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Summary of Thesis 

 

Colorectal carcinoma (CRC) is the second most common cause of cancer deaths in 
the UK. More than half of patients are diagnosed at a late stage with around a 
quarter of patients having metastases at diagnosis (stage IV). Approximately 50% of 
diagnosed patients will progress to metastatic disease. The metastatic spread of 
malignant cells to distant sites in the body accounts for the majority of cancer-related 
death and significantly decreases patient survival. Whilst cell migration is a 
physiologically important process, when uncontrolled, it can be a contributing factor 
to the metastatic phenotype. Actin polymerisation enables the dynamic restructuring 
of the cytoskeleton which is fundamental to cell migration and is stimulated by the 
Arp (actin-related protein) 2/3 protein complex which in turn is activated by members 
of the WAVE (WASP Verprolin homologous protein) family. 
 
Clinico-pathological data was updated for a cohort of patients that had been involved 
in a previous colorectal tissue/carcinoma sampling study. The stored frozen tissue 
samples were analysed using histological and molecular biology techniques 
including conventional polymerase chain reaction, quantitative polymerase chain 
reaction, immunohistochemistry and in vitro gene knockdown studies. WAVE 1 and 3 
expression was targeted separately in the RKO and CaCo2 cell lines utilising 
ribozyme transgene transfection to assess the effect knockdown on cell functions. 
 
A high WAVE 2 expression level is associated with more aggressive and higher 
stage primary tumours and also a shorter overall survival time and disease free 
survival time. WAVE 3 expression is higher in colorectal tissues compared to normal 
tissues but otherwise showed no significant difference. WAVE 1 did not show an 
increase in expression levels compared to normal colorectal tissues. The In vitro 
functional assays revealed a significant reduction in cell invasion and motility 
following WAVE 3 knockdown in  CaCo2 cells. Knockdown of WAVE 1 in RKO cells 
resulted in a significant reduction in invasion and a moderate reduction in motility 
that was not significant. 
 

These results suggest WAVE1 and 3 proteins are involved in several metastatic 
traits and that WAVE 2 has significant correlation with higher stage disease. The 
data outlined here provides justification to further explore WAVE1, 2 and 3 as 
potential contributors of colorectal cancer progression. 
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CHAPTER 1 

INTRODUCTION TO 
COLORECTAL CARCINOMA 
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1.1 Introduction 

Colorectal cancer (CRC) is a term used by the medical profession to refer to 

cancers, specifically carcinomas, of the colon and rectum. Metastasis is currently not 

completely understood but is thought to be a complex multi-stage process involving 

cell invasion, cell migration and changes in cell adhesive properties, ultimately 

leading to distant spread of malignant cells and the formation of secondary tumour 

deposits. Within this thesis, the author wishes to examine the relationship between 

the expression of WASP (Wiskott-Aldrich syndrome protein) family proteins, more 

specifically the WAVE (WASP-family verprolin-homologous) proteins, and the 

disease stage and subsequent prognosis of the patients concerned. The author also 

wishes to examine the relationship between expression of WAVE proteins and the 

role this expression may play in the aggressive behaviour of colorectal cancer cells 

that ultimately lead to the metastatic process. This thesis is a continuation of findings 

in the host centre that WAVE proteins can play a role in the aggressive behaviour of 

cancer cells. 
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1.2 Definition 

In spite of the significant knowledge available regarding the anatomy of the colon 

and rectum there is still dispute over the accurate definitions of carcinomas of these 

regions. Although the colon consists of the large bowel proximal to the rectum, the 

definition of the rectum differs (Steele, 2010). Anatomical description of the rectum 

varies from the surgical description as does the definitions used by various countries 

(Enker and Paty, 1993). 

Anatomically, the proximal end of the rectum is defined as the point where the 

sigmoid mesocolon ends or as the segment of large bowel level with the third sacral 

vertebrae (Williams et al, 1980). Surgically, the rectum is seen to start where the two 

antemesenteric taenia on the sigmoid colon fuse together (Phillips, 2010).  

In the United Kingdom, rectal cancer is defined as a tumour within 15cm of the anal 

verge using a rigid sigmoidoscope (The Association of Coloproctology of Great 

Britain and Ireland, 2007; Phillips R. 2010). Whereas, in the USA, within 11 to 12cm 

is preferred (Enker and Paty, 1993). 

 The distinctions are important as the modes of treatment differ depending on the 

tumour location and CRC surgery outcome data is impossible to compare unless 

uniform definitions are utilised by all. This problem has yet to be tackled by 

international consensus.  
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1.3 Incidence and Mortality 

1.3.1  Incidence 

Colorectal cancer (CRC) is the third most common malignancy worldwide, with more 

than an estimated 1.36 million new cases of CRC being diagnosed in 2012, with 

incidence rates varying across the world. (Cancer Research UK) 

CRC incidence rates are highest in Australia/New Zealand and lowest in Western 

Africa. This partly reflects varying data quality worldwide and may reflect different 

prevalence of risk factors, use of screening, and diagnostic methods. (Cancer 

Research UK) 

CRC is the second most common malignancy in Europe, with around 447,000 new 

cases diagnosed in 2012. United Kingdom (UK) CRC incidence rates are estimated 

to be the 20th highest in males in Europe, and 17th highest in females. (Cancer 

Research UK) 

CRC is one of the most common malignancies in the UK, after breast, lung and 

prostate cancer (2012), with around 40,000 new cases registered each year. 

(Cancer Research UK; NICE 2011) 

CRC incidence is strongly related to age, with the highest incidence rates occurring 

in older patients (Figure 1.1). In the UK between 2010 and 2012, 95% of CRC cases 

were diagnosed in those aged 50 and over, with approximately 20% of cases 

occurring between the ages of 50 and 64, 32% of cases arising in people aged 

between 65 and 74 and 43% of cases being diagnosed in those aged 75 years and 

over. (Cancer Research UK; NICE 2011) 
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More than half of patients are diagnosed at a late stage (55% diagnosed at stage III 

or IV), compared to an early stage (45% diagnosed at stage I or II), with around a 

quarter (26%) of patients having metastases (distant spread) at diagnosis (stage IV). 

(Cancer research UK) 

Approximately 50% of diagnosed patients will progress to metastatic disease (Arvelo 

et al., 2015) 

 

 

Figure 1.1 - Relationship between colorectal cancer incidence and age (Figure taken 

from Cancer Research UK, 2014) 
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1.3.2 Mortality 

CRC was the second most common cause of cancer related deaths in the UK in 

2012. In that year 16,187 people died from the disease in the UK, most with 

metastatic malignancy (Cancer Research UK; Office for National Statistics, 2014).   

Mortality from CRC is higher than that for both prostate and breast having a five year 

survival of 59% in men and 58% in women (Cancer Research UK; Office for National 

Statistics, 2014). 
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1.4 Natural History of Colorectal Carcinoma 

1.4.1 Location 

Colorectal carcinomas arise throughout the large bowel and rectum with variations in 

frequency depending on the locations. In the United Kingdom there is also a slight 

variation between the sexes. 

In men, carcinomas are most frequently found in the rectum (31.5%) followed by the 

sigmoid colon (23.1%) and then the caecum and ascending colon (12.2% and 7.3%). 

In women the rectum (23.1%) is followed by the sigmoid colon (20.4%) and then the 

caecum and ascending colon (17.2% and 9.8%). (Office for National Statistics, 2014; 

Welsh Cancer Intelligence and Surveillance Unit, 2014; ISD Scotland, 2014; 

Northern Ireland Cancer Registry, 2014) 

As can be seen, in the caecum and ascending colon, the proportions are higher in 

females than males. There are no further marked variations between the sexes in 

other parts of the bowel. 

In men, approximately 60% of colorectal carcinomas occur on the left side of the 

large bowel, as do just under 60% in women.  
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1.4.2 Aetiology 

Colorectal cancer is a multifactorial disease process. No single risk factor accounts 

for the majority of cases of colorectal cancer. 

Increasing age and male sex are the main sociodemographic risk factors. 

A number of further risk factors, which are not mutually exclusive and can interact, 

have been identified and established in epidemiological studies. 

The risk is found to be strongest in those with a family history of colorectal cancer 

(Taylor et al., 2010), particularly those with first-degree relatives affected, those with 

multiple affected relatives or relatives diagnosed at a young age. People with 

inflammatory bowel disease such as ulcerative colitis or crohn’s disease are also at 

higher risk of CRC. In these patients the risk for developing colorectal cancer 

increases with the duration of disease and the greater amount of colon involved 

(Jess et al., 2012). 

The other risk factors, which are seen frequently and are potentially amenable to 

change are smoking (Liang et al., 2009), excessive alcohol intake (Fedirko et al., 

2011), high consumption of red and processed meat (Chan et al., 2011), obesity (Ma 

et al., 2013) and diabetes (Jiang et al., 2011). These factors account for a relatively 

large amount of the disease burden within the population despite the relative risk 

being less than is seen in those with a family history of CRC or with inflammatory 

bowel disease (Brenner, 2014). 

It is also thought that there may be an increased risk of colorectal cancer associated 

with infection by Helicobacter pylori, fusobacterium species and other possible 

infectious agents (Sonnenberg et al., 2013; Kostic et al., 2012; Boleij et al., 2011). 

http://emedicine.medscape.com/article/183084-overview
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Recognised preventive factors include physical activity (Boyle et al., 2012), use of 

hormone replacement therapy (Lin et al., 2012) and aspirin (Bosetti et al., 2012; 

Rothwell et al., 2011). Large bowel endoscopy with removal of precancerous lesions 

(adenomas) has been found to have the greatest risk reduction (Brenner, 2014; 

2011). 

There is some data to suggest a weak protective effect of diets rich in fruit, 

vegetables, cereal fibre and whole grains (Aune et al., 2011; 2012), dairy products 

(Aune, 2012) or fish (Wu et al., 2012) and possible statin therapy (Lochhead et al., 

2013) but it is not as consistent as other data. 

Colorectal cancer has a considerable genetic correlation, and up to 35% of colorectal 

cancer risk may be attributable to this (Lichtenstein, 2000; Arvelo, 2015).  

The current estimate is that 15–30% of colorectal cancers may have a major 

hereditary component, given the occurrence of colorectal cancer in first- or second-

degree relatives. However, only about a quarter of these familial cases (i.e. about 3-

5% of all colorectal cancers) occur in a setting with a family history and/or clinical 

features that indicate a highly penetrant cancer syndrome that predisposes to 

colorectal cancer and that can be attributable to a known hereditary form. The large 

proportion of these highly penetrant cases are due to the hereditary non-polyposis 

colorectal cancer (HNPCC or Lynch syndrome) syndromes, which pose about a 75% 

lifetime risk for developing colorectal cancer and are due to an inherited mutation in 

one of the mismatch repair genes. Another significant subset is associated with 

familial adenomatous polyposis (FAP) and closely related variant syndromes, where 

an hereditary mutation of the adenomatous polyposis coli (APC) gene is the cause 

and in which affected patients carry an almost 100% risk of developing colon cancer 
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by the age of 40 years (Walsh, 2015). A few other rare syndromes constitute the 

remainder of such highly penetrant cases. 

Studying the genetic and molecular pathogenesis of the hereditary forms of 

colorectal cancer has proven highly valuable to understanding the genetic and 

molecular pathogenesis of sporadic colorectal carcinomas and has been shown to 

have an impact on the prognosis and treatment response of patients (Sadanandam 

et al., 2013; De Sousa et al., 2013). 
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1.4.3 Genetics of Colorectal Carcinoma 

The current understanding of colorectal carcinoma and the genetics underpinning 

how it arises divides it into a variety of subtypes. Approximately 95% of colorectal 

carcinomas arise sporadically (i.e. they develop due to repeated environmental 

insults over the years that cause somatic gene mutations that predispose to the 

development of growths (adenomas) arising from the epithelial lining of the large 

bowel. Over time, with further somatic mutations, these adenomas will develop into 

colorectal carcinomas). The remaining 5% arise from the inheritable disorders of 

which FAP and Lynch syndrome are the main contributors (Brenner, 2014). 

 

1.4.3.1 Adenoma-Carcinoma sequence 

The colorectal polyp is considered to be the precursor lesion for most malignancies 

of the large bowel. These polyps take the form of conventional adenomas or a 

variety of lesions with serrated morphology, some of which take a sessile form. 

Colorectal cancer often develops over more than ten years, and dysplastic 

adenomas are the most common form of premalignant precursor lesions (Jass, 

2007). Most colorectal carcinomas are presumed to arise in these premalignant 

adenomas the majority of which are amenable to endoscopic resection.  

The APC gene plays a prominent role in the development of sporadic colorectal 

adenomas and subsequently carcinomas. Approximately 70-80% of sporadic 

colorectal adenomas and carcinomas have somatic mutations that inactivate both 

wildtype alleles of APC. It appears that these somatic APC mutations are an early 

and perhaps rate limiting event in the development of most adenomas. They are 
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found throughout the spectrum of lesions, from early microscopic adenomas up to 

and including large carcinomas (Brenner, 2014; Fearon, 2011). 

The APC gene encodes for the APC protein which may be involved in the regulation 

of cell-cell adhesion, cell migration, chromosomal segregation and apoptosis in the 

colonic crypts (Polakis, 2006; Aoki, 2007; Brocardo, 2009). Although APC may have 

a number of cellular functions, the best established role for APC in the colorectal 

cancer process is as a major binding partner and regulator of the β-catenin protein in 

the β-catenin-dependent Wnt signalling pathway (Polakis, 2006; Aoki, 2007). In the 

absence of Wnt ligand signalling, wildtype APC would normally be involved in the 

process by which β-Catenin is eventually degraded. However, with the somatic 

mutations inactivating both of the APC alleles, this coordinated process of 

phosphorylation and destruction no longer occurs and there is a build-up of β-

Catenin within the cell cytoplasm. β-catenin also functions as a transcriptional 

coactivator and so migrates to the nucleus, activating the expression of many 

different genes (Mossiman et al., 2009). The transcriptional program induced by β-

catenin once in the nucleus resembles the transcriptional program in stem cells at 

the base of the colonic crypts thus establishing a crypt progenitor phenotype. It also 

is involved in the spatial organization and migratory pattern of the cells in the 

continuous renewal of crypts (Van de Wetering et al., 2002; Batlle et al., 2002). All of 

this goes some way to explain the development of adenomas. 

The adenoma-carcinoma sequence is driven by the progressive accumulation of 

further somatic mutations within the adenoma and subsequent carcinoma, such as 

activation of the KRAS oncogene and inactivating mutations of the p53 tumour 

suppressor gene (TSG).  
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Figure 1.2 Schematic diagram of the polyp to colorectal cancer sequences. Currently, two discrete 

normal colon to colorectal cancer sequences have been identified. Both sequences involve the 

progression of normal colon epithelial cells to aberrant crypt foci (ACF), followed by early and 

advanced polyps with subsequent progression to early cancer and then advanced cancer. The classic 

or traditional pathway is the pathway originally identified and involves the development of tubular 

adenomas that can progress to adenocarcinomas. An alternate pathway that involves serrated polyps 

and their progression to serrated colorectal cancer has been described in the last 5–10 years. The 

genes mutated or epigenetically altered are indicated for each pathway. Some genes are shared 

between the two pathways and others are unique (ie, BRAF mutations and CpG Island Methylator 

Phenotype (CIMP) only in the serrated pathway). The signalling pathways deregulated during the 

progression sequence are also shown with the width of the arrow reflecting the significance of the 

signalling pathway in tumour formation. (Image taken from Dickinson et al., 2015.) 
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1.4.3.2 Microsatellite instabilities 

The majority of colorectal carcinomas, 85%, show microsatellite stable (MSS) or low 

level microsatellite instability (MSI-L) phenotypes, but are often accompanied by 

chromosomal instability (i.e. changes in the number of chromosomes and structural 

changes of the chromosomes). The large majority of these cancers develop 

sporadically through the classic adenoma-carcinoma pathway. Approximately 1% 

develop because of the inherited familial adenomatous polyposis (FAP) syndrome. 

(Brenner, 2014; Tomlinson, 2015; Frayling et al., 2015; Walsh, 2015) 

 

 

Figure 1.3: Molecular subtypes of colorectal cancer 

Most colorectal cancers (85%, light blue and dark blue) show MSS or MSI-L phenotype, but are 

characterised by chromosomal changes. Most of these cancers develop through the classic 

adenoma–carcinoma pathway, but about 1% develop with inherited syndrome FAP (dark blue). About 

15% of colorectal cancers (red and pink) have the MSI-H phenotype as a result of DNA mismatch 

repair defi ciency. About 3% of colorectal cancers have MSI-H in context of the inherited Lynch 

syndrome (red), whereas 12% develop as sporadic tumours (pink), with sessile serrated adenomas 

as a typical precursor lesion. The distribution of typical molecular changes including the CIMP and 

mutations of the BRAF or KRAS oncogenes are sketched in green. Dark green is the proportion of 
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positive or mutant changes and light green is the proportion of negative or wildtype changes. MSI-

H=high-level microsatellite instability in relation to the phenotypes in the first bar. CIMP=CpG island 

methylator phenotype. MSS=microsatellite-stable. MSI-L=low-level microsatellite instability. 

FAP=familial adenomatous polyposis. (Image taken from Brenner et al., 2014) 

 

Focus is also on a small number of oncogenes and tumour suppressor genes 

(TSGs), most notably APC, KRAS, BRAF and p53. These are mutated in a large 

number of colorectal cancers. The mutations are of two types: changes that lead to 

new or increased function of oncogenes and changes that lead to loss of function of 

TSGs. The transformation of genes into their oncogenic variants can be as a result 

of specific point mutations or rearrangements that alter the gene structure and 

function or from chromosome rearrangements or amplifications that disrupt gene 

expression. So far, only somatic oncogene mutations have been found in colorectal 

carcinomas. TSG inactivation can result from localized mutations, complete loss of 

the gene, or epigenetic alterations that interfere with gene expression. The vast 

majority of TSG defects in CRC are somatic (Fearon, 2011) 

 

The other subtype of colorectal carcinoma are those with the presence of 

microsatellite instabilities within the genome. Microsatellites are regions where a 

short DNA sequence (up to five nucleotides) is repeated. There are large numbers of 

such sequences in the human genome, the majority in non-coding DNA. Instability of 

these regions arise when the cellular DNA repair mechanisms, that usually catch 

problems during DNA replication, are deficient (Tomlinson, 2015; Frayling et al., 

2015; Walsh., 2015).  

Base-pair mismatches occurring during DNA replication are normally repaired by the 

mismatch repair (MMR) proteins which are expressed by the MMR genes (Peltomaki 
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et al., 1993; Peltomaki, 2001). These are tumour suppressor genes and their role is 

to correct errors in base-pair matching during replication of DNA or to initiate 

apoptosis when DNA damage is beyond repair. In tumours with a deficiency of the 

MMR proteins this mechanism fails and microsatellites become mutated, resulting in 

a change in the number of sequence repeats and hence the length of the 

microsatellite, resulting in microsatellite instability (MSI). Therefore, a distinguishing 

feature of tumours with defective MMR genes is the presence of microsatellite 

instability (Brenner, 2014; Tomlinson, 2015; Frayling et al., 2015; Walsh, 2015). 

Approximately 15% of colorectal cancers have a high-level microsatellite instability 

(MSI-H) phenotype as a result of DNA MMR deficiency. About 3% of colorectal 

cancers have MSI-H due to the inherited Lynch syndrome where a defective MMR 

gene copy is inherited, whereas the remaining 12% develop as sporadic tumours 

with sessile serrated adenomas as a typical precursor lesion. Within this MSI-H 

subgroup of colorectal carcinomas, a distinguishing test can be to look for a BRAF 

oncogene mutation, as the presence of this is almost exclusively restricted to 

sporadic MSI-H colorectal carcinomas (Brenner, 2014; Parsons et al., 2012). These 

MSI-H  sporadic tumours occur in older patients as a consequence of inactivation of 

MMR genes by promoter methylation, which is not related to any inherited factor 

(Brenner, 2014; Tomlinson, 2015; Frayling et al., 2015; Walsh, 2015). Clinically, MSI-

H malignancies tend to occur in the proximal colon, are observable in patients 

younger than 50 years of age (hereditary form) or in older patients (sporadic form), 

can have synchronous malignancies and large local tumours are only rarely 

accompanied by metastases (Jung et al., 2012).  

The MSI-H phenotype is associated with a more vigorous anti-tumoural immune 

response identified by a high density of tumour-infiltrating lymphocytes (Shia et al., 
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2003; Dolcetti, 1999). It is thought to be related to microsatellite instabilities leading 

to frameshift mutations and the production of altered proteins which are foreign to 

the immune system and seen as tumour antigens (Schwitalle et al, 2008). This 

vigourous immune response could be contributory to the improved prognosis of 

those patients with MSI-H colorectal carcinoma.  

