot for GLCM in the malignant tissue. 

 
Figure 46: Q-Q plot for wavelet in the simple cyst tissue. 
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Figure 47: Q-Q plot for wavelet in the benign tissue. 

 

 

 

 

 
 

Figure 48: Q-Q plot for wavelet in the malignant tissue. 
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4.3.2. Test for significance  

The values of the extracted features were compared in pairs: benign and malignant; 

cysts and malignant; and benign and cysts. The results for the GLCM feature show 

that all differences between group pairs were statistically significant: the p-value was 

<.05 in all groups. 

The results for the wavelet feature were similar to the GLCM for all three groups, 

with a significant difference of p <.05 in all groups. The results for both GLCM and 

wavelet features are summarised in Table 47.  

Texture feature Group pair P-value  
Significantly 

different? 

GLCM 

Benign-Cyst <.05 Yes  

Benign-Malignant .004 Yes  

Cyst-Malignant <.05 Yes  

Wavelet 

Benign-Cyst <.05 Yes 

Benign-Malignant .027 Yes  

Cyst-Malignant <.05 Yes  

 

Table 47: Summary results of the significance test in all group pairs for both GLCM and wavelet. 

 

For further analysis, the benign group was sub-divided into four groups, namely 

teratomas, endometriomas, fibroids and other suspicious or difficult to diagnose 

benign masses. When comparing these subgroups to the suspicious benign masses, it 
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was found that GLCM could significantly differentiate the benign suspicious group 

from the teratomas (p=.021) and from the endometriomas (p=.011). On the other 

hand, GLCM could not differentiate the benign masses from the fibroids (p=.449). 

Texture feature Group pair P-value  
Significantly 

different? 

GLCM 

Benign-teratoma .021 Yes  

Benign-

endometrioma 
.011 Yes  

Benign-fibroid .449 No   

Wavelet 

Benign-teratoma .014 Yes 

Benign-

endometrioma 
.170 No  

Benign-fibroid .693 No  

 

Table 48: Tests of significant difference for the benign subgroups. 

 

The wavelet feature only significantly differentiated between the benign suspicious 

group and the teratomas (p=.014); however, there was no significant difference 

between the benign suspicious group and the endometriomas or between the benign 

suspicious group and the fibroids (p=.170, p=.693) respectively. Results are 

summarised in Table 48. 
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Texture 

feature 
Group pair P-value  

Significantly 

different? 

GLCM 

Malignant-teratoma .697 No  

Malignant-endometrioma <.05 Yes  

Malignant -fibroid .009 Yes  

Wavelet 

Malignant -teratoma .988 No  

Malignant -endometrioma .004 Yes  

Malignant -fibroid .061 No  

 

Table 49: Tests of significant difference test for malignant vs. benign subgroups. 

 

When comparing these subgroups of benign masses with the malignant masses, it was 

found that the GLCM feature could significantly differentiate between the malignant 

masses and both endometriomas (p<.05) and fibroids (p=.009), but it could not 

differentiate them from the teratoma masses (p= 697).   

When using the wavelet feature to compare groups, a significant difference was 

noticed between the malignant masses and the endometriomas (p =.004), while in the 

other two groups, comparing the malignant masses with the teratomas (p=.988) and 

with the fibroids (p=.061), no significant differences were seen. These p-values are 

summarised in Table 49. 
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4.3.3. ROC and AUC 

Receiver operating curve (ROC) analysis was performed to determine the ability of 

the GLCM feature to discriminate between cysts and benign masses, and between 

benign and malignant masses (i.e. for those group pairs that demonstrate a statistically 

significant difference (p<0.05). The corresponding ROC curves are shown in Figure 

48 & 49  (between benign and malignant masses), Figure 50 & 51 (between cyst and 

benign masses), and Figure 52 & 53 (between cysts and malignant masses). An AUC 

close to 1 indicates a strong discriminatory power/ability of the indicator variable, 

while the AUC close to 0.5 indicates that the variable has little discriminatory power. 

 

Figure 49: ROC curve for GLCM feature to discriminate between benign and malignant masses 

 

 

 

 

AUC=.668 
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Figure 50: ROC curve for Wavelet feature to discriminate between benign and malignant masses 

 

 

 

Figure 51: ROC curve for GLCM feature to discriminate between cysts and benign masses 

 

 

 

AUC=.630 

AUC=.895 
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Figure 52: ROC curve for wavelet feature to discriminate between cysts and benign masses 

 

 

 

 
Figure 53: ROC curve for GLCM feature to discriminate between cysts and malignant masses 

 

 

 

 

AUC=.944 

AUC=.814 
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Figure 54: ROC curve for Wavelet feature to discriminate between cyst and malignant masses 

 

 

Table 50 presents the area under the curve (AUC), which reflects the ability of the 

GLCM and the wavelet features in discriminating between the groups. It shows that 

the GLCM is a poor indicator (AUC=.668) for distinguishing between benign and 

malignant masses; on the other hand, it is an excellent indicator in both discriminating 

between malignant masses and cysts (AUC=.994) and between benign masses and 

cysts (AUC=.895). Results are similar when applying the wavelet feature, which is a 

poor indicator (AUC=.630) to differentiate between benign and malignant masses but 

a good indicator (AUC=.894) to differentiate between malignant masses and cysts as 

well as between benign masses and cysts (AUC=.814).  

To evaluate the ability of the texture feature to correctly classify masses, a threshold 

value was selected to get the highest possible sensitivity and specificity. For instance, 

in discriminating between benign and malignant masses, the use of 245 as a threshold 

AUC=.894 
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value led to an estimated sensitivity of 72% and specificity of 60%. Table 51 presents 

examples of the threshold value in both GLCM and wavelet features. 

Texture 

feature 
Group pair AUC  S.E. 

 

 

Discriminatory 

ability 

GLCM 

Benign-Malignant .668 .060 Poor 

Malignant-Cyst .994 .029 Excellent 

Benign-Cyst .895 .037 Excellent 

Wavelet 

Benign-Malignant .630 .061 Poor 

Malignant –Cyst .894 .044 Good 

Benign-Cyst .814 .037 Good 

  

Table 50: Area under the curve (AUC) with standard error (S.E.) associated with both GLCM and Wavelet 

features 

 

Texture feature Group pair Threshold value Sensitivity (%) Specificity (%) 

GLCM Benign-malignant 245 72% 60% 

Malignant-Cyst 86 97% 62% 

Benign-cyst 100.5 93% 70% 

Wavelet 

 

 

Benign-malignant 17191 60% 60% 

Malignant-Cyst 

 

10484 90% 59% 

Benign-cyst 

 

10826 72% 62% 

  

Table 51: Sensitivity and Specificity associated with GLCM and Wavelet features. 
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Furthermore, when comparing the malignant masses with the benign subgroups, ROC 

curves were generated only for the group pairs that showed a significant difference. 

Therefore, an ROC curve was created for the malignant–endometrioma pair and for 

the malignant–fibroid pair for the GLCM feature and for the malignant–

endometrioma pair using the wavelet feature. Results showed that the GLCM feature 

had a good (AUC=0.8) discriminatory ability in distinguishing between malignant 

masses and endmetriomas, while it presents a fair ability (AUC= .711) when 

distinguishing malignant masses from fibroids. Moreover, the wavelet feature 

revealed a fair ability to distinguish between malignant masses and endmetriomas 

(AUC= .723). Results are summarised in Table 52. ROC curves for these subgroups 

are presented in Figures 54, 55 and 56. 

 

Texture feature Group pair AUC Discriminatory ability 

GLCM Malignant-endometrioma .8 Good 

Malignant- fibroid .711 Fair 

Wavelet Malignant-endometrioma .723 Fair 

 

Table 52: The area under the curve (AUC) associated with both GLCM and Wavelet features in the subgroups 
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Figure 55: ROC curve of the GLCM feature to discriminate between malignant masses and endometriomas 

 

 

 
Figure 56: ROC curve of the GLCM feature to discriminate between malignant and fibroid masses 

 

AUC=.8 

AUC=.711 
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Figure 57: ROC curve of the wavelet feature to discriminate between malignant masses and endmetriomas 

 

To evaluate the ability of the texture feature to correctly classify masses in these 

subgroups, a threshold value was again selected here to get the highest possible 

sensitivity and specificity. However, sensitivity was prioritised over specificity. In the 

GLCM feature, a threshold value of 292.3 was found to give a sensitivity of 70% and 

a specificity of 82% when attempting to distinguish between malignant masses and 

endometriomas. For comparison between malignant masses and fibroids using the 

same texture feature, a threshold value of 265.3 was found to give a sensitivity of 

72% and a specificity of 63%. 

In the wavelet feature, a threshold value of 16242.5 was seen to give a sensitivity of 

70% and a specificity of 60% when comparing malignant masses and endometriomas. 

Results are summarised in Table 53. 

 

 

AUC=.723 
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Texture 

feature 

Group pair Threshold 

value 

Sensitivity 

(%) 

Specificity 

(%) 

GLCM Malignant- 

endometrioma 

292.3 70% 82% 

Malignant- 

fibroid 

265.3 72% 63% 

Wavelet 

 

 

Malignant- 

endometrioma 

16242.5 70% 60% 

  

Table 53: Sensitivity and specificity associated with GLCM and Wavelet features in the subgroups 

 

4.3.4. Diagnostic scoring systems 
 

Further assessment was done using the widely used scoring systems, which are PMI 

on grey scale, RMI and the ADNEX model.  

4.3.4.1. RMI 

When applying RMI scores to the data, only 99 masses were applicable, of which 14 

were excluded due to missing CA125 values. The remaining 85 masses were divided 

into three categories when applying the RMI scoring system: the high risk group with 

RMI >250, the moderate group with RMI between 25-250 and the low risk group with 

RMI <25. According to RMI, 15 (17.6%) masses were in the high risk group, 32 

(37.6%) in the moderate risk group and 38 (44.7%) in the low risk group, of which 11 

had a score of 0 due to a U score of 0. In the high risk group (RMI>250), 8 masses 

were diagnosed as benign by histology, which means that these masses gave false 

positive results. On the other hand, 15 masses were diagnosed as malignant in the low 

risk group (<250), which means that they were false negative results. Please refer to 

Table 54. 
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Type of the test Malignant by histology Benign by histology 

RMI  >250 True positive (TP) 

7 

False positive (FP) 

8 

<250 False negative  (FN) 

15 

True negative (TN) 

55 

Total 22 63 

 

Table 54: 2x2 contingency table for RMI scores 

 

 

 

4.3.4.2. PMI 

In this study, we also applied the PMI score to compare it with our texture analysis 

results. In total, 102 of 169 masses were eligible for the PMI score. The results were 

divided into three groups: low risk (-2 – 0) intermediate (1-2) and high risk (above 3). 

Forty (39.2%) masses were found to be low risk, while thirteen (12.7%) were in the 

intermediate group and forty-nine (44.1%) were in the high risk group. In the high 

risk group, thirty-six masses had been diagnosed as benign by histology, which means 

that they were false positive results, while in the low risk group, three masses were 

diagnosed as malignant in the histology, which means that they were in the false 

negative group. Please refer to Table 55. 
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Type of the test Malignant by histology Benign by histology 

High risk and 

intermediate risk 

(TP) 

26 

(FP) 

36 

Low risk 

(FN) 

3 

(TN) 

37 

Total 29 73 

 

Table 55: 2x2 contingency table for PMI score 

 

4.3.4.3. ADNEX 

The new model made available by the IOTA group – the ADNEX model – was 

applicable to 81 of the 169 masses in this study. Fifty-two (64%) masses were 

considered most probably benign and twenty-nine (36%) were considered to be at 

high risk of malignancy. In this high risk of malignancy group, eleven masses were 

benign according to histology, which makes them false positive results, while in the 

low risk group, another eleven masses were found to be malignant by histology, 

which categorises them as false negatives. Please refer to Table 56. 

Type of the test Malignant by histology Benign by histology 

High risk >50% (TP) 

18 

(FP) 

11 

Low risk  <50% (FN) 

11 

(TN) 

41 

Total 29 52 

            Table 56: 2x2 contingency table for the ADNEX score. 
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4.3.4.4. Sensitivity and Specificity 

The following table (Table 57) presents a summary of the diagnostic performance of 

the texture features of interest and the most commonly used scoring systems. PMI 

showed the best overall sensitivity (90%) and NPV (93%) amongst the indices; 

however, it had the lowest specificity of them all (51%). In contrast, RMI showed the 

highest specificity (87%), while compromising on sensitivity, which was the lowest in 

all indices (32%) and NPV (80%). GLCM and wavelets present similar specificity 

(60%) with somewhat higher sensitivity in the GLCM (72% compared to 60%) in the 

wavelet and NPV (90%). Moreover, the ADNEX score showed a similar sensitivity 

(62%) and NPV (80%) to the wavelet, with a much higher specificity (80%). 

Correlation Sensitivity Specificity PPV NPV Accuracy 

GLCM 72% (95% CI: 53-91%) 60% 25% 90% 60% 

Wavelet 60% (95% CI: 37-83%) 60% 22% 90% 60% 

RMI 32% (95% CI: 0-65%) 87% 50% 80% 73% 

PMI 90% (95% CI: 80-100%) 51% 42% 93% 62% 

ADNEX 62% (95% CI: 29-95%) 80% 62% 80% 73% 

  

Table 57: Summary of the sensitivity, specificity, PPV, NPV and accuracy of the texture analysis features GLCM 

and wavelet compared to RMI, PMI and ADNEX. 

 

4.3.5. Tissue characterisation 

In this study, a comparison was done between masses to test the ability of the selected 

texture feature to distinguish between different types of mass. In this section, we 

explore further by testing the ability of these features to distinguish between different 
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types of tissue. For this purpose, a sample of twenty normal ovarian tissues was 

analysed using both GLCM and wavelet. Then it was compared to the analysis of 

solid areas taken from malignant masses. 

The results show a significant difference between the two different tissues with p<.05 

when using the GLCM, with a mean value of 190.6 for the normal ovary compared to 

503 in the malignant tissue and p=.004 when using the wavelet feature, with a mean 

of 17089 in the normal ovary and 38761.5 in the malignant tissue. Please refer to 

Table 58 for a summary of the results. 

Texture 

Feature 

Tissue type Mean Median P-value Significantly 

different? 

GLCM Normal ovary 190.6 167.3 <.05 Yes 

Malignant 503 464.5 

Wavelet Normal ovary 17089 14254 .004 Yes 

Malignant 38761.5 31810 

 

Table 58: The significance test between normal ovarian tissue and malignant solid tissue. 

 

4.3.6. Premenopausal group 
 

 

Subdividing the study population into the categories of pre- and postmenopausal 

status allowed more in-depth analysis of the performance of the three indices. 

Ninety-eight women were found in the premenopausal group, with eighty-one benign, 

eight malignant and nine simple cysts. Similar to the total population analysis, group 
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of pairs were compared to each other to test for significance. When using the GLCM, 

all group pairs were still found to have a significant difference in the premenopausal 

group. However, when applying the wavelet feature, the malignant and benign masses 

could not be differentiated significantly (p=.366). The other two groups of pairs 

(benign-cyst and malignant-cyst) still had significant differences. Results are 

illustrated in Table 59. 

 

Texture Feature Group pair P-value Significantly 

different? 

GLCM Benign-cyst <.05 Yes 

Malignant-benign .022 Yes  

Malignant-cyst <.05 Yes 

Wavelet Benign-cyst <.05 Yes 

Malignant-benign 0.366 No 

Malignant-cyst <.05 Yes 

 

Table 59: Summary of results of the significance test in premenopausal women 

 

Following the analysis of the total population, ROC curves were generated and AUC 

were calculated. As mentioned above, only the group pairs with significant 

differences were used in these ROC curves. When distinguishing between benign and 

malignant masses, GLCM showed a fair ability, with AUC=.747 in the 

premenopausal group compared to the total population analysis, which had poor 

ability (AUC=.668). Please refer to Table 60. 
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In the other group pairs – the benign compared to the simple cysts – both GLCM and 

wavelet showed good discriminatory ability, with AUC=.879 and .850 respectively. 

In the group pair of malignant compared to simple cysts, both features showed 

excellent discriminatory ability in the premenopausal population (AUC= .944, .986) 

for GLCM and wavelet respectively. ROC curves for all pairs are illustrated in 

Figures 59 to 63. These results are similar to the total population analysis. Please refer 

to Tables 50 and 60 for the comparison. 

Texture feature Group pair AUC S.E. Discriminatory 

ability 

GLCM Benign-malignant .747 .079 Fair  

Benign-Cyst .879 .070 Good  

Malignant-cyst .944 .059 Excellent 

Wavelet Benign-malignant .597 .105 Poor 

Benign-cyst .850 .045 Good 

Malignant-cyst .986 .022 Excellent 

 

Table 60: The area under the curve (AUC) and standard error (S.E.) associated with both GLCM and Wavelet 

features in premenopausal women 

 

Similar to the total population, a threshold value was selected to get the highest 

possible sensitivity and specificity. In the GLCM feature, a threshold value of 279.5 

gave a sensitivity of 75% and a specificity of 60% when comparing the benign with 

the malignant masses (See Table 61 for all threshold values). 

 



   

200 

 

Texture feature Group pair Threshold value Sensitivity (%) Specificity (%) 

GLCM Benign-malignant 279.5 75% 60% 

Malignant-cyst 177.5 100% 90% 

Benign-cyst  108 89% 78% 

Wavelet Benign-malignant 18284 50% 46% 

Benign-cyst 

 

10982 75% 78% 

Malignant-cyst 

 

11146 100% 78% 

 

Table 61: Sensitivity and Specificity associated with GLCM and Wavelet features in premenopausal women 

 

 

 
 

Figure 58: ROC curve for the GLCM feature for the difference between malignant and benign masses in the 

premenopausal group. 

 

 

AUC=.747 
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Figure 59: ROC curve for the GLCM feature for the difference between benign masses and cysts in the 

premenopausal group. 

 
 

 

 
Figure 60: ROC curve for the wavelet feature for the difference between benign masses and cysts in the 

premenopausal group. 

 

 

AUC=.850 

AUC=.879 
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Figure 61: ROC curve for the GLCM feature for the difference between malignant masses and cysts in the 

premenopausal group. 

 

 

 

 
Figure 62: ROC curve for the wavelet feature for the difference between malignant masses and cysts in the 

premenopausal group. 

 

AUC=.944 

AUC=.986 
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4.3.6.1. PMI  

When applying PMI scores in the premenopausal group, fifty-six masses were found. 

A contingency table was created and showed that eight masses were found to be 

malignant by histology. Six of them had a high or intermediate score in the PMI, 

which were the true positive results. Forty-eight masses were diagnosed as benign by 

histology and thirty-seven of them were classed as low risk on PMI, which were the 

true negative results. A summary of the results is showed in Table 62. 

Type of the test Malignant by histology Benign by histology 

High risk and intermediate 

risk 

(TP) 

6 

(FP) 

11 

Low risk (FN) 

2 

(TN) 

37 

Total 8 48 

 

Table 62: 2x2 contingency table for PMI score in premenopausal women. 

 

4.3.6.2. RMI 

Here we applied RMI to the premenopausal group. Forty-nine masses were used for 

the analysis. Seven masses were diagnosed as malignant by histology; however, only 

one mass was found to have a high score in RMI, which was the true positive result. 

On the other hand, out of forty-two benign masses according to histology, forty had a 

low risk on the RMI score, which were the true negative results. Table 63 gives a 

summary of the results. 
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Type of the test Malignant by histology Benign by histology 

RMI  >250  (TP) 

1 

(FP) 

2 

<250  (FN) 

6 

 (TN) 

40 

Total 7 42 

 

Table 63: 2x2 contingency table for RMI score in premenopausal group 

 

4.3.6.3. ADNEX 

When applying the ADNEX scoring system to the premenopausal group, thirty-nine 

masses were analysed. A total of eight masses were found to be malignant by 

histology; four of them were found to have a high risk score by ADNEX, which were 

the true positive results. In the benign group, thirty-one masses were seen by 

histology. Twenty-five of them had a low risk score in the ADNEX and were the true 

negative results. Please see Table 64 for a summary of these results. 

 

Type of the test Malignant by histology Benign by histology 

High risk >50% (TP) 

4 

(FP) 

6 

Low risk  <50% (FN) 

4 

(TN) 

25 

Total 8 31 

 

Table 64: 2x2 contingency table for the ADNEX score in the premenopausal group 
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4.3.6.4. Sensitivity and specificity  

The following table (Table 65) presents a summary of the diagnostic performance of 

the texture feature GLCM and the most commonly used scoring systems when 

analysing the premenopausal group. GLCM and PMI had the highest sensitivity 

(75%) compared to ADNEX and the wavelet feature (50%), while RMI had the 

lowest sensitivity (14%). However, RMI had the highest specificity (95%), followed 

by ADNEX (80%) and then GLCM (60%), and wavelet had the lowest specificity 

(46%). As can be seen, the sensitivity of wavelet, RMI, PMI and ADNEX (60%, 32%, 

90% and 62% respectively in the total population) dropped when analysing the 

premenopausal group specifically, while the performance improved in the GLCM 

(sensitivity was 72% in total population). In the specificity performance, RMI 

improved from 87% to 95%, and PMI improved from 51% to 77%, while wavelet 

performance decreased from 60% to 48%. No change was seen in either GLCM or 

ADNEX. 

Correlation Sensitivity Specificity PPV NPV Accuracy 

GLCM 75% (95% CI: 42-100%) 60% 15% 96% 60% 

Wavelet  50% (95% CI: 1-99%) 46% 1% 90% 46% 

RMI 14% (95% CI: too wide) 95% 33% 87% 84% 

PMI 75% (95% CI: 42-100%) 77% 35% 95% 77% 

ADNEX 50% (95% CI: 1-99%) 80% 40% 86% 74% 

 

Table 65: Summary of the sensitivity, specificity, PPV, NPV and accuracy of the texture analysis feature GLCM 

compared to RMI, PMI and ADNEX in the premenopausal group 
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4.3.7. Postmenopausal group 
 

Seventy-one women were found in the postmenopausal group, with thirty-five benign, 

twenty-one malignant and fifteen simple cysts. Similar to the total population 

analysis, group of pairs were compared to each other to test for significance. 

Significant differences were seen between the benign and the cyst group pair and 

between the malignant and the cyst group pair, but no significant difference was 

found between malignant and benign groups (p=.110). All group pairs in the wavelet 

feature showed a significant difference, unlike the results from the premenopausal 

group, where the difference between malignant and benign groups was not significant. 

Please see Table 66 for a summary of the results. 

For those group pairs that demonstrate a statistically significance difference (p<0.05), 

ROC curves were created to determine the ability of the GLCM feature to 

discriminate between cysts and benign masses, and between cysts and malignant 

masses. For the wavelet feature, all three group pairs were analysed using a ROC 

curve. Please refer to Figures 64 to 68. 

Area under the curve (AUC) results were somewhat similar to those for the 

premenopausal group. Excellent discriminatory ability was seen when comparing the 

cysts with the benign and the malignant masses when using the GLCM feature as well 

as between the cysts and the benign masses when using the wavelet feature. Good 

discriminatory ability between cysts and malignant masses was seen when using the 

wavelet feature. When comparing the benign with the malignant masses, the wavelet 
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feature showed poor discriminatory ability (AUC=.683) in the postmenopausal group. 

A summary of the results is shown in Table 67. 