 

Together with DNA-methylation and chromosomal instability, these mutations can 

influence a number of phenotypic traits.  
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1.4.3.3 Lynch Syndrome (Hereditary non-polyposis colorectal carcinoma) 

Lynch syndrome is an autosomal dominant inherited syndrome associated with a 

high risk of gastrointestinal (GI) tract malignancies and also malignancies in other 

organ systems (Lynch and Krush, 1967). Lynch syndrome accounts for 

approximately 3% (2.8% - 3.3%) of colorectal cancers. Patients with Lynch 

syndrome inherit a defective mismatch repair (MMR) gene copy from one parent. 

Tumorigenesis is triggered when the solitary normal gene in a cell suffers a somatic 

hit and becomes mutated or lost. Once this happens the defective MMR mechanism 

no longer repairs the DNA mismatches within that cell, resulting in an accumulation 

of mutations in a number of other genes particularly TSGs and oncogenes. There 

are at least seven MMR genes identified which function together as a complex to 

eliminate DNA base pair errors. The commonest genes affected by mutations are 

MLH1, MSH2, MSH6 and PMS2. Of these, mutations in MLH1 and MSH2 account 

for the vast majority of mutations in Lynch syndrome (Walsh, 2015; Tiwari et al., 

2016). 
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1.4.3.4 Familial adenomatous polyposis (FAP) 

Familial adenomatous polyposis is an autosomal dominant inherited syndrome 

characterised by the presence of adenomatous polyps in the colon and rectum with 

the inevitable development of colorectal carcinoma if not treated. Patients with FAP 

inherit a defective APC gene copy from one parent (Bodmer et al., 1987). The main 

function of the expressed APC protein is to provide a scaffold for the phosphorylation 

of the Wnt pathway effector, β-catenin which is subsequently degraded. APC 

mutations result in abnormal function and disrupt this scaffold (Fearnhead et al., 

2001). APC is a TSG and FAP polyps usually start to develop after the solitary 

wildtype allele of APC suffers a somatic hit that inactivates it. Classical FAP is a 

disease of 100’s-1000’s of adenomatous polyps throughout the colorectum, although 

sufferers of the attenuated variant of FAP develop fewer polyps (10’s-100’s). This 

change in polyp burden is associated with the location of the APC gene mutation 

(Nieuwenhuis et al., 2007; Tomlinson, 2015). As well as colorectal adenomas and 

carcinomas, FAP sufferers are also at risk of developing upper gastrointestinal 

polyps and carcinomas, desmoids and extra-gastrointestinal disease and 

malignancies.    
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1.4.3.5 Serrated pathway (SP): Serrated lesions – Serrated adenocarcinoma 

Serrated lesions of the colorectum are the precursors of approximately 30% of 

colorectal cancers (Rex et al., 2012; O’Brien et al., 2015; Bettington et al., 2013).  

Precursor lesions consist of sessile serrated lesions (SSLs), SSLs with dysplasia 

and traditional serrated adenomas (TSAs). 

SSLs are usually found in the proximal colon, but can occur throughout the length of 

the large bowel. They are usually sessile in nature and may be over 10 mm in 

diameter, although, around one-third of SSLs are 5 mm or less across (Bateman, 

2014). The sessile morphology of these proximal lesions makes them easier to 

overlook and they tend to have ill-defined borders, which can lead to incomplete 

resection at endoscopy.  

TSAs are uncommon lesions, occurring most frequently in the left colon. High-grade 

dysplasia can arise within them and progression to carcinoma may take place, 

showing a serrated appearance. 

Precursor serrated lesions can progress to colorectal carcinoma and the term 

‘serrated adenocarcinoma’ has been used to describe these tumours. Cancers 

arising in serrated lesions show a diverse range of genetic profiles and biological 

behaviours. The genetic alterations occurring during progression to colorectal 

carcinoma along the ‘serrated pathway’ are distinct to those occurring within the 

classical ‘adenoma-carcinoma sequence’, and there is evidence that this progression 

occurs more quickly within the ‘serrated pathway’ (Bettington et al., 2013)  

 A small number of serrated adenocarcinomas arise within the caecum and 

ascending colon and are thought to develop from SSLs. Sessile serrated lesions 
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may show dysplasia or not. Those lesions containing a focus of dysplasia tend to 

show early BRAF mutation and may develop loss of the MMR protein hMLH-1 

secondary to inactivation of the hMLH-1 gene through DNA methylation (the “CpG 

island methylator phenotype” - CIMP) which would subsequently cause microsatellite 

instability and show the MSI-H phenotype. (Bateman, 2014). SSLs in which hMLH-1 

expression is not lost may alternatively show p16 and MGMT loss. The resulting 

CRC again contain BRAF mutations and exhibit CIMP-H but are MSS.  

The CIMP is a state in which extensive methylation (a physiological process 

important in the regulation of gene activity) of the promoter sequences of genes 

occurs. CpG islands are pairs of cytosine and guanine nucleotides that are present 

mainly within the promoter regions of genes such as the DNA MMR enzyme-

encoding gene hMLH-1. When methylation of these CpG islands occurs, this results 

in inactivation of the corresponding gene. Methylation may be present at either a low 

(CIMP-L) or high (CIMP-H) level (Bateman, 2014).  

The BRAF gene encodes a protein called B-Raf, which is a member of the Raf 

kinase family of phosphorylating enzymes that are involved in the control of cell 

division and differentiation. Acquired BRAF mutations have been identified in many 

human cancers, including malignant melanoma and carcinomas of the lung and 

colorectum. These mutations result in BRAF acting as an oncogene. The V600E 

mutation is the most common (90% of BRAF mutations) (Pakneshan et al,. 2013). 

The p16 gene is a tumour suppressor gene encoding a protein (cyclin-dependent 

kinase inhibitor 2A) that is involved in cell cycle control and that may be mutated in 

several different cancers. The O6-methylguanine DNA methyltransferase (MGMT) 

gene encodes the O6-alkylguanine DNA alkyltransferase (MGMT) protein that is 
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involved in DNA repair and that can be inactivated via hypermethylation of its 

promoter sequence (Bateman, 2014). 

 

The majority of serrated adenocarcinomas arise in the distal colon or rectum. These 

tumours are believed to develop from TSAs. TSAs are particularly associated with 

early KRAS mutations and Wnt abnormalities. The resulting serrated 

adenocarcinoma contain KRAS mutations, exhibit CIMP-L and are MSS or MSI-L 

(Bateman, 2014).  

The KRAS gene encodes the KRAS protein, which is a member of the Ras family of 

proteins that are important for signalling in normal cells. Mutations within the KRAS 

gene are commonly seen in carcinomas of the pancreas, lung and colorectum and 

result in KRAS acting as an oncogene. In colorectal carcinoma, the presence of a 

KRAS mutation is a predictor of a poor response to EGFR inhibitors such as 

cetuximab (Bateman, 2014).  
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1.4.4 Invasion and Metastases 

The ability of a tumour to invade neighbouring tissue is a pre-requisite for the 

development of metastases. Colorectal cancer tends to metastasise to the liver and 

lungs.  

Direct invasion of a tumour by the progression of its margin or by the movement of 

individual cells through a tissue is important in the development of distant and 

regional metastases. In order for a tumour to metastasise to a distant organ or lymph 

node it must first reach a vascular or lymphatic channel. To achieve this, malignant 

cells must penetrate the basement membrane and travel through the extracellular 

matrix. A part of this process is aided by the family of endopeptidases known as 

matrix-metalloproteinases (MMPs). MMPs are a group of structurally related proteins 

which are commonly involved in normal tissue remodelling during growth and wound 

healing or repair (Boedefeld et al., 2003). MMPs exert a proteolytic activity and have 

the ability to rupture intercellular junctions and break down the molecules of the 

extracellular and adhesion matrices.   

Over-expression of MMP’s and induction of expression in other cell types of MMP’s 

are important processes in the development of invasiveness in neoplastic disorders. 

A number of associations have been found between colorectal cancer and the 

different MMPs. MMP-1 is associated with a worse prognosis as it favours 

haematogenous metastasis. MMP-2 is related to tumour invasion and it has a 

greater expression on the invasive front of a tumour (Arvelo et al., 2015). MMP-7 is 

related to invasion and metastasis in colorectal cancer also. 
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Cell motility and migration is another crucial factor in the development of direct 

invasion of a tumour. 

Haematogenous and lymphatogenous metastases occurs when tumour cells come 

across blood or lymphatic vessels, either new or original, and invade into them. 

Embolisation of individual cells or small groups of cells is then possible. All that is 

then required is an appropriate organ and micro-environment in which these tumour 

emboli can begin to form a micro-metastasis before developing into a more 

substantial deposit. Colorectal carcinomas have the ability to stimulate angiogenesis 

in and around the edge of the tumour which would aide this process immeasurably. 

 Despite significant improvements in diagnostic procedures, more than 50% of 

patients with colorectal cancer have liver metastases either at presentation or will go 

on to develop it (Bramhall et al., 2003). In many parts of the world, most cancer-

related deaths are still due to metastases that are resistant to conventional therapy 

(Kassahun, 2015).  

Surgery for metastases confined to the liver or lung can be curative when carried out 

by specialists with experience of this type of work. Although such resection is only 

appropriate for a minority of patients, it can increase five-year survival rates from 

close to zero to over 30%. Pre-operative chemotherapy can produce a similar 

increase in survival rates in selected patients whose liver metastases are initially too 

extensive for surgery, by shrinking the tumour so that curative resection becomes 

possible (NICE guidelines 2004) 

Gaining a further understanding of the mechanisms by which malignant colorectal 

cancer cells are able to metastasise to locations within the body which are distant 
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from the primary tumour site could help point to the development of therapeutic 

agents which may help prevent further metastases from developing in those with 

Stage IV disease, and prevent distant metastases from developing in those with 

Stage III and below colorectal cancer. 
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1.5 Staging 

Staging systems are utilised by clinicians to determine the extent of spread of 

disease. This includes local invasion to adjacent structures, lymph node metastases 

and distant metastases. It aides clinicians together with patients to make the best 

informed decisions on the appropriate course of clinical management.  Furthermore, 

staging also allows comparisons between different therapeutic modalities in order to 

assess novel and improved techniques for management of cancers and to compare 

outcomes in a like for like manner. 

There are two main classification systems in use for the staging of colorectal 

carcinoma. The oldest system is the Dukes classification (Figure 1.4) (Dukes, 1932; 

Dukes, 1950). The most widespread in use and internationally recognised is the 

TNM staging system (Figures 1.5 & 1.6) (UICC [International Union Against Cancer], 

2002; Wittekind et al., 2004).  

The Dukes staging system requires pathological assessment of the surgical 

specimen and therefore cannot be used for pre-operative disease staging or for the 

staging of advanced disease not suitable for operative management. In these 

situations, the TNM system is preferred. 

 

Figure 1.4 Dukes Classification 
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Figure 1.5 TNM staging system with definition (American joint committee on colon cancer, 7th Ed) 
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Figure 1.6 TNM overall stage 
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2.1 Introduction 

Cell migration is required for many biological processes, such as embryonic 

morphogenesis, immune surveillance and tissue repair and regeneration. Aberrant 

regulation of cell migration drives progression of many diseases, including cancer 

invasion and metastasis. Cancer cells possess a broad spectrum of migration and 

invasion mechanisms that include both individual and collective cell-migration 

strategies. Understanding the mechanisms of cell migration is critical for our 

understanding of the pathology of cancer during metastasis. This greater 

understanding can help direct further investigation and potential therapeutic 

approaches that could inhibit the metastatic process. 
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2.2 Cell Migration 

2.2.1 The role of Actin Filaments in cell migration 

Among eukaryotic cells, actin is one of the most conserved proteins with close to 

90% identity between species as diverse as yeast and mammals (Campellone et al., 

2010; Skarp et al., 2010; Erickson 2007; Lowe et al., 2009). The vast majority of 

eukaryotes have genes for actin and most have genes for myosin motor proteins that 

generate forces on actin filaments. They were initially discovered in the 1940’s in 

skeletal muscle and later research identified how myosin produced force from the 

hydrolysis of adenosine triphosphate (ATP) (Pollard et al., 2009). Actin is the most 

abundant protein in eukaryotic cells. A 42 kDa monomeric ATP-binding protein, 

globular actin (G-actin), can undergo spontaneous polymerisation into long, stable 

filamentous actin (F-actin) (Figure 2.1). The double helical arrangement of globular 

subunits all arranged head to tail give the filament a molecular polarity (Campellone 

et al., 2010). Regulation of actin polymerisation is essential as cell cytoplasm 

contains high concentrations of G-actin that could potentially self assemble (Pollard 

2007). 
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Actin filaments provide cells with structural support and contribute to biological 

processes such as sensing environmental forces, internalizing membrane vesicles 

and dividing cells in two. A major role played by actin filaments is in that of cellular 

migration. Directional motility is a fundamental cellular process essential for 

embryonic development, wound healing, immune responses and development of 

tissues. Cancer cells also utilise this function to invade and metastasise through the 

body (Pollard et al., 2009). Actin filaments have a fast growing barbed end and a 

slower growing pointed end, differentiated by their biochemical characteristics. The 

barbed end is favoured for rapid growth and actin filaments in cells are strongly 

oriented with the barbed ends directed towards the cell membrane (Pollard et al., 

2003). With both the aforementioned rapid growth and orientation, these filaments 

produce protrusions of the cell membrane, the first step in cell locomotion (Millard et 

al., 2004; Pollard et al., 2009; Pollard et al., 2003). Cellular motility involves a cycle 

of four steps: protrusion of the leading edge, adhesion to the substratum, retraction 

of the rear and de-adhesion (Figure 2.2) (Wong et al., 2010).  

The terms “pointed” and “barbed” come from the appearance of the filament 

structure as seen in electron micrographs. These show the arrow-like appearance of 

the actin filaments adorned with the motor domain of myosin (Millard et al., 2004; 

Campellone et al., 2010). Myosin motor proteins interact with actin filaments. This 

produces two types of movement. First, myosin generates force between actin 

filaments, producing contraction that can pinch dividing cells in two, it enables a 

change in cellular shape to form tissues and during migration it retracts the rear of 

cells, one of the essential steps in the cell motility cycle (Figure 2.1 and 2.2). 

Second, myosins move intracellular cargos along actin filaments over short 

distances (Pollard et al., 2007, 2009). 
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Figure 2.2. Fundamental steps in cell motility. Front protrusion: at the new protrusion, actin 

polymerization is required and new focal adhesion molecules are recruited to adhere the cell front to 

the substratum. Cell body translocation: the cell body translocates by actomyosin contraction. Tail de-

adhesion and retraction: Actin filaments depolymerize, focal adhesion molecules at the 

trailing/posterior edge (tail) disassemble and the trailing edge retracts. (Image from Wong et al., 2010) 
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G-actin monomers bind ATP molecules. After assembly into filaments, following 

recruitment at the barbed end, G-actin hydrolyses the terminal phosphate from the 

bound ATP and slowly dissociate the phosphate. Subtle structural changes in the 

actin subunits related to this hydrolysis prepare the now adenosine diphosphate 

(ADP) bound actin filaments for disassembly by regulatory proteins at the pointed 

end (Campellone et al., 2010). Cells use a large number of accessory/regulatory 

proteins to maintain a pool of actin monomers, initiate polymerisation, restrict the 

length of actin filaments, regulate the assembly and turnover of actin filaments and 

cross-link filaments into networks or bundles (Figure 2.1). 

New filaments can be formed with a variety of mechanisms: 

1) Creating a branch from the side of an existing filament (actin nucleation): The 

actin-related protein 2/3 (Arp2/3) complex constructs a dense network of short, 

branched actin filaments that grow in successive generations like the twigs of a 

bush. Most filaments are capped before growing longer than 0.5µm presumably to 

prevent buckling under the force (Pollard et al., 2009). Each filament can produce 

picoNewton forces, allowing the front end of cells to move at rates up to about 1µm 

per second (Pollard et al., 2003, 2007, 2009; Millard et al., 2004). A short distance 

behind the cell’s leading edge the network of branched filaments is turned over 

within a few seconds, replaced by one composed of longer unbranched filaments 

(Figure 2.1).  

2) Severing a filament to create two free barbed ends: ADF (actin-depolymerising 

factor)/cofilin has a severing activity which creates free ends (Millard et al., 2004) 
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3) Starting a filament from monomers: Spontaneous actin assembly is inefficient due 

to the inherent instability of actin dimers and trimers. However, once larger than a 

trimer, actin filaments grow rapidly (Campellone et al., 2010). 

4) Nucleation and elongation by membrane bound formin proteins which initiate the 

formation of F-actin from free actin monomers and remain associated with the 

growing free end. This method produces long, unbranched actin filaments (Figure 

2.1).  
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2.2.2 Arp2/3 Complex: Nucleator of Actin Reorganisation 

The ubiquitous and evolutionarily conserved 220 kDa Arp2/3 complex consists of 

seven subunits (seven stably associated polypeptides). These include two Arp’s, 

Arp2 and Arp3 each of which has a structural homogeneity of approximately 45% 

with actin, and five additional subunits named ARPC1 to ARPC5 which form a 

scaffold that supports both of the Arps (Campellone et al., 2010; Pollard 2007; Xu et 

al., 2012). Crystallographic studies have shown that the two Arps lie distant from 

each other in the inactive complex (Pollard 2007; Derivery et al., 2010). 

 

Among the known actin nucleators, the Arp2/3 complex plays a unique role in its 

ability to both nucleate actin filaments and generate branched F-actin networks at 

the leading edge of motile cells (Campellone et al., 2010). These organised and 

branched actin networks are particularly seen in lamellipodia and other similar 

leading edge protrusions.   

 

In the presence of nucleation promoting factors , pre-existing actin filaments, actin 

monomers and ATP, the Arp2/3 complex will initiate new branching filaments that 

grow at an angle of 78° from the pre-existing mother filaments (Xu et al., 2012). 

However, a complete understanding of the structural pathway taken to accomplish 

this has not yet been achieved. 

 

Actin nucleation and branched network formation are the ultimate responses to a 

cellular stimulation from the external environment. Signalling pathways are initiated 
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via plasma membrane receptors, causing activation of membrane based small 

GTPase molecules (e.g. Cdc42, RhoA, Rac1). This results in a signalling cascade 

which activates nucleation promoting factors (NPFs) and finally the Arp2/3 complex 

(Figure 2.2). 

 

Nucleation promoting factors (NPFs) are proteins that bind to and activate the Arp2/3 

complex via a WCA-domain. Mammalian NPFs (Class I) consist of Wiskott-Aldrich 

syndrome protein (WASP) and neural-WASP (N-WASP), WASP-family verprolin-

homologous proteins (WAVEs) 1,2 & 3 and the recently identified factors WASH 

WASP and SCAR homologue (WASH) and (WASP homologue associated with 

actin, membranes and microtubules (WHAMM). All of these proteins together are 

known as the WASP superfamily. These important proteins are detailed further on 

along with the clinical syndrome from which they take their name (the Wiskott-Aldrich 

Syndrome). 

  

The WCA-domain consists of one or more WASP homology 2 (WH2) domains that 

bind actin monomers, plus an amphipathic connector region and an acidic peptide 

that together are thought to bind to Arp2/3 (Campellone et al., 2010). It is generally 

considered that the act of the WCA-domain binding to the Arp2/3 complex will bring 

about substantial conformational changes within the complex which prime it for 

nucleation (Campellone et al., 2010).   
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On activation the Arp2/3 complex is bound to the side of a pre-existing mother 

filament. Arp2 and Arp3, through considerable conformational changes, are thought 

to mimic two of the three actin monomers required for the nucleation of actin, 

through apposition of Arp2 and Arp3. Polymerisation and the formation of the new 

(daughter) filament is the end result (Rouiller et al., 2008; Takenawa et al., 2007; 

Derivery et al., 2010) (Figure 2.3). In this active conformation, all of the subunits of 

the Arp2/3 complex, including the pointed ends of both Arps, contact the mother 

filament. The conformational changes that the Arp2/3 complex undergoes to achieve 

this and the exact sites of NPF interactions, have yet to be defined (Xu et al., 2012). 
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2.2.3 The Rho-family small GTPases: Key Regulators of Actin  

2.2.3.1 Reorganisation 

Small GTPases of the Ras superfamily are divided into smaller subfamilies (Ras, 

Rho, Arf, Rab, Ran) (Hall 1998; Ellenbroek et al., 2007). The Rho subfamily of p21 

small GTPases  are approximately 21 kDa in size and the majority of information 

relating to them has been collected from studies on the best characterised members, 

Cdc42, Rac1 and RhoA. These have been found to regulate a broad range of 

cellular functions including mitosis, proliferation, apoptosis, regulation of the 

cytoskeleton and gene transcription (Ellenbroek et al., 2007). 

  

The Rho family proteins differ from the other subfamilies because their sequence 

contains a Rho insert domain in the GTPase domain. This is suggested to be 

involved in the activation of downstream effectors (Saskia et al., 2007; Spiering et 

al., 2011). There are currently 23 identified members of the Rho family, divided into 6 

groups:  

The Rho proteins (RhoA, RhoB, RhoC), Rac proteins (Rac1, Rac2, Rac3, RhoG), 

The Cdc42-like proteins (Cdc42, TC10, TCL, Wrch1, Chp), the Rnd proteins (Rnd1, 

Rnd2, Rnd3/RhoE), The RhoBTB proteins (RhoBTB1, RhoBTB2, RhoBTB3) and the 

Miro proteins (Miro1, Miro2). Some Rho proteins don’t belong to any subgroup – 

RhoD, Rif and RhoH/TTF (Ellenbroek et al., 2007). 

 

Rho GTPases function as molecular/binary switches in a large variety of signalling 

pathways. These signalling cascades are initiated by the stimulation of cell surface 
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receptors. Rho GTPases can be in an active conformation, bound to GTP, or in an 

inactive conformation, bound to guanosine diphosphate (GDP) (Ridley et al., 2003). 

They have an inherent phosphatase activity which catalyzes GTP to GDP. Only in 

the GTP bound state are these proteins able to interact with downstream effector 

proteins and propagate signals from a large variety of membrane receptors. 
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2.2.3.2 Regulators of Rho GTPases 

The activity of Rho GTPases is strictly controlled in order to stimulate specific 

downstream signalling pathways in cells. The activity regulators consist of three 

classes of proteins: GEFs (guanine nucleotide exchange factors), GAPs (GTPase-

activating proteins) and GDIs (guanine nucleotide dissociation inhibitors) (Hall 1998).  

 

GAPs enhance the very low intrinsic ability of Rho GTPases to hydrolyse bound GTP 

to GDP. Thus GAPs promote inactivation and reverse effector binding, thereby 

shutting down signalling pathways. GAPs are usually multidomain proteins and are 

able to interact with many other proteins (Ellenbroek et al., 2007; Ridley et al., 2003; 

Spiering et al., 2011). 

 

GEFs facilitate the exchange of GDP for GTP (Figure 2.4). This alters the 

conformation of the switch regions of the GTPases, thereby increasing the binding 

affinity of effector proteins leading to downstream signalling. GEFs, Like GAPs, also 

contain various additional domains which enable them to influence and determine 

the signalling route downstream of Rho GTPases. This is done either by direct 

binding to effector molecules, or by acting as scaffold proteins which interact with 

components of downstream effector signalling pathways (Ellenbroek et al., 2007; 

Ridley et al., 2003; Spiering et al., 2011). 
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Figure 2.4 The cyclic transition between an active GTP-bound state and inactive GDP-bound state of 

RHO GTPases facilitated by guanine nucleotide exchange factors (GEF); GTPase activating proteins 

(GAP) and guanine nucleotide dissociation inhibitors (GDI). Pi denotes a phosphate group which is 

released upon GTPase hydrolysis (Figure taken from Etienne-Manneville and Hall, 2002) 

 

GDIs are cytosolic proteins which form complexes with inactive GDP-bound Rho 

GTPases. They prevent the dissociation of GDP for GTP and stop cycling of the 

GTPases between the cytosol and the plasma membrane. This prevents the Rho 

GTPases from localising to the membrane, which is their place of action, and thereby 

prevents their activation by GEFs (Ellenbroek et al., 2007; Ridley et al., 2003; 

Spiering et al., 2011). GDIs are also able to form complexes with active, GTP-bound 

Rho GTPases. In this situation they prevent hydrolysis of GTP to GDP and inhibit 

interaction with downstream effectors. 

Association with GDIs keeps Rho GTPases in the cytoplasm, inactive or unable to 

signal to downstream effectors. Phosphorylation of Rho GDIs breaks down the 

complex, releasing the Rho GTPases and allowing translocation from the cytoplasm 

to the plasma membranes were GEFs can activate them and enable binding of 

effectors (Raftopoulou et al., 2004; Ellenbroek et al., 2007; Spiering et al., 2011).    
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In normal conditions the activity of Rho GTPases is tightly regulated by a large 

number of GEFs and GAPs, which themselves are also strictly controlled. Activation 

of GTPases depends on the manner of cell and on the specific receptor signalling 

pathways. There are many more GEFs, GAPs and effector proteins than there are 

Rho GTPase family members and so activation is dependent on the balance of the 

activities of the regulators. The local amount of GTP-bound protein and the time 

during which the protein remains active determines the downstream signalling at 

specific sites in cells (Ellenbroek et al, 2007; Spiering et al., 2011). 
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2.2.3.3 Rho GTPases and the Actin Cytoskeleton 

The Rho GTPases have best been characterised by their particular function in the 

regulation of the actin cytoskeleton in response to receptor signalling. The vast 

majority of Rho proteins play a role in organising the actin filament system 

(Ellenbroek et al., 2007; Ridley et al., 2003; Spiering et al., 2011). 

 

RhoA regulates formation of contractile actomyosin bundles (stress fibres) and focal 

adhesions. Rac1 regulates formation of actin rich protrusions (lamellipodia and 

membrane ruffling) and Cdc42 regulates formation of filopodia (Ellenbroek et al., 

2007; Ridley et al., 2003; Spiering et al., 2011). These actin dynamics are regulated 

by coordinated activation of different signalling pathways downstream of the small 

GTPases. RhoA, B and C interact with Rho-associated protein kinase (ROCK) which 

subsequently activates myosin light chain kinase, resulting in activation of myosin 

(by phosphorylation), increased contractility and formation of stress fibres. ROCK is 

also upstream of LIM domain kinase (LIMK) whose activation has been linked to the 

phosphoregulation of ADF/cofilin. This is one of the key regulators of actin severing, 

nucleation and capping (Raftopoulou et al., 2003). RhoA, B and C also interact with 

the effector proteins mDia1 and mDia2, which catalyze F-actin and help produce 

filopodia and lamellae. This stimulates actin polymerisation, producing straight, 

unbranched actin filaments. 

 

Cdc42 activates the Arp2/3 complex via its effector N-WASP, which results in actin 

polymerisation and the formation of filopodia. 
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Rac1 regulates actin organisation via the WAVEs or P21-activated kinase (PAK), 

resulting in altered actin nucleation activity of the Arp2/3 complex and formation of 

lamellipodia. WAVE proteins don’t have a GTPase binding domain, therefore, their 

activation requires binding of Rac1 to the adaptor molecule IRSp53, followed by 

binding of this combined complex to the WAVE regulatory complex (WRC) to 

activate the WAVE protein. Binding and activation of the Arp2/3 complex then occurs 

and produces dendritic actin network formation (Ellenbroek et al., 2007; Ridley et al., 

2003; Spiering et al., 2011). 

The GEF Tiam1, which activates Rac, can bind IRSp53 and p21Arc (one of the 

components of the Arp2/3 complex) thereby providing a mechanism to directly 

regulate Tiam1/Rac-mediated actin polymerisation processes by the Arp2/3 

complex. 

 

Rho GTPases have been shown to regulate various cytoskeleton-dependent 

processes. They have been shown to regulate the formation and maintenance of 

adherens junctions (AJs) and tight junctions (TJs). Rho GTPase signalling can 

stabilise or disassemble AJs leading to epithelial-mesenchymal transition (EMT). The 

reciprocal balance between Rac and Rho activity determines the epithelial or 

mesenchymal phenotype of epithelial cells. 

 

Many effector proteins of Rho GTPases are serine/threonine kinases which 

phosphorylate downstream targets  thereby initiating various signalling cascades that 
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regulate different cellular processes. P21-activated kinases (PAKs) are such 

serine/threonine kinase effectors (Ellenbroek et al., 2007). There are 6 members, 

PAK1-6. Some of these are able to bind active Rac1 (PAK1-3), and all of which can 

bind active Cdc42 (PAK1-6). PAKs are important organisers of the cytoskeleton. Rho 

associated coiled-coil-containing protein kinases (ROCK-I and ROCK-II), also 

serine/threonine kinases, bind RhoA. Activation of ROCK may lead to different 

cellular events that regulate cytoskeletal changes affecting cell-cell or cell-substrate 

adhesions and cell migration. These effects are mediated via actomyosin-mediated 

cell contraction. N-WASP is a specific Cdc42 effector protein that upon activation by 

Cdc42 binds other proteins such as the Arp2/3 complex to regulate actin 

polymerisation. 

 

The balance between Rac1 and RhoA activity (between two small GTPases of the 

Rho family) is crucial for several processes such as cell-cell and cell-matrix 

adhesions, cell migration and EMT. Classically, it was suggested that RhoA was 

thought to be activated mainly at the retracting tail of a motile cell, to promote tail 

contraction, while Rac1 was thought to be activated at the front of the cell to promote 

lamellipodial protrusion. However, studies of fibroblasts and cancer cells show a 

more complex and dynamic pattern of Rac1/RhoA GTPase coordination that is 

regulated not only spatially but temporally over very small time scales in those areas 

that undergo cytoskeletal rearrangements. Cross talk between Ras and Rho proteins 

(between different GTPase subfamilies) has also been observed in several biological 

processes, including cell transformation, cell migration and EMT (Sahai et al., 2002). 
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2.2.4 Cell migration and invasion in cancer 

As commented upon by Chambers et al. (2002) “Metastases rather than primary 

tumours are responsible for most cancer deaths”. Cell motility has been implicated in 

the spreading of cancer cells and is therefore an essential step in cancer metastasis. 

Understanding cellular motility and the migrational processes used by cancer cells 

can potentially form the basis for new ideas relating to diagnostic, prognostic and 

therapeutic approaches in the management of metastases (Wang et al., 2005). 

Cancer cells in vivo migrate through three dimensional (3D) networks of extracellular 

matrix (ECM) fibres and sometimes move collectively as a tumour mass. 

Fundamental aspects of the molecular mechanisms of cancer cell motility have been 

largely revealed in simple two dimensional (2D) environments, but recent 3D studies 

greatly expand upon the area. 

 

To migrate, the cell body must change its shape and stiffness as it interacts with its 

surrounding environment. This is a vital role undertaken by the actin cytoskeleton 

that exists throughout the cell. Cancer cells typically develop alterations in their 

shape and in their attachments to other cells and the ECM. The loss of cell-to-cell 

adhesion molecules (such as E-cadherin) is an initial first step. The ECM provides 

the substrate along which the cell will migrate, but it also acts as a barrier (Hanahan 

et al., 2011)  

 

Cell migration can be visualised as a cyclical process (Figure 2.5). Initially 

protrusions are extended by the cell in the direction of migration which recognise and 
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interact with the external environment. These are driven by actin polymerisation, part 

of the cell cytoskeleton. These protrusions are then stabilised by transmembrane 

receptors which are linked to the actin cytoskeleton intracellularly and adhere to the 

ECM or adjacent cells. These adhesions then act as traction sites for migration. As 

the cell migrates forward over the adhesion sites they are disassembled at the cell 

rear, allowing the cell to detach at that point and retract the protrusion (Ridley et al., 

2003). This results in a motility cycle and overall produces a forward motion in the 

direction of the initial protrusion. It has been noted however, that cancer cells can 

modify their morphology and nature of migration in order to respond to environmental 

changes as necessary (Ridley et al., 2003; Friedl et al., 2003). 
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Figure 2.5 Cell migration is driven by cyclic steps dependent on cytoskeletal reorganisation. (a) 

Protrusive structure such as filopodia and lamellipodia at the leading edge extend out in the direction 

of movement. (b) The leading edge adheres to the substrate. (c) (d) The tail end of the cell is 

detached and retracted  (Image taken from Mattila and Lappalainen, 2008) 

 

The initial protrusions formed by cells can be quite diverse in their morphology and 

dynamics. In 2D environments the main protrusions seen are lamellipodia and 

filopodia. Lamellipodia are flat, broad sheets of membrane constructed from 

polymerized actin filaments in branched networks that protrude forward from the 

leading edge of cells during cell migration. Filopodia are finger-like protrusions of up 
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to 50μm in length or more, constructed from a core of actin filaments that are 

bundled in parallel (Friedl et al., 2003). 

 

Cancer cell migration and invasion of the ECM in 3D environments (which more 

closely mimics the in vivo cancer microenvironment) show a wide range of 

processes which help to further understand this mechanism. Initially cell-cell 

adhesions become weakened and disrupted, which allow solitary cells to depart from 

the primary tumour mass. This is followed by changes in cell morphology which 

imply different “modes” of motility/invasion: elongated/mesenchymal invasion and 

round-shape/amoeboid invasion (Figure 2.6) (Wolf et al., 2003; Sahai, 2007; Sanz-

Moreno et al., 2008; Kurisu et al., 2010; Hanahan et al., 2011). Each mode conveys 

different properties to the cells which enable them to invade surrounding tissues of 

varying matrix density (Wang et al., 2005). A further third invasion mode has been 

described, that of collective invasion. This refers to cells moving in a group and has 

been speculated to mimic the invasive front of tumours ( Sanz-Moreno et al., 2008; 

Kurisu et al., 2010; Hanahan et al., 2011). The fact that a group of cells is involved 

suggests that the integrity of cell-cell adhesions has not been completely lost in this 

motility mode. Finally, invasion of the ECM requires the ability to enzymatically 

degrade and sever ECM fibres to remodel the surrounding matrix. Two main 

structures have been identified in cells which carry out this process. These are 

pseudopodia and podosomes (or invadopodia). These actin based cellular 

protrusions are active zones for ECM proteolysis. Pseudopodia are formed by 

activity of WAVE 2 and the Arp2/3 complex in cells from the mesenchymal/elongated 

mode of motility and are structures where proteolytic enzymes are concentrated 

(Sahai et al., 2003; Sanz-Moreno et al., 2007; Ridley et al., 2003). Invadopodia are 
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unique protrusive structures which are different from pseudopodia (Kurisu et al., 

2010). They have an actin-rich core structure which concentrates proteases (Kurisu 

et al., 2010; Chen, 1989; Bowden et al., 1999) and are likely supporters of 

elongated/mesenchymal invasion rather than amoeboid (Li et al., 2010).  

 

 

Figure 2.6 Multiple modes of cancer cell motility in 3D. (a) Cancer progression is illustrated from the 

stand point of cell motility mode. A primary tumour initially invades in a mode called collective 

migration. If cancer cells are released from a primary tumour mass and move as single cells, the cells 

can adopt two modes of invasion, round-shape motility or elongated motility. EMT, epithelial-to-

mesenchymal transition. (b) The actin cytoskeleton of a two dimensionally migrating cell. In 2D 

circumstances, characteristic actin structures are commonly seen in many cell types. They generally 

form lamellipodia, filopodia and stress fibres. In malignant cancer cells, invadopodia are sometimes 

evident as large actin dots that show proteolytic activity around them. (c) The actin cytoskeleton in 

cells migrating in the elongated motility mode. The tip contains dense actin networks and its 

biogenesis is dependent on Wiskott-Aldrich syndrome protein family verprolin homologous protein 

and actin-related protein 2/3 activities. (d) The actin cytoskeleton in cells migrating in the round-shape 

motility mode. Protrusions used for migration are, in this case, membrane blebs. Both the formation 

and retraction of membrane blebs rely on actomyosin contractility (Image taken from Kurisu and 

Takenawa, 2010) 
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The two main modes of migration in cancer cell are mesenchymal and amoeboid. 

These modalities of migration appear to be interchangeable, depending on the 

microenvironment of the cell. Mesenchymal invasion is characterised by an 

elongated cellular morphology and is dependent on extracellular proteolysis. Broad 

lamellipodia are no longer formed at the leading edge, instead long finger-like 

protrusions rich in F-actin are extended called pseudopodia. The tip of pseudopodia 

seemingly contain miniature versions of the lamellipodium found in 2D studies and 

filopodium-like spikes insert into the pericellular ECM. The GTPase Rac has been 

implicated in this type of motility which signals through WAVE2 to commence actin 

polymerisation (Sanz-Moreno et al., 2008; Kurisu et al., 2010; Hanahan et al., 2011). 

Amoeboid invasion is where individual cancer cells show morphological plasticity, 

allowing them to slither through existing interstices in the ECM rather than clearing a 

path for themselves, as occurs in mesenchymal invasion (Friedl et al., 2003; 

Yamazaki et al., 2009; Sahai et al., 2003). Cells tend to have a rounded morphology 

with no obvious polarity and are far less dependent on proteases. These cells rapidly 

inflate their membrane in the direction of movement in a balloon-like shape called a 

membrane bleb. Actin networks gradually fill the cortex of these blebs and the actin 

mesh generates a contractile force by way of myosin II activity. They require high 

ROCK signalling to drive the elevated levels of actomyosin contractility needed 

(Sanz-Moreno et al., 2008; Kurisu et al., 2010; Hanahan et al., 2011). 
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Due to the plasticity of these modes of invasion and the different signalling pathways 

involved, the effectiveness of single therapeutic agents aimed at reducing invasion 

may be limited. 

 

The members of the Rho family of small GTPases are key regulators of cell 

movement through their actions on actin assembly, actomyosin contractility and 

microtubules. The three main members of this family Rho, Rac and Cdc42 have all 

been linked to cell movement. Rac1 drives motility by promoting lamellipodia 

formation via WAVE2 and the Arp2/3 complex, whereas RhoA signals to the Rho-

kinases (ROCKI and II) promoting the formation of actin stress fibers and generation 

of the actomyosin contractile force required for cell movement (Sanz-Moreno et al., 

2008; Hanahan et al., 2011). 

 

As described, cell protrusions are a requirement for initiation and maintenance of cell 

migration in all cells. These can be formed spontaneously or induced by chemokines 

or growth factors (Friedl et al., 2003; Ridley et al., 2003; Wang et al., 2005). 

Therefore, cancer cell migration and invasion can be enhanced by chemotaxis. Cell 

surface receptors are engaged by extracellular molecules (such as growth factors, 

chemokines or ECM molecules) which are detected by intracellular signalling 

pathways. These coordinate cell migration along the gradient path of the molecule 

(Condeelis et al., 2003; Maghazachi, 2000). Growth factor signalling at the cell 

membrane is detected by receptor tyrosine kinases (RTKs). These then recruit PI3K 

(phosphoinositide 3-kinase) to the plasma membrane-anchored recpetors where it is 

activated. The active PI3K phosphorylates PIP2 (Phosphatidylinositol [4,5] 
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bisphosphate) to generate PIP3 (Phosphatidylinositol [3,4,5] trisphosphate). Through 

its pleckstrin homology (PH) domain, the nodal kinase AKT (also known as PKB) 

binds to PIP3, where it is activated by 2 phosphorylation events and triggers a 

complex cascade of signals that regulate growth, proliferation, survival and motility 

(Yuan et al., 2008). In the case of motility one of the pathways through which actin 

polymerisation is triggered involves the increased PIP3 levels at the plasma 

membrane. This leads to localised activation of Rac (Rossman et al., 2005; Cote et 

al., 2007). The activated Rac recruits WAVEs to the plasma membrane where they 

are activated, leading to formation of membrane protrusions such as lamellipodia 

and pseudopodia. 

 

Macrophages and cancer cells have been reported to migrate together towards 

chemoattractants such as growth factors or colony-stimulating factors. They become 

locked in a paracrine loop whereby each signals to the other and encourages joint 

migration. This interaction can provide a mechanism for attracting cancer cells to 

blood vessels where those macrophages in the vicinity will help to signal and direct 

cancer cells to them (Wang et al., 2005).  

 

In vivo invasion studies have been performed where solitary invasive cells were 

isolated from a live primary tumour using microneedles containing chemoattractants 

such as EGF to mimic signals from blood vessels and surrounding tissues. It isolated 

a subpopulation of highly motile cells that at that stage of invasion were neither 

proliferating nor apoptotic (Wang et al., 2005; 2004; Goswami et al., 2004). The lack 

of proliferation would suggest that treatments aimed at growth pathways might be 
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ineffective at killing invasive tumour cells. Gene expression patterns in these 

migrating, invasive cancer cells were compared to those in the general primary 

tumour cancer cell population. A unique pattern of gene expression in the invasive 

cells was identified (Wang et al., 2004). This pattern showed that genes involved in 

the motility of cells were markedly upregulated. These include the Arp2/3 pathway, 

the cofilin pathway and the capping protein pathway. All of which help regulate the 

actin polymerization process located in cell protrusions and at leading edges. This 

study gave credence to the idea of highly motile and chemotactic invasive cancer 

cells. 
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2.2.4.1 Epithelial-Mesenchymal Transition (EMT) 

The epithelial to mesenchymal transition (EMT), while being a critical process during 

embryonic development and wound healing, also plays a fundamental role in cancer 

metastasis. It has been prominently implicated as the process by which epithelial 

cells acquire their invasive phenotype (the abilities to invade, resist apoptosis and 

disseminate), undergoing a change from the differentiated to a more undifferentiated 

state. During the process of invasion and metastasis cancer cells can undergo the 

EMT in varying degrees. It can be transient or it can be more permanent and stable 

(Klymkowsky et al., 2009; Polyak et al., 2009; Thiery at al., 2009; Yilmaz et al, 2009; 

Barallo-Gimeno et al., 2005).  