Correlation Sensitivity Specificity PPV NPV Accuracy 

GLCM 75% (95% CI: 42-100%) 60% 15% 96% 60% 

Wavelet  50% (95% CI: 1-99%) 46% 1% 90% 46% 

RMI 14% (95% CI: too wide) 95% 33% 87% 84% 

PMI 75% (95% CI: 42-100%) 77% 35% 95% 77% 

ADNEX 50% (95% CI: 1-99%) 80% 40% 86% 74% 

 

Table 66: Summary results of the significance test in postmenopausal women 

 

Texture feature Group pair AUC S.E. Discriminatory 

ability 

GLCM Benign-malignant .629 .085 Poor  

Benign-Cyst .920 .043 Excellent 

Malignant-cyst .943 .035 Excellent 

Wavelet Benign-malignant .683 .079 Poor 

Benign-cyst .768 .066 Fair 

Malignant-cyst .863 .061 Good 

 

Table 67: The area under the curve (AUC) and standard error (S.E.) associated with both GLCM and Wavelet 

features in postmenopausal women 
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Table 68: Sensitivity and specificity associated with GLCM and Wavelet features in postmenopausal women 

 

 

 

 

 
 

Figure 63: ROC curve for the wavelet feature for the difference between malignant and benign masses in the 

postmenopausal group 

Texture 

feature 

Group pair Threshold 

value 

Sensitivity 

(%) 

Specificity 

(%) 

GLCM Benign-malignant 267 71% 55% 

Benign-cyst 107.4 97% 70% 

Malignant-cyst 101.7 95% 73% 

Wavelet 

 

 

Benign-malignant 18283.9 62% 60% 

Benign-cyst 11104.9 71% 60% 

Malignant-cyst 

 

10964.2 86% 60% 

AUC=.683 
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Figure 64: ROC curve for the GLCM feature for the difference between benign masses and cysts in the 

postmenopausal group 

 

 

 
Figure 65: ROC curve for the wavelet feature for the difference between benign masses and cysts in the 

postmenopausal group 

 

 

AUC=.920 

AUC=.768 
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Figure 66: ROC curve for the GLCM feature for the difference between malignant masses and cysts in the 

postmenopausal group 

 

 
 

Figure 67: ROC curve of the wavelet feature for the difference between malignant masses and cysts in the 

postmenopausal group 

 

AUC=.943 

AUC=.863 
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4.3.7.1. PMI 

In the postmenopausal group, thirty-nine masses were analysed using the PMI score. 

Nineteen of them were malignant and scored as high risk on the PMI: these were the 

true positive results. Six were benign and scored as low risk on the PMI: these were 

the true negative results. Table 69 is the contingency table created for the PMI in the 

postmenopausal group.    

Type of the test Malignant by histology Benign by histology 

High risk and 

intermediate risk 

(TP) 

19 

(FP) 

12 

Low risk (FN) 

2 

(TN) 

6 

Total 21 18 

 

Table 69: 2x2 contingency table for PMI score in postmenopausal women. 

 

4.3.7.2. RMI 

In the postmenopausal group, twenty-nine masses were analysed using the RMI score. 

By histology, fifteen of them were found to be malignant. However, only six of these 

fifteen were classified as high risk using the RMI score (true positive results). The 

other fourteen masses were benign, and nine of them were true negative results: their 

RMI scores were <250, placing them in the low risk group. Table 70 summarises the 

results for the RMI scores in the postmenopausal group. 

 



   

212 

 

Type of the test Malignant by histology Benign by histology 

High risk and 

intermediate risk 

(TP) 

19 

(FP) 

12 

Low risk (FN) 

2 

(TN) 

6 

Total 21 18 

 

Table 70: 2x2 contingency table for RMI score in postmenopausal group 

 

4.3.7.3. ADNEX 
 

In the postmenopausal group, thirty-nine masses were analysed using the ADNEX 

scoring system. Twenty-one of them were found to be malignant by histology, and 

fourteen were high risk when using ADNEX (true positive results). The other 

seventeen were found to be benign by histology. Thirteen of them had low risk 

according to ADNEX, representing true negative results. Please refer to Table 71 for 

the contingency table of the ADNEX score in the postmenopausal group. 

Type of the test Malignant by histology Benign by histology 

High risk >50% (TP) 

14 

(FP) 

4 

Low risk  <50% (FN) 

7 

(TN) 

13 

Total 21 17 

 

Table 71: 2x2 contingency table for the ADNEX scores in the postmenopausal group 
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4.3.7.4. Sensitivity and Specificity  
 

In the postmenopausal group, the PMI showed the best sensitivity (90%), followed by 

GLCM (71%) when compared to our texture analysis using the wavelet technique 

(48%) and to the other widely used scoring system, RMI (40%) and the new scoring 

system, ADNEX (66%). In general, all these methods improved in sensitivity 

performance when compared to the premenopausal group (75% for the PMI, 14% for 

RMI and 50% for ADNEX: please refer to Table 65 for the premenopausal group). 

Sensitivity deceased slightly for GLCM: from 75% to 71%. The specificity of the 

PMI was the lowest (33%). The highest specificity was seen in the ADNEX score 

(76%), followed by the wavelet (72%), and then the GLCM (55%). When compared 

to the premenopausal group, a noticeable decrease in specificity was seen: for 

example, in the PMI, specificity decreased from 77% to 33%; in the GLCM, it 

decreased from 60% to 55%; in the RMI, from 95% to 64%; and for the ADNEX, 

from 80% to 76%.  A summary of these results is found in Table 72 for the 

postmenopausal group. 

Correlation Sensitivity Specificity PPV NPV Accuracy 

GLCM 71% (95% CI: 49-93%) 55% 47% 75% 59% 

Wavelet 48% (95% CI: too wide) 72% 62% 60% 60% 

RMI    40% (95%CI: 0-79%) 64% 55% 50% 52% 

PMI 90% (95% CI: 79-100%) 33% 61% 75% 64% 

ADNEX 66% (95% CI: 29-100%) 76% 77% 65% 71% 

Table 72: Summary of the sensitivity, specificity, PPV, NPV and accuracy of the Texture analysis feature wavelet 

compared to RMI, PMI and ADNEX in the postmenopausal group 
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In General, the ADNEX score was calculated for all masses, whether CA125 results 

were available or not. However, as mentioned by (Van Calster et al., 2014) in the 

study in which they developed the ADNEX model to differentiate between the 

different types of adnexal masses, CA125 was one of the strongest predictors, and 

they explained that deriving this model without the CA125 would decrease the 

discriminatory ability of the ADNEX. Therefore, it was decided to re-calculate the 

ADNEX score only for patients for whom CA125 results were available so that the 

difference could be appreciated.  

It was found that of the eighty-one eligible masses, sixteen had missing CA125 

results, divided equally between benign and malignant masses. Moreover, when 

dividing the population by menopausal status, six were in the premenopausal group 

and ten in the postmenopausal group. The ADNEX score was applied to sixty-five 

masses with available CA125 and resulted in 56% sensitivity, 81% specificity, 61% 

PPV, 77% NPV and 72% accuracy. A summary of the diagnostic performance of the 

ADNEX model for the total population as well as for pre- and postmenopausal groups 

is provided in Table 73. Surprisingly, the sensitivity of the ADNEX model decreased 

slightly when using only masses with available CA125: for example, in the total 

population, the ADNEX sensitivity deceased from 62% to 56%, and in the 

premenposausal group, from 50% to 40%. Lastly in the postmenopausal group, it 

decreased from 66% to 62%. However, the specificity, PPV, NPV and accuracy were 

similar to the ADNEX of all masses. 
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ADNEX with CA125 

available 

Sensitivity Specificity PPV NPV Accuracy 

Total population 56% (95% CI 29-83%) 81% 61% 77% 72% 

Premenopausal group 40% (95% CI 1-95%) 81% 38% 84% 74% 

Postmenopausal group 62% (95% CI 32-92%) 80% 77% 66% 70% 

 

Table 73: Summary of the sensitivity, specificity, PPV, NPV and accuracy of the ADNEX model with only 

CA125 available in all three groups of population. 

 

4.3.8. Combination of the two texture analysis 

features 
 

In order to improve the diagnostic performance, the two texture analysis features were 

combined, as confirmed by Singh and Singh (2002). Here, the same threshold values 

were used together to assess the diagnostic performance of the GLCM and the 

wavelet combined. Therefore, a threshold value of 245 was used for the GLCM and 

17191 for the wavelet simultaneously to indicate the risk of malignancy. This was 

applied to 145 masses, of which 29 were malignant by histology and 116 were benign. 

Seventeen of the 29 malignant masses had values higher than 245 for GLCM and 

17191 for the wavelet feature simultaneously: in other words, these were the true 

positive results, while 72 of the 116 benign masses were considered benign by texture 

analysis features combined, and represented true negative results. Please refer to 

Table 74 for a summary of these results. 

When dividing the total population into pre- and postmenopausal groups, eighty-nine 

masses were used for the analysis of both textural features together in the 
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premenopausal group, of which eight were malignant and eighty-one were benign. 

Four of the eight masses that were malignant by histology were malignant by texture 

analysis as well: therefore, these were the true positive results. Meanwhile, forty-eight 

masses that were benign by histology were considered benign by texture analysis and 

subsequently were regarded as true positive results. Please refer to Table 75 for a 

summary of these results. 

In the postmenopausal group, fifty-six masses were used for the analysis, of which 

twenty-one were malignant and thirty-five were benign. Thirteen of the twenty-one 

malignant masses were >245 in the GLCM feature and >17191 in the wavelet and 

therefore represent true positive results. Of the thirty-five benign masses, twenty-four 

were considered benign by texture analysis of both features together and represent 

true negative results. A summary of the data is shown in Table 76, below. 

 

Type of the test Malignant by histology Benign by histology 

GLCM >245 and wavelet 

>17191 

(TP) 

17 

(FP) 

44 

GLCM <245 and wavelet 

<17191 

(FN) 

12 

(TN) 

72 

Total 29 116 

 

Table 74: 2x2 contingency table for the combined two texture analysis features. 
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Type of the test Malignant by histology Benign by histology 

GLCM >279.5 and wavelet 

>18284 

(TP) 

4 

(FP) 

33 

GLCM <279.5  and wavelet 

<18284 

(FN) 

4 

(TN) 

48 

Total 8 81 

 

Table 75: 2x2 contingency table for the combined two texture analysis features in 

Premenopausal women 

 

 

Type of the test Malignant by histology Benign by histology 

GLCM >279.5  and wavelet 

>18284 

(TP) 

13 

(FP) 

11 

GLCM <279.5  and wavelet 

<18284 

(FN) 

8 

(TN) 

24 

Total 21 35 

 

Table 76: 2x2 contingency table for the combined two texture analysis features in postmenopausal women. 

 

4.3.4.1. Sensitivity and Specificity  

In the total population, the sensitivity was 58% when combining the two texture 

analysis features together and slightly higher in the premenopausal group (61%), 

while the postmenopausal group yielded the lowest sensitivity (50%). When 

comparing these findings to the GLCM and wavelet analysis separately, it became 
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apparent that sensitivity decreased in all three groups (total population, pre- and 

postmenopausal). In addition, the specificities were more or less similar to the 

analysis of the features separately, ranging from 59% to 69%. Please refer to Table 77 

for a summary of these results. 

 

Correlation Sensitivity Specificity PPV NPV Accuracy 

Combined texture 

features in total 

population 

58% (95% CI: 36-80%) 62% 27% 86% 61% 

In premenopausal 
50% (95% CI: 1-99%) 59% 11% 92% 58% 

In postmenopausal 
61% (95%CI: 35-87%) 69% 54% 75% 66% 

 

Table 77: Summary of the sensitivity, specificity, PPV, NPV and accuracy of the texture analysis features (GLCM 

and wavelet) combined. 

 

4.3.9. Logistic regression 

Further analysis was performed on the data using logistic regression to explore the 

relationship of the variables to the outcome (histology results or follow-up). Testing 

for correlation between the variables was carried out to observe which variables were 

collinear so that they would not be used simultaneously in the equation. It was found 

that GLCM and wavelet were collinear, as were age and menopausal status. The final 

equation included menopausal status, wavelet and the ratio between wavelet and 

GLCM. This model was showed to have good predictive capacity when tested using 

the Hosmer and Lemeshow test (p=.502). Table 78 illustrate the results of the model. 

Moreover, ROC analysis was performed to determine the ability of this model to 
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discriminate between benign and malignant masses and gave an AUC of 0.81, which 

has a good discriminatory ability. Please refer to Figure 69 for the ROC.  

 

Variable  Coefficient 

(ᵝ) 
S.E. P value Odds 

Ratio 

95% CI 

Menopausal 

status 

-1.834 .506 <0.05 .160 (.059 - .431) 

Wavelet .000 .000 <0.05 1.000 (1.000- 1.000) 

Ratio -.016 .007 0.032 .984 (.970 - .999) 

 

Table 78: Logistic regression model result 

 

 

Figure 68: ROC for logistic regression model. 
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4.4. Summary  

 (A)  GLCM 
 

Although initially the GLCM showed a significant difference when comparing the 

benign and the malignant masses, the ROC curve showed a poor discriminatory 

ability, with AUC=.668. Moreover, when dividing the study population into two 

groups (premenopausal and postmenopausal), the significant difference between the 

benign and the malignant masses was still seen in the premenopausal group using the 

GLCM feature for texture analysis. Here the ROC curve showed a fair ability to 

discriminate the benign from the malignant masses (AUC=.747), while in the 

postmenopausal group, no significant difference was found between the benign and 

the malignant masses using GLCM. 

GLCM showed a significant difference when comparing normal ovarian tissue with 

malignant tissue, with p <.05. 

When dividing the benign masses into subgroups such as teratomas, endometriomas 

and fibroids, it was found that GLCM could significantly differentiate benign 

suspicious masses from teratomas and endometriomas, but it was statistically 

insignificant when comparing them to fibroids. This could be explained by the fact 

that most of the benign suspicious masses were fibromas or adenofibromas, which 

closely resemble fibroids in texture. On the other hand, when comparing these benign 

sub-groups with the malignant masses in order to establish whether GLCM could be 

helpful in this matter, a significant difference was seen between the malignant masses 

and both endometriomas and fibroids, but it could not differentiate benign masses 
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from teratomas, which could also be explained by the fact that they have a very 

similar texture to malignant masses.  

 

(B) Wavelet 
 

Similar to GLCM, the wavelet function showed a statistically significant difference 

between the three mass types: benign, malignant and cysts. However, when 

generating a ROC curve, the wavelet function showed a poor ability to discriminate 

benign from malignant masses, with AUC=.630. Moreover, when dividing the study 

population into premenopausal and postmenopausal groups, unlike the GLCM, the 

wavelet function did not show a significant difference between the benign and the 

malignant masses. In the postmenopausal group, the wavelet function showed a 

significance difference between the benign and the malignant masses. However, when 

generating a ROC curve, it revealed a poor ability to discriminate between benign and 

malignant masses, with AUC=.683 

When looking at the difference between the benign subgroups, the wavelet function 

showed a significant difference between benign suspicious masses and teratomas, and 

between malignant masses and endometriomas. Unexpectedly, it could not 

differentiate between benign masses and endometriomas, although they have totally 

different texture features and can be easily distinguished visually. Similar to GLCM, 

the wavelet function could not differentiate benign from fibroid masses, as was 

expected. 
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However, when differentiating between normal ovarian tissue and malignant tissue, 

the wavelet function showed a significant difference, with p=.004. 

4.5. Discussion 

Ovarian cancer remains the leading cause of death among the gynaecological 

malignancies. To date, the nature of the mass – whether malignant or non-malignant – 

has to be confirmed by histology results, which means having a surgical procedure. 

Ultrasound imaging, on the other hand, is a non-invasive method for the diagnosis of 

ovarian cancer. Improvements in the diagnostic accuracy of the ultrasound will reduce 

the number of unnecessary surgeries. 

The aim of this study was to determine the ability of GLCM and wavelet features in 

characterising ovarian tissue, and in particular, to investigate the diagnostic ability of 

these features in discriminating cysts and benign and malignant masses. 

GLCM showed an excellent discriminatory ability to distinguish between malignant 

masses and cysts (AUC=.994) and between benign masses and cysts (AUC=.895), 

whilst for the wavelet feature it demonstrated a good ability of discrimination 

(AUC=.894 and AUC=.814 respectively). These findings are comparable to the 

results reported by (Hamid et al., 2011).   

In their study involving image texture analysis of transvaginal ultrasound in 

monitoring ovarian cancer, Hamid et al.  (2011) reported that the area under the ROC 

curve was .973 when comparing malignant masses with cysts and .889 when 

comparing normal tissue with cysts, and concluded that the GLCM feature can 

potentially be used to help in diagnosing ovarian cancer. Moreover, Hamid et al. 
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(2011) used 737 as a threshold value in GLCM, which led to an estimated sensitivity 

of 91% and specificity of 78%, while in our study, 86 was used as the threshold value, 

with an estimated sensitivity of 97% and specificity of 62%. The difference in the 

threshold values is obvious and led to an increase in our sensitivity to differentiate 

malignant masses from cysts, with a slight decrease in specificity.  

For the wavelet feature, Hamid and colleagues used 4,362 as the threshold value with 

both sensitivity and specificity set at 90%, while in the current study 10,484 was used 

as the threshold value, which led to similar sensitivity (90%) but decreased specificity 

(59%).  

In our study, we observed tissue characterisation using texture analysis by comparing 

normal ovarian tissue with solid areas of malignant masses. A significant difference 

was noticed when using both GLCM and wavelet features. These results are 

comparable to those of Hamid et al. (2011). Furthermore, it is worth mentioning that 

in our study, the technique for drawing the ROI on the ultrasound image was adopted 

from Hamid et al. (2011). He excluded anechoic areas from the ROI of complex 

masses after comparing this approach with icluding the whole mass in the ROI and 

found that there was a significant difference and that accuracy was improved when 

excluding the anechoic areas. 

Our results showed no significant difference between malignant and teratoma when 

using both GLCM and wavelet. This could be expained by the fact that teratoma 

usually conatians bone and teeth (solid area’s) that could resembel in texture to 
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malignant solid masses. However a significant difference was seen between malignant 

and fibroids using GLCM which could be useful clinically in the future. 

A diagnostic method should be positive for those with the disease (sensitivity) and 

negative for those without the disease (specificity). Our data analysis showed that the 

sensitivity of the GLCM feature using a threshold value of 245 as indicative of 

malignancy was 72%, which means that the ability of this texture feature to detect 

correctly those who have ovarian malignancy (true positive) is 72% and the remaining 

28% are false positive results. On review, the majority of the falsely categorised 

tumours were cystadenomas and fibromas, which are known to be difficult to 

characterise on ultrasound (Valentin, 2000, Valentin, 2004).  

Our sensitivity of GLCM is considered low: the  reason could be the fact that the 

appearance of many benign lesions overlaps with that of malignant diseases (Varras, 

2004). 

These sensitivity results are lower than those been published in earlier studies: for 

example, sensitivity was 92% in (Xian, 2010) study, which applied the GLCM texture 

feature to identify malignant and benign liver tumours on ultrasound images. This 

difference in sensitivity could be explained by the fact that texture analysis is more 

appropriate for the characterisation of regions exhibiting homogeneity in their 

structure, as discussed by Diamond et al. (2004) in their study of liver tissue, 

compared to the less homogenous ovarian masses in our study. 

Similarly, a higher sensitivity of 93%, specificity of 86% and AUC of .956 were 

achieved in a study published in 2007 by Michail and colleagues, in which they 
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studied the texture analysis of pre- and postmenopausal endometrial tissue via 

transvaginal ultrasound (Michail et al., 2007). 

For the wavelet feature, we used a threshold value of 17191 as indicative of 

malignancy, which led to 60% sensitivity: therefore, the ability of this texture feature 

to detect correctly ovarian masses (true positive) is 60%, and the remaining 40% are 

false positive results. 

Moreover, the ability of the wavelet feature to rule out those who do not have ovarian 

malignancy was 60%: this specificity means that 60% of the non-diseased women 

gave a true negative result. 

Predictive value is an important measure for diagnostic tests. Predictive values 

measure whether or not the individual actually has the disease. Positive predictive 

value (PPV) tells a postmenopausal woman how likely is it that she has an ovarian 

malignancy if she has an analysis of  >279 in the GLCM feature. In our analysis, PPV 

of GLCM in the postmenopausal group was 47%, which indicates that the probability 

that a woman with GLCM value of >279 actually has an ovarian malignancy is 47%. 

This probability limits unnecessary surgery to its half number without using the 

technique.  

Our GLCM PPV in the postmenopausal group (47%) is lower than the PPV that has 

been previously reported: 91.8% (Xian, 2010) and 99.7% (Acharya et al., 2013). 

Again, this could be as a result of thier studies are applied for other organs.On the 

other hand, a study conducted to evaluate the performance of pelvic mass index PMI 

(not a texture analysis feature) reported a lower PPV of 31.4% (Sinha A et al., 2015).  
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 These results could be also explained by the low number of women diagnosed with 

ovarian cancer (29.6%) among our study postmenopausal group (postmenopausal 

women who had complex masses by ultrasound and experienced surgical 

intervention), which is lower than previous studies, which documented a prevalence 

of 34% (Xian, 2010) but higher than the PMI study, which documented a prevalence 

of 16.7% (Sinha A et al., 2015). Nevertheless, the more sensitive the feature, the less 

likely it is that women with a GLCM of less than 245 will have ovarian malignancy, 

and so the greater the negative predictive value.  

Our analysis showed a NPV of 90% in the total population, which indicates that the 

probability that a women with a GLCM value of less than 245 does not have an 

ovarian malignancy is 90%. This finding is higher than the 37.5% described by 

Zimmer et al. (2003), but is close to the previous PMI study NPV of 96% (Sinha A et 

al., 2015) and lower than the 98% documented by (Xian, 2010). 

In a study by Vidya et al. (2015) using computer aided diagnosis in ultrasound to 

diagnose myocardial infarction (MI) using three different types of texture analysis, 

including GLCM, it was found that GLCM achieved an accuracy of 85%, sensitivity 

of 90% and specificity of 81%. Moreover, another recent study on breast morphologic 

features that focused on developing a computer-aided diagnosis (CAD) system based 

on texture features for distinguishing between benign and malignant breast cancers 

concluded that texture analysis can improve the ability to discriminate between 

benign and malignant breast lesions, with sensitivity of 96% (Moon et al., 2015). 

These studies yielded higher sensitivity and accuracy than our results, which showed 

a sensitivity of 72%, specificity of 60% and an accuracy of 60% for GLCM. The 
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reason for this difference could be explained by the larger samples used in their 

studies – 400 MI and 400 normal, compared to 116 benign and 29 malignant – which 

gave better results. However, collecting a similar number of images was not possible 

in our study due to the short period of recruitment approved by the ethics committee 

for this study (18 months) and the low prevalence of ovarian cancer in the population, 

as explained by Sinha A et al. ( 2015), who collected only 56 cancers compared to 

414 benign masses over a period of seven years, which makes it nearly impossible to 

reach this large number using only single centre data.  

Our study showed that GLCM had better performance than both the RMI and the 

ADNEX model when differentiating benign from malignant masses, even when 

applying them to pre- and postmenopausal groups separately. Although RMI should 

have improved performance when applied to the postmenopausal group, it still 

showed the lowest sensitivity (40%) among all the scoring systems applied. Our 

results showed a much lower performance of RMI (ranging from 40-14%) when 

compared with previous studies that validate the RMI. For example, the most recent 

systematic review and meta-analysis to investigate the diagnostic ability of several 

scoring systems calculated the pooled sensitivity and specificity of RMI at 72% and 

92% respectively (Kaijser et al., 2014). 

Amongst our patient cohort, the RMI had the highest specificity (87%); however, as 

reported by Myers and colleagues, studies on tests with high sensitivity usually report 

a lower specificity and vice versa (Myers ER. et al., 2006). 
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Similarly, our results demonstrate a lower sensitivity (62%) of the ADNEX model 

when compared to the original IOTA study, which concluded 94% sensitivity with 

almost equal specificity to our results, at 77% (Van Calster et al., 2014). 

The difference in sensitivity could be explained by Mol and colleagues in their study, 

in which they externally validated the prognostic models that were used to distinguish 

benign from malignant adnexal masses, concluding that the diagnostic performance of 

these models is not as good as that reported in the original publication (Mol et al., 

2001). 

Another obvious factor that contributes to this variety in performance could be the 

much smaller sample that was used in our analysis (81 masses, of which 29 were 

malignant and 52 were benign, with 35.8% prevalence), compared to the ADNEX 

study’s huge sample population of 5909 women, with 3980 benign and 1929 

malignant masses, with prevalence between 22%-66% in the study oncology centres 

(Van Calster et al., 2014). 

When applying PMI, our results agree with those of Sinha A et al. (2015) that PMI 

yields the highest sensitivity in our patient cohort in all three groups: 90%, 75% and 

90% for the total population, pre- and postmenopausal groups respectively. On the 

other hand, our results showed a lower specificity of PMI (ranging between 51-33%) 

than in their study (60%). 

Although results showed higher sensitivity of PMI (90%) compared to GLCM (75%), 

it has to be said that GLCM has the advantage of being objective, compared to the 

subjectivity of the PMI score, which is highly operator dependent. In addition, both 
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have the advantage over the RMI and the ADNEX in the fact that they are not 

dependent on the CA125. 

According to (Materka, 2004, Tesař et al., 2008), the GLCM feature is commonly 

used in 2D texture analysis of medical images. The results from this study 

demonstrated that in general, the GLCM has a better characterisation ability compared 

to the wavelet feature. This is in agreement with several previous studies: for 

example, Hamid et al. (2011), in their pilot study to investigate the use of texture 

analysis features in monitoring ovarian masses, concluded that GLCM had a higher 

performance than other texture features. This is in accordance with the statement by 

Tuceryan and Jain (1998) that GLCM generally outperforms other features. Likewise, 

in a study that focused on breast lesions, Garra et al. (1993) reported that GLCM is 

the most useful feature and stated that GLCM has long been a powerful tool for 

texture analysis. 

It was recommended in previous studies that combining texture features yields better 

performance compared to using features from a single category (Singh and Singh, 

2002, Michail et al., 2007). In our study, we applied this theory by combining GLCM 

with the wavelet feature to analyse the masses. Unexpectedly, this method did not 

yield better sensitivity nor specificity compared to using GLCM alone: in fact, it 

showed decreased performance in the total population as well as in both pre- and 

postmenopausal groups. This could be explained by the fact that the GLCM feature 

did not show a significant difference initially in differentiating between benign and 

malignant masses in the postmenopausal group, and therefore, when adding it to the 

wavelet feature analysis, the diagnostic performance of the combined features 
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decreased. The same concept is applied in the premenopausal group, where the 

performance of the test decreased when combining the GLCM with the wavelet 

feature; however, here the wavelet was the feature that gave the non-significant 

results initially when differentiating benign from malignant masses in the 

premenopausal group. 

Lastly, we explored the possibility of combining these two features in a different 

statistical way. This was applied by using them in a logistic regression model, which 

revealed that using the wavelet feature with the ratio of wavelet to GLCM along with 

the menopausal status as variables of the model gave a better discriminatory ability of 

AUC=0.8 and had a good predictive capacity when tested using the Hosmer and 

Lemeshow test (p=.502). 
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5. General discussion, Conclusion, 

Limitations and future studies 

5.1 General discussion and Conclusion 
 

Ovarian cancer accounts for about three percent of all cancers in women and is the 

fifth leading cause of cancer-related death among women in the United States. In 

2014, it is estimated that nearly 22,000 women will be diagnosed with ovarian cancer 

in the United States, and approximately 14,000 will die of the disease. (National 

Cancer Institute, 2014) 

In Europe, around 65,600 new cases of ovarian cancer were estimated to have been 

diagnosed in 2012. The UK incidence rate is the ninth highest in Europe. Worldwide, 

nearly 239,000 women were estimated to have been diagnosed with ovarian cancer in 

2012, with incidence rates varying across the world (Cancer Research, 2015). 

Ovarian cancer causes more deaths than any other cancer of the female reproductive 

system. This high mortality rate is because of the absence of early symptoms and a 

lack of effective screening tests. Consequently, ovarian cancer is often diagnosed at 

an advanced stage, after the disease has spread outside the ovary (National Cancer 

Institute, 2014).  

Among the various types of imaging modalities, ultrasound is considered the main 

imaging procedure for scanning ovarian masses. However, the main issue with 

ultrasound is that it is operator-dependent, and thus the accuracy and reproducibility 

of the diagnosis vary according to the experience of the operator. 
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In order to reduce the operator dependency, texture analysis, which is able to 

quantitatively characterise tissue through texture content, has been considered in this 

study. In medical imaging, texture analysis has been applied after proving to be 

valuable in characterising tissue such as liver, breast, prostate, carotid plaques and 

many others. 

As mentioned in Chapter 1, the aim of this study was to determine the ability of 

texture analysis features, namely GLCM and wavelet, as well as the new ASQ feature, 

in characterising ovarian tissue. To the best of the author’s knowledge, this study is 

the first to attempt to apply ASQ to ultrasound images of ovarian masses. 

5.1.1. ASQ  
 

Before applying ASQ to images of pelvic masses, it had to be tested in several 

aspects, since it has not previously been used in pelvic masses. Therefore, we tested 

the variability and reliability of ASQ on ultrasound images caused by random 

variation during image acquisition. It was found that the ASQ feature demonstrated 

excellent repeatability for ASQ software, with all transducers showing less than 0.4% 

variance from the mean, which indicates that ASQ software is able to produce reliable 

ASQ output measures. 

In this study, ASQ was applied to 45 pelvic masses on ultrasound images to 

investigate the ability of this method to distinguish between benign and malignant 

pelvic masses.  The preliminary results showed no significant difference between 

benign and malignant masses using the ASQ technique. For this reason, recruiting 

more patients was pointless and the study was terminated. This failure to discriminate 
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the benign from the malignant masses using ASQ could be because most of the 

masses in both groups had similar fibrotic nature, such as cystadenofibromas, fibroids 

and adenocarcinomas. Another reason could be the restricted ROI drawing, which did 

not allow us to include the whole mass in the image: instead, the ROI was drawn as a 

fan shape.  

In this study, two different techniques were adopted to draw the ROI. First, the whole 

mass was included in the ROI as much as possible. The second technique was to draw 

the ROI only on the solid area of the mass. Nevertheless, using different techniques 

did not contribute positively in distinguishing benign from malignant masses. 

ASQ works well on liver images and has proven to be beneficial in diagnosing 

various liver diseases (Brosky, 2009, Toyoda et al., 2009, Hung, 2010, Wang et al., 

2013, Ricci et al., 2013, Onodera, 2013). For this reason, we thought it might also 

work well on ovarian masses. 

Unfortunately, our study showed negative results: the quantitative ASQ analysis of B-

mode images demonstrated non-significant differences between benign and malignant 

tissue. This means that ASQ does not work on pelvic masses because both benign and 

malignant masses exhibit homogeneity and heterogeneity in the same way. This could 

be explained by the fact that liver is a smooth homogenous organ while ovary is in 

general normally heterogeneous due to the presence of follicles and the physiological 

changes that occur in it each cycle. 
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5.1.2. Texture analysis 
 

To carry out a good study, larger sample sizes should give more reliable results with 

greater precision and power; however, they also cost more time and money. 

Therefore, it is important to perform a sample size calculation before conducting a 

study to ensure a sufficiently large sample size to be able to draw meaningful 

conclusions, without wasting resources on sampling more than what really needed 

(Select Statistical, 2015). 

In this study, the calculation of sample size was based on the assumption that texture 

analysis may distinguish between benign and malignant masses, and after seeking 

statistical advice, it was concluded that with a 5% significance level and 80% power, 

a total of 200 women (100 participants in each arm) were required for the study to 

demonstrate a significant difference. Unfortunately, the total number of masses that 

were analysed in our study was 169, of which 140 were benign and 29 were malignant 

by histology results. 

It was understood that the number of malignant masses was too small; however, the 

recruitment of such masses was difficult for several reasons. First, most women with 

malignancy tend to be more ill than others with benign lesions, and therefore, the 

majority refused to participate in the study and have an additional internal scan. 

Second, some malignant diseases were disseminated and were thus excluded from the 

study because we were unable to view them on ultrasound images and analyse them. 

Third, the probability of ovarian cancer is higher in older postmenopausal women 
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(>70 years old) which makes it difficult to approach these women and ask for their 

participation in the study. 

Our study showed that the GLCM and wavelet texture analysis features are able to 

distinguish between benign and malignant masses with sensitivities of 72% and 60% 

respectively. The use of texture analysis in the diagnosis of ovarian tumours has some 

advantages: for example, the end results are more objective and reproducible 

compared to manual interpretation of ultrasound images, which can occasionally be 

affected by inter-observer variation. Another advantage is that since we use images 

acquired using the commonly available and affordable ultrasound modality, there is 

no additional cost for image acquisition. Moreover, the MaZda software that is used 

for texture analysis is available online free of charge and can be downloaded easily to 

any computer. The operator just has to run the software on the acquired B-mode 

ultrasound image and the software does all the processing and gives the output results 

after characterising the tissue. Hence, there is no need for trained experts to run the 

software. 

As proposed by Huynen et al. (1994), texture analysis may improve diagnostic 

accuracy by providing more reproducible results and information that is difficult for 

humans to comprehend. 

 This study demonstrated that texture analysis methods, particularly GLCM and 

wavelet features, are potentially able to discriminate between normal and pathological 

ovarian tissue. It is worth noting that the threshold value should be obtained by 

performing ROC curve analysis on a large sample size that is represented by the 

group studied before a threshold value can be set for clinical studies.  
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Our results showed a significant difference between malignant and fibroid using 

GLCM feature which can be useful clinically in the future, such as in some cases of 

degenerated fibroid that are difficult to diagnose visually by the operator. 

In our study, diagnostic performance of two texture analysis features namely GLCM 

and wavelet as well as the widely used scoring systems (RMI, PMI and ADNEX) 

were applied to the total sample population. The GLCM showed a higher sensitivity 

(72%) compared to two of the scoring systems applied (32% RMI and 62% ADNEX). 

In addition, analysis was carried out in the premenopausal and postmenopausal groups 

separately. Interestingly, GLCM and wavelet diagnostic performance was better in 

premenopausal compared with postmenopausal women (75% vs. 71% in GLCM and 

50% vs. 48% in wavelet), in contrast to the performance of RMI, PMI and ADNEX, 

which improved when applied to postmenopausal women (14% vs. 40% in RMI, 75% 

vs. 90% in PMI and 50% vs. 66% in ADNEX). This gives texture analysis an 

advantage over the other scoring systems when dealing with premenopausal women. 

GLCM and wavelet can also be useful tools to distinguish between malignant and 

cystic masses and between benign and cystic masses, since our results showed an 

excellent discriminatory ability of GLCM (AUC=.994; AUC=.895) and good ability 

in the wavelet feature (AUC=.894; AUC=.814) respectively. 

Another significant result was observed in our study when comparing normal ovarian 

tissue with solid areas of malignant masses when applying both GLCM and wavelet 

features, with p<.05 and p=.004 respectively. 



   

237 

 

Generally, our results demonstrate that GLCM has a better characterisation ability 

compared to the wavelet feature. 

Moreover, combining the two features of texture analysis the GLCM and the wavelet 

feature did not seem to give a better diagnostic performance. In fact, a decrease in 

performance was noticed; however, combining these two features in a different 

statistical way using a logistic regression model gave a better discriminatory ability. 

The developed logistic regression model produced using wavelet, the ratio of wavelet 

to GLCM, and the menopausal status as variables in the model resulted in AUC=0.8 

and a good predictive capacity when tested using the Hosmer and Lemeshow test 

(p=.502). 

The performance of the texture analysis methods is determined by measuring how 

they articulate the relationship between image elements (AL-KADI, 2009). Since the 

way in which a texture analysis method calculates the image parameters was not the 

primary objective of this study, we did not investigate the underlying factors which 

cause the difference in the performance of the GLCM and wavelet features. Lerski 

(2006) explained that the whole relationship of texture parameters to tissue structure 

is a very complex issue which is not fully understood. 
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5.2. Study limitations 
 

It is clear that in this study we analysed a relatively small sample of ovarian masses 

(29 malignant masses), as mentioned in the previous chapter. It is worth mentioning 

that at the beginning of the recruitment period (the whole first year, to be exact), the 

Gynaecology oncology clinic and the pelvic mass clinic from which we recruit 

participants were situated at different hospitals than the one where we scanned the 

patients using the Toshiba Aplio machine that has the ASQ feature. Thus, participants 

might not have been keen on taking part in a study for which they would have had to 

travel at their own expense to another hospital with payable parking to volunteer to 

have a scan for the study, which in turn resulted in a smaller number of participants 

than anticipated in this study. 

This, in addition to the limited duration of recruitment time that was approved by the 

ethical committee (18 months) and the fact that data were collected from a single 

centre, all contributed to our inability to achieve the sample size that was desired. 

Although texture analysis is a method applied to extract additional information from 

medical images that is difficult to apprehend by visual inspection, such analysis 

remains limited by the restricted resolution of the images. 

In the ASQ technique, the major limitation was the restriction in drawing the ROI in 

the ASQ software. It only allows ROI to be drawn in a fan shape, which made it 

difficult to include the whole pelvic mass of different shapes without including other 

tissue or omitting part of the mass.  
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5.3. Future work 
 

To assess the reproducibility of texture analysis features on ultrasound images of 

ovarian masses, a multicentre study should be carried out prospectively with a larger 

study sample to get more representative results and to confirm the clinical importance 

of this technique. 

Additionally, it might be beneficial to explore the possibility of combining texture 

analysis with Doppler flow assessment to achieve higher diagnostic performance in 

discriminating ovarian tissue as it might be the advantage of PMI method is that it 

includes Doppler information. 

Moreover, combining the GLCM and wavelet in other ways to achieve better results, 

such as the use of artificial neural networks, and combining GLCM/wavelet with 

scoring systems has the potential to improve the research, or using these features in a 

logistic regression model with a larger sample all could be used to improve this 

current work by applying it in future work. 

Lastly, ovarian cancer is classified into four stages based on the FIGO system. Future 

work may involve the classification of malignant tissue using texture analysis 

techniques at different stages similar to what has been done using the ADNEX model 

except with the advantage of being an objective rather than a subjective assessment.

 



   

240 

 

Presentations and Posters 
 

 ASQ technology, PGR conference in Cardiff University 19th February 

2014, poster. 

 

 ASQ technology, Medical Physics and Clinical Engineering in Wales 

Summer Meeting, Cardiff, UK  27th June 2014, Presentation. 

 

 The application of ASQ in the diagnosis of pelvic masses (preliminary 

study), BMUS conference in Manchester, UK 8th December 2014, 

Presentation. Published: RANA ALDAHALWI, NEIL PUGH. 

Proceedings of the British Medical Ultrasound Society 46th Annual 

Scientific Meeting 9–11 December 2014, The application of ASQ, 

Ultrasound May 2015 vol. 23 no. 2 NP7. 

 

 ASQ technology, 8th Saudi Student Conference SSC in London, UK 

30TH January 2015, poster. 

 

 The use of texture analysis in diagnosing ovarian masses (Preliminary 

results), BSGI meeting in London 14th April 2015, presentation. 

Published: RANA ALDAHLAWI, NEIL PUGH: The use of texture 

analysis in diagnosing ovarian masses (preliminary results). BJOG 

British journal of obstetrics and Gynaecology June 2015 volume 122, 

issue supplement S3 page 3. 

 

 The Use of Texture Analysis in Diagnosing Ovarian Masses, BMUS 

conference in Cardiff, UK 8th December 2015, presentation. 

 

 Texture analysis of transvaginal images in the diagnosis of ovarian 

cancer, EBCOG 14th European congress in Torino, Italy, 19-21 May 

2016, Poster. 



   

241 

 

  



   

242 

 

References  

 

ACOG Committee Opinion, Number 247, December 2000. International Journal of 

Gynaecology &amp; Obstetrics, 82, 241-245. 

ACHARYA, U. R., SREE, S. V., SABA, L., MOLINARI, F., GUERRIERO, S. & 

SURI, J. S. 2013. Ovarian tumour characterization and classification using ultrasound 

- A new online paradigm. Journal of Digital Imaging, 26, 544-553. 

AGARWAL, A., REIN, B. J. D., GUPTA, S., DADA, R., SAFI, J. & MICHENER, 

C. 2011. Potential markers for detection and monitoring of ovarian cancer. Journal of 

Oncology. 

AGUIRRE, A., ARDESHIRPOUR, Y., SANDERS, M. M., BREWER, M. & ZHU, 

Q. 2011. Potential role of coregistered photoacoustic and ultrasound imaging in 

ovarian cancer detection and characterization. Translational Oncology, 4, 29-37. 

AGUIRRE, A., GUO, P., GAMELIN, J., YAN, S., SANDERS, M. M., BREWER, M. 

& ZHU, Q. 2009. Coregistered three-dimensional ultrasound and photoacoustic 

imaging system for ovarian tissue characterization. Journal of Biomedical Optics, 14. 

AKDENIZ, N., KUYUMCUOÇ§LU, U., KALE, A., ERDEMOÇ§LU, M. & CACA, 

F. 2009a. Risk of malignancy index for adnexal masses. European Journal of 

Gynaecological Oncology, 30, 178-180. 

AKDENIZ, N., KUYUMCUOǦLU, U., KALE, A., ERDEMOǦLU, M. & CACA, F. 

2009b. Risk of malignancy index for adnexal masses. European Journal of 

Gynaecological Oncology, 30, 178-180. 

AKTÜRK, E., KARACA, R. E., ALANBAY, I., DEDE, M., KARAŞAHIN, E., 

YENEN, M. C. & BAŞER, I. 2011. Comparison of four malignancy risk indices in 

the detection of malignant ovarian masses. Journal of Gynaecologic Oncology, 22, 

177-182. 

AL-KADI, O. S. 2009. Tumour Grading and Discrimination based on Class 

Assignment and Quantitative Texture Analysis Techniques. PhD in Engineering, 

University of Sussex. 

ALACAM, B., YAZICI, B. & BILGUTAY, N. Year. Breast cancer detection based 

on ultrasound B-scan texture analysis and patient age information. In:  Bioengineering 

Conference, 2003 IEEE 29th Annual, Proceedings of, 22-23 March 2003 2003. 98-99. 

ALCÁZAR, J. L. 2006. Tumour angiogenesis assessed by three-dimensional power 

Doppler ultrasound in early, advanced and metastatic ovarian cancer: A preliminary 

study. Ultrasound in Obstetrics and Gynaecology, 28, 325-329. 

ALCÁZAR, J. L., AUBÁ, M. & OLARTECOECHEA, B. 2012a. Three-dimensional 

ultrasound in gynaecological clinical practice. Reports in Medical Imaging, 5, 1-13. 



   

243 

 

ALCÁZAR, J. L. & CASTILLO, G. 2005. Comparison of 2-dimensional and 3-

dimensional power-Doppler imaging in complex adnexal masses for the prediction of 

ovarian cancer. American Journal of Obstetrics and Gynaecology, 192, 807-812. 

ALCÁZAR, J. L., ERRASTI, T., LAPARTE, C., JURADO, M. & LÓPEZ-GARCÍA, 

G. 2001. Assessment of a new logistic model in the preoperative evaluation of 

adnexal masses. Journal of Ultrasound in Medicine, 20, 841-848. 

ALCÁZAR, J. L. & GUERRIERO, S. 2011. Grey-scale ultrasound versus CA-125 

levels for predicting malignancy in adnexal masses. International Journal of 

Gynaecology and Obstetrics, 114, 290-291. 

ALCÁZAR, J. L., GUERRIERO, S., LAPARTE, C., AJOSSA, S. & JURADO, M. 

2011. Contribution of power Doppler blood flow mapping to grey-scale ultrasound for 

predicting malignancy of adnexal masses in symptomatic and asymptomatic women. 

European Journal of Obstetrics &amp; Gynaecology and Reproductive Biology, 155, 

99-105. 

ALCÁZAR, J. L., GUERRIERO, S., PASCUAL, M. A., AJOSSA, S., 

OLARTECOECHEA, B. & HERETER, L. 2012b. Clinical and sonographic features 

of uncommon primary ovarian malignancies. Journal of Clinical Ultrasound, 40, 323-

329. 

ALCÁZAR, J. L., ITURRA, A., SEDDA, F., AUBÁ, M., AJOSSA, S., 

GUERRIERO, S. & JURADO, M. 2012c. Three-dimensional volume off-line analysis 

as compared to real-time ultrasound for assessing adnexal masses. European Journal 

of Obstetrics Gynaecology and Reproductive Biology, 161, 92-95. 

ALCÁZAR, J. L. & JURADO, M. 2011. Three-dimensional ultrasound for assessing 

women with gynaecological cancer: A systematic review. Gynaecologic Oncology, 

120, 340-346. 

ALCÁZAR, J. L., MERCÉ, L. T., LAPARTE, C., JURADO, M. & LÓPEZ-

GARCÍA, G. 2003. A new scoring system to differentiate benign from malignant 

adnexal masses. American Journal of Obstetrics and Gynaecology, 188, 685-692. 

ALCÁZAR, J. L., MERCÉ, L. T. & MANERO, M. G. 2005. Three-dimensional 

power Doppler vascular sampling: A new method for predicting ovarian cancer in 

vascularized complex adnexal masses. Journal of Ultrasound in Medicine, 24, 689-

696. 

ALCÁZAR, J. L., OLARTECOECHEA, B., GUERRIERO, S. & JURADO, M. 

2013a. Expectant management of adnexal masses in selected premenopausal women: 

A prospective observational study. Ultrasound in Obstetrics and Gynaecology, 41, 

582-588. 

ALCÁZAR, J. L., PASCUAL, M. Á., OLARTECOECHEA, B., GRAUPERA, B., 

AUBÁ, M., AJOSSA, S., HERETER, L., JULVE, R., GASTÓN, B., PEDDES, C., 

SEDDA, F., PIRAS, A., SABA, L. & GUERRIERO, S. 2013b. IOTA simple rules for 



   

244 

 

discriminating between benign and malignant adnexal masses: Prospective external 

validation. Ultrasound in Obstetrics and Gynaecology, 42, 467-471. 

ALCAZAR, J. L., ROYO, P., JURADO, M., MÃNGUEZ, J. A., GARCÃA-

MANERO, M., LAPARTE, C., GALVÃ¡N, R. & LÃ³PEZ-GARCÃA, G. 2008. 

Triage for surgical management of ovarian tumours in asymptomatic women: 

Assessment of an ultrasound-based scoring system. Ultrasound in Obstetrics and 

Gynaecology, 32, 220-225. 

ALETTI, G. D., GALLENBERG, M. M., CLIBY, W. A., JATOI, A. & 

HARTMANN, L. C. 2007. Current management strategies for ovarian cancer. Mayo 

Clinic Proceedings, 82, 751-770. 

ALQAHTANI, M. A., COLEMAN, D. P., PUGH, N. D. & NOKES, L. D. M. Year. 

Tissue characterization: Influence of ultrasound setting on texture features in vivo. In, 

2010. 63-66. 

ALTMAN, D. 1995. Practical statistics for medical research, London, Chapman and 

Hall. 

AMD. 2010. Prostate Histoscanning [Online]. Available: 

http://www.histoscanning.com/products/prostate-histoscanningtm / [Accessed 8/8 

2012]. 

AMD. 2010. Ovarian Histoscanning [Online]. Available: 

http://www.histoscanning.com/products/in-development/ovarian-histoscanningtm / 

[Accessed 8-8 2012]. 

AMERICAN CANCER SOCIETY, W. 2015. Cancer facts and figures 2015 [Online]. 

Available: 

http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015 / 

[Accessed 10 February 2016]. 

AMEYE, L., VALENTIN, L., TESTA, A. C., VAN HOLSBEKE, C., DOMALI, E., 

VAN HUFFEL, S., VERGOTE, I., BOURNE, T. & TIMMERMAN, D. 2009. A 

scoring system to differentiate malignant from benign masses in specific ultrasound-

based subgroups of adnexal tumours. Ultrasound in Obstetrics and Gynaecology, 33, 

92-101. 

AMONKAR, S. D., BERTENSHAW, G. P., CHEN, T. H., BERGSTROM, K. J., 

ZHAO, J., SESHAIAH, P., YIP, P. & MANSFIELD, B. C. 2009. Development and 

preliminary evaluation of a multivariate index assay for ovarian cancer. PLoS ONE, 

4. 

AMOR, F., ALCÁZAR, J. L., VACCARO, H., LEÓN, M. & ITURRA, A. 2011. GI-

RADS reporting system for ultrasound evaluation of adnexal masses in clinical 

practice: A prospective multicentre study. Ultrasound in Obstetrics and Gynaecology, 

38, 450-455. 

http://www.histoscanning.com/products/prostate-histoscanningtm
http://www.histoscanning.com/products/in-development/ovarian-histoscanningtm
http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015


   

245 

 

ANDERSEN, E. S., KNUDSEN, A., RIX, P. & JOHANSEN, B. 2003. Risk of 

Malignancy Index in the preoperative evaluation of patients with adnexal masses. 

Gynaecologic Oncology, 90, 109-112. 

ANTON, C., CARVALHO, F. M., OLIVEIRA, E. I., MACIEL, G. A. R., 

BARACAT, E. C. & CARVALHO, J. P. 2012. A comparison of CA125, HE4, risk 

ovarian malignancy algorithm (ROMA), and risk malignancy index (RMI) for the 

classification of ovarian masses. Clinics, 67, 437-441. 

ARAB, M., YASERI, M., FARZANEH, M., MORIDI, A., TEHRANIAN, A. & 

SHEIBANI, K. 2010. The construction and validation of a new ovarian malignancy 

probability score (omps) for prediction of ovarian malignancy. Iranian Journal of 

Cancer Prevention, 3, 132-138. 