 

EMT is regulated by a variety of signalling pathways originating from the stroma 

surrounding cancer cells. These include Transforming Growth Factor-beta (TGFβ), 

Tumour Necrosis Factor-alpha (TNFα), Hepatocyte Growth Factor (HGF), Platelet 

Derived Growth Factor (PDGF), Epidermal Growth Factor (EGF) and Integrin 

engagement, all of which converge at the level of key transcription factors such as 

SNAIL, SLUG, TWIST and ZEB (Kalluri et al., 2009; Bullock et al., 2012). TGFβ 

appears to play a dominant role. It binds the TGFβ II receptor (TβRII) ultimately 

resulting in the phosphorylation of SMAD2 and 3 which form a complex with SMAD4 

that is capable of translocation into the nucleus and exerting transcriptional control 

over numerous genes, thereby directly activating transcription factors (Zavadil et al., 

2005; Bullock et al., 2010; Kalluri et al., 2009; Bullock et al., 2012). These are 

normally active during embryogenesis and their activation coordinates the EMT and 

related migratory processes through initial repression of epithelium-specific gene 
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expression including cytoskeletal and cell surface proteins (Thiery et al., 2009). 

Transcription factors have been found expressed in various combinations in a 

number of malignant tumours and are important in invasion and metastasis (Micalizzi 

et al., 2010; Taube et al., 2010; Schmalhofer et al; 2009; Yang et al., 2008). The 

traits induced by these transcription factors include loss of adherens junctions (E-

cadherin and cytokeratin are downregulated in mesenchymal cells, and replaced 

during EMT by the mesenchymal specific markers vimentin and fibronectin [Kalluri et 

al., 2009; Iwatsuki et al., 2010]), conversion from an epithelial/polygonal to a 

fibroblastic/spindly morphology, increased motility, expression of matrix-degrading 

enzymes and increased resistance to apoptosis.    

 

An area of significant progress has been identification of the critical role played by 

microRNAs (miRNAs) in the EMT process. MiRNAs are a class of small, highly 

conserved non-coding RNAs that provide widespread control of gene expression 

through translational repression or degradation of mRNA. MiRNAs have fundamental 

roles in the regulation of cellular processes and are recognised as playing a critical 

role in malignant transformation with a growing number of oncogenes and tumour 

suppressor genes found to be under miRNA control (Bullock et al., 2012). Over 1400 

miRNAs have been identified and de-regulation of them has profound 

consequences, as each individual miRNA targets multiple genes and is capable of 

inducing broad downstream and feedback effects simultaneously. Several miRNAs 

have now been described as crucial regulators in EMT. These miRNAs dynamically 

influence the balance between EMT and the reverse process of mesenchymal-

epithelial transition (MET) (Gibbons et al., 2009). 
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Cancer cells at the invasion margins of certain carcinomas appear to have 

undergone an EMT. This suggests these cells are subjected to microenvironmental 

stimuli that promote the transition (such as TGFβ), compared to cells at the core of 

the primary tumour who do not show evidence of an EMT and therefore have not 

been subjected to the stimuli that promotes this transition (Hlubeck et al., 2007). 

 

The transcription factors which induce EMT appear able to coordinate most aspects 

of the invasion-metastasis cascade and with the discovery of miRNAs further 

regulatory processes contributing to cancer cells acquiring their migratory and 

invasive abilities are being discovered. 
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2.3 Wiskott-Aldrich syndrome 

As already described, nucleation promoting factors (NPFs) are proteins that bind to 

and activate the Arp2/3 complex, part of the signalling cascade necessary for cell 

motility and therefore invasion and metastasis in cancers. These important NPFs are 

known as the WASP (Wiskott-Aldrich syndrome protein) superfamily. Details of these 

proteins are discussed later, but the clinical syndrome from which they take their 

name will be discussed here.  

 

The Wiskott-Aldrich syndrome was first described in 1937 by Dr. Alfred Wiskott, a 

German paediatrician, who described a case of three brothers that presented with 

eczema, thrombocytopenia, bloody diarrhoea and recurrent ear infections. They all 

died at a young age of sepsis or gastrointestinal haemorrhage. Wiskott associated 

the haemorrhagic symptoms with a platelet dysfunction and on observing that all 

three brothers were afflicted, but none of the four sisters showed any symptoms, this 

led him to propose that the syndrome was due to a hereditary thrombopathia 

(Wiskott, 1937). Later, in 1954, Dr. Robert Anderson Aldrich reported a family case 

study. Over six generations of a Dutch-American family, 16 out of 40 males, but no 

females, died of a disease very similar to that which Wiskott described. Aldrich also 

attributed the disease to a recessive X-linked mode of inheritance (Aldrich et al., 

1954). Currently, the Wiskott-Aldrich syndrome (WAS) is described as a hereditary 

X-linked disease where affected males exhibit microthrombocytopaenia, varying 

degrees of eczema, combined immunodeficiency and an increased risk of 

autoimmune disorders and lymphoid malignancies (Albert et al., 2011; Ochs et al., 

2009, Sullivan et al., 1994). The incidence of WAS has been estimated to be 
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between 1 and 10 in 1 million individuals (Stray-Pedersen et al., 2000; Ryser et al., 

1988). However, this could potentially be much higher. 
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2.3.1 Molecular basis of Wiskott-Aldrich Syndrome 

The disease is caused by a mutation in the WAS gene which codes for the Wiskott-

Aldrich syndrome protein (WASP). This was first isolated in 1994 (Derry et al., 1994) 

and since then more than 150 unique mutations in the WAS gene have been 

identified, correlating with the variable clinical phenotypes associated with WAS 

(Albert et al., 2011; Ochs et al., 2006). Missense mutations in exons 1-3 seem to be 

the most common, followed by nonsense and splice mutations (mainly in exons 6-

11) and short deletions and insertions (Ochs et al., 2006). 

WASP is a key regulator of actin polymerization in haematopietic cells. The 

involvement of the actin cytoskeleton in cell migration and cell trafficking of myeloid 

cells, macrophages, dendritic cells and Langerhans cells make these cell lines 

particularly vulnerable to WASP mutations. The WASP gene consists of 12 exons, 

encodes a 502 amino acid protein, and contains several unique domains with 

characteristic functional properties.  
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2.3.2 Clinical Spectrum of the Wiskott-Aldrich syndrome 

Once the molecular defect was identified in 1994 the clinical spectrum of Wiskott-

Aldrich syndrome broadened. Depending on the type of mutation and its effect on 

WASP expression a number of overlapping but distinct phenotypes could be seen. 

These include classic WAS, chronic or intermittent X-linked thrombocytopaenia, a 

relatively mild form of WAS, and X-linked neutropenia caused by an arrest of 

myelopoiesis (Ochs et al., 2006). It is also possible for the disease to progress at a 

later age, therefore patients diagnosed with a mild form earlier in life could develop 

autoimmunity or cancer as they get older (Albert et al., 2011).  
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2.3.2.1 Classic Wiskott-Aldrich syndrome 

Classic WAS is based on the original description by Wiskott in 1937. Young males 

present in their early childhood with bleeding diathesis due to thrombocytopaenia, 

recurrent often severe infections and difficult to treat eczema. There is a gradual 

reduction of lymphocyte (T and B) numbers over the years and a drop in the 

proliferative response of T lymphocytes to specific antigens (polysaccharide antigens 

and bacteriophage) and anti-CD3.  

IgG and IgM levels usually remain at normal levels but their response to antigens 

may be impaired. IgA and IgE serum levels are usually increased, reflecting the 

immune dysfunction (Sullivan et al., 1994). 

Unless haematopoietic cell transplantation or gene therapy is carried out, patients 

with classic WAS have a poor prognosis and the median life expectancy is only 15 

years (Moratto et al., 2011). Without such therapy they tend to develop autoimmune 

disorders and lymphoma or other malignancies which greatly reduce life expectancy 

and leads to an early death (Sullivan et al., 1994).  
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2.3.2.2 X-linked thrombocytopaenia 

X-linked thrombocytopaenia (XLT) is seen in male patients with congenital 

thrombocytopaenia, sometimes associated with eczema. Very rarely the 

thrombocytopaenia may be intermittent (IXLT). These patients are often 

misdiagnosed as being affected with idiopathic thrombocytopaenic purpura (ITP), 

resulting in a late diagnosis. 

XLT patients could potentially have a very mild and benign disease course with 

excellent long term survival, however, they still carry an increased risk for severe 

disease-related events. These include life-threatening sepsis (especially following 

splenectomy), severe haemorrhage or autoimmunity and cancer (Albert et al., 2010, 

2011). Those patients misdiagnosed with ITP often do not have the therapeutic 

decisions made that reflect this increased risk of cancer or severe disease-related 

events, as such it is important for those patients noted to have a 

microthrombocytopaenia to be assessed for WAS gene mutations and WASP 

expression. 
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2.3.2.3. X-linked neutropaenia 

Missense mutations in the GTPase (Cdc42)-binding domain of WASP impairs the 

autoinhibitory conformation of the protein and leads to a “gain of function”, resulting 

in increased actin polymerization. These activating mutations in the WAS gene result 

in a variant of congenital X-linked neutropaenia (XLN). (Albert et al., 2011) 

XLN patients suffer from profound neutropaenia. It can be associated with 

lymphopaenia, reduced in-vitro proliferation to anti-CD3 and an increased risk for 

myelodysplastic changes in the bone marrow (Beel et al., 2009). 
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2.3.3 Pathophysiology 

As described previously, WASP is a cytoplasmic protein involved in cell motility, cell-

cell interactions, immune regulation, cell signalling and cytotoxicity. These can affect 

adaptive and innate immunity, immune surveillance and platelet function. 

 

2.3.3.1 Immunodeficiency of Wiskott-Aldrich syndrome 

Patients suffering from WAS display a variety of characteristics resulting in 

immunodeficiency. They have a reduced number of T lymphocytes that function 

poorly and disturbed B cell homeostasis. Over time a lymphopaenia can develop, in 

those patients with classic WAS, of variable severity. IgG and IgM are usually at 

normal serum levels, but IgA and IgE are raised. Antibody responses to some 

antigens (such as vaccinations) may be inadequate. Absent or reduced WASP also 

affects innate immunity, causing problems for natural killer (NK)-cells and aberrant 

regulatory T-cell function due to the impact on the immunological synapse which 

WASP plays an important role in producing and maintaining (Orange et al., 2002; 

Albert et al 2011; Dupre et al., 2002) . A lack of WASP causes an inability to produce 

podosomes resulting in defects of movement of phagocytic cells (Albert et al., 2011; 

Ochs et al., 2009).  
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2.3.3.2 Thrombocytopaenia 

Microthrombocytopaenia is seen in all patients with WAS mutations (except XLN 

patients) and the platelets that are present also show defective procoagulatory 

activity. Therefore, bleeding and the risk of haemorrhage are common clinical 

problems. This can range from minor problems such as petechiae, haematomas or 

bleeding from the gums to more life threatening manifestations such as severe 

gastrointestinal haemorrhage or an intracranial bleed. These can occur 

spontaneously or as a consequence of trauma.  

The exact mechanisms resulting in the thrombocytopaenia of WAS/XLT patients is 

still not clearly understood. It is generally accepted that platelets in these patients are 

more rapidly destroyed and in vitro studies of mice completely devoid of WASP have 

attributed this accelerated platelet turnover to both intrinsic platelet abnormalities and 

to an immune-mediated mechanism (Marathe et al., 2009).  

 

2.3.3.3 Autoimmunity 

The mechanisms underlying autoimmunity in WAS have recently begun to be 

elucidated. WASP is required to regulate and maintain the function of regulatory T 

cells (Marangoni et al., 2007; Maillard et al., 2007; Humblet-Baron et al., 2007). In 

vitro studies of WASP deficient regulatory T cells have found them to express lower 

levels of CD25 and following activation they fail to suppress effector T lymphocyte 

proliferation and interferon-γ production (Marangoni et al., 2007; Maillard et al., 2007; 

Humblet-Baron et al., 2007). Furthermore, it has been postulated that the lack of 

expression of a variety of “homing” molecules explains why the regulatory T cells 
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lacking in WASP are unable to migrate to inflamed tissues in vivo (Marangoni et al., 

2007; Maillard et al., 2007; Humblet-Baron et al., 2007).   

A further possible contributing cause to the autoimmunity in WAS has been 

suggested by in vivo studies. These have found that WASP negative murine T cells 

have a defective Fas ligand expression, thereby reducing Fas-mediated apoptosis. 

This is an important mechanism as self-reactive lymphocytes are eliminated in the 

periphery via this process (Nikolov et al., 2010). Defective phagocytosis of apoptotic 

cells in WASP deficient patients may result in chronic inflammation and 

autoimmunity (Albert et al., 2011). 
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2.3.4 Treatment of Wiskott-Aldrich syndrome 

2.3.4.1 Haematopoietic cell transplantation 

Haematopoietic cell transplantation (HCT) has become the treatment of choice for 

those patients suffering with classic WAS phenotype. The first allogeneic HCT in a 

WAS patient occurred over 40 years ago and since then there have been gradually 

improving outcomes (Parkman et al., 1978; Moratto et al., 2011; Albert et al., 2011).  

Outcomes for recipients of a matched sibling donor are now similar to those 

recipients of a matched unrelated donor (MUD) when recipients are under the age of 

5 years at time of HCT (99% 5 year survival vs. 94%) . However, The 5 year survival 

for recipients over the age of 5 does decrease in those who receive a MUD-HCT 

(73.3%) but is better than seen in earlier studies (Filipovich et al., 2001). HLA-

mismatched family donors have been less satisfactory in the past but since 2000 

survival has increased to over 90% (Moratto et al., 2011). Partially matched 

unrelated cord blood as a source of stem cells has also been increasingly used as a 

treatment (Knutsen et al., 2003). 

A recent international study has shown that patients with WAS who were treated with 

all types of HCT, since 1980, had an overall survival of 84%. This was even higher 

(89.1% 5 year survival) for those who received HCT from 2000, reflecting better 

HLA-typing techniques, better donor-recipient matching and advances in supportive 

care (Moratto et al., 2011; Albert et al., 2011). 
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2.3.4.2 Gene therapy 

The current concept of gene therapy for WAS involves the introduction of a normal 

WAS gene copy into haematopoietic CD34+ stem cells isolated from a WAS patient. 

The patient is subjected to submyeloablative doses of chemotherapy before the 

manipulated cells are infused back into the same patient (Botzug et al., 2006). 

 

2.3.4.3 Splenectomy 

Undertaking splenectomies in WAS/XLT patients results in an increase in platelet 

numbers the majority of the time. However, it has not been shown in any prospective 

studies that it reduces the risk for severe bleeding although retrospective case 

evaluations strongly suggest that it might (Mullen et al., 1993). As already explained, 

WAS/XLT patients have a higher risk for systemic infections, particularly so after a 

splenectomy. They would therefore require lifelong antibiotic prophylaxis and this 

should be taken into account along with family situation and possible future 

compliance issues. 

 

2.3.5 Development of new therapeutic strategies 

Current focus lies on improving gene therapy and delivery systems. Clinical trials 

using improved lentiviral vectors are in the final stages to start enrolling classic WAS 

patients (Albert et al., 2011). This makes gene therapy a potentially viable option for 

those patients lacking a suitable stem cell donor. However, to succeed, gene therapy 

for WAS requires a balance between the risks of insertional mutagenesis and 
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reduced clinical efficacy associated with insufficient promoter activity (Astrakhan et 

al., 2012). 
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2.4 The Wiskott-Aldrich Syndrome Protein (WASP) Family 

As previously mentioned, NPFs are proteins which bind to and activate the Arp2/3 

complex via a carboxy (C)-terminal WCA-domain to initiate actin nucleation. They 

have diverse amino-terminal sequences that enable different modes of regulation 

and functions in cells. The WASP super-family are important regulators and 

promoters of actin nucleation through their role as NPFs. They function downstream 

of Rho family GTPases to activate the Arp2/3 complex. 

 

The WASP super-family consists of WASP, which is expressed exclusively in 

haematopoietic lineages and its ubiquitous homologue Neural-(N-)WASP; brain 

enriched WASP-family verprolin-homologous protein (WAVE)1 and WAVE 3, and 

ubiquitous WAVE 2; and newly characterised members WASP and SCAR 

homologue (WASH), WASP homologue associated with actin, membranes and 

microtubules (WHAMM), and junction-mediating and regulatory protein (JMY) 

(Kurisu et al., 2010). 

 

The WASP super-family genes are located on different chromosomes. WASP is 

carried on the X chromosome, N-WASP on chromosome 7, WAVE 1 on 

chromosome 6, WAVE 2 on chromosome 1 and WAVE 3 on chromosome 13. The 

expressed proteins are between 498 and 559 amino acids long and are encoded by 

9 to 12 exons. The length of the genes is relatively similar, ranging from 67.1kb for 

N-WASP to 131.2kb for WAVE 3, with the exception of WASP which is a compact 

7.6kb (figure 2.7). 
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Figure 2.7 Human WAVE protein domain structure. Key denotes conserved domains. The percentage 

shown below the WHD/SHD domain indicates the amino acid similarity of that domain (Figure 

modified from Kurisu and Takenawa., 2009) 

 

WASP super-family proteins share two main regions of homology: a central proline-

rich segment followed by a conserved C-terminal sequence called the WCA (or VCA 

in some papers) domain. This consists of one or more WASP homology 2 (WH2) 

domains (also called verprolin homology domain, hence the alternative name) that 

bind G-actin monomers, plus an amphipathic connector or central region and an 

acidic peptide region that together bind to the Arp2/3 complex (Campellone et al., 

2010; Kurisu et al., 2009, 2010). This binding action brings these two important 

components for actin nucleation into close proximity, activates the Arp2/3 complex 

and initiates actin polymerisation. As all WASP super-family members contain this 

WCA domain, they are all capable of initiating Arp2/3 complex–mediated actin 

polymerisation to produce intricate branched actin networks.  
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WASPs and WAVEs are known as effectors of Rho family small GTPases, 

specifically Cdc42 and Rac1. When activated intracellularly in studies Cdc42 and 

Rac1 induce the formation of lamellipodia and filopodia, respectively. 
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2.4.1 WASP and N-WASP 

WASP and N-WASP are found in animals, fungi and protists with N-WASP sharing 

50% homology with WASP. Mammalian WASP is expressed specifically in 

haematopoietic cells as previously discussed. By contrast, N-WASP is expressed in 

most cell types and its deletion results in neurological and cardiac abnormalities and 

embryonic lethality in mice (Campellone et al., 2010). 

 

Endogenous WASP and N-WASP (WASPs) form a heterodimer complex with 

WASP-interacting protein (WIP) family proteins. These consist of WIP (A G-actin and 

F-actin binding molecule), CR16 (corticosteroids and regional expression-16), and 

WICH/WIRE (WIP- and CR16-homologous protein/WIP-related protein). Structurally, 

WASPs have a modular domain organisation consisting of an N-terminal WASP 

homology 1 (WH1) domain, which directly interact with the WIPs to bind them 

together to form the WASP or N-WASP complex in a 1:1 molar ratio (Ho et al., 2001; 

Kurisu et al., 2010). Following on from this domain is a basic region, a Cdc42 and 

Rac interactive binding (CRIB) site and autoinhibitory motifs that are collectively 

called the GTPase-binding domain (GBD). The proline rich domain (PRD) is located 

next, adjacent to the WCA domain found at the C-terminal (Campellone et al., 2010).  

 

The WASPs are autoinhibited in a resting state via an intramolecular interaction and 

therefore have very little NPF activity. This is thought to prevent unregulated actin 

polymerisation, anathema to normal cellular function, by masking part of the WCA 

domain.  
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Activation of the N-WASP-WIP complex is via signal transduction pathways initiated 

at the plasma membrane which converge on cellular effectors that interact with the 

GBD or the PRD. N-WASP directly binds via the GBD/CRIB domain with activated 

Cdc42, which is localised at the cell membrane. This interaction results in partial 

activation and conformational changes of the GBD in preparation to free the WCA 

domain from its autoinhibition, this interaction is enhanced by the binding of PIP2 to 

the basic region (Campellone et al., 2010). A similar mechanism has been reported 

for the haematopoietic WASP-WIP complex (Higgs et al., 2000). In addition, diverse 

PRD-binding proteins with Src homology 3 (SH3) domains are capable of activating 

N-WASP. These include the adaptor proteins non-catalytic kinase (NCK) 1 and NCK 

2 (Tomasevic et al., 2007), membrane-deforming factors such as transducer of 

Cdc42-dependent actin assembly 1 (TOCA1; also known as FNBP1L) (Ho et al., 

2004; Takano et al., 2008), and the kinase-interacting protein ABL-interactor 1 (Abi1) 

(Innocenti et al., 2005). All of these factors work synergistically in different 

combinations to activate N-WASP, With multiple inputs being integrated to promote 

higher activity (Ho et al., 2004). 

TOCA1 is an effector of Cdc42 and it binds to N-WASP through an SH3 domain. 

TOCA1 (and its paralogous proteins FBP17 and CIP4) belongs to a family of 

proteins containing an F-BAR domain, also known as an EFC domain, which is a 

domain of dimerisation that has affinity for negatively charged lipids, namely 

phopsphatidylserine and PIP2. The rigid F-BAR dimer forms a concave surface 

which allows proteins containing them to sense a particular membrane curvature or 

to deform membranes until they reach the curvature imposed by this concavity. 