ARMITAGE, P., BERRY, G. & MATTHEWS, J. N. S. 2009. Statistical methods in 

medical research, Malden, Blackwell Science Ltd. 

ASLAM, N., TAILOR, A., LAWTON, F., CARR, J., SAVVAS, M. & JURKOVIC, 

D. 2000. Prospective evaluation of three different models for the pre-operative 

diagnosis of ovarian cancer. British Journal of Obstetrics and Gynaecology, 107, 

1347-1353. 

BADER, W., BÖHMER, S., VAN LEEUWEN, P., HACKMANN, J., WESTHOF, G. 

& HATZMANN, W. 2000. Does texture analysis improve breast ultrasound 

precision? Ultrasound in Obstetrics and Gynaecology, 15, 311-316. 

BAILEY, E., FENNING, N., CHAMBERLAIN, S., DEVLIN, L., HOPKISSON, J. & 

TOMLINSON, M. 2007. Validation of sperm counting methods using limits of 

agreement. Journal of Andrology, 28, 364-373. 

BAILEY, J., TAILOR, A., NAIK, R., LOPES, A., GODFREY, K., HATEM, H. M. & 

MONAGHAN, J. 2006. Risk of malignancy index for referral of ovarian cancer cases 

to a tertiary centre: Does it identify the correct cases? International Journal of 

Gynaecological Cancer, 16, 30-34. 

BANKHEAD, C. R., COLLINS, C., STOKES-LAMPARD, H., ROSE, P., WILSON, 

S., CLEMENTS, A., MANT, D., KEHOE, S. T. & AUSTOKER, J. 2008. Identifying 

symptoms of ovarian cancer: A qualitative and quantitative study. BJOG: An 

International Journal of Obstetrics and Gynaecology, 115, 1008-1014. 

BARNETT, S. B. (ed.) 2000. Ultrasound-induced heating and its biological 

consequences, London: British Institute of Radiology. 

BARONI, M., FORTUNATO, P. & LA TORRE, A. 2007. Towards quantitative 

analysis of retinal features in optical coherence tomography. Medical Engineering and 

Physics, 29, 432-441. 

BARRETT, J., SHARP, D. J., STAPLEY, S., STABB, C. & HAMILTON, W. 2010. 

Pathways to the diagnosis of ovarian cancer in the UK: A cohort study in primary 

care. BJOG: An International Journal of Obstetrics and Gynaecology, 117, 610-614. 



   

246 

 

BARUA, A., BITTERMAN, P., BAHR, J. M., BASU, S., SHEINER, E., 

BRADARIC, M. J., HALES, D. B., LUBORSKY, J. L. & ABRAMOWICZ, J. S. 

2011. Contrast-enhanced sonography depicts spontaneous ovarian cancer at early 

stages in a preclinical animal model. Journal of Ultrasound in Medicine, 30, 333-345. 

BASSANI, D. G., MIRANDA, L. A. & GUSTAFSSON, A. 2007. Use of the limits of 

agreement approach in periodontology. Oral health & preventive dentistry, 5, 119-

124. 

BASSET, O., SUN, Z., MESTAS, J. L. & GIMENEZ, G. 1993. Texture analysis of 

ultrasonic images of the prostate by means of co- occurrence matrices. Ultrasonic 

Imaging, 15, 218-237. 

BAST JR, R. C. 2003. Status of tumour markers in ovarian cancer screening. Journal 

of clinical oncology : official journal of the American Society of Clinical Oncology, 

21, 200s-205s. 

BEEKMAN, R. & VISSER, L. H. 2004. High-resolution sonography of the peripheral 

nervous system - A review of the literature. European Journal of Neurology, 11, 305-

314. 

BENACERRAF, B. R. 2008. Three-Dimensional Ultrasound in Gynaecology: Where 

is it Applicable? Available: 

http://www.gehealthcare.com/usen/ultrasound/products/msucme3d_gyn.html  

[Accessed 15 January 2013]. 

BENEDET, J. L., BENDER, H., JONES 3RD, H., NGAN, H. Y. & PECORELLI, S. 

2000. FIGO staging classifications and clinical practice guidelines in the management 

of gynaecologic cancers. FIGO Committee on Gynaecologic Oncology. International 

Journal of Gynaecology and Obstetrics, 70, 209-262. 

BERLANDA, N., FERRARI, M. M., MEZZOPANE, R., BOERO, V., GRIJUELA, 

B., FERRAZZI, E. & PARDI, G. 2002. Impact of a multiparameter, ultrasound-based 

triage on surgical management of adnexal masses. Ultrasound in Obstetrics and 

Gynaecology, 20, 181-185. 

BERRINO, F., DE ANGELIS, R., SANT, M., ROSSO, S., LASOTA, M. B., 

COEBERGH, J. W. & SANTAQUILANI, M. 2007. Survival for eight major cancers 

and all cancers combined for European adults diagnosed in 1995-99: results of the 

EUROCARE-4 study. Lancet Oncology, 8, 773-783. 

BIAN, J., LI, B., KOU, X. J., LIU, T. Z. & MING, L. 2013. Clinical significance of 

combined detection of serum tumour markers in diagnosis of patients with ovarian 

cancer. Asian Pacific Journal of Cancer Prevention, 14, 6241-6243. 

BLACK, S. S., BUTLER, S. L., GOLDMAN, P. A. & SCROGGINS, M. J. 2007. 

Ovarian cancer symptom index: Possibilities for earlier detection. Cancer, 109, 167-

169. 

http://www.gehealthcare.com/usen/ultrasound/products/msucme3d_gyn.html


   

247 

 

BLAND, J. M. & ALTMAN, D. G. 2010. Statistical methods for assessing agreement 

between two methods of clinical measurement. International Journal of Nursing 

Studies, 47, 931-936. 

BONILLA-MUSOLES, F., RAGA, F. & OSBORNE, N. G. 1995. Three-dimensional 

ultrasound evaluation of ovarian masses. Gynaecologic Oncology, 59, 129-135. 

BOOTE, E. J. 2003. Doppler US Techniques: Concepts of Blood Flow Detection and 

Flow Dynamics. Radiographics, 23, 1315-1327. 

BRAECKMAN, J., AUTIER, P., GARBAR, C., MARICHAL, M. P., SOVIANY, C., 

NIR, R., NIR, D., MICHIELSEN, D., BLEIBERG, H., EGEVAD, L. & 

EMBERTON, M. 2008a. Computer-aided ultrasonography (HistoScanning): A novel 

technology for locating and characterizing prostate cancer. BJU International, 101, 

293-298. 

BRAECKMAN, J., AUTIER, P., SOVIANY, C., NIR, R., NIR, D., MICHIELSEN, 

D., TREURNICHT, K., JARMULOWICZ, M., BLEIBERG, H., GOVINDARAJU, S. 

& EMBERTON, M. 2008b. The accuracy of transrectal ultrasonography 

supplemented with computer-aided ultrasonography for detecting small prostate 

cancers. BJU International, 102, 1560-1565. 

BRIDAL, S. L., CORREAS, J. M., SAÏED, A. & LAUGIER, P. 2003. Milestones on 

the road to higher resolution, quantitative, and functional ultrasonic imaging. 

Proceedings of the IEEE, 91, 1543-1561. 

BROOKS, S. E. 1994. Preoperative Evaluation of Patients with Suspected Ovarian 

Cancer. Gynaecologic Oncology, 55, S80-S90. 

BROSKY, J. 2009. Toshiba ASQ delivers hard data on liver fibrosis. Available: 

www.european-hospital.com/en/article/6676-

Toshiba_ASQ_delivers_hard_data_on_liver_fibrosis  [Accessed 27-02-2014]. 

BROWN, P. O. & PALMER, C. 2009. The preclinical natural history of serous 

ovarian cancer: Defining the target for early detection. PLoS Medicine, 6. 

BROWNE, J. E., WATSON, A. J., GIBSON, N. M., DUDLEY, N. J. & ELLIOTT, 

A. T. 2004. Objective measurements of image quality. Ultrasound in Medicine &amp; 

Biology, 30, 229-237. 

BRUTON, A., CONWAY, J. H. & HOLGATE, S. T. 2000. Reliability: What is it, 

and how is it measured? Physiotherapy, 86, 94-99. 

BUCKSHEE, K., TEMSU, I., BHATLA, N. & DEKA, D. 1998. Pelvic examination, 

transvaginal ultrasound and transvaginal colour Doppler sonography as predictors of 

ovarian cancer. International Journal of Gynaecology and Obstetrics, 61, 51-57. 

BUYS, S. S., PARTRIDGE, E., BLACK, A., JOHNSON, C. C., LAMERATO, L., 

ISAACS, C., REDING, D. J., GREENLEE, R. T., YOKOCHI, L. A., KESSEL, B., 

CRAWFORD, E. D., CHURCH, T. R., ANDRIOLE, G. L., WEISSFELD, J. L., 

FOUAD, M. N., CHIA, D., O'BRIEN, B., RAGARD, L. R., CLAPP, J. D., 

http://www.european-hospital.com/en/article/6676-Toshiba_ASQ_delivers_hard_data_on_liver_fibrosis
http://www.european-hospital.com/en/article/6676-Toshiba_ASQ_delivers_hard_data_on_liver_fibrosis


   

248 

 

RATHMELL, J. M., RILEY, T. L., HARTGE, P., PINSKY, P. F., ZHU, C. S., 

IZMIRLIAN, G., KRAMER, B. S., MILLER, A. B., XU, J. L., PROROK, P. C., 

GOHAGAN, J. K. & BERG, C. D. 2011. Effect of screening on ovarian cancer 

mortality: The Prostate, Lung, Colourectal and Ovarian (PLCO) cancer screening 

randomized controlled trial. JAMA - Journal of the American Medical Association, 

305, 2295-2302. 

CALONGE, N., ALLAN, J. D., BERG, A. O., FRAME, P. S., GARCIA, J., 

GORDIS, L., GREGORY, K. D., HARRIS, R., JOHNSON, M. S., KLEIN, J. D., 

LOVELAND-CHERRY, C., MOYER, V. A., OCKENE, J. K., PETITTI, D. B., SIU, 

A. L., TEUTSCH, S. M. & YAWN, B. P. 2004. Screening for ovarian cancer: 

Recommendation statement. Annals of Family Medicine, 2, 260-262. 

CAMPBELL, S., BHAN, V., ROYSTON, P., WHITEHEAD, M. I. & COLLINS, W. 

P. 1989. Transabdominal ultrasound screening for early ovarian cancer. British 

Medical Journal, 299, 1363-1367. 

CANCER RESEARCH, U. 2011. Ovarian cancer - UK incidence statistics. Available: 

http://info.cancerresearchuk.org/cancerstats/types/ovary/incidence /. [Accessed 31 

October 2011]. 

CANCER RESEARCH, U. 2012. Statistics and outlook for ovarian cancer [Online]. 

Available:http://www.cancerresearchuk.org/cancer-help/type/ovarian-

cancer/treatment/statistics-and-outlook-for-ovarian-cancer#overall[Accessed 17 

January 2013]. 

CANCER RESEARCH, U. 2015. Ovarian Cancer Incidence [Online]. Available: 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-

cancer-type/ovarian-cancer#heading-Zero  [Accessed 20-10-2015]. 

CASS, I. 2009. The search for meaning - Symptoms and transvaginal sonography 

screening for ovarian cancer: Silent no more. Cancer, 115, 3606-3608. 

CASTELLANO, G., BONILHA, L., LI, L. M. & CENDES, F. 2004. Texture analysis 

of medical images. Clinical Radiology, 59, 1061-1069. 

CHAN, H. P., DOI, K., GALHOTRA, S., VYBORNY, C. J., MACMAHON, H., 

JOKICH, P. M. & GIGER, M. L. 1987. Image feature analysis and computer-aided 

diagnosis in digital radiography. I. Automated detection of microcalcifications in 

mammography. Medical Physics, 14, 538-548. 

CHAN, K. K. & SELMAN, T. J. 2006. Testing for ovarian cancer. Best Practice and 

Research: Clinical Obstetrics and Gynaecology, 20, 977-983. 

CHAN, K. L. & MCCARTY, K. 1990. Aspects of the statistical texture analysis of 

the medical ultrasound images. IEE Colloquium on Ultrasound Instrumentation, 1/3-

3/3. 

CHEN, D.-R., CHANG, R.-F., KUO, W.-J., CHEN, M.-C. & HUANG, Y. U.-L. 

2002. Diagnosis of breast tumours with sonographic texture analysis using wavelet 

http://info.cancerresearchuk.org/cancerstats/types/ovary/incidence
http://www.cancerresearchuk.org/cancer-help/type/ovarian-cancer/treatment/statistics-and-outlook-for-ovarian-cancer#overall
http://www.cancerresearchuk.org/cancer-help/type/ovarian-cancer/treatment/statistics-and-outlook-for-ovarian-cancer#overall
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer#heading-Zero
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer#heading-Zero


   

249 

 

transform and neural networks. Ultrasound in Medicine &amp; Biology, 28, 1301-

1310. 

CHEN, S.-J., LIN, C.-H., CHANG, C.-Y., CHANG, K.-Y., HO, H.-C., HSIAO, S.-H., 

LIN, C.-W., TZENG, J.-E., CHEN, Y.-T. & TSAI, H.-M. 2012. Characterizing the 

major sonographic textural difference between metastatic and common benign lymph 

nodes using support vector machine with histopathologic correlation. Clinical 

Imaging, 36, 353-359.e2. 

CHIA, Y. N., MARSDEN, D. E., ROBERTSON, G. & HACKER, N. F. 2008. Triage 

of ovarian masses. Australian and New Zealand Journal of Obstetrics and 

Gynaecology, 48, 322-328. 

CHU, C. S. & RUBIN, S. C. 2006. Screening for ovarian cancer in the general 

population. Best Practice &amp; Research Clinical Obstetrics &amp; Gynaecology, 

20, 307-320. 

CLARK, T. G., STEWART, M., RYE, T., SMYTH, J. F. & GOURLEY, C. 2007. 

Validation of a new prognostic index for advanced epithelial ovarian cancer: Results 

from its application to a UK-based cohort [8]. Journal of Clinical Oncology, 25, 5669-

5670. 

CLARKE-PEARSON, D. L. 2009. Screening for ovarian cancer. New England 

Journal of Medicine, 361, 170-177. 

CLARKE, S. E., GRIMSHAW, R., RITTENBERG, P., KIESER, K. & BENTLEY, J. 

2009. Risk of malignancy index in the evaluation of patients with adnexal masses. 

Journal of obstetrics and gynaecology Canada : JOGC = Journal d'obstétrique et 

gynécologie du Canada : JOGC, 31, 440-445. 

COHEN, L. S., ESCOBAR, P. F., SCHARM, C., GLIMCO, B. & FISHMAN, D. A. 

2001. Three-Dimensional Power Doppler Ultrasound Improves the Diagnostic 

Accuracy for Ovarian Cancer Prediction. Gynaecologic Oncology, 82, 40-48. 

COLEMAN, D. P., RAKEBRANDT, F., PUGH, N. D., CRAWFORD, D. C. & 

WOODCOCK, J. P. 2005. Development and validation of an in vivo analysis tool to 

identify changes in carotid plaque tissue types in serial 3-D ultrasound scans. 

Ultrasound in Medicine and Biology, 31, 329-335. 

COLLEWET, G., STRZELECKI, M. & MARIETTE, F. 2004. Influence of MRI 

acquisition protocols and image intensity normalization methods on texture 

classification. Magnetic Resonance Imaging, 22, 81-91. 

CRAGUN, J. M. 2011. Screening for ovarian cancer. Cancer Control, 18, 16-21. 

CRAWFORD, I. M. 1990. Marketing research and information systems. Agriculture 

and Consumer Protection. http://www.fao.org/docrep/w3241E/w3241e05 .htm: FAO 

Corporate Document Repository. 

CRUM, C. P. 2004. The Female Genital Tract, Philadelpia, Pennsylvania, Elsevier 

Inc. 

http://www.fao.org/docrep/w3241E/w3241e05


   

250 

 

DAI, S. Y., HATA, K., INUBASHIRI, E., KANENISHI, K., SHIOTA, A., OHNO, 

M., YAMAMOTO, Y., NISHIYAMA, Y., OHKAWA, M. & HATA, T. 2008. Does 

three-dimensional power Doppler ultrasound improve the diagnostic accuracy for the 

prediction of adnexal malignancy? Journal of Obstetrics and Gynaecology Research, 

34, 364-370. 

DAS, A., NGUYEN, C. C., LI, F. & LI, B. 2008. Digital image analysis of EUS 

images accurately differentiates pancreatic cancer from chronic pancreatitis and 

normal tissue. Gastrointestinal Endoscopy, 67, 861-867. 

DE KANT, J. V. 2011. A guide to Acoustic Structure Quantification ASQ Apolio XG 

V5 Rev 2. In: TOSHIBA (ed.). Toshiba leading innovation. 

DE VET, H. C. W., TERWEE, C. B., KNOL, D. L. & BOUTER, L. M. 2006. When 

to use agreement versus reliability measures. Journal of Clinical Epidemiology, 59, 

1033-1039. 

DECRUZE, S. B. & KIRWAN, J. M. 2006. Ovarian cancer. Current Obstetrics 

&amp; Gynaecology, 16, 161-167. 

DEPRIEST, P. D. & DESIMONE, C. P. 2003. Ultrasound screening for the early 

detection of ovarian cancer. Journal of clinical oncology: official journal of the 

American Society of Clinical Oncology, 21, 194s-199s. 

DEPRIEST, P. D., GALLION, H. H., PAVLIK, E. J., KRYSCIO, R. J. & VAN 

NAGELL, J. R. 1997. Transvaginal Sonography as a Screening Method for the 

Detection of Early Ovarian Cancer. Gynaecologic Oncology, 65, 408-414. 

DEPRIEST, P. D., SHENSON, D., FRIED, A., HUNTER, J. E., ANDREWS, S. J., 

GALLION, H. H., PAVLIK, E. J., KRYSCIO, R. J. & VAN NAGELL JR, J. R. 1993. 

A morphology index based on sonographic findings in ovarian cancer. Gynaecologic 

Oncology, 51, 7-11. 

DEPRIEST, P. D. & VAN NAGELL JR, J. R. 1996. Ovarian cancer screening. 

Current Problems in Obstetrics, Gynaecology and Fertility, 19, 99-109. 

DEPRIEST, P. D., VARNER, E., POWELL, J., FRIED, A., PULS, L., HIGGINS, R., 

SHENSON, D., KRYSCIO, R., HUNTER, J. E., ANDREWS, S. J. & VAN NAGELL 

JR, J. R. 1994. The efficacy of a sonographic morphology index in identifying ovarian 

cancer: A multi-institutional investigation. Gynaecologic Oncology, 55, 174-178. 

DERCHI, L. E., SERAFINI, G., GANDOLFO, N., GANDOLFO, N. G. & 

MARTINOLI, C. 2001. Ultrasound in Gynaecology. European Radiology, 11, 2137-

2155. 

DIAMOND, J., ANDERSON, N. H., BARTELS, P. H., MONTIRONI, R. & 

HAMILTON, P. W. 2004. The use of morphological characteristics and texture 

analysis in the identification of tissue composition in prostatic neoplasia. Human 

Pathology, 35, 1121-1131. 



   

251 

 

DODGE, J. E., COVENS, A. L., LACCHETTI, C., ELIT, L. M., LE, T., DEVRIES-

ABOUD, M. & FUNG-KEE-FUNG, M. 2012. Preoperative identification of a 

suspicious adnexal mass: A systematic review and meta-analysis. Gynaecologic 

Oncology, 126, 157-166. 

DOI, K. 2007. Computer-aided diagnosis in medical imaging: Historical review, 

current status and future potential. Computerized Medical Imaging and Graphics, 31, 

198-211. 

DONG, L., CUI, H., LI, X. P., SUN, L. F., CHANG, X. H., LIANG, X. D. & ZHU, 

H. L. 2008. Clinical value of serum CA19-9, CA125 and CP2 in mucinous ovarian 

tumour: a retrospective study of 273 patients. Zhonghua fu chan ke za zhi, 43, 5-8. 

DUDELY, N. 2010. B-mode measurement, Cambridge, Cambridge University Press. 

DUFFY, M. J., BONFRER, J. M., KULPA, J., RUSTIN, G. J. S., SOLETORMOS, 

G., TORRE, G. C., TUXEN, M. K. & ZWIRNER, M. 2005. CA125 in ovarian 

cancer: European Group on Tumour Markers guidelines for clinical use. International 

Journal of Gynaecological Cancer, 15, 679-691. 

DUTTA, S., WANG, F. Q., FLEISCHER, A. C. & FISHMAN, D. A. 2010a. New 

frontiers for ovarian cancer risk evaluation: Proteomics and contrast-enhanced 

ultrasound. American Journal of Roentgenology, 194, 349-354. 

DUTTA, S., WANG, F. Q., PHALEN, A. & FISHMAN, D. A. 2010b. Biomarkers for 

ovarian cancer detection and therapy. Cancer Biology and Therapy, 9, 666-675. 

EBELL, M. H. online. Chapter 4, diagnostic tests. Available: 

http://ebp.uga.edu/courses/Chapter%204%20-%20Diagnosis%20I/8%20-

%20ROC%20curves.html  [Accessed 29-05-2015]. 

EDWARDS, B. K., BROWN, M. L., WINGO, P. A., HOWE, H. L., WARD, E., 

RIES, L. A. G., SCHRAG, D., JAMISON, P. M., JEMAL, A., WU, X. C., 

FRIEDMAN, C., HARLAN, L., WARREN, J., ANDERSON, R. N. & PICKLE, L. 

W. 2005. Annual report to the nation on the status of cancer, 1975-2002, featuring 

population-based trends in cancer treatment. Journal of the National Cancer Institute, 

97, 1407-1427. 

EKERHOVD, E., WIENERROITH, H., STAUDACH, A. & GRANBERG, S. 2001. 

Preoperative assessment of unilocular adnexal cysts by transvaginal ultrasonography: 

A comparison between ultrasonographic morphologic imaging and histopathologic 

diagnosis. American Journal of Obstetrics and Gynaecology, 184, 48-54. 

ENAKPENE, C. A., OMIGBODUN, A. O., GOECKE, T. W., ODUKOGBE, A. T. & 

BECKMANN, M. W. 2009. Preoperative evaluation and triage of women with 

suspicious adnexal masses using risk of malignancy index. Journal of Obstetrics and 

Gynaecology Research, 35, 131-138. 

ENGELAND, A., TRETLI, S. & BJÃ¸RGE, T. 2003. Height, body mass index, and 

ovarian cancer: A follow-up of 1.1 million Norwegian women. Journal of the National 

Cancer Institute, 95, 1244-1248. 

http://ebp.uga.edu/courses/Chapter%204%20-%20Diagnosis%20I/8%20-%20ROC%20curves.html
http://ebp.uga.edu/courses/Chapter%204%20-%20Diagnosis%20I/8%20-%20ROC%20curves.html


   

252 

 

ERDOGAN, N., Ã–ZÃ§ELIK, B., SERIN, I. S., AKGÃ¼N, M. & Ã–ZTÃ¼RK, F. 

2005. Doppler ultrasound assessment and serum cancer antigen 125 in the diagnosis 

of ovarian tumours. International Journal of Gynaecology and Obstetrics, 91, 146-

150. 

EXACOUSTOS, C., ROMANINI, M. E., RINALDO, D., AMOROSO, C., 

SZABOLCS, B., ZUPI, E. & ARDUINI, D. 2005. Preoperative sonographic features 

of borderline ovarian tumours. Ultrasound in Obstetrics and Gynaecology, 25, 50-59. 

FASCHINGBAUER, F., BENZ, M., HÄBERLE, L., GOECKE, T. W., 

BECKMANN, M. W., RENNER, S., MÜLLER, A., WITTENBERG, T. & 

MÜNZENMAYER, C. 2012. Subjective assessment of ovarian masses using pattern 

recognition: the impact of experience on diagnostic performance and interobserver 

variability. Archives of Gynaecology and Obstetrics, 1-7. 

FERLAY, J., BRAY, F., PISANI, P. & PARKIN, D. 2004. GLOBOCAN 2002: 

cancer incidence, mortality and prevalence worldwide. IARC Cancer Base No. 5, 

version 2.0. 

FERLAY, J., PARKIN, D. M. & STELIAROVA-FOUCHER, E. 2010. Estimates of 

cancer incidence and mortality in Europe in 2008. European Journal of Cancer, 46, 

765-781. 