Through the F-BAR domain, TOCA1 induces long invaginations from the plasma 
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membrane that are covered by a helicoidal scaffold formed by these proteins 

(Shimada et al., 2007; Itoh et al., 2005; Tsujita et al., 2006; Frost et al., 2008). 

 

Activation of N-WASP ultimately results in the WCA domain binding to the Arp2/3 

complex, where actin polymerization results in a number of cellular functions 

(Takenawa et al., 2007; Kurisu et al., 2010). These include the formation of filopodia, 

dorsal membrane ruffling and membrane invagination. Another important N-WASP 

function is that of vesicle trafficking. N-WASP is now known to mediate actin 

polymerisation on endocytic vesicles and thereby mobilise them to be pinched off 

from the plasma membrane (Takenawa et al., 2007; Kurisu et al., 2010). 

 

WASPs are required for actin assembly in invadopodium formation and possibly for 

bleb formation in round-shape movement in 3D ECM (Gadea et al.,2008; Oikawa et 

al., 2008; Mizutani et al., 2002; Kaverina et al., 2003; Yamaguchi et al., 2005). 

Invadopodia act not just as protrusive cellular structures but also as storage of 

proteases and their secreting machinery for cancer cell invasion into the ECM 

(Kurisu et al., 2010). This suggests that WASPs are multimodal promoters in cancer 

cell invasion. 

  



80 
 

2.4.2 Wiskott-Aldrich verprolin-homologous proteins (WAVEs) 

There are three mammalian isoforms of the WAVE-family NPFs expressed in 

numerous cell types. WAVE 1, WAVE 2 and WAVE 3. WAVEs 1 and 2 are 

distributed most broadly, whilst WAVE 3 is more restricted, although all are enriched 

in brain tissue. Because of this, the majority of investigations and studies have used 

either WAVE 1 or 2 as their subjects. Some, however, have utilised all three WAVE 

isoforms with the outcome that they behave very similarly and are likely to participate 

in the same kinds of protein complexes. Any differences are likely to be at the level 

of tissue distribution or subtle differences in the affinity for specific binding partners 

(Stovold et al., 2005).  

 

Structurally WAVEs have an N-terminal WAVE-homology domain (WHD) /SCAR-

homology domain (SHD) followed by a basic region. They lack a GBD but have a 

proline-rich segment which is quite distinct from the regulatory WCA portion that lies 

on the C-terminus of the proteins. 

 

Endogenous WAVEs exist within a heterologous multiprotein complex, called the 

WAVE Regulatory Complex (WRC). This was initially purified from bovine brain 

extracts and WAVE 1 was shown to form a stable heteropentameric protein complex 

with 121F-specific p53 inducible RNA (PIRI121; also known as cytoplasmic FMR1 

interacting protein 2 [CYFIP2] and Sra1), NCK-associated protein 1 (Nap1), Abl-

interactor 2 (Abi2), and hematopoietic stem/progenitor cell protein 300(HSPC300; 

also known as Brick 1) in a 1:1:1:1:1 molar ratio (Eden et al., 2002). This pioneering 
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work led to the understanding that essentially all endogenous, mammalian WAVE 

isoforms tightly form a WAVE complex with four other subunits or their paralogues. 

The WAVE isoforms characteristic N-terminal WAVE-homology domain (WHD) 

serves as a docking site for Abi and HSPC300 and is therefore highly homologous 

between all three WAVEs. In both WAVEs and WASPs, forming a multiprotein 

complex seems to protect each subunit from protease-dependent degradation 

(Figure 2.8) (Kurisu et al., 2010; Derivery et al., 2010). 

 

The WAVE complex is intrinsically inactive, reconstitution revealed that the WCA 

domain is masked by the Sra/Nap subcomplex through a weak interaction (Figure 

2.8). Similar to the WASP/N-WASP complex’s autoinhibited state, this would prevent 

unregulated actin polymerisation within the cell (Derivery et al., 2009, 2010; Ismail et 

al., 2009). In contrast to N-WASP, most signalling to the WAVE proteins occurs 

through interactions with the WRC, rather than direct binding. 

 

 



82 
 

 

Figure 2.8 WAVE regulatory complex (WRC) structure and regulation. (A) Structure of WRC. Sra1 

(green), Nap1 (blue), HSPC300 (yellow), WAVE 1 (magenta) and Abi2 (orange). The WAVE proline 

rich domain has been replaced with a short linker (dashed line) whilst the Abi2 SH3 domain has been 

removed. This image is taken from Chen et al, 2010. (B) Simplified schematic demonstrating protein 

interactions between components of the WRC in addition to mode of activation. The WAVE VCA 

region is sequestered by WRC components in its inactive state. Upon Rac1 association with Sra1, 

WRC is recruited to the plasma membrane and the VCA is released whereby interactions with the 

negatively charged phospholipids at the plasma membrane induce the VCA domain into the correct 

orientation for actin polymerisation at the cell leading edge (This image is taken from Davidson and 

Insall., 2011). 

 

The mechanism of activation of the WAVE complex is beginning to be understood, 

particularly now that it is confirmed that the WRC is inactive, but it is still not 

completely transparent. The WRC is thought to be regulated by the small GTPase 

Rac. As previously mentioned, Rac controls the formation of plasma membrane 

projections such as lamellipodia and ruffles, and the WRC is a critical effector in the 

formation of these Rac-dependent membrane structures (Innocenti et al., 2004; Miki 

et al., 1998; Steffen et al., 2004; Derivery et al., 2010). The GTP bound form of Rac 

binds to the WRC via the Sra subunit. This binding most likely displaces the WCA 
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domain of WAVE either directly or through a conformational change, but In vitro 

assays required very high concentrations of active Rac to achieve this so it is 

probable that other factors are involved in vivo (Derivery et al., 2010). A recent study 

by Koronakis et al (2011) suggested that Rac1 is necessary to induce WAVE-

dependent actin nucleation, but alone it is insufficient. A key requirement for Arf 

GTPases has been suggested by their work, as a much stronger activation was 

achieved with the addition of both Rac1 and Arf GTPases.  

 

The main function of WAVE NPFs is to activate Arp2/3 during plasma membrane 

protrusion and cell motility. In these processes WAVE 1 and 2 have partially 

overlapping functions, as WAVE 2 primarily activates peripheral membrane ruffling 

and lamellipodia formation (Innocenti et al., 2005; Yamazaki et al., 2003; Yan et al., 

2003; Suetsugu et al., 2003; Steffan et al., 2006) and WAVE 1 is related to dorsal 

ruffling and migration through the extracellular matrix (Suetsugu et al., 2003). 

Generally, WAVEs localise to the leading edges of lamellipodia and are essential for 

cell motility.     

 

Clustering mechanisms to recruit WAVEs to the cell membrane, particularly in the 

case of WAVE 2, have been revealed. WAVE 2 can bind to SH3 domain-containing 

proteins such as insulin receptor substrate protein of 53 kDa (IRSp53; also known as 

BAIAP2) via its PRD. IRSp53m also contains a modified BAR domain which 

dimerises, binds to PIP2, and promotes the formation of outward protrusions of the 

membrane, presumably through polymerisation onto the membrane as described for 

F-BAR proteins which interact with N-WASP (Campellone et al., 2010; Kurisu et al., 
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2009). IRSp53 has also been implicated in the recruitment and activation of the 

WAVE 2 complex at the membrane and as a consequence in the formation of 

lamellipodia. PIP3, the product of Phosphatidylinositol 3-kinase, is another obvious 

candidate for the clustering effect. PIP3, the WRC and Rac are entangled in a 

positive feedback loop in vivo. PIP3 binds directly to the WAVE 2 protein at the Basic 

region and recruits the WRC at the plasma membrane. PIP3 and IRSp53 have been 

shown to synergize with Rac to activate the WAVE 2 complex at the plasma 

membrane. WAVE 2 has a much stronger affinity for IRSp53 than have WAVE 1 and 

3, therefore the interaction with it is likely to contribute specifically to the localisation 

of of WAVE 2 at lamellipodial tips (Kurisu et al., 2009). Finally, a complex pattern of 

phosphorylations also appear to modulate the activity of the WRC. 
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2.5 WAVE Family proteins in cancer cell migration 

The WASP family proteins have an important role in cell motility, but their 

dysregulation results in aberrant cell-motility phenotypes. Cancer invasiveness and 

metastasis are promoted by enhanced cell motility caused by aberrant upregulation 

of WAVEs (Kurisu et al., 2005, 2009).  

 

WAVE 2 is required for formation of cell-cell adhesion in epithelial cells (Kurisu et al., 

2010), presumably assisiting in blocking the transition from epithelial to 

mesenchymal phenotype. Thus it appears to act as a tumour suppressor in 

epithelial-like benign tumours. However WAVEs, especially WAVE 2, induce actin 

meshwork at the leading edge in single elongated cells and enhance the invasive 

capacity of cancer cells (Kurisu et al., 2005, 2010; Yamazaki et al., 2009). Therefore, 

WAVE 2 also works as an invasion promoter once cancer cells start to invade as a 

single elongated cell in a later stage of cancer progression. 

 

A quantitative regulation of WAVE expression levels has been hypothesised by 

Kurisu et al. (2010) to help explain the seemingly opposing effects of WAVE 2 in 

cancer invasion. This regulation is based on the understanding that WAVE isoforms 

all share the same components for the WRC. Therefore, the expression level of total 

WAVEs is capped by the level of the least expressed complex component. Excess 

WAVEs that fail to form a complex are degraded in proteasomes. Kurisu et al. (2010) 

called this the “isoform sequestration model”. Sra1 has been reported as being 

depleted in some carcinomas (Silva et al., 2009) and so would result in a reduction 
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of the expression level of total WAVE isoforms to that of the level of the Sra1 

homologue PIR121/CYFIP2.According to this model, overexpression of WAVE 3, as 

seen in the advanced stages of breast cancer, would lead to a reduction in the 

overall pool of WRC components available and therefore lead to a reduction in the 

amount of WAVE 2 stably complexed and available for activation, resulting in a 

change in the ratio of WAVE isoforms available within the cell.   

 

The WAVE isoforms are activated downstream of Rac although activated Rac 

cannot bind directly to the WAVE proteins. Therefore IRSp53 has been identified as 

a linker molecule. Its N-terminal domain specifically binds to active forms of Rac1 

and a C-terminal based SH3 domain binds to the proline rich sequence of WAVEs, 

thereby enhancing the activity of WAVEs. Rac recruits WAVEs and their complexes 

to the membrane. WAVE 2 has a much stronger affinity for IRSp53 than 1 or 3, 

therefore interactions are most likely to contribute primarily to activity regulation of 

WAVE 2. The specifically Rac1-associated protein (Sra 1) present in the WRC, more 

specifically the PIR121 paralogue, can interact and bind with Rac1.  

 

Lebensohn and Kirschner (2009) provided evidence that the WAVE 2 WRC cannot 

be solely activated by Rac1 and a negatively charged phospholipid (such as PIP3) 

was needed also. PIP3 binds to the basic amino acid cluster found in WAVE 2 which 

is important for recruitment of WAVE 2 to the membrane. In a number of cancer 

types, signals that increase cellular levels of PIP3 are aberrantly augmented by 

mutations in genes that constitute the phosphoinositide 3-kinase (PI3K) pathway. In 

addition, PIP3 activates Rac through PIP3-responsive GEFs. Therefore WAVEs are 
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presumably hyperactivated in cancers with enhanced PI3K signalling and may thus 

contribute to cancer pathogenesis. 

Phosphorylation has been reported as a WAVE regulation system. Cyclin dependent 

kinase 5 phosphorylates and inhibits WAVE 1 activity (Kim et al., 2006). Conversely, 

c-Abl tyrosine kinase activates WAVE 2 through phosphorylation (Leng et al., 2005). 

C-Abl is a proto-oncogene product best studied in chronic myeloid leukaemia (CML) 

implicating the association between WAVE 2 and CML (Li et al., 2007). WAVE 2 

regulates lamellipodium-driven 2D cell motility and pseudopodia formation in 3D 

motility. A study by Pan et al. (2011) has shown that WAVE 1 appears to be 

regulated by LCRMP-1 (long isoform of collapsing response mediator protein – 1) 

which promotes the formation of filopodia via the WAVE/actin nucleation pathway. 

LCRMP-1 binds to the SH domain subunit of the WRC and the basic domain of 

WAVE 1. 

 

WAVE 3 is regulated by the metastasis suppressor miRNA (miR-31) during invasion-

metastasis cascade. miR-31 has been found to negatively regulate the expression of 

TIAM1 (T-lymphoma invasion and metastasis 1), a GEF for the Rac GTPase that 

has been implicated in the regulation of cancer cell invasion (Bullock et al., 

2012).The miR-200 mediated down-regulation of WAVE 3 leads to a significant 

reduction in the invasive potential of breast cancer cells. Loss of WAVE 3 expression 

downstream of miR-200 also resulted in a dramatic change in cell morphology 

resembling that seen in the reverse process of EMT – the MET (Soussey et al., 

2009; Bullock et al., 2012). Soussey et al. (2010) have hypothesised that during 

EMT, WAVE 3 will be transiently expressed to antagonise WAVE 2 at cell-cell 
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junctions, counteracting actin maintenance at these sites due to their findings that 

ectopic expression of WAVE 3 in breast cancer cells induces changes associated 

with disintegrating E-cadherin based adhesions.  

WAVE 3 has been noted to promote cell motility through regulation of MMP-1, 3 and 

9 expression (Sossey-Alaoui et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

2.6 Clinical associations of WAVE proteins with human cancers 

The WAVE isoforms have been linked with a number of different cancers with a 

developing understanding of their roles in cancer invasion and metastatsis.  

 

WAVE 1 over-expression is present in epithelial ovarian cancer and is associated 

with an unfavourable prognosis. Those patients having a high WAVE 1 expression 

had a significantly worse survival compared to those with low WAVE 1 expression 

(Zhang et al., 2012). WAVE 1 up-regulation is evident in prostate cancer tissue 

samples and knockdown of endogenous WAVE 1 production in metastatic prostate 

cancer cell lines (DU-145 and PC-3) resulted in significantly reduced invasion 

(Fernando et al., 2008).  

 

WAVE 2 has been identified as being over-expressed in breast cancer. Node 

positive cases as well as moderately and poorly differentiated tumours showed high, 

over-expressed levels compared to normal tissues. Those patients with high WAVE 

2 levels had an overall poorer prognosis than those with a low expression (Fernando 

et al., 2007). Expression of WAVE 2 was investigated by Yang et al. (2006) in 

hepatocellular carcinoma (HCC). WAVE 2 is up-regulated in HCC tissues, which 

correlated with a poor prognosis as those patients with a high WAVE 2 level had a 

shorter survival period. The investigators felt WAVE 2 could be a candidate 

prognostic marker for HCC. Iwaya et al. (2007) investigated tissue samples from 

patients with colorectal carcinoma and liver metastases. These were assessed for 

their WAVE 2 and Arp 2 levels and co-localisation was found to be significantly 
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predictive of liver metastasis. Co-expression of WAVE 2 and Arp 2 was also found to 

be significantly higher in sections of lung adenocarcinoma taken from patients with 

lymph node metastases, compared to those sections taken from patients with lymph 

node negative disease. Those patients whose tissues showed co-expression of 

WAVE 2 and Arp2 had a shorter disease-free and overall survival time (Semba et al., 

2006). 

In a study on murine melanoma cells, Kurisu et al. (2005) showed that WAVE 1 and 

2 were overexpressed and the malignant cell type used showed higher Rac activity 

than the non invasive, non metastatic parent cells. WAVE 2 knockdown resulted in 

suppression of membrane ruffling, cell motility and invasion into the ECM. In vivo 

studies showed that knockdown of  WAVE 2 expression in the injected melanoma 

cells resulted in suppression of pulmonary metastases.  

 

Elevated expressions of WAVE 3 were found in advanced breast cancer (Soussey et 

al 2007). Also elevated levels of WAVE 3 were found in grade 3 breast cancers and 

in tumours of patients who died from metastasis (Fernando et al., 2007). 
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CHAPTER 3 

AIMS AND HYPOTHESIS 
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3.1 Aims 

Cancer metastasis is incompletely understood but is of vital importance in ultimately 

determining patient outcome in most cancers including colorectal carcinoma. 

Metastasis is a complex multi-stage process involving cell invasion, cell migration and 

changes in cell adhesive properties.  This study is a continuation of findings in the 

host centre that WASP family proteins play an important role in the aggressive 

behavior of cancer cells, more specifically the WAVE proteins. 

 

 

3.1.1 Human Colorectal Cancer Tissue Analysis 

As can be seen from the previous chapters, the ability of cancer cells to invade and 

migrate is considered among one of the major factors in the metastasis of any 

cancer, including colorectal. As such, the expression of WAVE proteins in colorectal 

carcinoma may be an important factor in the progression of colorectal carcinoma 

from a low stage disease to a more advanced and disseminated stage. 

The aim of the tissue analysis experiments in this thesis is to use quantitative and 

descriptive techniques to analyse the relationship between the expression of WAVE 

proteins and the disease progression in patients from whom the tissue samples were 

taken.  
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3.1.2 Human Colorectal Cancer Cell Line Investigation 

The cell line experiments in this thesis aim to analyse the expression of WAVE 1, 2 

and 3 in human colorectal carcinoma cell lines and also to analyse the effects of 

gene knockout of WAVE 1 and 3 in human colorectal carcinoma cell lines on the 

cells ability to grow, invade, adhere and migrate. 
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3.2  Hypothesis 

3.2.1 Human Colorectal Cancer Tissue Analysis Hypothesis 

1) Increased WAVE protein expression is related to advancing stage or grade of 

tumour 

2) Increased WAVE protein expression is related to poorer patient outcomes.  

 

Whilst it is hypothesised that the expression levels of WAVEs 1, 2 and 3 will be 

significantly higher in advanced stage/grade tumour tissues and that significantly 

higher expression levels results in a poorer patient outcomes, for statistical purposes 

the null hypothesis is that there will be no difference in the expression levels in 

these tissues and there is no correlation between expression and patient outcomes. 

 

3.2.2 Human Colorectal Cancer Cell Line Investigation Hypothesis 

1) Knockout of WAVE 1, 2 or 3 expression from human colorectal carcinoma cell 

lines results in a reduction in the cells ability to grow, invade, adhere and 

migrate.  

 

Whilst it is hypothesised that altering the expression levels of WAVEs 1, 2 and 3 

will have a biological effect, for statistical purposes the null hypothesis is that 

expressional alteration of these proteins will have no effect on cellular traits such 

as growth, invasion, migration or adhesion. 
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Chapter 4 

Materials and Methods 
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4.1 Standard solutions and reagents 

All standard chemicals and reagents, unless otherwise stated, were obtained from 

Sigma-Aldrich (Dorset, UK). 

 

4.1.1 Solutions for cell culture work 

0.05M EDTA (Ethylenediaminetetraacetic acid)  

One gram KCl (Fisons Scientific Equipment, Loughborough, UK), 5.72g Na2HPO4, 

1g KH2PO4, 40g NaCl and 1.4g EDTA (Duchefa Biochemie, Haarlem, The 

Netherlands) were dissolved in distilled water to make a final volume of 5L. The 

solution was adjusted to pH 7.4 before autoclaving and storing for use.  

 

Trypsin (25mg/ml)  

Five hundred milligrams trypsin were dissolved in 20ml 0.05M EDTA. The solution 

was mixed and filtered through a 0.2μm Minisart Syringe filter (Sartorius, Epsom, 

UK), distributed into 10ml aliquots and stored at -20˚C. When required for cell 

detachment, one 5ml aliquot was diluted in 100ml of 0.05M EDTA.  

 

Antibiotic and antifungal mix for tissue culture  

An antibiotic and antifugal mixture for tissue culture were made consisting of 5g 

streptomycin, 3.3g penicillin and 12.5mg amphotericin B (2ml of 6.25mg/ml 

amphotericin B in dimethyl sulphoxide (DMSO)). These components were fully 

dissolved topped up to a total volume of 500ml with balanced saline solution (BSS), 

filtered through a 0.2μm Minisart Syringe filter (Sartorius, Epsom, UK) and pipetted 

into 5ml aliquots. When a 5ml aliquot of this 100x concentrated mix was added to 
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500ml medium the concentrations of the antibiotics and antifugal agents were as 

follows: 100U/ml penicillin, 0.1mg/ml streptomycin and 0.25μg/ml amphotericin B.  

 

Balanced Saline Solution (BSS)  

79.5g NaCl, 2.2g KCl, 2.1g KH2PO4, and 1.1g Na2HPO4 were dissolved in distilled 

water to make a final volume of 10L. The pH was adjusted to 7.2 before use. 
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4.1.2 Solutions for cloning work 

LB agar  

Ten grams of tryptone, 5g yeast extract, 10g NaCl and 15g agar were dissolved in 

distilled water to a final volume of 1L, the pH adjusted to 7.0 and the solution 

autoclaved. When required, the solution was heated to yield a liquid state and cooled 

slightly before adding selective antibiotic (if required). The solution was then poured 

into 10cm2 petri dish plates (Bibby Sterilin Ltd., Staffs, UK), allowed to cool and 

solidify then inverted for storage at 4˚C until required.  