FERRAZZI, E., ZANETTA, G., DORDONI, D., BERLANDA, N., MEZZOPANE, 

R. & LISSONI, G. 1997. Transvaginal ultrasonographic characterization of ovarian 

masses: Comparison of five scoring systems in a multicentre study. Ultrasound in 

Obstetrics and Gynaecology, 10, 192-197. 

FIROOZABADI, R. D., ZARCHI, M. K., MANSURIAN, H. R., MOGHADAM, B. 

R., TEIMOORI, S. & NASERI, A. 2011. Evaluation of diagnostic value of CT scan, 

physical examination and ultrasound based on pathological findings in patients with 

pelvic masses. Asian Pacific Journal of Cancer Prevention, 12, 1745-1747. 

FISCHEROVA, D. 2011. Ultrasound scanning of the pelvis and abdomen for staging 

of gynaecological tumours: A review. Ultrasound in Obstetrics and Gynaecology, 38, 

246-266. 

FISHMAN, D. A. & AL., E. 2001. The role of ultrasound in detecting early ovarian 

carcinoma: The National Ovarian Cancer Early Detection Program. Medica Mundi, 

45, 42- 47. 

FITCH, M. I., GRAY, R. E., COVENS, A., THOMAS, G., FRANSSEN, E., 

DEPETRILLO, D. & ROSEN, B. 1999. Gynecologists' perspectives regarding 

ovarian cancer. Cancer prevention & control : CPC = Prévention & contrôle en 

cancérologie : PCC, 3, 68-76. 

FLEISCHER, A. C. 2005. Recent advances in the sonographic assessment of 

vascularity and blood flow in gynaecologic conditions. American Journal of 

Obstetrics and Gynaecology, 193, 294-301. 



   

253 

 

FLEISCHER, A. C., LYSHCHIK, A., HIRARI, M., MOORE, R. D., ABRAMSON, 

R. G. & FISHMAN, D. A. 2012. Early detection of ovarian cancer with conventional 

and contrast-enhanced transvaginal sonography: Recent advances and potential 

improvements. Journal of Oncology. 

FRY, T. 2002. Evaluation of the Repeatability of Residual Stress Measurements 

Using X-Ray Diffraction, Middlesex, National Physical Laboratory. 

FUNG, E. T., HOGDALL, C., EENGELHOLM, S. A., PETRI, A. L. & 

NEDERGAARD, L. 2006. Novel biomarkers to aid in the differential diagnosis of a 

pelvic mass, Santa, Monica, CA. 

GADDUCCI, A., COSIO, S., CARPI, A., NICOLINI, A. & GENAZZANI, A. R. 

2004. Serum tumour markers in the management of ovarian, endometrial and cervical 

cancer. Biomedicine and Pharmacotherapy, 58, 24-38. 

GAGNON, A. & YE, B. 2008. Discovery and application of protein biomarkers for 

ovarian cancer. Current Opinion in Obstetrics and Gynaecology, 20, 9-13. 

GAO, S., PENG, Y., GUO, H., LIU, W., GAO, T., XU, Y. & TANG, X. 2014. 

Texture analysis and classification of ultrasound liver images. Bio-Medical Materials 

and Engineering, 24, 1209-1216. 

GARRA, B. S., KRASNER, B. H., HORII, S. C., ASCHER, S., MUN, S. K. & 

ZEMAN, R. K. 1993. Improving the Distinction Between Benign and Malignant 

Breast Lesions: The Value of Sonographic Texture Analysis. Ultrasonic Imaging, 15, 

267-285. 

GENTRY-MAHARAJ, A. & MENON, U. 2012. Screening for ovarian cancer in the 

general population. Best Practice &amp; Research Clinical Obstetrics &amp; 

Gynaecology, 26, 243-256. 

GEOMINI, P., KRUITWAGEN, R., BREMER, G. L., CNOSSEN, J. & MOL, B. W. 

J. 2009. The accuracy of risk scores in predicting ovarian malignancy: A systematic 

review. Obstetrics and Gynaecology, 113, 384-394. 

GEORGE, D., GEORGE, P. & VASILLIS, M. 2013. The effect of four-week 

interrupted intervention Whole-Body Vibration program on hamstring's flexibility. 

Journal of Physical Education and Sport, 13, 517-521. 

GEORGE, L. 2006. Ultrasound Physics. the Westmead TOE Manual Sydney: 

Westmead Hospital. 

GIGER, M. L., CHAN, H. P. & BOONE, J. 2008. Anniversary paper: History and 

status of CAD and quantitative image analysis: The role of Medical Physics and 

AAPM. Medical Physics, 35, 5799-5820. 

GIGER, M. L., DOI, K. & MACMAHON, H. 1987. Computerized detection of lung 

nodules in digital chest radiographs Proc. SPIE, 767, 384-386. 



   

254 

 

GIVENS, V., MITCHELL, G., HARRAWAY-SMITH, C., REDDY, A. & MANESS, 

D. L. 2009. Diagnosis and management of adnexal masses. American Family 

Physician, 80. 

GLETSOS, M., MOUGIAKAKOU, S. G., MATSOPOULOS, G. K., NIKITA, K. S., 

NIKITA, A. S. & KELEKIS, D. 2003. A Computer-Aided Diagnostic System to 

Characterize CT Focal Liver Lesions: Design and Optimization of a Neural Network 

Classifier. IEEE Transactions on Information Technology in Biomedicine, 7, 153-

162. 

GOFF, B. A., LOWE, K. A., KANE, J. C., ROBERTSON, M. D., GAUL, M. A. & 

ANDERSEN, M. R. 2012. Symptom triggered screening for ovarian cancer: A pilot 

study of feasibility and acceptability. Gynaecologic Oncology, 124, 230-235. 

GOFF, B. A., MANDEL, L., MUNTZ, H. G. & MELANCON, C. H. 2000. Ovarian 

carcinoma diagnosis: Results of a national ovarian cancer survey. Cancer, 89, 2068-

2075. 

GOFF, B. A., MANDEL, L. S., DRESCHER, C. W., URBAN, N., GOUGH, S., 

SCHURMAN, K. M., PATRAS, J., MAHONY, B. S. & ROBYN ANDERSEN, M. 

2007. Development of an ovarian cancer symptom index: Possibilities for earlier 

detection. Cancer, 109, 221-227. 

GORELIK, E., LANDSITTEL, D. P., MARRANGONI, A. M., MODUGNO, F., 

VELIKOKHATNAYA, L., WINANS, M. T., BIGBEE, W. L., HERBERMAN, R. B. 

& LOKSHIN, A. E. 2005. Multiplexed immunobead-based cytokine profiling for 

early detection of ovarian cancer. Cancer Epidemiology Biomarkers and Prevention, 

14, 981-987. 

GOSSAGE, K. W., TKACZYK, T. S., RODRIGUEZ, J. J. & BARTON, J. K. Year. 

Texture analysis for tissue classification of optical coherence tomography images. In, 

2003. 109-117. 

GRAB, D., FLOCK, F., STOHR, I., RIEBER, A., NUSSLE, S., BRAMBS, H. J., 

FENCHEL, S., RESKE, S. N. & KREIENBERG, R. 2000. Premenopausal adnex 

masses: Diagnostic accuracy of sonography, magnetic resonance imaging, and 

positron emission tomography. Diagnostische wertigkeit von sonographie, 

kernspintomographie und positronenemissions-tomographie zur beurteilung tier 

dignitat von adnextumouren bei pramenopausalen patientinnen, 60, 544-552. 

GRAMELLINI, D., FIENI, S., SANAPO, L., CASILLA, G., VERROTTI, C. & 

NARDELLI, G. B. 2008. Diagnostic accuracy of IOTA ultrasound morphology in the 

hands of less experienced sonographers. Australian and New Zealand Journal of 

Obstetrics and Gynaecology, 48, 195-201. 

GRANBERG, S., WIKLAND, M. & JANSSON, I. 1989. Macroscopic 

characterization of ovarian tumours and the relation to the histological diagnosis: 

Criteria to be used for ultrasound evaluation. Gynaecologic Oncology, 35, 139-144. 



   

255 

 

GREEN, A., PURDIE, D., BAIN, C., SISKIND, V., RUSSELL, P., QUINN, M. & 

WARD, B. 1997. Tubal sterilisation, hysterectomy and decreased risk of ovarian 

cancer. International Journal of Cancer, 71, 948-951. 

GREENLEE, R. T., KESSEL, B., WILLIAMS, C. R., RILEY, T. L., RAGARD, L. 

R., HARTGE, P., BUYS, S. S., PARTRIDGE, E. E. & REDING, D. J. 2010. 

Prevalence, incidence, and natural history of simple ovarian cysts among women >55 

years old in a large cancer screening trial. American Journal of Obstetrics and 

Gynaecology, 202, 373.e1-373.e9. 

GREISER, C. M., GREISER, E. M. & DÃ¶REN, M. 2007. Menopausal hormone 

therapy and risk of ovarian cancer: Systematic review and meta-analysis. Human 

Reproduction Update, 13, 453-463. 

GUERRIERO, S., AJOSSA, S., GARAU, N., PIRAS, B., PAOLETTI, A. M. & 

MELIS, G. B. 2005. Ultrasonography and colour Doppler-based triage for adnexal 

masses to provide the most appropriate surgical approach. American Journal of 

Obstetrics and Gynaecology, 192, 401-406. 

GUERRIERO, S., AJOSSA, S., GERADA, M., MELIS, G. B. & ALCÁZAR, J. L. 

2006. Pattern recognition and descriptive sonographic scoring in the diagnosis of 

ovarian cancer [1]. Journal of Ultrasound in Medicine, 25, 558-559. 

GUERRIERO, S., AJOSSA, S., RISALVATO, A., LAI, M. P., MAIS, V., 

ANGIOLUCCI, M. & MELIS, G. B. 1998. Diagnosis of adnexal malignancies by 

using colour Doppler energy imaging as a secondary test in persistent masses. 

Ultrasound in Obstetrics and Gynaecology, 11, 277-282. 

GUERRIERO, S., ALCAZAR, J. L., AJOSSA, S., LAI, M. P., ERRASTI, T., 

MALLARINI, G. & MELIS, G. B. 2001. Comparison of conventional colour Doppler 

imaging and power Doppler imaging for the diagnosis of ovarian cancer: Results of a 

European study. Gynaecologic Oncology, 83, 299-304. 

GUERRIERO, S., ALCAZAR, J. L., PASCUAL, M. A., AJOSSA, S., GRAUPERA, 

B., HERETER, L. & MELIS, G. B. 2011. The diagnosis of ovarian cancer: Is colour 

Doppler imaging reproducible and accurate in examiners with different degrees of 

experience? Journal of Women's Health, 20, 273-277. 

GUNNELL, D. 2001. Commentary: Early insights into height, leg length, 

proportionate growth and health. International Journal of Epidemiology, 30, 221-222. 

GUY, C. (ed.) 2008. An Introduction to the principles of medical imaging, London: 

Imperial College. 

HAIYAN, H. & MIN, D. 2011. Ultrasound operators' confidence influences diagnosis 

of ovarian tumours - A study in China. Asian Pacific Journal of Cancer Prevention, 

12, 1275-1277. 

HÅKANSSON, F., HØGDALL, E. V. S., NEDERGAARD, L., LUNDVALL, L., 

ENGELHOLM, S. A., PEDERSEN, A. T., HARTWELL, D. & HØGDALL, C. 2012. 



   

256 

 

Risk of malignancy index used as a diagnostic tool in a tertiary centre for patients 

with a pelvic mass. Acta Obstetricia et Gynaecologica Scandinavica, 91, 496-502. 

HAMID, B., 2011. The Reliability of B-mode transvaginal probe image for the 

quantitative texture analysis and the dependence of extracted features on region of 

interest size for ovarian cancer detection. PhD, Cardiff University. 

HAMILTON, W. 2012. Computer assisted diagnosis of ovarian cancer in primary 

care. BMJ (Online), 344. 

HAMILTON, W., ROUND, A. & SHARP, D. 2009. Ovarian cancer: Not a silent 

killer. BMJ, 339, 123. 

HANGIANDREOU, N. J. 2003. B-mode US: Basic concepts and new technology. 

Radiographics, 23, 1019- 1033. 

HANKINSON, S. E., HUNTER, D. J., COLDITZ, G. A., WILLETT, W. C., 

STAMPFER, M. J., ROSNER, B., HENNEKENS, C. H. & SPEIZER, F. E. 1993. 

Tubal ligation, hysterectomy, and risk of ovarian cancer: A prospective study. Journal 

of the American Medical Association, 270, 2813-2818. 

HARALICK, R. M., SHANMUGAM, K. & DINSTEIN, I. 1973. Textural features for 

image classification. IEEE Transactions on Systems, Man and Cybernetics, smc 3, 

610-621. 

HARRIS, L. L. 2002. Ovarian cancer: Screening for early detection. American 

Journal of Nursing, 102, 46-52. 

HARRISON, L. C. V., RAUNIO, M., HOLLI, K. K., LUUKKAALA, T., SAVIO, S., 

ELOVAARA, I., SOIMAKALLIO, S., ESKOLA, H. J. & DASTIDAR, P. 2010. MRI 

Texture Analysis in Multiple Sclerosis: Toward a Clinical Analysis Protocol. 

Academic Radiology, 17, 696-707. 

HARRY, V. N., NARAYANSINGH, G. V. & PARKIN, D. E. 2009. The risk of 

malignancy index for ovarian tumours in northeast Scotland - A population based 

study. Scottish Medical Journal, 54, 21-23. 

HARTMAN, C. A., JULIATO, C. R. T., SARIAN, L. O., TOLEDO, M. C., JALES, 

R. M., MORAIS, S. S., PITTA, D. D., MARUSSI, E. F. & DERCHAIN, S. 2012. 

Ultrasound criteria and CA 125 as predictive variables of ovarian cancer in women 

with adnexal tumours. Ultrasound in Obstetrics and Gynaecology, 40, 360-366. 

HASSEN, K., GHOSSAIN, M. A., ROUSSET, P., SCIOT, C., HUGOL, D., 

BADDOURA, R., VADROT, D. & BUY, J. N. 2011. Characterization of papillary 

projections in benign versus borderline and malignant ovarian masses on conventional 

and colour doppler ultrasound. American Journal of Roentgenology, 196, 1444-1449. 

HAVRILESKY, L. J., SANDERS, G. D., KULASINGAM, S. & MYERS, E. R. 

2008. Reducing ovarian cancer mortality through screening: Is it possible, and can we 

afford it? Gynaecologic Oncology, 111, 179-187. 



   

257 

 

HE, Z., HUSTON, D. R., GRIMM, S., JANNICKY, E., GARRA, B. S., WAGNER, 

R. F. & WEAR, K. A. Year. Dependence of tissue characterization features on Region 

of Interest (ROI) size: Studies on phantoms and simulations. In, 2004. 2082-2085. 

HECHT, J. L., KOTSOPOULOS, J., HANKINSON, S. E. & TWOROGER, S. S. 

2009. Relationship between epidemiologic risk factors and hormone receptor 

expression in ovarian cancer: Results from the nurses' health study. Cancer 

Epidemiology Biomarkers and Prevention, 18, 1624-1630. 

HELLSTROM, I. & HELLSTROM, K. E. 2008. SMRP and HE4 as biomarkers for 

ovarian carcinoma when used alone and in combination with CA125 and/or each 

other. 

HENSLEY, M. L. 2010. A step forward for two-step screening for ovarian cancer. 

Journal of Clinical Oncology, 28, 2128-2130. 

HENSLEY, M. L., CASTIEL, M. & ROBSON, M. E. 2000. Screening for ovarian 

cancer: What we know, what we need to know. ONCOLOGY, 14, 1601-1607. 

HERLIDOU-MÊME, S., CONSTANS, J. M., CARSIN, B., OLIVIE, D., ELIAT, P. 

A., NADAL-DESBARATS, L., GONDRY, C., LE RUMEUR, E., IDY-PERETTI, I. 

& DE CERTAINES, J. D. 2003. MRI texture analysis on texture test objects, normal 

brain and intracranial tumours. Magnetic Resonance Imaging, 21, 989-993. 

HOLLI, K. K., HARRISON, L., DASTIDAR, P., WÄLJAS, M., LIIMATAINEN, S., 

LUUKKAALA, T., ÖHMAN, J., SOIMAKALLIO, S. & ESKOLA, H. 2010. Texture 

analysis of MR images of patients with Mild Traumatic Brain Injury. BMC Medical 

Imaging, 10. 

HORSKIN, P. 2010. Principle of Doppler Ultrasound, Cambridge: Cambridge 

University Press. 

HOSSAIN, F., KARIM, M. N., RAHMAN, S. M. M., KHAN, N., SIDDIQUI, M. & 

HUSSAIN, R. 2010. Preoperative detection of ovarian cancer by colour Doppler 

ultrasonography and CA 125. Bangladesh Medical Research Council Bulletin, 36, 68-

73. 

HUANG, Y. L., CHEN, D. R., JIANG, Y. R., KUO, S. J., WU, H. K. & MOON, W. 

K. 2008. Computer-aided diagnosis using morphological features for classifying 

breast lesions on ultrasound. Ultrasound in Obstetrics and Gynaecology, 32, 565-572. 

HUBER, S., DANES, J., ZUNA, I., TEUBNER, J., MEDL, M. & DELORME, S. 

2000. Relevance of sonographic B-mode criteria and computer-aided ultrasonic tissue 

characterization in differential/diagnosis of solid breast masses. Ultrasound in 

Medicine &amp; Biology, 26, 1243-1252. 

HUCHON, C., METZGER, U., BATS, A. S., BENSAID, C., CHATELLIER, G., 

AZIZI, M., LEFRÈRE-BELDA, M. A., DUJARDIN, A., BERNARD, J. P. & 

LÉCURU, F. 2012. Value of three-dimensional contrast-enhanced power Doppler 

ultrasound for characterizing adnexal masses. Journal of Obstetrics and Gynaecology 

Research, 38, 832-840. 



   

258 

 

HUNG, N. T. 2010. Lesson preparation of Ultrasonic diagnosis. 

nguyenthienhung.com  

HUYNEN, A. L., GIESEN, R. J. B., DE LA ROSETTE, J. J. M. C. H., AARNINK, 

R. G., DEBRUYNE, F. M. J. & WIJKSTRA, H. 1994. Analysis of ultrasonographic 

prostate images for the detection of prostatic carcinoma: The Automated Urologic 

Diagnostic Expert system. Ultrasound in Medicine and Biology, 20, 1-10. 

INTERNATIONAL AGENCY FOR RESEARCH ON CANCER, E. 2012. Ovarian 

cancer: Estimated incidence, mortality & prevalence, 2012 [Online]. World Health 

Organization Available: 

http://eucancer.iarc.fr/EUCAN/CancerOne.aspx?Cancer=27&Gender=2  [Accessed 

10-02-2016]. 

ITAKURA, T., KIKKAWA, F., KAJIYAMA, H., MITSUI, T., KAWAI, M. & 

MIZUTANI, S. 2003. Doppler flow and arterial location in ovarian tumours. 

International Journal of Gynaecology and Obstetrics, 83, 277-283. 

IYER, V. R. & LEE, S. I. 2010. MRI, CT, and PET/CT for ovarian cancer detection 

and adnexal lesion characterization. American Journal of Roentgenology, 194, 311-

321. 

JACOBS, I., ORAM, D., FAIRBANKS, J., TURNER, J., FROST, C. & 

GRUDZINSKAS, J. G. 1990. A risk of malignancy index incorporating CA 125, 

ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian 

cancer. British Journal of Obstetrics and Gynaecology, 97, 922-929. 

JACOBS, I., STABILE, I., BRIDGES, J., KEMSLEY, P., REYNOLDS, C., 

GRUDZINSKAS, J. & ORAM, D. 1988. Multimodal approach to screening for 

ovarian cancer. Lancet, 1, 268-271. 

JACOBS, I. J. & MENON, U. 2004. Progress and challenges in screening for early 

detection of ovarian cancer. Molecular and Cellular Proteomics, 3, 355-366. 

JELOVAC, D. & ARMSTRONG, D. K. 2011. Recent progress in the diagnosis and 

treatment of ovarian cancer. CA Cancer Journal for Clinicians, 61, 183-203. 

JEMAL, A., SIEGEL, R., WARD, E., HAO, Y., XU, J. & THUN, M. J. 2009. Cancer 

statistics, 2009. CA Cancer Journal for Clinicians, 59, 225-249. 

JEONG, Y. Y., OUTWATER, E. K. & KANG, H. K. 2000. From the RSNA refresher 

courses: Imaging evaluation of ovarian masses. Radiographics, 20, 1445-1470. 

JI, Q., ENGEL, J. & CRAINE, E. 2000. Texture analysis for classification of cervix 

lesions. IEEE Transactions on Medical Imaging, 19, 1144-1149. 

JOKUBKIENE, L., SLADKEVICIUS, P. & VALENTIN, L. 2007. Does three-

dimensional power Doppler ultrasound help in discrimination between benign and 

malignant ovarian masses? Ultrasound in Obstetrics and Gynaecology, 29, 215-225. 

http://eucancer.iarc.fr/EUCAN/CancerOne.aspx?Cancer=27&Gender=2


   

259 

 

KADER ALI MOHAN, G. R., JAABACK, K., PROIETTO, A., ROBERTSON, R. & 

ANGSTETRA, D. 2010. Risk Malignancy Index (RMI) in patients with abnormal 

pelvic mass: Comparing RMI 1, 2 and 3 in an Australian population. Australian and 

New Zealand Journal of Obstetrics and Gynaecology, 50, 77-80. 

KAIJSER, J., BOURNE, T., VALENTIN, L., SAYASNEH, A., VAN HOLSBEKE, 

C., VERGOTE, I., TESTA, A. C., FRANCHI, D., VAN CALSTER, B. & 

TIMMERMAN, D. 2013. Improving strategies for diagnosing ovarian cancer: A 

summary of the International Ovarian Tumour Analysis (IOTA) studies. Ultrasound 

in Obstetrics and Gynaecology, 41, 9-20. 

KAIJSER, J., SAYASNEH, A., VAN HOORDE, K., GHAEM-MAGHAMI, S., 

BOURNE, T., TIMMERMAN, D. & VAN CALSTER, B. 2014a. Presurgical 

diagnosis of adnexal tumours using mathematical models and scoring systems: A 

systematic review and meta-analysis. Human Reproduction Update, 20, 449-462. 

KAIJSER, J., VANDECAVEYE, V., DEROOSE, C. M., ROCKALL, A., 

THOMASSIN-NAGGARA, I., BOURNE, T. & TIMMERMAN, D. 2014b. Imaging 

techniques for the pre-surgical diagnosis of adnexal tumours. Best Practice and 

Research: Clinical Obstetrics and Gynaecology, 28, 683-695. 

KALGHATGI-KULKARNI, K. & KUSHTAGI, P. 2008. Ovarian crescent sign and 

sonomorphological indices in preoperative determination of malignancy in adnexal 

masses. Indian Journal of Medical Sciences, 62, 477-483. 

KARAHALIOU, A., SKIADOPOULOS, S., BONIATIS, I., SAKELLAROPOULOS, 

P., LIKAKI, E., PANAYIOTAKIS, G. & COSTARIDOU, L. 2007. Texture analysis 

of tissue surrounding microcalcifications on mammograms for breast cancer 

diagnosis. British Journal of Radiology, 80, 648-656. 

KARANICOLAS, P. J., BHANDARI, M., KREDER, H., MORONI, A., 

RICHARDSON, M., WALTER, S. D., NORMAN, G. R. & GUYATT, G. H. 2009. 

Evaluating agreement: Conducting a reliability study. Journal of Bone and Joint 

Surgery - Series A, 91, 99-106. 

KARLAN, B. Y. & PLATT, L. D. 1995. Ovarian cancer screening: The role of 

ultrasound in early detection. Cancer, 76, 2011-2015. 

KEYS, A., FIDANZA, F., KARVONEN, M. J., KIMURA, N. & TAYLOR, H. L. 

1972. Indices of relative weight and obesity. Journal of Chronic Diseases, 25, 329-

343. 

KINKEL, K., HRICAK, H., LU, Y., TSUDA, K. & FILLY, R. A. 2000. US 

characterization of ovarian masses: A meta-analysis. Radiology, 217, 803-811. 

KLEINBAUM, D. 2010. Logistic Regression: A self-Learning text, Springer. 