 

LB broth  

Ten grams of tryptone (Duchefa Biochemie, Haarlem, The Netherlands), 5g yeast 

extract (Duchefa Biochemie, Haarlem, The Netherlands) and 10g NaCl were 

dissolved in distilled water to a final volume of 1L and the pH adjusted to 7.0. This 

was autoclaved and allowed to cool before adding selective antibiotic (if required) 

and stored at room temperature. 
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4.1.3 Solutions for use in RNA and DNA molecular biology 

Diethyl Pyrocarbonate (DEPC) water  

Two hundred and fifty microlitres diethyl pyrocarbonate (DEPC) were added to 5ml 

distilled water. This solution was then autoclaved before use.  

 

5x Tris, Boric acid, EDTA (TBE)  

Five hundred and forty grams of tris-Cl (Melford Laboratories Ltd., Suffolk, UK), 275g 

Boric acid (Duchefa Biochemie, Haarlem, The Netherlands) and 46.5g of disodium 

EDTA were dissolved in distilled water, made up to a final volume of 10L and stored 

at room temperature. When required, the solution was diluted 1:5 in distilled water 

prior to use in agarose gel electrophoresis.  

 

SYBR®Safe DNA Gel Stain  

A 1:10,000 dilution of SYBR®Safe DNA Gel Stain (Invitrogen, Life Technologies Ltd, 

Paisley, UK) was used to stain DNA in the agarose gel following electrophoresis as 

specified by manufacture’s intructions. 
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4.1.4 Solutions for cell and tissue staining 

Diaminobenzidine (DAB) chromagen 

The DAB (Diaminobenzidine) chromagen was prepared by mixing the following 

reagents in order, 2 drops of wash buffer, 4 drops DAB (Vector Laboratories 

Inc., Burlingame, USA) and 2 drops of H2O2 to 5ml of distilled water. The mixture 

was shaken well after the addition of each reagent. 

 

Avidin-Biotin staining Complex (ABC) 

The ABC was prepared using a kit obtained from Vector Laboratories Inc., 

Burlingame, USA. 4 drops of reagent A were added to 20ml of wash buffer, 

followed by the addition of 4 drops of reagent B and thorough mixing. The ABC 

complex was then left to stand for approximately 30 minutes before use. 
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4.2 Cell line work 

Cell lines used throughout this thesis were cultured under conditions listed in 

section 4.2.4. The cell lines are briefly outlined below: 

 

4.2.1 Cell lines 

The CaCo2 cell is isolated from a well differentiated primary colonic adenocarcinoma 

in a 72-year-old Caucasian male using the explant culture technique. CaCo2 cells 

are epithelial and adherent in morphology.  

 

The RKO cell line is a poorly differentiated colon adenocarcinoma cell line. RKO cells 

are epithelial and adherent in morphology. They express wild type p53 and are 

tumorigenic.  

 

HRT-18 is derived from human rectum adenocarcinoma. HRT-18 cells are epithelial-

like and adherent in morphology. 

 

The RKO, CaCo2, and HRT-18 cell lines were obtained from the American type 

culture collection (ATCC, Rockville, Maryland, USA). 
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4.2.2 Preparation of cell medium 

 

Cells were routinely cultured in Dulbecco’s Modified Eagle’s medium (DMEM / Ham’s 

F12 with L-Glutamine), pH 7.3 containing 2mM L-glutamine and 4.5mM NaHCO3 

supplemented with streptomycin, penicillin, amphotericin B and 10% heat inactivated 

foetal calf serum. Cell lines transfected with the pEF6 plasmid were cultured in 

blasticidin S (Melford Laboratories Ltd, Suffolk, UK) selection medium at a 

concentration of 5μg/ml for at least 7 days and subsequently in a blasticidin S 

maintenance medium at a concentration of 0.5μg/ml (according to manufacturer’s 

recommendation and routine protocol in the research laboratory). 

 

4.2.3 Revival of cells from liquid nitrogen 

 

When cells were required, cryotubes (Greiner Bio-One Ltd, Gloucestershire, UK) 

containing the desired cells were removed from storage in liquid nitrogen and revived 

for culture using the following steps. Cells were thawed rapidly following their removal 

from liquid nitrogen before the transfer of contents into a universal container 

containing 10ml of pre-warmed medium to immediately dilute the DMSO present in 

the storage medium. This was then centrifuged at approximately 382g (1,800 RPM) 

for 10 minutes to form a cell pellet. The medium was aspirated to remove any traces 

of DMSO, the cell pellet re-suspended in 5ml of pre-warmed medium, placed into a 

fresh 25cm2 tissue culture flask (Greiner Bio-One Ltd, Gloucestershire, UK) and 

incubated for 4 - 5 hours. Following examination under a microscope to determine 

adherence of cells to the flask, the medium was changed to remove dead cells and 

residual DMSO then returned to the incubator. 
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4.2.4 Maintenance of cells 

 

Cells were maintained in supplemented DMEM medium prepared as described in 

Section 4.2.2, and routinely sub-cultured upon reaching 70-90% confluency as 

described later in Section 4.3.5. Confluence was assessed by visualising the 

approximate coverage of cells over the surface of the tissue culture flask using a 

light microscope. Cells were maintained and grown in either 25cm2 or 75cm2 tissue 

culture flasks (Greiner Bio-One Ltd, Gloucestershire, UK), in an incubator at 37°C, 

5% CO2 and 95% humidity. All tissue culture techniques were carried out following 

aseptic techniques using autoclaved and sterile equipment inside a Class II laminar 

flow cabinet which had been cleaned prior to and following use with 70% ethanol. 

 

 

4.2.5 Detachment of adherent cells and cell counting 

 

Upon reaching approximately 70-90% confluency, medium was aspirated and 

adherent cells were detached from the tissue culture flask by incubating with 1-2ml 

of trypsin/EDTA for several minutes. Once detached the cell suspension was placed 

in a 30ml universal container (Greiner Bio-One Ltd, Gloucestershire, UK) and 

centrifuged at approximately 382g (1,800 RPM) for 10 minutes to form a cell pellet. 

The cell pellet was typically resuspended in 1ml fresh medium to allow a 

determination of cell density. Cells were counted in a haemocytometer counting 

chamber (Hawksley, Sussex, UK) using an inverted microscope (Ceti Microscopes; 

Medline,Oxon, UK) under 10 x 10 magnification. Each 16 square area of the 
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haemocytometer counting chamber measuring 1mm x 1mm x 0.2mm allowed 

calculation of the number of cells per millilitre using the following equation: 

  

Cell no. / ml = (number of cell in 16 square area ÷ 2) X 104 

 

Two 16 square areas of the haemocytometer counting chamber were counted and 

the mean was used to calculate cell number per millilitre which was then used to 

calculate volume of re-suspended cells for use in the appropriate in vitro cell function 

assays. 

 

4.2.6 Storage of cell stocks in liquid nitrogen 

 

Stocks of low passage cells were stored in liquid nitrogen. Cells were first detached 

from their flasks using EDTA/Trypsin as described in Section 4.2.5 and pelleted in a 

centrifuge at approximately 382g (1,800 RPM) for 10 minutes. These cells were 

resuspended in the required volume (dependent on the number of samples to be 

frozen) of a protective medium consisting of 10% DMSO in normal growth medium. 

Following resuspension, cells were aliquoted into pre-labelled 1.8ml cryotubes 

(Greiner Bio-One Ltd, Gloucestershire, UK), in 1 ml volumes, wrapped loosely in 

tissue paper and stored overnight at -80°C in a deep freezer. Cells were later 

transferred to liquid nitrogen tanks for long term storage. 
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4.3 Generation of mutant RKO, CaCo2, and HRT-18 cell lines 

4.3.1 Production of ribozyme transgenes 

 

Ribozyme transgenes were designed to specifically target and cleave either WAVE1 

or WAVE3 messenger RNA transcripts to down regulate their expression. These 

ribozyme constructs were developed previous to this study by Fernando et al (2008; 

2010) however the steps are outlined here. The secondary structure of the WAVE 1 

and WAVE 3 transcript was initially predicted using Zuker’s RNA mFold software 

(Zuker, 2003) (Predicted structures shown in Figures 4.1a and 4.1b). Doing so 

allowed identification of loop structures which are unpaired regions and are less 

stable than paired stemmed regions and therefore make them good ribozyme 

targets. Suitable GUC or AUC ribozyme target sites were selected from the predicted 

secondary structure loop structures and a ribozyme was designed for that region, 

allowing it to specifically bind to the sequence surrounding the target GUC or AUC 

codon regions. Doing so, allowed the hammerhead catalytic region of the ribozyme 

transgene to interact with and accurately cleave the mRNA transcript of interest at 

the specific GUC codon sequence. The secondary structure of the hammerhead 

ribozyme is shown in Figure 4.1c whilst its mode of action is depicted in Figure 4.2.   
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Figure 4.1a. Secondary structure of human WAVE 1 mRNA based on the Zuker programme 
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Figure 4.1b. Secondary structure of human WAVE3 mRNA based on the Zuker programme 
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Figure 4.1c. Representative diagram of the secondary structure of a hammerhead ribozyme and its 

associated substrate (Figure taken from Shaw et al, 2001) 

 

 

Figure 4.2 Schematic representation of the mode of action elicited on target mRNA by their 

specifically designed hammerhead ribozymes. The ribozyme hybridises to the substrate and 

enzymatically cleaves at the target site. Dissociation from the substrate sees the release of the 

cleaved product (Figure adapted from Mulbacher et al, 2010). 
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Once designed, the oligo sequences for the ribozyme transgene were synthesised 

by Invitrogen as sense/antisense strands (ribozyme transgene sequences are shown 

in Table 4.1). Incorporation of these strands into the transgene was achieved using 

touchdown PCR. The touchdown PCR parameters were as follows:  

 

• Step 1: Initial denaturing period – 94°C for 5 minutes  

• Step 2: Denaturing step – 94°C for 10 seconds  

• Step 3: Various annealing steps – 70°C for 15 seconds, 65°C for 15 seconds, 60°C 

for 15 seconds, 57°C for 15 seconds, 54°C for 15 seconds and 50°C for 15 seconds.  

• Step 4: Extension step – 72°C for 20 seconds  

• Step 5: Final extension period – 72°C for 7 minutes  

Step 2 – 4 was repeated over 48 cycles, each different annealing temperature 

comprising 8 cycles.  

 

Once combined, the transgenes were electrophoresed on a 2% agarose gel to 

confirm presence and correct size before being inserted into the pEF6 plasmid in the 

TOPO cloning reaction, as described in a later section. 
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Target 
Gene 

Ribozyme Ribozyme sequence 5`-3` 

 
 
 
 

WAVE 
1 

 
WAVE 1 Rib1F 

CTGCAGCATCATCTTCAGCCAGCTCTGCTGATGAGTCC
GTGAGGA  

 
WAVE 1 
Rib1R 

ACTAGTTGGCAGAAGCTGGCCCAAGTTTCGTCCTCACG
GACT  
 

 
WAVE 1 Rib2F 

CTGCAGTTCATGAGGAAGATCTACTGATGAGTCCGTGA
GGA  
 

 
WAVE 1 
Rib2R 

CTAGTCATGACAGGCAGAAAAATTTCGTCCTCACGGAC
T  
 

 
 
 
 
 

WAVE 
3 

 
WAVE 3 Rib1F 

CTGCAGTTGTAAATATCAGCAACAGCTGATGAGTCCGT
GAGGA  
 

 
WAVE3 Rib1R 

ACTAGTTTCAAAGAACAGCATTCCTAATTTCGTCCTCAC
GGACT  
 

 
WAVE3 Rib2F 

CTGCAGCCCCCTCTGGGGCCTGAGGGGCTGATGAGTC
CGTGAGG  
 

 
WAVE3 Rib2R 

ACTAGTCAGCCGCCCCCCCGGCGTTTCGTCCTCACGG
ACT  
 

 

Table 4.1. Ribozyme transgene sequences used for the TOPO cloning step 
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4.3.2 TOPO cloning reaction 

Cloning of all ribozyme transgene sequences was achieved using the pEF6/V5-His 

TOPO TA Expression Kit (Invitrogen, Life Technologies Ltd , UK) following the 

manufacturer’s protocol as described here. This kit allows fast effective cloning of 

Taq polymerase amplified products for expression in mammalian cells. The following 

TOPO cloning reaction was set up in a pre-labelled eppendorf tube for each 

ribozyme transgene sequence used:  

 

• PCR product (ribozyme transgene) – 4μl  

• Salt solution – 1μl  

• TOPO vector – 1μl  

 

This reaction was gently mixed and incubated at room temperature for 30 minutes 

and stored in ice before proceeding to One Shot Chemical Transformation.  
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4.3.3 Transformation of chemically competent Escherichia coli  

 

A 5μl volume from the TOPO cloning reaction outlined in Section 4.3.2 was added to 

a vial of One Shot TOP10 Chemically Competent E. coli and gently mixed by stirring 

the mixture in the eppendorf tube using the pipette tip as opposed to pipetting up and 

down to avoid damage to the bacteria. The vial was placed in ice for 30 minutes, 

exposed to heat-shock treatment at 42˚C for 30 seconds and immediately placed 

back into ice. To each tube, 250μl of SOC medium (2% Tryptone, 0.5% yeast 

extract, 10nM NaCl, 2.5mM KCl, 10mM MgCl2, 10mM MgSO4 and 20mM glucose) 

at room temperature were added followed by shaking at 200 RPM on a horizontal 

orbital shaker (Bibby Stuart Scientific, UK), at 37°C for 1 hour. Following this 

incubation period, the contents of the tube were spread at a high and low seeding 

density onto two separate selective agar plates containing 100μg/ml ampicillin 

(Melford Laboratories Ltd., Suffolk, UK) and allowed to grow overnight at 37˚C in an 

incubator. As the pEF6 plasmid contains two antibiotic resistance genes that allow 

cells containing the plasmid to grow in the presence of ampicillin and blasticidin S 

selection, any colonies successfully growing on these plates should theoretically 

contain the pEF6 plasmid (refer to Figure 4.3).  

The pEF6 plasmid contains a number  
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Figure 4.3 Schematic diagram of the pEF6 plasmid used during cell transfection. Figure was taken 

from the pEF6/V5-His TOPO TA Expression Kit protocol (Invitrogen, Life Technologies Ltd, UK) 

 

Human elongation factor-1α (hEF-1α) promoter: a constitutive promoter of human 

origin that can be used to drive ectopic gene expression in various in vitro and in 

vivo contexts  

T7 promoter/priming site: Allows for in vitro transcription in the sense orientation 

and sequencing through the insert 

TOPO® Cloning site: Allows insertion of the PCR product in frame with the C-

terminal V5 epitope and polyhistidine (6×His) tag 
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V5 epitope: Allows detection of the fusion protein with the Anti-V5 Antibody or the 

Anti-V5-HRP Antibody 

C-terminal Polyhistidine (6xHis) tag: Permits purification of your fusion protein on 

metal-chelating resins. In addition, the C-terminal polyhistidine tag is the epitope for 

the Anti-His(C-term) Antibody and the Anti-His(C-term)-HRP Antibody 

Bovine Growth Hormone (BGH) reverse priming site: Permits sequencing 

through the insert 

BGH polyadenylation signal: Efficient transcription termination and polyadenylation 

of mRNA 

F1 origin: Allows rescue of single-stranded DNA 

SV40 early promoter and origin: Allows efficient, high-level expression of the 

blasticidin resistance gene and episomal replication in cells expressing the SV40 

large T antigen 

EM-7 promoter: For expression of the blasticidin resistance gene in E. coli  

Blasticidin Resistance gene – Enables selection of stable transfectants in 

mammalian cells  

SV40 polyadenylation signal: Efficient transcription termination and 

polyadenylation of mRNA  

pUC origin: High-copy number replication and growth in E. coli  

bla promoter: Allows expression of the ampicillin (bla) resistance gene 

Ampicillin resistance gene (β-lactamase): Selection of transformants in E. coli 
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4.3.4 Selection and orientation analysis of positive colonies  

 

Confirmation of correct insertion and orientation of the ribozyme sequence in the 

pEF6 plasmid was analysed to ensure whether transcription of the sequence would 

generate the transcript of interest. The colonies were tested using polymerase chain 

reaction (PCR) using primers specific to either the plasmid or the ribozyme 

sequence. To check the orientation of the ribozyme sequences a combination of T7F 

vs Ribozyme specific forward primer (RbToP) and T7F vs Ribozyme specific reverse 

primer (RbBMR) were used (refer to Table 4.2). RbToP and RbBMR recognise and 

bind to sequences within the ribozyme transgene that are common to all of the 

ribozymes used. There are approximately 90bp between the T7F promoter and the 

beginning of the insert. Thus, correct orientation and ribozyme size (based on 

approximate ribozyme size of 50bp), would be confirmed by a band of approximately 

140bp in the T7F vs RbBMR reaction. Likewise, a band of approximately 140bp in 

the T7F vs RbToP would indicate incorrect orientation of the sequence. 

 

Primer 
name 

 

  
  
  

 

Primer sequence 

T7F TAATACGACTCACTATAGGG 

RbBMR TTCGTCCTCACGGACTCATCAG 

RbToP CTGATGAGTCCGTGAGGACGA 

 

Table 4.2 Plasmid/ribozyme specific primers 
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Following overnight incubation, the plates were examined for colony growth. 

Colonies were selected for orientation analysis and labelled on the Petri dishes. Two 

PCR reactions were carried out for each selected colony using the following 

parameters (full primer sequences are given in Table 4.3 shown in the Reverse 

transcription-Polymerase chain reaction (RT-PCR) Section 4.4.4):  

 

Ribozyme orientation reaction 1  

• 8μl – 2x GoTaq Green Master mix (Promega, Dorset, UK)  

• 1μl – T7F plasmid specific forward primer  

• 1μl – RbToP  

• 6μl – PCR water  

 

Ribozyme orientation reaction 2  

• 8μl – 2x GoTaq Green Master mix (Promega, Dorset, UK)  

• 1μl – T7F plasmid specific primer  

• 1μl – RbBMR  

• 6μl – PCR water  

 

 

 

In order to test the orientation of the inserted ribozyme sequence present in the 

colonies, a sample was picked from the plate using a sterile pipette tip and 

inoculated into both mixes before the addition of the specific primers. Each reaction 

mix was then placed in a thermal cycler and subjected to the following conditions:  

 



117 
 

 

• Step 1: Initial denaturing period – 95˚C for 10 minutes  

• Step 2: Denaturing step – 94˚C for 1 minute  

• Step 3: Annealing step – 55˚C for 1 minute 34 cycles  

• Step 4: Extension step – 72˚C for 1 minute  

• Step 5: Final extension period – 72˚C for 10 minutes 105  

 

The mixture was run on a 2% agarose gel and visualized under ultra violet light. 

Colonies showing correct orientation of the insert were picked off the plate, used to 

inoculate 10ml of ampicillin selective LB broth and incubated overnight. 
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4.3.5 Plasmid extraction, purification and quantification  

 

Plasmid extraction was undertaken using the Sigma GenElute Plasmid MiniPrep Kit 

according to the manufacturer’s protocol. Five millilitres of the LB broth, previously 

inoculated with the correct colony and cultured overnight, were centrifuged at 

approximately 1062g (3,000 RPM) for 10 minutes to obtain a pellet of bacteria. The 

supernatant was discarded and the bacterial pellet was re-suspended in 200μl of 

resuspension solution (containing RNase A) and mixed through repetitive pipetting. 

Two hundred microlitres of lysis solution were then added to the container and 

inverted 5 - 6 times. This stage was completed within 5 minutes before adding 350μl 

of the neutralisation solution, inverting 4 – 6 times and centrifuging at approximately 

16099g (12,000 RPM) in a microcentrifuge. Plasmid DNA was bound to the column 

by transferring the cleared lysate to a Mini Spin Column placed inside a collection 

tube, spinning at approximately 16099g (12,000 RPM) for 30 seconds to 1 minute 

and discarding the flow through. Seven hundred and fifty microlitres of wash solution 

(containing ethanol) were added to the column before spinning at approximately 

16099g (12,000 RPM) for 30 seconds to 1 minute and again discarding flow through. 

The column was spun at approximately 16099g (12,000 RPM) for 30 seconds – 1 

minute to remove any remaining flow through before transferring the Mini Spin 

Column to a fresh collection tube.  

 

Plasmid DNA was eluted by the addition of 100μl of elution solution and spinning the 

column at approximately 16099g (12,000 RPM) for 1 minute. The eluted plasmid 

solution was then electrophoresed on a 0.8% agarose gel to confirm presence and 

correct size of the plasmid. 
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4.3.6 Transfection of mammalian cells using electroporation 

  

Following plasmid purification and quantification (quantification carried out utilising 

protocol as described for RNA quantification in Section 2.4.2 with a configuration to 

detect double stranded DNA and DEPC water substituted for elution solution) 1-10μg 

of the extracted plasmid was used to transform the colorectal cancer cell lines; RKO, 

CaCo2 and HRT-18. Confluent wild type cells were detached from tissue culture 

flasks using trypsin/EDTA, pelleted and resuspensed in the required volume of 

medium. Six hundred microlitres of this cell suspension was added to an 

electroporation cuvette (Eurgenetech, Southampton, UK) together with the purified 

plasmid. This was mixed briefly before being subjected to an electrical pulse of 290V 

and 1500 capacitance from an electroporator (Easyject, Flowgene, Surrey, UK). 

Following this pulse, the cell and plasmid suspension was quickly transferred into 

10ml of pre-warmed medium and placed in an incubator to allow any surviving cells 

to fully recover from the electroporation process.  
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4.3.7 Establishment of stably transformed RKO, CaCo2 and HRT-18 cancer cell 

lines  

 

The pEF6 plasmid used to transform the cells, encodes two antibiotic resistance 

genes. As previously described, the ampicillin resistance gene allows initial selection 

of bacterial cells containing the plasmid. The plasmid also contains a blasticidin S 

resistance gene. Blasticidin S is a potent microbial antibiotic that inhibits protein 

synthesis in both prokaryotes and eukaryotes and is used to specifically select for 

mammalian cells containing the pEF6 plasmid. The use of two antibiotic resistance 

genes allows an accurate selection of plasmid containing cells throughout the 

cloning process. Following overnight incubation, the cells were subjected to an initial 

intense selection period of 7 days. During this 7 day period, the cells were incubated 

in medium that had been supplemented with 5μg/ml of the blasticidin S antibiotic 

(Melford Laboratories Ltd., Suffolk, UK) to kill all cells that did not contain the pEF6 

plasmid. After this initial intense selection the cells were maintained in maintenance 

medium containing 0.5μg/ml of blasticidin S, this maintains a selection pressure on 

the cells to retain the plasmid and results in long term transformation of the cells. 

  

All cells were tested initially and following routine use, to estimate the efficacy and 

stability of both the transformation and the ribozyme transgene or expression 

sequence using RT-PCR and Q-PCR analysis. This methodology for altering the 

expression levels of various proteins within mammalian cells is well established 

within our research group. 
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4.4 Synthesis of complementary DNA for use in PCR analysis  

4.4.1 Total RNA isolation  

 

RNA isolation was completed using the TRI Reagent RNA Isolation Reagent and 

protocol. Cells were cultured until 70-90% confluent; medium was aspirated prior to 

the addition of 1ml TRI Reagent which aids detachment of the cell monolayer and 

induces lysis. After approximately 5 minutes at room temperature, a cell scraper was 

used to scrape the cell monolayer into the TRI Reagent. The cell lysate was then 

transferred into an Eppendorf tube. 200μl of chloroform was added to the cell lysate, 

the Eppendorf was shaken vigorously, inverted repeatedly for 15 seconds and then 

centrifuged in a refrigerated centrifuge at 4-5°C (Boeco, Germany) for 15 minutes at 

approximately 16099g (12,000 RPM). After centrifugation, the homogenate 

separates into three phases: a colourless upper aqueous phase containing the RNA 

molecules, a white interphase containing the DNA molecules and a red organic lower 

phase containing the protein molecules. The upper aqueous layer was transferred to 

a fresh Eppendorf tube containing 500μl isopropanol and left at room temperature for 

10 minutes before centrifugation at approximately 16099g (12,000 RPM) for 10 

minutes at 4˚C. RNA is insoluble in isopropanol so this step precipitates RNA out of 

the solution and forms a visible pellet at the bottom of the Eppendorf tube. The 

supernatant was discarded, 1ml 75% ethanol (3:1 ratio of ethanol to DEPC water) 

added to the pellet and the mixture was then centrifuged at approximately 6289g 

(7,500 RPM) for 5 minutes at 4˚C. The ethanol was removed leaving the pellet which 

was dried in a drying oven (Techne Hybridiser, UK) at 55˚C for 5-10 minutes. The 

remaining RNA pellet was dissolved in 40-60μl DEPC water (dependent on pellet 

size) via repetitive pipetting and vortexing for subsequent RNA quantification. DEPC 
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water was used in RNA isolation to reduce the effects of any RNases that may be 

present. DEPC is a histidine specific alkylating agent and inhibits the action of 

RNases which rely on histidine active sites for their activity 

 

4.4.2 RNA quantification  

 

Following isolation, RNA was quantified using a UV1101 Biotech Photometer (WPA, 

Cambridge, UK) that was configured to detect single stranded RNA (μg/μl) in a 1:10 

dilution based on the difference in absorbance at 260nm wavelength to a DEPC 

blank that had been used to normalise the photometer. All samples and blanks were 

pipetted into a glass cuvette (StamaBrand, Optiglass Limited, UK).  

 

4.4.3 Reverse transcription-polymerase chain reaction (RT-PCR) of RNA  

 

The newly quantified RNA was used as template for reverse transcription to 

complementary DNA (cDNA) using High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Life Technologies Ltd, UK) following the manufacturer’s 

protocol as described here. The RNA was prepared with PCR water to provide a final 

concentration of 250ng in 10μl which was added to 10μl of 2xRT master mix in a 

thin-walled 200μl PCR tube (ABgene, Surrey, UK). This was placed into an ABi 2720 

Thermal cycler (Applied Biosystems, Life Technologies Ltd, UK) and the following 

parameters applied:  

 

• 25°C for 10 minutes  

• 37°C for 120 minutes  
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• 85°C for 5 minutes  

 

The newly generated cDNA was diluted 1:4 with PCR water and stored at -20°C until 

required.  

 

4.4.4 Polymerase chain reaction (PCR)  

 

Polymerase chain reaction (PCR) is used for detecting and amplifying a specific 

target DNA sequence. PCR was carried out using GoTaq Green Master mix 

(Promega, Dorset, UK). PCR reactions were set up for each cDNA sample with a 

total reaction volume of 16μl containing the following reagents:  

 

• 8μl – 2x GreenTaq ReadyMix PCR Reaction mix  

• 1μl – Specific forward primer  

• 1μl – Specific reverse primer  

• 5μl – PCR water  

• 1μl – cDNA  

 

Primers were designed using the Beacon Designer programme (Palo Alto, California, 

USA) and were synthesised by Invitrogen (Paisley, UK). These are listed in Table 

4.3. Primers were diluted to a concentration of 10pM before being used in the PCR 

reaction. The PCR reaction was set up in a 200μl PCR tube (ABgene, Surrey, UK), 

mixed briefly and centrifuged before being placed in an ABi 2720 Thermocycler 

(Applied Biosystems; Life Technologies Ltd, Paiseley, UK) and subjected to the 

following temperature programme:  
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• Step 1: Initial denaturing period – 94°C for 5 minutes  

• Step 2: Denaturing step – 94°C for 40 seconds  

• Step 3: Annealing step – 55°C for 40 seconds  

• Step 4: Extension step – 72°C for 40 seconds  

• Step 5: Final extension period – 72°C for 10 minutes  

 

Steps 2 – 4 were repeated for typically 34 cycles. Primer binding sites and predicted 

product sizes were verified using the Primer3 (v.0.4.0) software available online 

(http://frodo.wi.mit.edu/). RT-PCR products which corresponded with this predicted 

size following electrophoresis (refer to Section 4.4.5) and staining were taken as 

being accurate. A negative control which replaced cDNA with PCR water was also 

included to assess any contamination. 
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Gene Primer Primer sequence 5`-3` 

 

WAVE 1 

 

WAVE 1F11 CCTCCTCCACCACCTCTTC  

 

WAVE 1R11 GCACACTCCTGGCATCAC  

 

WAVE 2 WAVE 2F11 ATGCCGTTAGTAACGAGGAACATCG 

WAVE 2R11 TTAATCGGACCAGTCGTC 

 

WAVE 3 

WAVE 3F11 TACTCTTGCCGCTATCATACG  

 

WAVE 3R11 TGCCATCATATTCCACTCCTG  

 

 

GAPDH 

GAPDHF8 GGCTGCTTTTAACTCTGGTA  

 

GAPDHR8 GACTGTGGTCATGAGTCCTT  

 

 

PDPN 

PDPNF8 GAATCATCGTTGTGGTTATG  

 

PDPNZR ACTGAACCTGACCGTACACTTTCATTTGCCTATCACAT  

 

Table 4.3 Primer used for polymerase chain reaction. Primers listed ‘ZR’ include Z sequences 
designed for quantitative PCR WAVE1 and 3 primers were previously published (Fernando et al 2008; 
2010). 
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4.4.5 Agarose gel electrophoresis  

 

Amplified PCR products were separated according to product size using agarose gel 

electrophoresis. Generally, PCR product sizes were approximately 500bp, thus a 

0.8% agarose gel was used. For PCR products amplified using primers designed for 

quantitative PCR (Q-PCR), these were typically 100-200bp and therefore a 2% 

agarose gel was used. Powdered agarose (Melford Laboratories Ltd., Suffolk, UK) 

was added to 1xTBE solution and heated to fully dissolve the agarose. The molten 

solution was poured into an electrophoresis cassette (Scie-Plas Ltd., Cambridge, 

UK) and prepared with plastic combs that would create loading wells once the gel 

had set. The set agarose gel was placed into the electrophoresis tank and 

submerged in 1xTBE buffer before the loading of 8μl PCR product and a 100bp DNA 

ladder (GenScript, New Jersey, USA) after the removal of the combs. The samples 

were electrophoretically separated at 95 volts for approximately 30 minutes 

(depending on the degree of separation required) by connecting a power pack to the 

electrophoretic tank (Gibco BRL, Life Technologies Inc.).  
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4.4.6 DNA staining and visualisation  

 

Following successful electrophoresis, the gel was placed in ethidum bromide stain 

diluted in the TBE buffer used in the run. The gel was left to stain for 15 minutes 

before being visualised under ultra violet light using a UV illuminator (UVitech, 

Cambridge, UK) and capturing images using a UV camera imaging system 

(UVitech, Cambridge, UK). If necessary, the gel can be returned to the ethidum 

bromide stain for additional staining or to a container of distilled water for destaining 

to remove excessive  background staining. 

 

4.4.7 Quantitative RT-PCR (Q-RT-PCR)  

 

The cDNA for use in Q-RT-PCR was generated as previously described. It was then 

used in the following Q-PCR reaction mix: 

 

• Forward Z primer – 0. 3µl (1pmol/µl)  

• Reverse primer - 0.3µl (10pmol/µl)  

• iQSupermix (Bio-Rad, UK) - 5µl  

• Probe Ampiflour – 0.3µl (10pmol/µl)  

• PCR water – 2.1µl 

• cDNA - 2µl 
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Q-RT-PCR is a sensitive technique capable of detecting very small quantities of 

cDNA within a sample. It allows an accurate determination of template copy number 

or gene expression. This technique is based on the principle of a sequence-specific 

DNA based fluorescent reporter probe which allows the quantification of DNA 

templates containing the probe sequence (Figure 4.4).  

 

The Q-PCR protocol used in this study utilised the Amplifluor™ Uniprimer™ 

Universal system (Intergen company®, New York, USA) to quantify transcript copy 

number. The amplifluor probe carries a 3’region which is complementary to the Z-

sequence (ACTGAACCTGACCGTACA) which has been incorporated into one of the 

primers included in the Q-PCR reaction. This is used at a 1/10 concentration of the 

other primer and the amplifluor probe. In addition to the Z sequence specific region 

found at the 3’ end of the probe is the presence of a 5’hairpin structure labelled with 

a fluorophore tag (FAM). In this hairpin structure the fluorophore tag associates with 

an acceptor moiety (DABSYL) which quenches fluorescence and therefore produces 

no signal. During PCR, the specificity of the amplifluor’s 3’ region to the Z sequence 

present in the PCR primer generates PCR products with an incorporation of the 

amplifluor. This sequence itself acts as a template for subsequent steps in DNA 

polymerisation resulting in the disruption of the hairpin structure causing 

fluorescence which can be detected and quantified. The fluorescent signal emitted 

during Q-PCR reaction is compared to a range of standards of known transcript copy 

number thus allowing the calculation of transcript copy number within each sample. 

The same samples are also run in parallel using primers specific for the gene 

GAPDH whose transcript copy numbers are used to standardise and normalise the 

calculation of transcript copy number for the gene of interest in the samples.  
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Each sample was placed into a 96-well plate (BioRad laboratories, Hemel 

Hampstead, UK) in parallel with the standards mentioned previously (copy numbers 

ranging from 101 to 108) which would permit quantification of samples (refer to Figure 

4.5). The standards used for this purpose were amplified using primers targeting the 

PDPN gene (Podoplanin). Sample cDNA was amplified and quantified over a large 

number of shorter cycles using an iCycler IQ thermal cycler and detection software 

(Bio-Rad, UK) and experimental conditions as outlined below:  

 

• Step 1: Initial denaturing period – 95°C for 7 minutes  

• Step 2: Denaturing step – 95°C for 10 seconds  

• Step 3: Annealing step – 55°C for 35 seconds  

• Step 4: Extension step – 72°C for 20 seconds  

 

Step 2 – 4 was repeated over 90 cycles. The camera used in this system was set to 

detect fluorescent signals during the annealing stage. The calculation of sample 

copy number depends on the point at which the sample crosses threshold (CT) in 

comparison to the standards, automatically generated by the instrument software. 
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Figure 4.4 Diagram depicting the steps underlying Q-PCR when using the uniprimer fluorescent 

probe. In step 1 of the reaction, the extension of the target-specific primer carrying the Z-sequence 

addition (Primer ZR) yields a product that contains the Z sequence. When the unmodified target-

specific primer (Primer F) anneals to this template and is extended, the product contains the 

complement of the Z-sequence (Z`-sequence). In Step 2 of the reaction, UniPrimerTM anneals to the 

template containing the complimentary Z` sequence. During the polymerisation reaction, the reporter 

[F] (Fluorescein) and the quencher [Q] (DABSYL) are incorporated into the product. This product in 

turn serves as a template for Primer F. As the primer is extended, the hairpin conformation of the 

template is unfolded. The fluorescein and DABSYL are no longer physically close enough to permit 

quenching and instead a fluorescent signal is emitted. Taken from (Intergen Company, 2000). 
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Figure 4.5 Standardisation of transcript copy number (A) Quantitative PCR was carried out on a 

series of standard samples ranging from 101 to 108 (B) A standard curve was generated from the 

standard samples and was used to determine copy number in tested samples 
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4.5 Tumour cell functional assays 

4.5.1 In vitro tumour cell growth assay 

Cells were detached from the culture flask and cell density (per millilitre) was 

established as described previously. Cells were then seeded into a 96 well plate 

(Nunc, Fisher Scientific, Leicestershire, UK) at a seeding density of 3,000 cells in 

200µl of normal medium. Triplicate plates were set up to obtain a cell density reading 

following 1, 3 and 5 day incubation periods. Following the appropriate incubation 

period, the medium was removed and cells were fixed in 4% formaldehyde in BSS 

for at least 5 minutes before rinsing and staining in 0.5% (w/v) crystal violet in 

distilled water, for 5 minutes. The stain was then extracted from the cells using 

10% acetic acid and cell density determined by measuring the absorbance at 

540nm on a plate reading spectrophotometer   (ELx800,   Bio-Tek,   Wolf   

laboratories,   York,   UK).       Cell growth was presented as percentage increase 

and calculated by comparing the absorbances obtained for each incubation period 

using the following equation: 

 

Percentage increase = ((day 3 or 5 absorbance) – day 1 absorbance / day 1 

absorbance) X 100 

 

Six replicate wells were set up for each experiment and the entire experiment was 

repeated at least three times. The in vitro cell growth assay outlined here has 

previously been described and is well established in our research group (Fernando 

et al., 2008). 
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4.5.2 In vitro tumour cell Matrigel invasion assay 

The invasive capacity of the cells used in this study was determined using an in vitro 

Matrigel invasion assay. This assay measures the cells ability to degrade and invade 

through an artificial basement membrane and migrate through 8μm pores. Cell 

culture plate inserts (BD Biosciences, Oxford, UK) containing 8.0μm pores were 

coated in 50μg of Matrigel (BD Biosciences, Oxford, UK). The working concentration 

of Matrigel at 500μg/ml was made up in serum free medium where 100μl was added 

to each insert and allowed to set in a HB-1D Techne Hybridiser drying oven (Techne, 

Staffordshire, UK). Once dried, these inserts were placed into sterile 24 well plates 

and the artificial membrane was rehydrated in 200μl of serum free medium for 

approximately 40 minutes. Once rehydrated, the serum free medium was aspirated 

and 1ml of normal medium was added to the well containing the insert in order to 

sustain any cells that may have invaded through the insert. Twenty thousand cells in 

200μl of normal medium were then added to the insert over the top of the artificial 

basement membrane. The plate was then incubated for 72 hours at 37˚C, 5% CO2 

and 95% humidity. After 72 hours, the inserts were removed from the plate and the 

inside of the insert (which was initially seeded with cells) was cleaned thoroughly 

with tissue paper to remove Matrigel and non-invaded cells. Any cells which had 

invaded through the membrane and passed to the underside of the insert were fixed 

with 4% formaldehyde (v/v) in BSS for 5 minutes before being stained with 0.5% 

crystal violet solution (w/v) in distilled water. Excess crystal violet was washed away 

and the inserts were left to dry. These cells were then visualised under the 

microscope under x20 objective magnification and the random fields captured using 

Motic Plus 2.0 imaging software (Motic, Wetzlar, Germany). Three random fields per 

insert were counted and the experimental procedure was repeated a minimum of 
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three times. The in vitro cell invasion assay outlined here has previously been 

described and is well established in our research group (Fernando et al., 2008). 
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4.5.3 In vitro tumour cell Matrigel adhesion assay 

The ability of tumour cells to adhere to an artificial Matrigel basement membrane 

was examined using an in vitro Matrigel adhesion assay. A working concentration of 

Matrigel at 50μg/ml was made in serum free medium whereby 100μl were pipetted 

into each well of a 96-well plate and placed into an oven to dry to form an artificial 

basement membrane. This membrane was then rehydrated in 100μl of serum free 

medium for 40 minutes before cell seeding. Forty five thousand cells were seeded 

onto the Matrigel basement membrane in 200μl of normal medium and incubated for 

45 minutes. Following this incubation period, the medium was removed and the 

membrane washed five times with BSS to remove non- and loosely attached cells. 

Adherent cells were then fixed with 4% formaldehyde (v/v) in BSS for 5 minutes 

before being stained with 0.5% crystal violet solution (w/v) in distilled water. 

Adherent cells were then visualised under the microscope under x20 objective 

magnification and random fields captured using Motic Plus 2.0 imaging software 

(Motic, Wetzlar, Germany). Three random fields per insert were counted, with 6 

replicate wells each run and the experimental procedure was repeated a minimum of 

three times. The in vitro cell adhesion assay outlined here has previously been 

described and is well established in our research group (Fernando et al., 2008). 

 

 

 

 

 



136 
 

4.5.4 In vitro tumour cell motility assay 

A wounding/migration assay was used to assess the migratory/motility properties of 

the tumour cells. This technique has been modified from a previously described 

method (Jiang et al., 1999). Cells were grown in a 24 well plate and, upon reaching 

confluence, the monolayer of cells was scraped with a 21G needle. After wounding 

the cells were given 15 minutes to recover. Following this the closure of the wound 

via the migration of cells was captured using a CCD camera attached to a Lecia 

DM IRB microscope (Lecia GmbH, Bristol, UK). Images were taken at 0, 30,60,90 

and 120 minute time intervals. The 24 well plate was placed on a heated plate (Lecia 

GmbH, Bristol, UK) to maintain a constant temperature of 37oC.  Cell migration 

was measured using Image J sof tware.  The distance between the two wound 

fronts at 5 random points per incubation time was calculated using the Image J 

software; the arbitrary values obtained were converted into µm by multiplying the 

value by 0 . 8 8  as previously calibrated using a calibration grid. The distance that 

the wound fronts had migrated into the wound at each time point could then be 

determined by subtracting the distance between the two fronts at any given time point 

from that at the initial 0 minute experimental start point. The experimental 

procedure was repeated at least three independent times. 
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4.6 Immunohistochemistry (IHC) 

 

Immunohistochemistry (IHC) is a pathological technique used to stain tissue sections 

for the presence of specific proteins. The technique involves the use of anti-human 

protein antibodies developed for use in the technique and are specific to the protein 

being investigated. Secondary antibodies are then used to link the primary antibody 

to the Avidin-Biotin staining complex (ABC) which in turn allows the binding of the 

staining agent 3,3`-diaminobenzidine (DAB) which indicates the location of primary 

antibody binding (Kroese, 2001). 