KOBAYASHI, H., YAMADA, Y., SADO, T., SAKATA, M., YOSHIDA, S., 

KAWAGUCHI, R., KANAYAMA, S., SHIGETOMI, H., HARUTA, S., TSUJI, Y., 

UEDA, S. & KITANAKA, T. 2008. A randomized study of screening for ovarian 



   

260 

 

cancer: A multicenter study in Japan. Obstetrical and Gynaecological Survey, 63, 

635-636. 

KOCIOLEK, M., MATERKA, A., STRZELECKI, M. & SZCZYPIŃSKI, P. M. 

2001. Discrete Wavelet transform- derived features for digital image texture analysis. 

Proc. of International Conference on Signals and Electronic System, 18-21 

September, 163-168. 

KOHZUKI, M., KANZAKI, T. & MURATA, Y. 2005. Contrast-enhanced power 

Doppler sonography of malignant ovarian tumours using harmonic flash-echo 

imaging: Preliminary experience. Journal of Clinical Ultrasound, 33, 237-242. 

KOMATSU, T., KONISHI, I., MANDAI, M., TOGASHI, K., KAWAKAMI, S., 

KONISHI, J. & MORI, T. 1996. Adnexal masses: Transvaginal US and gadolinium-

enhanced MR imaging assessment of intratumoural structure. Radiology, 198, 109-

115. 

KREIGER, N., SLOAN, M., COTTERCHIO, M. & PARSONS, P. 1997. Surgical 

procedures associated with risk of ovarian cancer. International Journal of 

Epidemiology, 26, 710-715. 

KUMAR, S. S., MONI, R. S. & RAJEESH, J. Year. Liver tumour diagnosis by gray 

level and contourlet coefficients texture analysis. In:  Computing, Electronics and 

Electrical Technologies (ICCEET), 2012 International Conference on, 21-22 March 

2012 2012. 557-562. 

KUMAZAWA, S., UMEZU, T., KANAYAMA, Y., KAMIYAMA, N., SUZUKI, S., 

MIZUNO, M., KAJIYAMA, H., SHIBATA, K. & KIKKAWA, F. 2012. Contrast-

enhanced ultrasonography using Sonazoid ® is useful for diagnosis of malignant 

ovarian tumours: comparison with Doppler ultrasound. Journal of Medical 

Ultrasonics, 1-4. 

KURJAK, A. & KUPEŠIĆ, S. 1999. Three dimensional ultrasound and power 

Doppler in assessment of uterine and ovarian angiogenesis: A prospective study. 

Croatian Medical Journal, 40, 413-420. 

KURJAK, A., KUPESIC, S., ANIC, T. & KOSUTA, D. 2000a. Three-dimensional 

ultrasound and power Doppler improve the diagnosis of ovarian lesions. 

Gynaecologic Oncology, 76, 28-32. 

KURJAK, A., KUPESIC, S., SPARAC, V. & KOSUTA, D. 2000b. Three-

dimensional ultrasonographic and power Doppler characterization of ovarian lesions. 

Ultrasound in Obstetrics and Gynaecology, 16, 365-371. 

KURJAK, A., KUPESIC, S., SPARAC, V., PRKA, M. & BEKAVAC, I. 2003. The 

detection of stage I ovarian cancer by three-dimensional sonography and power 

Doppler. Gynaecologic Oncology, 90, 258-264. 

KURJAK, A. & PREDANIC, M. 1993. New scoring system for prediction of ovarian 

malignancy based on transvaginal colour Doppler sonography. Obstetrical and 

Gynaecological Survey, 48, 270-272. 



   

261 

 

KURJAK, A., PRKA, M., ARENAS, J. M. B., ŠPARAC, V., MERCÉ, L. T., 

ĆORUŠIĆ, A. & IVANČIĆ-KOŠUTA, M. 2005. Three-dimensional ultrasonography 

and power Doppler in ovarian cancer screening of asymptomatic peri- and 

postmenopausal women. Croatian Medical Journal, 46, 757-764. 

KURODA, H., KAKISAKA, K., KAMIYAMA, N., OIKAWA, T., ONODERA, M., 

SAWARA, K., OIKAWA, K., ENDO, R., TAKIKAWA, Y. & SUZUKI, K. 2012. 

Non-invasive determination of hepatic steatosis by acoustic structure quantification 

from ultrasound echo amplitude. World Journal of Gastroenterology, 18, 3889-3895. 

KURTZ, A. B., TSIMIKAS, J. V., TEMPANY, C. M. C., HAMPER, U. M., ARGER, 

P. H., BREE, R. L., WECHLER, R. J., FRANCIS, I. R., KUHLMAN, J. E., 

SIEGELMAN, E. S., MITCHELL, D. G., SILVERMAN, S. G., BROWN, D. L., 

SHETH, S., COLEMAN, B. G., ELLIS, J. H., KURMAN, R. J., CAUDRY, D. J. & 

MCNELL, B. J. 1999. Diagnosis and staging of ovarian cancer: Comparative values 

of Doppler and conventional US, CT, and MR imaging correlated with surgery and 

histopathologic analysis - Report of the radiology diagnostic oncology group. 

Radiology, 212, 19-27. 

LABAN, M., METAWEE, H., ELYAN, A., KAMAL, M., KAMEL, M. & 

MANSOUR, G. 2007. Three-dimensional ultrasound and three-dimensional power 

Doppler in the assessment of ovarian tumours. International Journal of Gynaecology 

and Obstetrics, 99, 201-205. 

LABORATORY, N. P. 2005. Measurement Good Practice Guide No. 52, Teddington, 

Middlesex: National Physical Laboratory. 

LACHIN, J. M. 2004. The role of measurement reliability in clinical trials. Clinical 

trials (London, England), 1, 553-566. 

LAGALLA, R. & MIDIRI, M. 1998. Image quality control in breast ultrasound. 

European Journal of Radiology, 27, S229-S233. 

LANG, T. & SECIC, M. 2006. How to report statistics in medicine, Philadelphia, 

American College of Physicians. 

LE, T., GIEDE, C., SALEM, S., LEFEBVRE, G., ROSEN, B., BENTLEY, J., 

KUPETS, R., POWER, P., RENAUD, M. C., BRYSON, P., DAVIS, D. B., LAU, S., 

LOTOCKI, R., SENIKAS, V., MORIN, L., BLY, S., BUTT, K., CARGILL, Y. M., 

DENIS, N., GAGNON, R., HIETALA-COYLE, M. A., LIM, K. I., OUELLET, A. & 

RACIOT, M. H. 2009. Initial evaluation and referral guidelines for management of 

pelvic/ovarian masses. Journal of obstetrics and gynaecology Canada : JOGC = 

Journal d'obstétrique et gynécologie du Canada : JOGC, 31, 668-680. 

LEA, J. S. & MILLER, D. S. 2001. Optimum screening interventions for 

Gynaecologic malignancies. Texas Medicine, 97, 49-55. 

LEE, T. S., KIM, J. W., PARK, N. H., SONG, Y. S., KANG, S. B. & LEE, H. P. 

2005. Assessing clinical performance of Gynaecology residents: Sonographic 



   

262 

 

evaluation of adnexal masses based on morphological scoring systems. Ultrasound in 

Obstetrics and Gynaecology, 26, 776-779. 

LEE, W. L., CHEN, Y. C. & HSIEH, K. S. 2003. Ultrasonic liver tissues 

classification by fractal feature vector based on M-band wavelet transform. IEEE 

Transactions on Medical Imaging, 22, 382-392. 

LEITZMANN, M. F., KOEBNICK, C., DANFORTH, K. N., BRINTON, L. A., 

MOORE, S. C., HOLLENBECK, A. R., SCHATZKIN, A., LACEY, J. V., JR., 

LEITZMANN, M. F., KOEBNICK, C., DANFORTH, K. N., BRINTON, L. A., 

MOORE, S. C., HOLLENBECK, A. R., SCHATZKIN, A. & LACEY, J. V., JR. 

2009. Body mass index and risk of ovarian cancer. Cancer, 115, 812-22. 

LERNER, J. P., TIMOR-TRITSCH, I. E., FEDERMAN, A. & ABRAMOVICH, G. 

1994. Transvaginal ultrasonographic characterization of ovarian masses with an 

improved, weighted scoring system. American Journal of Obstetrics and 

Gynaecology, 170, 81-85. 

LERSKI, R. 2006. Clinical Application of Texture Analysis.  [Accessed 02/10/2015]. 

LERSKI, R. A., BARNETT, E., MORLEY, P., MILLS, P. R., WATKINSON, G. & 

MACSWEEN, R. N. M. 1979. Computer analysis of ultrasonic signals in diffuse liver 

disease. Ultrasound in Medicine &amp; Biology, 5, 341-343. 

LI, B. & MENG, M. Q. H. 2009. Texture analysis for ulcer detection in capsule 

endoscopy images. Image and Vision Computing, 27, 1336-1342. 

LI, P. S., YING, M., CHAN, K. H., CHAN, P. W. & CHU, K. L. 2004. The 

reproducibility and short-term and long-term repeatability of sonographic 

measurement of splenic length. Ultrasound in Medicine and Biology, 30, 861-866. 

LIPSKIE, T. L. 1998. A summary of cancer screening guidelines. Chronic diseases in 

Canada, 19, 112-130. 

LIVENS, S., SCHEUNDERS, P., VAN DE WOUWER, G. & VAN DYCK, D. Year. 

Wavelets for texture analysis, an overview. In, 1997, page 581. 581-585. 

LOU, H. Y., MENG, H., ZHU, Q. L., ZHANG, Q. & JIANG, Y. X. 2010. Application 

values of four risk of malignancy indices in the preoperative evaluation of patients 

with adnexal masses. Acta Academiae Medicinae Sinicae, 32, 297-302. 

LOUBEYRE, P., PATEL, S., COPERCINI, M., PETIGNAT, P., DALLENBACH, P. 

& DUBUISSON, J. B. 2012. Role of sonography in the diagnostic workup of ovarian 

and adnexal masses except in pregnancy and during ovarian stimulation. Journal of 

Clinical Ultrasound, 40, 424-432. 

LU, R. S., TIAN, G. Y., GLEDHILL, D. & WARD, S. 2006. Grinding surface 

roughness measurement based on the co-occurrence matrix of speckle pattern texture. 

Applied Optics, 45, 8839-8847. 



   

263 

 

LUBIN, F., CHETRIT, A., FREEDMAN, L. S., ALFANDARY, E., FISHIER, Y., 

NITZAN, H., ZULTAN, A. & MODAN, B. 2003. Body mass index at age 18 years 

and during adult life and ovarian cancer risk. American Journal of Epidemiology, 157, 

113-120. 

LUO, L. Y., KATSAROS, D., SCORILAS, A., FRACCHIOLI, S., BELLINO, R., 

VAN GRAMBEREN, M., DE BRUIJN, H., HENRIK, A., STENMAN, U. H., 

MASSOBRIO, M., VAN DER ZEE, A. G. J., VERGOTE, I. & DIAMANDIS, E. P. 

2003. The serum concentration of human kallikrein 10 represents a novel biomarker 

for ovarian cancer diagnosis and prognosis. Cancer Research, 63, 807-811. 

M. HAJEK, M. DEZORTOVA, A. MATERKA & LERSKI, R. 2006. Texture 

Analysis for Magnetic Resonance Imaging. prague: Med4publishing. 

MAJEED, H., RAMZAN, A., IMRAN, F. & MAHFOOZ UR, R. 2011. Validity of 

resistive index for the diagnosis of malignant ovarian masses. Journal of the Pakistan 

Medical Association, 61, 1104-1107. 

MANCUSO, A., DE VIVO, A., TRIOLO, O. & IRATO, S. 2004. The role of 

transvaginal ultrasonography and serum CA 125 assay combined with age and 

hormonal state in the differential diagnosis of pelvic masses. European Journal of 

Gynaecological Oncology, 25, 207-210. 

MANJUNATH, A. P., PRATAPKUMAR, SUJATHA, K. & VANI, R. 2001. 

Comparison of three risk of malignancy indices in evaluation of pelvic masses. 

Gynaecologic Oncology, 81, 225-229. 

MARRET, H., SAUGET, S., GIRAUDEAU, B., BODY, G. & TRANQUART, F. 

2005. Power Doppler vascularity index for predicting malignancy of adnexal masses. 

Ultrasound in Obstetrics and Gynaecology, 25, 508-513. 

MARSHALL, C. 2008. Diseases and Disorders, New York, Marshall Cavendish 

Corporation. 

MATERKA, A. 2004. Texture analysis methodologies for magnetic resonance 

imaging. Dialogues in Clinical Neuroscience, 6, 243-250. 

MATERKA A & M, S. 1998. Texture Analysis Methods - A Review. Technical 

University of Lodz, Institute of Electronics, COST B11 Report, Brussels. 

MATHIAS, J. M., TOFTS, P. S. & LOSSEFF, N. A. 1999. Texture analysis of spinal 

cord pathology in multiple sclerosis. Magnetic Resonance in Medicine, 42, 929-935. 

MCBEE, W. C., ESCOBAR, P. F. & FALCONE, T. 2007. Which ovarian masses 

need intervention? Cleveland Clinic Journal of Medicine, 74, 149-157. 

MCDONALD, J. M., DORAN, S., DESIMONE, C. P., UELAND, F. R., DEPRIEST, 

P. D., WARE, R. A., SAUNDERS, B. A., PAVLIK, E. J., GOODRICH, S., 

KRYSCIO, R., J.  & NAGELL, J., R. 2010. Predicting Risk of Malignancy in 

Adnexal Masses. Obstetrics, 115, 687-694. 



   

264 

 

MEDEIROS, L. R., ROSA, D. D., DA ROSA, M. I. & BOZZETTI, M. C. 2009a. 

Accuracy of CA 125 in the diagnosis of ovarian tumours: A quantitative systematic 

review. European Journal of Obstetrics Gynaecology and Reproductive Biology, 142, 

99-105. 

MEDEIROS, L. R., ROSA, D. D., DA ROSA, M. I., BOZZETTI, M. C., 

MEDEIROS, L. R., ROSA, D. D., DA ROSA, M. I., X00EA & BOZZETTI, M. C. 

2009b. Accuracy of ultrasonography with colour Doppler in ovarian tumour: a 

systematic quantitative review. International Journal of Gynaecological Cancer, 19, 

1214-20. 

MEDICAL PHYSICS, W. 2009 (online). Acoustic structure quantification ramps 

echo resolution [Online]. Available: 

http://medicalphysicsweb.org/cws/article/newsfeed/40669  [Accessed 27-02-2014]. 

MENON, U., GENTRY-MAHARAJ, A., HALLETT, R., RYAN, A., BURNELL, M., 

SHARMA, A., LEWIS, S., DAVIES, S., PHILPOTT, S., LOPES, A., GODFREY, K., 

ORAM, D., HEROD, J., WILLIAMSON, K., SEIF, M. W., SCOTT, I., MOULD, T., 

WOOLAS, R., MURDOCH, J., DOBBS, S., AMSO, N. N., LEESON, S., 

CRUICKSHANK, D., MCGUIRE, A., CAMPBELL, S., FALLOWFIELD, L., 

SINGH, N., DAWNAY, A., SKATES, S. J., PARMAR, M. & JACOBS, I. 2009. 

Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, 

and stage distribution of detected cancers: results of the prevalence screen of the UK 

Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). The Lancet Oncology, 

10, 327-340. 

MENON, U., GENTRY-MAHARAJ, A., RYAN, A., SHARMA, A., BURNELL, M., 

HALLETT, R., LEWIS, S., LOPEZ, A., GODFREY, K., ORAM, D., HEROD, J., 

WILLIAMSON, K., SEIF, M., SCOTT, I., MOULD, T., WOOLAS, R., MURDOCH, 

J., DOBBS, S., AMSO, N., LEESON, S., CRUICKSHANK, D., MCGUIRE, A., 

CAMPBELL, S., FALLOWFIELD, L., SKATES, S., PARMAR, M. & JACOBS, I. 

2008. Recruitment to multicentre trials - Lessons from UKCTOCS: Descriptive study. 

BMJ, 337, 1283-1286. 

MENON, U. & JACOBS, I. J. 2000. Recent developments in ovarian cancer 

screening. Current Opinion in Obstetrics and Gynaecology, 12, 39-42. 

MERZ, E. 1999. Three-dimensional transvaginal ultrasound in Gynaecological 

diagnosis. Ultrasound in Obstetrics and Gynaecology, 14, 81-86. 

MICHAIL, G., KARAHALIOU, A., SKIADOPOULOS, S., KALOGEROPOULOU, 

C., TERZIS, G., BONIATIS, I., COSTARIDOU, L., KOUROUNIS, G. & 

PANAYIOTAKIS, G. 2007. Texture analysis of premenopausal and post-menopausal 

endometrial tissue in grayscale transvaginal ultrasonography. British Journal of 

Radiology, 80, 609-616. 

MILLER, R. W. & UELAND, F. R. 2012. Risk of malignancy in sonographically 

confirmed ovarian tumours. Clinical Obstetrics and Gynaecology, 55, 52-64. 

http://medicalphysicsweb.org/cws/article/newsfeed/40669


   

265 

 

MIRACLE-MCMAHILL, H. L., CALLE, E. E., KOSINSKI, A. S., RODRIGUEZ, 

C., WINGO, P. A., THUN, M. J. & HEATH JR, C. W. 1997. Tubal ligation and fatal 

ovarian cancer in a large prospective cohort study. American Journal of 

Epidemiology, 145, 349-357. 

MODESITT, S. C., PAVLIK, E. J., UELAND, F. R., DEPRIEST, P. D., KRYSCIO, 

R. J. & VAN NAGELL JR, J. R. 2003. Risk of malignancy in unilocular ovarian 

cystic tumours less than 10 centimeters in diameter. Obstetrics and Gynaecology, 102, 

594-599. 

MOHAGHEGH, P. & ROCKALL, A. G. 2012. Imaging strategy for early ovarian 

cancer: Characterization of adnexal masses with conventional and advanced imaging 

techniques. Radiographics, 32, 1751-1773. 

MOL, B. W. J., BOLL, D., DE KANTER, M., HEINTZ, A. P., SIJMONS, E. A., 

OEI, S. G., BAL, H. & BRÖLMANN, H. A. M. 2001. Distinguishing the benign and 

malignant adnexal mass: An external validation of prognostic models. Gynaecologic 

Oncology, 80, 162-167. 

MOOLTHIYA, W., YUENYAO, P., MOOLTHIYA, W. & YUENYAO, P. 2009. The 

risk of malignancy index (RMI) in diagnosis of ovarian malignancy. Asian Pacific 

Journal of Cancer Prevention: Apjcp, 10, 865-8. 

MOON, W. K., HUANG, Y. S., LO, C. M., HUANG, C. S., BAE, M. S., KIM, W. 

H., CHEN, J. H. & CHANG, R. F. 2015. Computer-aided diagnosis for distinguishing 

between triple-negative breast cancer and fibroadenomas based on ultrasound texture 

features. Medical Physics, 42, 3024-3035. 

MOORE, R. G., JABRE-RAUGHLEY, M., BROWN, A. K., ROBISON, K. M., 

MILLER, M. C., ALLARD, W. J., KURMAN, R. J., BAST, R. C. & SKATES, S. J. 

2010. Comparison of a novel multiple marker assay vs the Risk of Malignancy Index 

for the prediction of epithelial ovarian cancer in patients with a pelvic mass. American 

Journal of Obstetrics and Gynaecology, 203, 228.e1-228.e6. 

MOORE, R. G. & MACLAUGHLAN, S. 2010. Current clinical use of biomarkers for 

epithelial ovarian cancer. Current Opinion in Oncology, 22, 492-497. 

MORAN, A. & MOELLER, H. 2009. Poor progress in cancer control in elderly in 

UK National cancer Intelligence Network Proceedings of the 2009 NCIN Conference 

1-2. 

MØRCH, L. S., LØKKEGAARD, E., ANDREASEN, A., KRÜGER-KJAER, S. & 

LIDEGAARD, O. 2009. Hormone therapy and ovarian cancer. JAMA, 302, 298-305. 

MORGANTE, G., LA MARCA, A., DITTO, A. & DE LEO, V. 1999. Comparison of 

two malignancy risk indices based on serum CA125, ultrasound score and 

menopausal status in the diagnosis of ovarian masses. British Journal of Obstetrics 

and Gynaecology, 106, 524-527. 



   

266 

 

MORRIS, D. T. 1988. An evaluation of the use of texture measurements for the tissue 

characterisation of ultrasonic images of in vivo human placentae. Ultrasound in 

Medicine and Biology, 14, 387-395. 

MOSS, E. L., HOLLINGWORTH, J. & REYNOLDS, T. M. 2005. The role of 

CA125 in clinical practice. Journal of Clinical Pathology, 58, 308-312. 

MOTULSKY, H. J. & BROWN, R. E. 2006. Detecting outliers when fitting data with 

nonlinear regression - A new method based on robust nonlinear regression and the 

false discovery rate. BMC Bioinformatics, 7. 

MOUSAVI, A. S., BORNA, S. & MOEINODDINI, S. 2006. Estimation of 

probability of malignancy using a logistic model combining colour Doppler 

ultrasonography, serum CA125 level in women with a pelvic mass. International 

Journal of Gynaecological Cancer, 16, 92-98. 

MYERS ER., BASTAIN LA., HARVRILESKY LJ., KULASINGAM SL., 

TERPLAN MS., CLINE KE., GARY RN. & DC., M. 2006. Management of Adnexal 

Mass, Evidence report/Technology Assessment No.130. Rockville: AHRQ 

Publication. 

MYLES, P. S. & CUI, J. 2007. I. Using the Bland-Altman method to measure 

agreement with repeated measures. British Journal of Anaesthesia, 99, 309-311. 

NAILON, W. H., MCLAUGHLIN, S., SPENCER, T. & RAMO, M. P. Year. 

Comparative study of textural analysis techniques to characterise tissue from 

intravascular ultrasound. In, 1996. 303-306. 

NATIONAL CANCER INSTITUTE 2014. A Snapshot of Ovarian Cancer: Incidence 

and Mortality. In: ONLINE (ed.). 

NELSON, T. R. 2006. Three-dimensional Ultraound imaging. UIA Annual Meeting. 

Ultrasonic Industry Association. 

NICE, C. G. 2011. CG122 Ovarian cancer: the recognition and initial management of 

ovarian cancer. 

NOLEN, B. M. & LOKSHIN, A. E. 2013. Biomarker testing for ovarian cancer: 

Clinical utility of multiplex assays. Molecular Diagnosis and Therapy, 17, 139-146. 

O'ROURKE, J. & MAHON, S. M. 2003. A comprehensive look at the early detection 

of ovarian cancer. Clinical journal of oncology nursing, 7, 41-47. 

OKUGAWA, K., HIRAKAWA, T., FUKUSHIMA, K., KAMURA, T., AMADA, S. 

& NAKANO, H. 2001. Relationship between age, histological type, and size of 

ovarian tumours. International Journal of Gynaecology and Obstetrics, 74, 45-50. 

OLSEN, C. M., GREEN, A. C., WHITEMAN, D. C., SADEGHI, S., KOLAHDOOZ, 

F. & WEBB, P. M. 2007. Obesity and the risk of epithelial ovarian cancer: A 

systematic review and meta-analysis. European Journal of Cancer, 43, 690-709. 



   

267 

 

OLSEN, C. M., NAGLE, C. M., WHITEMAN, D. C., PURDIE, D. M., GREEN, A. 

C., WEBB, P. M., BOWTELL, D., CHENEVIX-TRENCH, G., GREEN, A., WEBB, 

P., DEFAZIO, A., GERTIG, D., , J., JAYDE, V., BOWES, L., MAMERS, P., 

SCHMIDT, T., SHIRLEY, H., ROBBIE, M., et al. 2008. Body size and risk of 

epithelial ovarian and related cancers: A population-based case-control study. 

International Journal of Cancer, 123, 450-456. 

OLSON, S. H., MIGNONE, L., NAKRASEIVE, C., CAPUTO, T. A., BARAKAT, R. 

R. & HARLAP, S. 2001. Symptoms of ovarian cancer. Obstetrics and Gynaecology, 

98, 212-217. 

ONODERA, M. 2013. The New Non-Invasive Quantification of Hepatic Steatosis 

With Morbid Obesity by Acoustic Structure Quantification (ASQ) From Ultrasound 

Echo Amplitude. Ultrasound in Medicine & Biology 39, 5S. 