 

4.6.1 Immuno-histochemical (IHC) staining of frozen colorectal tissues 

 

Frozen co lorecta l  specimens were cut into 5µm sections using a cryostat (Leica 

Microsystems (UK) Ltd., Bucks, UK) and were left at room temperature for 30 minutes 

to dry. Once dried the sections were fixed in a 1:1 mixture of acetone and methanol 

for 20 minutes before either storing the sections at -20°C, or staining the sections 

for specific protein expression. 

 

If previously stored, the sections were allowed to reach room temperature before 

carrying out the staining procedure. Once sections were at room temperature a 

reservoir was created around the individual sections (to contain the various staining 

solutions) using a DakopenTM water proof marker pen, the sections were placed in 

phosphate buffered saline (PBS) for 5 minutes. Non-specific binding was blocked 

through the addition of Optimax wash buffer containing horse serum (1 drop of 

horse serum per 5ml of wash buffer) to the sections for 20 minutes. The sections 
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were washed in wash buffer 4 times before the addition of the primary antibody for 

1 hour at room temperature. The primary antibodies in this method are used at their 

optimal dilutions determined within the host department using a standardization 

technique. Unbound primary antibody was removed by washing the sections 4 times 

in wash buffer before adding a universal secondary antibody (Vectorstain ABC Kit, 

Vector Laboratories Inc., Burlingame, USA) for 30 minutes at room temperature (4 

drops of universal secondary per 5ml wash buffer). Again, unbound secondary 

antibody was removed by washing the sections in wash buffer 4 times. The 

sections were incubated with the ABC complex for 30 minutes at room 

temperature, washed 4 times in wash buffer and incubated with the DAB 

chromogen for 5 minutes in the dark. The DAB was removed by placing the sections 

in running tap water for 2 minutes before finally counterstaining the sections with 

Mayer’s Haemotoxylin for 1 minute and placing the sections in running water for 

5 minutes. 

 

The slides are dehydrated in progressively increasing concentrations of alcohol; the 

alcohol is subsequently cleared from the slides by immersion in xylene and mounted 

with glass cover-slips. 

 

The slides are examined under the microscope and photographed at varying 

magnifications and a comparison made between the carcinoma tissues and the 

normal colorectal tissues. An assessment of location of the subject protein and its 

degree of staining is made and documented. 
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4.7 Data collection and colorectal tissue processing 

4.7.1 Colorectal tissue processing 

 

Historical samples from deep freeze storage were retrieved that had been collected 

for previous studies performed in the host laboratory. A total of 174 samples had 

previously been collected, 80 normal colorectal tissue samples and 94 colorectal 

carcinoma samples with 68 of those being paired samples. These samples had been 

collected from a cohort of patients who had presented to local colorectal surgeons for 

surgical treatment of their diagnosed colorectal carcinomas. Following surgical 

excision, samples were retrieved and `snap’ frozen in liquid nitrogen before being 

stored at -80°C. Median age of contributors at the time of their operation was 73 for 

male subjects and 74 for females with a gender distribution of 43 females and 46 

males. 

 

Tissues were sectioned on a Leica cryostat (Leica Microsystems (UK) Ltd., Bucks, 

UK) at a thickness of 5-10µm and mounted on electro-statically charged glass slides. 

Three sections were mounted per slide. Following mounting the slides were allowed 

to defrost and air dried for up to 30 minutes following which they were fixed in a 

solution of 50% Ethanol and 50% Acetone for a period of 15 minutes. The slides were 

air dried for approximately 30 minutes and then packaged in foil and frozen in a -20°C 

freezer until required for further analysis. 

 

Tissues samples had previously been subjected to triple extraction of RNA, DNA and 

protein. This was achieved by taking 20 to 30 thick sections of tissue on a Leica 

cryostat. These were homogenized in ice cold TRI REAGENTTM (Sigma Aldrich Inc., 
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Saint Louis, USA) (1ml per 50-100mg of tissue) in an appropriate homogenizer. The 

following process was then identical to that outlined in section 4.4.1. 

 

4.7.2 Data collection 

 

Data sets with clinical information pertinent to patients at the time of surgical resection 

were available for 77 of the paired tissue samples. As part of this study, the clinical 

information was updated where possible. Due to the age of some of the medical 

records, follow-up data could only be found for 61 (79%) of the 77. Clinical data 

collected consisted of a number of outcomes which included patient survival, disease 

free time periods, development of metastatic disease and recurrence of  local 

disease. This data looked at a follow-up time period of between 6 and 18 years, 

depending on when the original tissue sample was obtained.   
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4.8 Statistical analysis 

 

For statistical analysis experiments were repeated at least three independent 

times. Statistical analysis was performed using SigmaPlot 11.0 statistical software 

(Systat Software Inc, London, UK). Data was stored prior to analysis and collated 

with clinical and demographic data using Microsoft® Office Excel 2003-2013 

(Microsoft Corporation, USA).  

  

Data was analysed using a Students two-tailed t-test and one way analysis of 

variance (ANOVA) if the data was found to be normalised. Normality of data to 

perform these parametric tests was assessed by the Sigmaplot software and if 

deemed non-parametric, Mann-Whitney was performed. Where the median value of 

a group was not informative, the inter-quartile range and mean values of the group 

were provided as a reference point. In all cases P-values＜0.05 were considered 

statistically significant.  
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5.1 Introduction 

As already discussed in chapter 2, the WASP family of proteins contain five 

members of which the WAVE protein family is a subgroup consisting of three of 

these members (WAVE 1, 2 and 3). There is evidence that the WASP family, 

particularly WAVE proteins, are associated with migration of a range of tumour cells, 

and are implicated in tumour cell invasion and metastasis (Lane et al, 2014; 

Fernando et al, 2009), with an aberrant WAVE expression associated with several 

metastatic cancers (Kurisu et al., 2005; Iwaya et al., 2007; Sossey-Alaoui et al., 

2007). 

This chapter aims to present the analysis of results from the quantitative gene 

transcript analysis (Q-PCR) experiments on human colorectal tissue samples 

previously collected from surgical specimens and the result of the 

immunohistochemistry staining experiments that looked at WAVE 1, 2 and 3 

expression. 
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5.2 Clinical Cohort demographics 

5.2.1 Patient Demographics 

Historical samples from deep freeze storage were used that had been collected for 

previous studies performed in the host laboratory. A total of 174 samples had 

previously been collected, 80 normal colorectal tissue samples and 94 colorectal 

carcinoma samples with 68 of those being paired samples. These samples had been 

collected from a cohort of patients who had presented to local colorectal surgeons for 

surgical treatment of their diagnosed colorectal carcinomas. Median age of 

contributors at the time of their operation was 73 for male subjects and 74 for females 

with a gender distribution of 43 females and 46 males. 

 

5.2.2 Clinico-Pathological data 

Of the colorectal carcinoma samples used, 77 (82%) had complete clinico-

pathological data from the time of collection (Tables 5.1 to 5.4). Metastatic disease 

was found in 19 out of 77 samples (24.7%). 

 

Table 5.1 
Dukes stage data 

Dukes A Dukes B Dukes C 

Sample No.’s (%) 15 (19.5%) 32 (41.6%) 30 (30.9%) 

 

Table 5.2 
Disease T-stage distribution 

T1 T2 T3 T4 

Sample No.’s (%) 8 (10.4%) 11 (14.3%) 39 (50.6%) 19 (24.7%) 
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Table 5.3 

Nodal disease distribution 

N0                 
(Node negative) 

N1 N2 
Node positive 

(N1 & N2) 

Sample No.’s (%) 46 (59.7%) 15 (19.5%) 16 (20.8%) 31 (33%) 

 

Table 5.4 
Overall disease stage 

Stage I Stage II Stage III Stage IV 

Sample No.’s (%) 16 (20.8%) 30 (39%) 25 (32.5%) 6 (7.8%) 

 

During the period of this study, further clinical data was collected for those patients 

whose colorectal carcinoma samples were used. Due to the age of some of the 

medical records, follow-up data could only be found for 61 (79%) of the 77.  

Clinical data collected consisted of a number of outcomes which included patient 

survival, disease free time periods and development of metastatic disease. This 

information allowed us to analyse and correlate the relationship between WAVE 1, 2 

and 3 expression and disease severity. This data looked at a follow-up time period of 

between 6 and 18 years, depending on when the original tissue sample was 

obtained.   
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5.2.3 Histology and grade 

Upon histopathological assessment, all tumour samples were found to be 

adenocarcinomas and the tumour grade (Well/moderately/poorly differentiated) was 

recorded (Table 5.5). 

Table 5.5 

Histological tumour grading 

Well-differentiated 
Moderately-

differentiated 
Poorly-differentiated 

Sample No.’s (%) 10 (13%) 53 (68.8%) 14 (18.2%) 

 

 

5.2.4 Anatomical Distribution 

Analysis of the anatomical distribution of the colorectal carcinomas can be seen in 

table 5.6. 

 

Table 5.6 

Anatomical distribution of 
tumours 

Sample No.’s (%) 

Rectum 22 (28.6%) 

Sigmoid colon 20 (26%) 

Caecum 19 (24.7%) 

Descending colon 9 (11.7%) 

Ascending colon 2 (2.6%) 

Transverse colon 2 (2.6%) 

Splenic flexure 1 (1.3%) 

Hepatic flexure 1 (1.3%) 
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5.3 Quantitative PCR analysis of gene transcripts in colorectal samples 

5.3.1 WAVE 1 

Distribution of the WAVE 1 data was identified as not being normally distributed. 

Because of this the non-parametric Mann-Whitney test has been used for the 

analysis of this data. This holds true for the analysis of the WAVE 2 and 3 data that 

is presented later in this chapter. 

Expression of WAVE 1 shows no statistically significant difference between that in 

normal colorectal tissues and that in carcinoma tissues (p=0.6284). 

5.3.1.1 WAVE 1 expression and T-stage 

There was no statistically significant difference found in the expression of WAVE 1 in 

normal colorectal tissues when compared with T2 to T4 stage tumours and there 

was no statistically significant difference in WAVE 1 expression when further 

comparing between T-stages (Table 5.7). T1 had a very low sample number of 2 and 

the statistical analysis of it was not included.   

 

Table 5.7 Median values and significance levels of WAVE 1 expression of Normal 

versus T-Stage samples. 

 

T-Stage 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample 

No. 

 

p-Value 

2 0.0000 (0.007; 0.0177) 10 0.39 

3 0.00000 (0.00442; 0.00014) 40 0.13 

4 0.000 (4.41; 0.245) 18 0.44 
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5.3.1.2 WAVE 1 expression and nodal disease 

There was no statistically significant difference in the expression of WAVE 1 in 

normal colorectal tissues compared to those carcinoma tissues with nodal disease or 

without nodal disease (Table 5.8). No significant differences were found between 

nodal stages either. 

 

 

 

 

 

Table 5.8 Median values and significance levels of WAVE 1 expression of Normal versus 

N-Stage samples. 

 

N-Stage 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample 

No. 

 

p-Value 

N0 (Node 

negative) 

0.00000 (0.1755; 0.00453) 39 0.17 

Node positive 

(N1 & N2) 

0.000 (4.41; 0.142) 31 0.34 
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5.3.1.3 WAVE 1 expression and tumour grade/differentiation 

Carcinoma tissue samples graded as well, moderate and poorly differentiated show 

no significant difference in their WAVE 1 expression when compared to normal 

tissue samples (Table 5.9). There was no statistically significant difference 

demonstrated between different grades of tumour samples either. The sample 

number for the well differentiated tissue samples was only 2 and so the statistical 

analysis was not included. 

 

Table 5.9 Median values and significance levels of WAVE 1 expression of Normal 

versus grade/differentiation of tumour samples. 

 

Histological 

grade 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample No. 

 

p-Value 

Mod-Diff 0.00000 (0.1755; 0.00336) 54 0.16 

Poorly-Diff 0.000 (4.410; 0.315) 14 0.42 

 

  

 

5.3.1.4 WAVE 1 expression and presence of distant metastases 

WAVE 1 expression showed no statistically significant differences between those 

tumours with metastatic disease and those without. 

 

 

 



150 
 

5.3.1.5 WAVE 1 expression and overall disease Stage 

There was no statistically significant difference in WAVE 1 expression between 

normal colorectal tissue samples and any of the overall disease staged carcinoma 

tissue samples (Table 5.10). 

 

Table 5.10 Median values and significance levels of WAVE 1 expression of Normal 

versus Overall Disease Stage samples. 

 

Stage 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample No. 

 

p-Value 

I 0.0000 (0.1755; 0.0195) 9 0.43 

II 0.00000 (0.00043; 0.00003) 30 0.13 

III 0.00000 (0.00442; 0.00023) 26 0.13 

IV 0.000 (4.410; 0.735) 6 0.39 

 

 

There was no significant difference in WAVE 1 expression between normal 

colorectal tissues and any of the Dukes staged tumour tissue samples. Again, no 

significant difference was found between the different stages of Dukes classification. 

 

 

 

 



151 
 

5.3.1.6 WAVE 1 expression and Survival 

There was no statistically significant correlation between WAVE 1 expression in 

carcinoma tissues and patient outcomes in terms of overall survival or disease free 

survival. 
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5.3.2 WAVE 2 

WAVE 2 was expressed in both normal colorectal tissue samples and carcinoma 

tissue samples. Normal colorectal tissue samples had a median value for WAVE 2 

mRNA expression of 0.000 copies per 50µg total cellular RNA. This is compared to 

the value for carcinoma tissues with a median value of 0.3 copies per 50µg total 

cellular RNA. Expression in colorectal carcinoma tissue samples was significantly 

higher than in normal colorectal tissues (p<0.00005). 

This finding is echoed in analysing WAVE 2 expression in the paired tissue samples. 

There is a significantly higher WAVE 2 expression in the carcinoma tissue samples 

of a patient (median value of 0.343 copies per 50µg total cellular RNA) compared to 

the normal tissue samples (median value of 0.000 copies per 50µg total cellular 

RNA)  from the same patient (p=0.0001).  
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5.3.2.1 WAVE 2 expression and T-stage 

Expression of WAVE 2 was significantly higher in T-stage 3 and 4 tumours 

compared to normal colorectal tissues (Table 5.11).  

There was no significant difference found in the expression of WAVE 2 in normal 

colorectal tissues when compared with T2 stage tumours. T1 stage tumours had a 

very small sample number of 2 and so the statistical analysis has not been included.  

 

 

 

Table 5.11 Median values and significance levels of WAVE 2 

expression of Normal versus T-Stage samples. 

 

T-Stage 

 

Median copy 

number per 

50µg RNA 

 

Sample No. 

 

p-Value 

2 0.022 10 0.5058 

3 0.205 40 0.0003 

4 5.09 18 <0.00005 

 

 

There is an increasing difference in WAVE 2 expression as the primary tumour 

tissues T stage increases (p=0.007; Kruskal-Wallis Test). 
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5.3.2.2 WAVE 2 expression and nodal disease 

WAVE 2 was expressed at significantly higher levels in all carcinoma tissues, 

regardless of the nodal status (Table 5.12). Despite the median copy number of 

WAVE 2 being lower in the primary tumours of node positive patients compared to 

the node negative patients, there was no statistically significant difference in WAVE 

2 expression found between the nodal stages.  

 

Table 5.12 Median values and significance levels of WAVE 2 

expression of Normal versus N-Stage samples. 

 

N-Stage 

 

Median copy 

number per 

50µg RNA 

 

Sample No. 

 

p-Value 

N0 (Node 

negative) 

0.39 39 0.0001 

Node positive 

(N1 & N2) 

0.20 31 0.0001 

 

 

5.3.2.3 WAVE 2 expression and tumour grade/differentiation 

Moderately and poorly differentiated colorectal carcinoma tissues express WAVE 2 

at a significantly higher level than normal colorectal tissue samples (Table 5.13). 

Those carcinoma tissue samples graded as well differentiated had only a sample 

size of 2 and the statistical analysis has not been included due to the potential for 

them to not be representative. There was no statistically significant difference 

demonstrated between different grades of tumour samples. 
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Table 5.13 Median values and significance levels of WAVE 2 

expression of Normal versus grade/differentiation of tumour 

samples. 

 

Histological 

grade 

 

Median copy 

number per 

50µg RNA 

 

Sample No. 

 

p-Value 

Mod-Diff 0.21 54 0.0002 

Poorly-Diff 0.49 14 0.0001 

 

  

5.3.2.4 WAVE 2 expression and presence of distant metastases 

WAVE 2 expression was significantly higher in tumours both with and without 

metastatic disease either at the time of surgery or having developed in the follow-up 

time period (Table 5.14). However, No statistically significant differences in WAVE 2 

expression were found between those tumours with metastatic disease and those 

without. 

Table 5.14 Median values and significance levels of WAVE 2 

expression of Normal versus Tumour with and without the 

presence of distant metastatses. 

 

Metastases 

 

Median copy 

number per 

50µg RNA 

 

Sample No. 

 

p-Value 

No distant 

mets 

0.272 50 <0.00005 

Distant mets 

present 

1.75 19 0.0006 
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5.3.2.5 WAVE 2 expression and overall disease Stage 

Expression of WAVE 2 was significantly higher in disease Stages II, III and IV 

tumours compared to normal colorectal tissues (Table 5.15).  

There was no significant difference found in the expression of WAVE 2 in normal 

colorectal tissues when compared with Stage I tumours.   

There was a statistically significant difference in WAVE 2 expression when 

comparing Stage I tumours to Stage II and IV tumours. The low copy number of the 

stage III tumours means that there is no significant difference in the WAVE 2 

expression when comparing them and stage I tumours. The reason for the low Stage 

III copy number is unclear and may be attributable to a random error.    

 

Table 5.15 Median values and significance levels of WAVE 2 

expression of Normal versus Overall Disease Stage samples. 

 

Stage 

 

Median copy 

number per 

50µg RNA 

 

Sample No. 

 

p-Value 

I 0.002 9 0.5975 

II 0.53 30 <0.00005 

III 0.05 26 0.0031 

IV 1.83 6 0.0009 
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Expression of WAVE 2 was significantly higher in carcinoma tissue samples from 

Dukes stage B and C tumours compared to normal colorectal tissues (Table 5.16). 

There was no significant difference in WAVE 2 expression between normal 

colorectal tissues and Dukes stage A tumour tissue samples. No statistically 

significant difference was found in the WAVE 2 expression between Dukes stages B 

and C, however, there was a significant difference between Dukes stage A when 

compared to stages B and C (p=0.0062). 

 

Table 5.16 Median values and significance levels of WAVE 2 

expression of Normal versus Dukes-Stage samples. 

 

Dukes-Stage 

 

Median copy 

number per 

50µg RNA 

 

Sample No. 

 

p-Value 

A 0.000 7 0.8755 

B 0.49 33 <0.00005 

C 0.229 32 0.0001 
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5.3.2.6 WAVE 2 expression and Survival 

WAVE 2 expression correlated with survival (Figure 5.1). Those with high expression 

in the tumour tissue had a significantly lower mean survival period (33 months) than 

those with a low expression (136 months) (p=0.004).  

 

 

 

 

Figure 5.1 – Overall Survival when correlated with WAVE 2 expression 
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WAVE 2 expression correlated with Disease Free Survival (Figure 5.2). Those with 

high expression had a significantly shorter disease Free survival period (30 months) 

than those with low expression (131 months) (p=0.003). 

 

 

 

 

Figure 5.2 – Disease Free Survival when correlated with WAVE 2 expression 
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5.3.4 WAVE 3 

WAVE 3 was expressed in both normal colorectal tissue samples and carcinoma 

tissue samples. Expression in colorectal carcinoma tissue samples was significantly 

higher than in normal colorectal tissues (p<0.00005). The median values for both the 

normal and tumour tissues are unhelpful in this situation and so the mean expression 

in normal tissues is 678 copies with an interquartile range of 0. In contrast the mean 

expression in tumour tissues is 46336 copies with an interquartile range of 5. 

This finding is echoed in analysing WAVE 3 expression in the paired tissue samples. 

There is a significantly higher WAVE 3 expression in the carcinoma tissue samples 

of a patient compared to the normal tissue samples from the same patient 

(p<0.00005).  
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5.3.3.1 WAVE 3 expression and T-stage 

Expression of WAVE 3 was significantly higher in T-stage 2, 3 and 4 tumours 

compared to normal colorectal tissues (Table 5.17). T1 stage tumours had a very 

small sample number of 2 and so the statistical analysis has not been included.  

There is no significant difference in WAVE 3 expression as the primary tumour 

tissues T-stage increases (p=0.557).  

 

 

Table 5.17 Median values and significance levels of WAVE 3 expression of Normal 

versus T-Stage samples. 

 

T-Stage 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample No. 

 

p-Value 

2 0.03 (27.2; 13.96) 10 0.0006 

3 0 (1; 106590) 40 <0.00005 

4 0.0 (2410; 136) 18 0.0005 
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5.3.3.2 WAVE 3 expression and nodal disease 

WAVE 3 was expressed at significantly higher levels in all carcinoma tissues, 

regardless of the nodal status (Table 5.18). No significant differences were found 

between nodal stages. 

 

 

 

 

Table 5.18 Median values and significance levels of WAVE 3 expression of Normal versus N-

Stage samples. 

 

N-Stage 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample No. 

 

p-