OOSTERVELD, B. J., THIJSSEN, J. M., HARTMAN, P. C., ROMIJN, R. L. & 

ROSENBUSCH, G. J. E. 1991. Ultrasound attenuation and texture analysis of diffuse 

liver disease: Methods and preliminary results. Physics in Medicine and Biology, 36, 

1039-1064. 

OPPENHEIM, A. (ed.) 1992. Questionnaire design, interviewing and attitude 

measurement.: Pinter publishers Ltd,. 

ORTASHI 2008. Cardiff Malignancy Index (CMI)- A novel scoring system for 

assessing ovarian masses. BSGI Inagural Meeting 2008. 

PALEY, P. J. 2001. Screening for the major malignancies affecting women: Current 

guidelines. American Journal of Obstetrics and Gynaecology, 184, 1021-1030. 

PALMA, M. D., GREGIANIN, M., FIDUCCIA, P., EVANGELISTA, L., CERVINO, 

A. R., SALADINI, G., BORGATO, L., NICOLETTO, M. O. & ZAGONEL, V. 2012. 

PET/CT imaging in Gynaecologic malignancies: A critical overview of its clinical 

impact and our retrospective single centre analysis. Critical Reviews in 

Oncology/Haematology, 83, 84-98. 

PAVLIK, E. J., SAUNDERS, B. A., DORAN, S., MCHUGH, K. W., UELAND, F. 

R., DESIMONE, C. P., DEPRIEST, P. D., WARE, R. A., KRYSCIO, R. J. & VAN 

NAGELL JR, J. R. 2009. The search for meaning - Symptoms and transvaginal 

sonography screening for ovarian cancer predicting malignancy. Cancer, 115, 3689-

3698. 

PERMUTH-WEY, J. & SELLERS, T. A. 2009. Epidemiology of ovarian cancer. 

Methods in Molecular Biology. 

PETRICOIN III, E. F., ARDEKANI, A. M., HITT, B. A., LEVINE, P. J., FUSARO, 

V. A., STEINBERG, S. M., MILLS, G. B., SIMONE, C., FISHMAN, D. A., KOHN, 

E. C. & LIOTTA, L. A. 2002. Use of proteomic patterns in serum to identify ovarian 

cancer. Lancet, 359, 572-577. 



   

268 

 

PIERSON, R. A. & ADAMS, G. P. 1995. Computer-assisted image analysis, 

diagnostic ultrasonography and ovulation induction: Strange bedfellows. 

Theriogenology, 43, 105-112. 

PONCELET, C., FAUVET, R., YAZBECK, C., COUTANT, C. & DARAI, E. 2010. 

Impact of serum tumour marker determination on the management of women with 

borderline ovarian tumours: Multivariate analysis of a French multicentre study. 

European Journal of Surgical Oncology (EJSO), 36, 1066-1072. 

POWER, M. & KUYKEN, W. 1998. World Health Organization Quality of Life 

Assessment (WHOQOL): Development and general psychometric properties. Social 

Science and Medicine, 46, 1569-1585. 

PRAGER, R. W., IJAZ, U. Z., GEE, A. H. & TREECE, G. M. 2010. Three-

dimensional ultrasound imaging. Proceedings of the Institution of Mechanical 

Engineers, Part H: Journal of Engineering in Medicine, 224, 193-223. 

PRYS DAVIES, A., JACOBS, I., WOOLAS, R., FISH, A. & ORAM, D. 1993. The 

adnexal mass: Benign of malignant? Evaluation of a risk of malignancy index. British 

Journal of Obstetrics and Gynaecology, 100, 927-931. 

RAJENDRA ACHARYA, U., VINITHA SREE, S., KULSHRESHTHA, S., 

MOLINARI, F., KOH, J. E. W., SABA, L. & SURI, J. S. 2014. GyneScan: An 

improved online paradigm for screening of ovarian cancer via tissue characterization. 

Technology in Cancer Research and Treatment, 13, 529-540. 

RAMARAJ, M. & RAGHAVAN, S. Year. A survey of wavelet techniques and 

multiresolution analysis for cancer diagnosis. In:  Computer, Communication and 

Electrical Technology (ICCCET), 2011 International Conference on, 18-19 March 

2011 2011. 109-114. 

RAMOS, R. P., NASCIMENTO, M. Z. D. & PEREIRA, D. C. 2012. Texture 

extraction: An evaluation of ridgelet, wavelet and co-occurrence based methods 

applied to mammograms. Expert Systems with Applications, 39, 11036-11047. 

RCOG. 2003. Ovarian Cysts in Postmenopausal Women 34. Available: 

http://www.rcog.org.uk/womens-health/clinical-guidance/ovarian-cysts-

postmenopausal-women-green-top-34  [Accessed 10-02-2011]. 

REDMAN, C., DUFFY, S., BROMHAM, N. & FRANCIS, K. 2011. Guidelines: 

Recognition and initial management of ovarian cancer: Summary of NICE guidance. 

BMJ, 342. 

REZNEK R. 2006. Ultrasound In Ovarian Carcinoma. In: REZNEK R. (ed.) Cancer 

of the Ovary. Cambridge: Cambridge University Press. 

RICCI, P., MARIGLIANO, C., CANTISANI, V., PORFIRI, A., MARCANTONIO, 

A., LODISE, P., D'AMBROSIO, U., LABBADIA, G., MAGGINI, E., MANCUSO, 

E., PANZIRONI, G., DI SEGNI, M., FURLAN, C., MASCIANGELO, R. & 

TALIANI, G. 2013. Ultrasound evaluation of liver fibrosis: Preliminary experience 

with acoustic structure quantification (ASQ) software. Valutazione ecografica della 

http://www.rcog.org.uk/womens-health/clinical-guidance/ovarian-cysts-postmenopausal-women-green-top-34
http://www.rcog.org.uk/womens-health/clinical-guidance/ovarian-cysts-postmenopausal-women-green-top-34


   

269 

 

fibrosi epatica: esperienza preliminare con acoustic structure quantification (ASQ), 

118, 995-1010. 

RIECK, G. C., PUGH, N. D. & FIANDER, A. N. 2006. Power Doppler in the 

assessment of pelvic masses in a low risk group. Journal of Obstetrics and 

Gynaecology, 26, 222-224. 

RISCH, H. A., MARRETT, L. D. & HOWE, G. R. 1994. Parity, contraception, 

infertility, and the risk of epithelial ovarian cancer. American Journal of 

Epidemiology, 140, 585-597. 

RODRIGUEZ, C., CALLE, E. E., FAKHRABADI-SHOKOOHI, D., JACOBS, E. J. 

& THUN, M. J. 2002. Body mass index, height, and the risk of ovarian cancer 

mortality in a prospective cohort of postmenopausal women. Cancer Epidemiology 

Biomarkers and Prevention, 11, 822-828. 

ROELLINGER JR, F. X., KAHVECI, A. E., CHANG, J. K., HARLOW, C. A., 

DWYER III, S. J. & LODWICK, G. S. 1973. Computer analysis of chest radiographs. 

Computer Graphics and Image Processing, 2, 232-251. 

RONCO, D. A., MANAHAN, K. J. & GEISLER, J. P. 2011. Ovarian cancer risk 

assessment: a tool for preoperative assessment. European Journal of Obstetrics &amp; 

Gynaecology and Reproductive Biology, 158, 325-329. 

ROSEN, D. G., WANG, L., ATKINSON, J. N., YU, Y., LU, K. H., DIAMANDIS, E. 

P., HELLSTROM, I., MOK, S. C., LIU, J. & BAST JR, R. C. 2005. Potential markers 

that complement expression of CA125 in epithelial ovarian cancer. Gynaecologic 

Oncology, 99, 267-277. 

ROSENBLATT, K. A. & THOMAS, D. B. 1996. Reduced risk of ovarian cancer in 

women with a tubal ligation or hysterectomy. Cancer Epidemiology Biomarkers and 

Prevention, 5, 933-935. 

ROSSI, A., BRAGHIN, C., SOLDANO, F., ISOLA, M., CAPODICASA, V., 

LONDERO, A. P., FORZANO, L. & MARCHESONI, D. 2011. A proposal for a new 

scoring system to evaluate pelvic masses: Pelvic Masses Score (PMS). European 

Journal of Obstetrics &amp; Gynaecology and Reproductive Biology, 157, 84-88. 

RUBIN, J. M. 1994. Spectral Doppler US. Radiographics : a review publication of the 

Radiological Society of North America, Inc, 14, 139-150. 

RUFFORD, B. & JACOBS, I. 2003. Ovarian cysts in postmenopausal women. In: 

GYNAECOLOGISTS, R. C. O. O. A. (ed.). 

RUMACK, C. (ed.) 2005. Diagnostic Ultrasound: Mosby inc. 

RUMACK, C. 2011. Diagnostic Ultrasound, Mosby inc. 

RUSSELL, P. (ed.) 1994. Surface Epthelial-Stromal Tumours of the Ovary, New 

York: Springer-Verilog. 



   

270 

 

SAITO, M., AOKI, D., SUSUMU, N., SUZUKI, A., SUZUKI, N., UDAGAWA, Y. 

& NOZAWA, S. 2005. Efficient screening for ovarian cancers using a combination of 

tumour markers CA602 and CA546. International Journal of Gynaecological Cancer, 

15, 37-44. 

SANDERS, R. 1998. Clinical Sonography ( a practical guide ), New York, Lippincott, 

Philadelphia. 

SARKAR, M. & WOLF, M. G. 2012. Simple ovarian cysts in postmenopausal 

women: Scope of conservative management. European Journal of Obstetrics 

Gynaecology and Reproductive Biology, 162, 75-78. 

SASSONE, A. M., TIMOR-TRITSCH, I. E., ARTNER, A., WESTHOFF, C. & 

WARREN, W. B. 1991. Transvaginal sonographic characterization of ovarian 

disease: Evaluation of a new scoring system to predict ovarian malignancy. Obstetrics 

and Gynaecology, 78, 70-76. 

SAUNDAR, S., SNELL, K., DEEKS, J., C., D., A., S., TIMMERMAN, D. & 

MENON, U. 2015. ROCKETS Study. Birmingham: University of Birmingham 

Clinical Trial Units (BCTU). 

SAUNDERS, B. A., PODZIELINSKI, I., WARE, R. A., GOODRICH, S., 

DESIMONE, C. P., UELAND, F. R., SEAMON, L., UBELLACKER, J., PAVLIK, E. 

J., KRYSCIO, R. J. & VAN NAGELL JR, J. R. 2010. Risk of malignancy in 

sonographically confirmed septated cystic ovarian tumours. Gynaecologic Oncology, 

118, 278-282. 

SCHOUTEN, L. J., RIVERA, C., HUNTER, D. J., SPIEGELMAN, D., ADAMI, H. 

O., ARSLAN, A., BEESON, W. L., VAN DEN BRANDT, P. A., BURING, J. E., 

FOLSOM, A. R., FRASER, G. E., FREUDENHEIM, J. L., GOL%OHM, R. A., 

HANKINSON, S. E., LACEY JR, J. V., LEITZMANN, M., LUKANOVA, A., 

MARSHALL, J. R., MILLER, A. B., PATEL, A. V., RODRIGUEZ, C., ROHAN, T. 

E., ROSS, J. A., WOLK, A., ZHANG, S. M. & SMITH-WARNER, S. A. 2008. 

Height, body mass index, and ovarian cancer: A pooled analysis of 12 cohort studies. 

Cancer Epidemiology Biomarkers and Prevention, 17, 902-912. 

SCHRECENGOST, A. 2002. Ovarian Mass—Benign or Malignant? AORN, 76, 789-

806. 

SCHUTTER, E. M. J., SOHN, C., KRISTEN, P., MÖBUS, V., CROMBACH, G., 

KAUFMANN, M., CAFFIER, H., KREIENBERG, R., VERSTRAETEN, A. A. & 

KENEMANS, P. 1998. Estimation of probability of malignancy using a logistic 

model combining physical examination, ultrasound, serum CA 125, and serum CA 

72-4 in postmenopausal women with a pelvic mass: An international multicentre 

study. Gynaecologic Oncology, 69, 56-63. 

SCHWARTZ, P. E., CHAMBERS, J. T., TAYLOR, K. J., PELLERITO, J., 

HAMMERS, L., COLE, L. A., YANG-FENG, T. L., SMITH, P., MAYNE, S. T. & 

MAKUCH, R. 1991. Early detection of ovarian cancer: Preliminary results of the 

Yale Early Detection Program. Yale Journal of Biology and Medicine, 64, 573-582. 



   

271 

 

SCONFIENZA, L. M., PERRONE, N., DELNEVO, A., LACELLI, F., MUROLO, 

C., GANDOLFO, N. & SERAFINI, G. 2010. Diagnostic value of contrast-enhanced 

ultrasonography in the characterization of ovarian tumours. Journal of Ultrasound, 13, 

9-15. 

SELECT SATATISITICAL, S. 2015. The Importance and Effect of Sample Size 

[Online]. Exeter. Available: http://www.select-statistics.co.uk/article/blog-post/the-

importance-and-effect-of-sample-size  [Accessed 22-10-2015]. 

SHARMA, A., GENTRY-MAHARAJ, A., BURNELL, M., FOURKALA, E.-O., 

CAMPBELL, S., AMSO, N. N., SEIF, M. W., RYAN, A., PARMAR, M., JACOBS, 

I. J. & MENON, U. Published Online 2011. Assessing the malignant potential of the 

ovarian inclusion cycsts in postmenopausal women within the UK Collaborative Trial 

of Ovarian Cancer Screening (UKCTOCS): a prospective cohort study. Gynaecologic 

Oncology [Online]. 

SHARMA, A. & MENON, U. 2006. Screening for gynaecological cancers. European 

Journal of Surgical Oncology (EJSO), 32, 818-824. 

SHARMA, M. & SINGH, S. 2001. Evaluation of Texture Methods for Image 

Analysis. Seventh Australian and New Zealand Intelligent Information Systems 

Conference 18-21 November. 

SHEN, S., DENARDO, G. L., DENARDO, S. J., YUAN, A., DENARDO, D. A. & 

LAMBORN, K. R. 1997. Reproducibility of operator processing for radiation 

dosimetry. Nuclear Medicine and Biology, 24, 77-83. 

SHUNG, K. K. 2006. Diagnostic Ultrasound: Imaging and Blood Flow 

Measurements, London, Taylor & Francis. 

SILVERMAN, W. A. 1985. Human experimentation: a guided step into the unknown, 

Oxford, University press. 

SINGH, J., PIERSON, R. A. & ADAMS, G. P. 1997. Ultrasound image attributes of 

the bovine corpus luteum: Structural and functional correlates. Journal of 

Reproduction and Fertility, 109, 35-44. 

SINGH, M. & SINGH, S. 2002. Spatial texture analysis: A comparative study. 

Proceedings - International Conference on Pattern Recognition, 16, 676-679. 

SINHA A, DREW F, LIM K & N., P. 2015. Retrospective analysis of suspicious 

pelvic masses using the pelvic mass index (PMI) scoring system: the Cardiff 

experience- 2007 to 2014. Cardiff. 

SIRINIVASAN, G. N. & SHOBHA, G. 2008. Statistical Texture Analysis. 

Proceeding of world academy of Science, Engineering and Technology 36, 1264-

1269. 

SKATES, S. J., HORICK, N., YU, Y., XU, F. J., BERCHUCK, A., HAVRILESKY, 

L. J., DE BRUIJN, H. W. A., VAN DER ZEE, A. G. J., WOOLAS, R. P., JACOBS, 

I. J., ZHANG, Z. & BAST JR, R. C. 2004. Preoperative sensitivity and specificity for 

http://www.select-statistics.co.uk/article/blog-post/the-importance-and-effect-of-sample-size
http://www.select-statistics.co.uk/article/blog-post/the-importance-and-effect-of-sample-size


   

272 

 

early-stage ovarian cancer when combining cancer antigen CA-125II, CA 15-3, CA 

72-4, and macrophage colony-stimulating factor using mixtures of multivariate 

normal distributions. Journal of Clinical Oncology 22, 4059-4066. 

SKATES, S. J., MENON, U., MACDONALD, N., ROSENTHAL, A. N., ORAM, D. 

H., KNAPP, R. C. & JACOBS, I. J. 2003. Calculation of the risk of ovarian cancer 

from serial CA-125 values for preclinical detection in postmenopausal women. 

Journal of clinical oncology : official journal of the American Society of Clinical 

Oncology, 21, 206s-210s. 

SMITH, L. H., MORRIS, C. R., YASMEEN, S., PARIKH-PATEL, A., CRESS, R. D. 

& ROMANO, P. S. 2005. Ovarian cancer: Can we make the clinical diagnosis earlier? 

Cancer, 104, 1398-1407. 

SMUTEK, D., ŠÁRA, R., SUCHARDA, P., TJAHJADI, T. & ŠVEC, M. 2003. 

Image texture analysis of sonograms in chronic inflammations of thyroid gland. 

Ultrasound in Medicine &amp; Biology, 29, 1531-1543. 

SOHAIB, S. A., MILLS, T. D., SAHDEV, A., WEBB, J. A. W., VANTRAPPEN, P. 

O., JACOBS, I. J. & REZNEK, R. H. 2005. The role of magnetic resonance imaging 

and ultrasound in patients with adnexal masses. Clinical Radiology, 60, 340-348. 

SOKALSKA, A., TIMMERMAN, D., TESTA, A. C., VAN HOLSBEKE, C., 

LISSONI, A. A., LEONE, F. P. G., JURKOVIC, D. & VALENTIN, L. 2009. 

Diagnostic accuracy of transvaginal ultrasound examination for assigning a specific 

diagnosis to adnexal masses. Ultrasound in Obstetrics and Gynaecology, 34, 462-470. 

STANY, M. P., LARRY MAXWELL, G. & ROSE, G. S. 2010. Clinical decision 

making using ovarian cancer risk assessment. American Journal of Roentgenology, 

194, 337-342. 

SUDARSHAN, V. K., MOOKIAH, M. R. K., ACHARYA, U. R., CHANDRAN, V., 

MOLINARI, F., FUJITA, H. & NG, K. H. 2016. Application of wavelet techniques 

for cancer diagnosis using ultrasound images: A Review. Computers in Biology and 

Medicine, 69, 97-111. 

SWINSCOW, T. D. V. 1997. Statistics at Square One, BMJ Publishing Group. 

SZCZYPIŃSKI, P. M., STRZELECKI, M., MATERKA, A. & KLEPACZKO, A. 

2009. MaZda—A software package for image texture analysis. Computer Methods 

and Programs in Biomedicine, 94, 66-76. 

TATE, A. R., NICHOLSON, A. & CASSELL, J. A. 2010. Are GPs under-

investigating older patients presenting with symptoms of ovarian cancer 

Observational study using General Practice Research Database. British Journal of 

Cancer, 102, 947-951. 

TEMPE, A., SINGH, S., WADHWA, L. & GARG, A. 2006. Conventional and colour 

Doppler sonography in preoperative assessment of ovarian tumours. International 

Journal of Gynaecology and Obstetrics, 92, 64-68. 



   

273 

 

TESAŘ, L., SHIMIZU, A., SMUTEK, D., KOBATAKE, H. & NAWANO, S. 2008. 

Medical image analysis of 3D CT images based on extension of Haralick texture 

features. Computerized Medical Imaging and Graphics, 32, 513-520. 

TESTA, A. C., AJOSSA, S., FERRANDINA, G., FRUSCELLA, E., LUDOVISI, M., 

MALAGGESE, M., SCAMBIA, G., MELIS, G. B. & GUERRIERO, S. 2005. Does 

quantitative analysis of three-dimensional power Doppler angiography have a role in 

the diagnosis of malignant pelvic solid tumours? A preliminary study. Ultrasound in 

Obstetrics and Gynaecology, 26, 67-72. 

TESTA, A. C., TIMMERMAN, D., VAN BELLE, V., FRUSCELLA, E., VAN 

HOLSBEKE, C., SAVELLI, L., FERRAZZI, E., LEONE, F. P. G., MARRET, H., 

TRANQUART, F., EXACOUSTOS, C., NAZZARO, G., BOKOR, D., MAGRI, F., 

VAN HUFFEL, S., FERRANDINA, G. & VALENTIN, L. 2009. Intravenous contrast 

ultrasound examination using contrast-tuned imaging (CnTI™) and the contrast 

medium SonoVue® for discrimination between benign and malignant adnexal masses 

with solid components. Ultrasound in Obstetrics and Gynaecology, 34, 699-710. 

THEOCHARAKIS, P., GLOTSOS, D., KALATZIS, I., KOSTOPOULOS, S., 

GEORGIADIS, P., SIFAKI, K., TSAKOURIDOU, K., MALAMAS, M., 

DELIBASIS, G., CAVOURAS, D. & NIKIFORIDIS, G. 2009. Pattern recognition 

system for the discrimination of multiple sclerosis from cerebral microangiopathy 

lesions based on texture analysis of magnetic resonance images. Magnetic Resonance 

Imaging, 27, 417-422. 

TIFFEN, J. & MAHON, S. M. 2005. Ovarian cancer screening: are there any options? 

Clinical journal of oncology nursing, 9, 369-372. 

TIMMERMAN, D. 2000. Lack of standardization in Gynaecological ultrasonography. 

Ultrasound in Obstetrics and Gynaecology, 16, 395-398. 

TIMMERMAN, D. 2004. The use of mathematical models to evaluate pelvic masses; 

can they beat an expert operator? Best Practice &amp; Research Clinical Obstetrics 

&amp; Gynaecology, 18, 91-104. 

TIMMERMAN, D., TESTA, A. C., BOURNE, T., AMEYE, L., JURKOVIC, D., 

VAN HOLSBEKE, C., PALADINI, D., VAN CALSTER, B., VERGOTE, I., VAN 

HUFFEL, S. & VALENTIN, L. 2008. Simple ultrasound-based rules for the diagnosis 

of ovarian cancer. Ultrasound in Obstetrics and Gynaecology, 31, 681-690. 

TIMMERMAN, D., VAN CALSTER, B., JURKOVIC, D., VALENTIN, L., TESTA, 

A. C., BERNARD, J. P., VAN HOLSBEKE, C., VAN HUFFEL, S., VERGOTE, I. & 

BOURNE, T. 2007. Inclusion of CA-125 does not improve mathematical models 

developed to distinguish between benign and malignant adnexal tumours. Journal of 

Clinical Oncology, 25, 4194-4200. 

TIMMERMAN, D., VAN CALSTER, B., TESTA, A. C., GUERRIERO, S., 

FISCHEROVA, D., LISSONI, A. A., VAN HOLSBEKE, C., FRUSCIO, R., 

CZEKIERDOWSKI, A., JURKOVIC, D., SAVELLI, L., VERGOTE, I., BOURNE, 

T., VAN HUFFEL, S. & VALENTIN, L. 2010. Ovarian cancer prediction in adnexal 



   

274 

 

masses using ultrasound-based logistic regression models: A temporal and external 

validation study by the IOTA group. Ultrasound in Obstetrics and Gynaecology, 36, 

226-234. 

TIMMERMAN, D., VAN CALSTER, B., VERGOTE, I., VAN HOORDE, K., VAN 

GORP, T., VALENTIN, L. & BOURNE, T. 2011. Performance of the American 

college of obstetricians and gynaecologists ovarian tumour referral guidelines with a 

multivariate index assay. Obstetrics and Gynaecology, 118, 1179-1181. 

TINGULSTAD, S., HAGEN, B., SKJELDESTAD, F. E., HALVORSEN, T., 

NUSTAD, K. & ONSRUD, M. 1999. The risk-of-malignancy index to evaluate 

potential ovarian cancers in local hospitals. Obstetrics and Gynaecology, 93, 448-452. 

TINGULSTAD, S., HAGEN, B., SKJELDESTAD, F. E., ONSRUD, M., KISERUD, 

T., HALVORSEN, T. & NUSTAD, K. 1996. Evaluation of a risk of malignancy 

index based on serum CA125, ultrasound findings and menopausal status in the pre-

operative diagnosis of pelvic masses. British Journal of Obstetrics and Gynaecology, 

103, 826-831. 

TOGASHI, K. 2003. Ovarian cancer: The clinical role of US, CT, and MRI. European 

Radiology, 13, L87-L104. 

TOLE, N. 2005. Ultrasound Beam Shape. In: OSTENSEN, H. (ed.) Basic Physics of 

ultrasographic imaging 

Reston, USA: World Health Organization, the International Society of Radiographers 

and Radiological Technologists. 

TORIWAKI, J.-I., SUENAGA, Y., NEGORO, T. & FUKUMURA, T. 1973. 

PATTERN RECOGNITION OF CHEST X-RAY IMAGES. 125-137. 

TOURASSI, G. D. 1999. Journey toward computer-aided diagnosis: Role of image 

texture analysis. Radiology, 213, 317-320. 

TOYODA, H., KUMADA, T., KAMIYAMA, N., SHIRAKI, K., TAKASE, K., 

YAMAGUCHI, T. & HACHIYA, H. 2009. B-mode ultrasound with algorithm based 

on statistical analysis of signals: Evaluation of liver fibrosis in patients with chronic 

hepatitis C. American Journal of Roentgenology, 193, 1037-1043. 

TRIVERS, K. F., STEWART, S. L., PEIPINS, L., RIM, S. H. & WHITE, M. C. 2009. 

Expanding the public health research agenda for ovarian cancer. Journal of Women's 

Health, 18, 1299-1305. 

TSAI, D. Y. & KOJIMA, K. 2005. Measurements of texture features of medical 

images and its application to computer-aided diagnosis in cardiomyopathy. 

Measurement: Journal of the International Measurement Confederation, 37, 284-292. 

TUCERYAN, M. & JAIN, A. K. 1998. The Han%ook of Pattern Recognition and 

Computer Vision, World Scientific Publishing Co. 



   

275 

 

TWICKLER, D. M., FORTE, T. B., SANTOS-RAMOS, R., MCINTIRE, D., 

HARRIS, P. & MILLER, D. S. 1999. The ovarian tumour index predicts risk for 

malignancy. Cancer, 86, 2280-2290. 

TWICKLER, D. M. & MOSCHOS, E. 2010. Ultrasound and assessment of ovarian 

cancer risk. American Journal of Roentgenology, 194, 322-329. 

UELAND, F. R., DEPRIEST, P. D., PAVLIK, E. J., KRYSCIO, R. J. & VAN 

NAGELL JR, J. R. 2003. Preoperative differentiation of malignant from benign 

ovarian tumours: The efficacy of morphology indexing and Doppler flow sonography. 

Gynaecologic Oncology, 91, 46-50. 

ULUSOY, S., AKBAYIR, O., NUMANOGLU, C., ULUSOY, N., ODABAS, E., 

GULKILIK, A., ULUSOY, S., AKBAYIR, O., NUMANOGLU, C., ULUSOY, N., 

ODABAS, E. & GULKILIK, A. 2007. The risk of malignancy index in discrimination 

of adnexal masses. International Journal of Gynaecology & Obstetrics, 96, 186-91. 

URBAN, N. 1999. Screening for ovarian cancer. British Medical Journal, 319, 1317-

1318. 

URBAN, N., THORPE, J. D., BERGAN, L. A., FORREST, R. M., KAMPANI, A. 

V., SCHOLLER, N., O'BRIANT, K. C., ANDERSON, G. L., CRAMER, D. W., 

BERG, C. D., MCINTOSH, M. W., HARTGE, P. & DRESCHER, C. W. 2011. 

Potential role of HE4 in multimodal screening for epithelial ovarian cancer. Journal of 

the National Cancer Institute, 103, 1630-1634. 

VAES, E., MANCHANDA, R., AUTIER, P., NIR, R., NIR, D., BLEIBERG, H., 

ROBERT, A. & MENON, U. 2012. Differential diagnosis of adnexal masses: 

Sequential use of the risk of malignancy index and HistoScanning, a novel computer-

aided diagnostic tool. Ultrasound in Obstetrics and Gynaecology, 39, 91-98. 

VALENTIN, L. 2000. Comparison of Lerner score, Doppler ultrasound examination, 

and their combination for discrimination between benign and malignant adnexal 

masses. Ultrasound in Obstetrics and Gynaecology, 15, 143-147. 

VALENTIN, L. 2004. Use of morphology to characterize and manage common 

adnexal masses. Best Practice and Research: Clinical Obstetrics and Gynaecology, 18, 

71-89. 

VALENTIN, L., AMEYE, L., JURKOVIC, D., METZGER, U., X00E, CURU, F., 

VAN HUFFEL, S., TIMMERMAN, D., VALENTIN, L., AMEYE, L., JURKOVIC, 

D., METZGER, U., X00E, CURU, F., VAN HUFFEL, S. & TIMMERMAN, D. 

2006. Which extrauterine pelvic masses are difficult to correctly classify as benign or 

malignant on the basis of ultrasound findings and is there a way of making a correct 

diagnosis? Ultrasound in Obstetrics & Gynaecology, 27, 438-44. 

VALENTIN, L., AMEYE, L., SAVELLI, L., FRUSCIO, R., LEONE, F. P. G., 

CZEKIERDOWSKI, A., LISSONI, A. A., FISCHEROVA, D., GUERRIERO, S., 

VAN HOLSBEKE, C., VAN HUFFEL, S. & TIMMERMAN, D. 2011. Adnexal 

masses difficult to classify as benign or malignant using subjective assessment of 



   

276 

 

grey-scale and Doppler ultrasound findings: Logistic regression models do not help. 

Ultrasound in Obstetrics and Gynaecology, 38, 456-465. 

VALENTIN, L., AMEYE, L., SAVELLI, L., FRUSCIO, R., LEONE, F. P. G., 

CZEKIERDOWSKI, A., LISSONI, A. A., FISCHEROVA, D., GUERRIERO, S., 

VAN HOLSBEKE, C., VAN HUFFEL, S. & TIMMERMAN, D. 2013. Unilocular 

adnexal cysts with papillary projections but no other solid components: Is there a 

diagnostic method that can classify them reliably as benign or malignant before 

surgery? Ultrasound in Obstetrics and Gynaecology, 41, 570-581. 

VALENTIN, L., SLADKEVICIUS, P. & MARSAL, K. 1994. Limited contribution of 

Doppler velocimetry to the differential diagnosis of extrauterine pelvic tumours. 

Obstetrics and Gynaecology, 83, 425-433. 

VAN CALSTER, B., TIMMERMAN, D., BOURNE, T., TESTA, A. C., VAN 

HOLSBEKE, C., DOMALI, E., JURKOVIC, D., NEVEN, P., VAN HUFFEL, S. & 

VALENTIN, L. 2007. Discrimination between benign and malignant adnexal masses 

by specialist ultrasound examination versus serum CA-125. Journal of the National 

Cancer Institute, 99, 1706-1714. 

VAN CALSTER, B., VAN HOORDE, K., VALENTIN, L., TESTA, A. C., 

FISCHEROVA, D., VAN HOLSBEKE, C., SAVELLI, L., FRANCHI, D., EPSTEIN, 

E., KAIJSER, J., VAN BELLE, V., CZEKIERDOWSKI, A., GUERRIERO, S., 

FRUSCIO, R., LANZANI, C., SCALA, F., BOURNE, T. & TIMMERMAN, D. 

2014a. Evaluating the risk of ovarian cancer before surgery using the ADNEX model 

to differentiate between benign, borderline, early and advanced stage invasive, and 

secondary metastatic tumours: Prospective multicentre diagnostic study. BMJ 

(Online), 349. 

VAN CALSTER, B., VAN HOORDE, K., VALENTIN, L., TESTA, A. C., 

FISCHEROVA, D., VAN HOLSBEKE, C., SAVELLI, L., FRANCHI, D., EPSTEIN, 

E., KAIJSER, J., VAN BELLE, V., CZEKIERDOWSKI, A., GUERRIERO, S., 

FRUSCIO, R., LANZANI, C., SCALA, F., BOURNE, T., TIMMERMAN, D. & 

INTERNATIONAL OVARIAN TUMOUR ANALYSIS, G. 2014b. Evaluating the 

risk of ovarian cancer before surgery using the ADNEX model to differentiate 

between benign, borderline, early and advanced stage invasive, and secondary 

metastatic tumours: prospective multicentre diagnostic study. BMJ (Clinical research 

ed.), 349. 

VAN DEN AKKER, P. A. J., AALDERS, A. L., SNIJDERS, M. P. L. M., 

KLUIVERS, K. B., SAMLAL, R. A. K., VOLLEBERGH, J. H. A. & MASSUGER, 

L. F. A. G. 2010. Evaluation of the risk of malignancy index in daily clinical 

management of adnexal masses. Gynaecologic Oncology, 116, 384-388. 

VAN GORP, T., TIMMERMAN, D. & VERGOTE, I. 2011. Reply: The performance 

of the risk of ovarian malignancy algorithm. British Journal of Cancer, 105, 187-188. 

VAN GORP, T., VELDMAN, J., VAN CALSTER, B., CADRON, I., LEUNEN, K., 

AMANT, F., TIMMERMAN, D. & VERGOTE, I. 2012. Subjective assessment by 

ultrasound is superior to the risk of malignancy index (RMI) or the risk of ovarian 



   

277 

 

malignancy algorithm (ROMA) in discriminating benign from malignant adnexal 

masses. European Journal of Cancer, 48, 1649-1656. 

VAN HOLSBEKE, C., DAEMEN, A., YAZBEK, J., HOLLAND, T. K., BOURNE, 

T., MESENS, T., LANNOO, L., BOES, A. S., JOOS, A., VAN DE VIJVER, A., 

ROGGEN, N., DE MOOR, B., DE JONGE, E., TESTA, A. C., VALENTIN, L., 

JURKOVIC, D. & TIMMERMAN, D. 2010. Ultrasound experience substantially 

impacts on diagnostic performance and confidence when adnexal masses are 

classified using pattern recognition. Gynaecologic and Obstetric Investigation, 69, 

160-168. 

VAN HOLSBEKE, C., DAEMEN, A., YAZBEK, J., HOLLAND, T. K., BOURNE, 

T., MESENS, T., LANNOO, L., DE MOOR, B., DE JONGE, E., TESTA, A. C., 

VALENTIN, L., JURKOVIC, D. & TIMMERMAN, D. 2009. Ultrasound methods to 

distinguish between malignant and benign adnexal masses in the hands of examiners 

with different levels of experience. Ultrasound in Obstetrics and Gynaecology, 34, 

454-461. 

VAN NAGELL JR, J. R. & DEPRIEST, P. D. 2005. Management of adnexal masses 

in postmenopausal women. American Journal of Obstetrics and Gynaecology, 193, 

30-35. 

VAN NAGELL JR, J. R., DEPRIEST, P. D., UELAND, F. R., DESIMONE, C. P., 

COOPER, A. L., MCDONALD, J. M., PAVLIK, E. J. & KRYSCIO, R. J. 2007. 

Ovarian cancer screening with annual transvaginal sonography: Findings of 25,000 

women screened. Cancer, 109, 1887-1896. 

VAN NAGELL JR, J. R. & UELAND, F. R. 1999. Ultrasound evaluation of pelvic 

masses: Predictors of malignancy for the general gynaecologist. Current Opinion in 

Obstetrics and Gynaecology, 11, 45-49. 

VAN TRAPPEN, P. O., RUFFORD, B. D., MILLS, T. D., SOHAIB, S. A., WEBB, J. 

A. W., SAHDEV, A., CARROLL, M. J., BRITTON, K. E., REZNEK, R. H. & 

JACOBS, I. J. 2007. Differential diagnosis of adnexal masses: Risk of malignancy 

index, ultrasonography, magnetic resonance imaging, and radioimmunoscintigraphy. 

International Journal of Gynaecological Cancer, 17, 61-67. 

VAR, T., TONGUC, E. A., UGUR, M., ALTINBAS, S. & TOKMAK, A. 2012. 

Tumour markers panel and tumour size of ovarian dermoid tumours in reproductive 

age. Bratislavské lekárske listy, 113, 95-98. 

VARRAS, M. 2004. Benefits and limitations of ultrasonographic evaluation of uterine 

adnexal lesions in early detection of ovarian cancer. Clinical & Experimental 

Obstetrics & Gynaecology, 31, 85-98. 

VERGOTE, I., AMANT, F., AMEYE, L., TIMMERMAN, D., VERGOTE, I., 

AMANT, F., X00E, X00E, RIC, AMEYE, L. & TIMMERMAN, D. 2009. Screening 

for ovarian carcinoma: not quite there yet. Lancet Oncology, 10, 308-9. 



   

278 

 

VICAS, C., LUPSOR, M., SOCACIU, M., BADEA, R. & NEDEVSCHI, S. Year. 

Texture analysis as a noninvasive tool for fibrosis assessment in chronic hepatitis C. 

influence of expert dependent variability over the performance of texture analysis. In:  

Intelligent Computer Communication and Processing (ICCP), 2011 IEEE 

International Conference on, 25-27 Aug. 2011 2011. 205-212. 

VIDYA, K. S., NG, E. Y. K., ACHARYA, U. R., CHOU, S. M., TAN, R. S. & 

GHISTA, D. N. 2015. Computer-aided diagnosis of Myocardial Infarction using 

ultrasound images with DWT, GLCM and HOS methods: A comparative study. 

Computers in Biology and Medicine, 62, 86-93. 

VINCE, D. G., DIXON, K. J., COTHREN, R. M. & CORNHILL, J. F. 2000. 

Comparison of texture analysis methods for the characterization of coronary plaques 

in intravascular ultrasound images. Computerized Medical Imaging and Graphics, 24, 

221-229. 

VINE, M. F., CALINGAERT, B., BERCHUCK, A. & SCHILDKRAUT, J. M. 2003. 

Characterization of prediagnostic symptoms among primary epithelial ovarian cancer 

cases and controls. Gynaecologic Oncology, 90, 75-82. 

VISINTIN, I., FENG, Z., LONGTON, G., WARD, D. C., ALVERO, A. B., LAI, Y., 

TENTHOREY, J., LEISER, A., FLORES-SAAIB, R., YU, H., AZORI, M., 

RUTHERFORD, T., SCHWARTZ, P. E. & MOR, G. 2008. Diagnostic markers for 

early detection of ovarian cancer  

Clinical Cancer Research, 14, 1065-1072. 

WAKAHARA, F., KIKKAWA, F., NAWA, A., TAMAKOSHI, K., INO, K., 

MAEDA, O., KAWAI, M. & MIZUTANI, S. 2001. Diagnostic efficacy of tumour 

markers, sonography, and intraoperative frozen section for ovarian tumours. 

Gynaecologic and Obstetric Investigation, 52, 147-152. 

WANG, L. M., SONG, H., SONG, X. & ZHOU, X. B. 2012. An improved risk of 

malignancy index in diagnosis of adnexal mass. Chinese Medical Journal, 125, 533-

535. 

WANG, Y., TANIGUCHI, N. & ITOH, K. 2002. The development and clinical 

application of a new texture analysis system for acoustic tissue characterization. 

Ultrasound International, 8, 81-105. 

WANG, Y. Z., WANG, X. M., LI, Y. Y. & OU, G. C. 2013. Diagnostic value of 

acoustic structure quantification technology in diffuse liver diseases. World Chinese 

Journal of Digestology, 21, 448-453. 

WEBB, J. 2007. Ultrasound in Ovarian Carcinoma. Cambridge: Cambridge university 

press. 

WHITTINGHAM, T. & MARTIN, K. 2010. Transducer and beam forming, 

Cambridge, Cambridge University Press. 



   

279 

 

WILSON, W. D., VALET, A. S., ANDREOTTI, R. F., GREEN-JARVIS, B., 

LYSHCHIK, A. & FLEISCHER, A. C. 2006. Sonographic quantification of ovarian 

tumour vascularity. Journal of Ultrasound in Medicine, 25, 1577-1581. 

WOODWARD, P. J., HOSSEINZADEH, K. & SAENGER, J. S. 2004. Radiologic 

Staging of Ovarian Carcinoma with Pathologic Correlation. Radiographics, 24, 225-

246. 

WOOLAS, R. P., ORAM, D. H., JEYARAJAH, A. R., BAST JR, R. C. & JACOBS, 

I. J. 1999. Ovarian cancer identified through screening with serum markers but not by 

pelvic imaging. International Journal of Gynaecological Cancer, 9, 497-501. 

WU, H.-K., TSENG, H.-S., CHEN, L.-S., KUO, S.-J., YEN, P.-L., HUANG, Y.-L. & 

CHEN, D.-R. 2014. Flow Index of 3D Breast Ultrasound was Strongly Correlated 

with Axillary Lymph Node Metastasis in the Absence of Lymphovascular Invasion. 

Journal of Medical Imaging and Health Informatics, 4, 66-70. 

WU, M. H., CHENG, Y. C., CHANG, C. H., KO, H. C. & CHANG, F. M. 2012. 

Three-dimensional Ultrasound in Evaluation of the Ovary. Journal of Medical 

Ultrasound, 20, 136-141. 

XIAN, G.-M. 2010. An identification method of malignant and benign liver tumours 

from ultrasonography based on GLCM texture features and fuzzy SVM. Expert 

Systems with Applications, 37, 6737-6741. 

XU, Y., VAN BEEK, E. J. R., HWANJO, Y., GUO, J., MCLENNAN, G. & 

HOFFMAN, E. A. 2006. Computer-aided Classification of Interstitial Lung Diseases 

Via MDCT: 3D Adaptive Multiple Feature Method (3D AMFM). Academic 

Radiology, 13, 969-978. 

YAMAMOTO, Y., YAMADA, R., OGURI, H., MAEDA, N. & FUKAYA, T. 2009. 

Comparison of four malignancy risk indices in the preoperative evaluation of patients 

with pelvic masses. European Journal of Obstetrics Gynaecology and Reproductive 

Biology, 144, 163-167. 

YAMASHITA, Y., HATANAKA, Y., TORASHIMA, M., TAKAHASHI, M., 

MIYAZAKI, K. & OKAMURA, H. 1997. Characterization of sonographically 

indeterminate ovarian tumours with MR imaging: A logistic regression analysis  Acta 

Radiologica, 38, 572-577. 

YAMASHITA, Y., TORASHIMA, M., HATANAKA, Y., HARADA, M., 

HIGASHIDA, Y., TAKAHASHI, M., MIZUTANI, H., TASHIRO, H., IWAMASA, 

J., MIYAZAKI, K. & OKAMURA, H. 1995. Adnexal masses: Accuracy of 

characterization with transvaginal US and precontrast and postcontrast MR imaging. 

Radiology, 194, 557-565. 

YAZBEK, J., AMEYE, L., TIMMERMAN, D., TESTA, A. C., VALENTIN, L., 

HOLLAND, T. K., VAN HOLSBEKE, C. & JURKOVIC, D. 2010. Use of ultrasound 

pattern recognition by expert operators to identify borderline ovarian tumours: A 



   

280 

 

study of diagnostic performance and interobserver agreement. Ultrasound in 

Obstetrics and Gynaecology, 35, 84-88. 

YAZBEK, J., ASLAM, N., TAILOR, A., HILLABY, K., RAJU, K. S. & 

JURKOVIC, D. 2006. A comparative study of the risk of malignancy index and the 

ovarian crescent sign for the diagnosis of invasive ovarian cancer. Ultrasound in 

Obstetrics and Gynaecology, 28, 320-324. 

YAZBEK, J., HELMY, S., BEN-NAGI, J., HOLLAND, T., SAWYER, E. & 

JURKOVIC, D. 2007. Value of preoperative ultrasound examination in the selection 

of women with adnexal masses for laparoscopic surgery. Ultrasound in Obstetrics and 

Gynaecology, 30, 883-888. 

ZAGZEBSKI, J. A. 1996. Essentials of ultrasound physics, Missouri, Mosby inc. 

ZIMMER, Y., TEPPER, R. & AKSELROD, S. 2003. An automatic approach for 

morphological analysis and malignancy evaluation of ovarian masses using B-scans. 

Ultrasound in Medicine & Biology, 29, 1561-1570. 

ZOOROB, R., ANDERSON, R., CEFALU, C. & SIDANI, M. 2001. Cancer 

screening guidelines. American Family Physician, 63, 1101-1112. 

 



   

281 

 

 

 

 

 

APPENDICES 
  



   

282 

 

APPENDIX I 
 

 

Toshiba Aplio 500 specification 

 

 

 
 

  



   

283 

 

 

APPENDIX II 

 

 

 
 

 



   

284 

 

 
 

 

 

 

 

 

 



   

285 

 

 

APPENDIX III 
 

 

  



   

286 

 

 

APPENDIX IV 
 

 

 



   

287 

 

 

 



   

288 

 

 

 



   

289 

 

 

 



   

290 

 

 

APPENDIX V 
 

 



   

291 

 

 

BOOTE, E. J. 2003. Doppler US Techniques: Concepts of Blood Flow Detection and Flow 
Dynamics. Radiographics, 23, 1315-1327. 

BROSKY, J. 2009. Toshiba ASQ delivers hard data on liver fibrosis. Available: www.european-
hospital.com/en/article/6676-Toshiba_ASQ_delivers_hard_data_on_liver_fibrosis 
[Accessed 27-02-2014]. 

DEPRIEST, P. D., SHENSON, D., FRIED, A., HUNTER, J. E., ANDREWS, S. J., GALLION, H. H., 
PAVLIK, E. J., KRYSCIO, R. J. & VAN NAGELL JR, J. R. 1993. A morphology index based 
on sonographic findings in ovarian cancer. Gynecologic Oncology, 51, 7-11. 

DONG, L., CUI, H., LI, X. P., SUN, L. F., CHANG, X. H., LIANG, X. D. & ZHU, H. L. 2008. Clinical 
value of serum CA19-9, CA125 and CP2 in mucinous ovarian tumor: a retrospective 
study of 273 patients. Zhonghua fu chan ke za zhi, 43, 5-8. 

HAMID, B. 2011. The Reliability of B-mode transvaginal probe image for the quantitative 
texture analysis and the dependence of extracted features on region of interest size 
for ovarian cancer detection. PhD, Cardiff University. 

HORSKIN, P. 2010. Principle of Doppler Ultrasound, Cambridge: Cambridge University Press. 
KAIJSER, J., SAYASNEH, A., VAN HOORDE, K., GHAEM-MAGHAMI, S., BOURNE, T., 

TIMMERMAN, D. & VAN CALSTER, B. 2014. Presurgical diagnosis of adnexal tumours 
using mathematical models and scoring systems: A systematic review and meta-
analysis. Human Reproduction Update, 20, 449-462. 

LU, R. S., TIAN, G. Y., GLEDHILL, D. & WARD, S. 2006. Grinding surface roughness 
measurement based on the co-occurrence matrix of speckle pattern texture. Applied 
Optics, 45, 8839-8847. 

LUAN, N.-N., WU, Q.-J., GONG, T.-T., VOGTMANN, E., WANG, Y.-L. & LIN, B. 2013. 
Breastfeeding and ovarian cancer risk: a meta-analysis of 

epidemiologic studies. American journal of clinical Nutrition, 113. 
MEDICAL PHYSICS, W. 2009 (online). Acoustic structure quantification ramps echo resolution 

[Online]. Available: http://medicalphysicsweb.org/cws/article/newsfeed/40669 
[Accessed 27-02-2014]. 

MODAN, B., HARTGE, P., HIRSH-YECHEZKEL, G., CHETRIT, A., LUBIN, F. & WACHOLDER, S. 
2001. Parity, Oral Contraceptives, and the Risk of Ovarian Cancer among Carriers 
and Noncarriers of a BRCA1 or BRCA2 Mutation. The New England Journal of 
Medicine 235-240. 

PRYS DAVIES, A., JACOBS, I., WOOLAS, R., FISH, A. & ORAM, D. 1993. The adnexal mass: 
Benign of malignant? Evaluation of a risk of malignancy index. British Journal of 
Obstetrics and Gynaecology, 100, 927-931. 

ROSSING, M., DALING, J. & WEISS, N. 2013. Ovarian tumors in a cohort of infertile women. 
The New England Journal of Medicine, 331. 

RUBIN, J. M. 1994. Spectral Doppler US. Radiographics : a review publication of the 
Radiological Society of North America, Inc, 14, 139-150. 

RUMACK, C. (ed.) 2005. Diagnostic Ultrasound: Mosby inc. 
RUMACK, C. 2011. Diagnostic Ultrasound, Mosby inc. 
SZCZYPIŃSKI, P. M., STRZELECKI, M., MATERKA, A. & KLEPACZKO, A. 2009. MaZda—A 

software package for image texture analysis. Computer Methods and Programs in 
Biomedicine, 94, 66-76. 

 

http://www.european-hospital.com/en/article/6676-Toshiba_ASQ_delivers_hard_data_on_liver_fibrosis
http://www.european-hospital.com/en/article/6676-Toshiba_ASQ_delivers_hard_data_on_liver_fibrosis
http://medicalphysicsweb.org/cws/article/newsfeed/40669


   

292 

 

 


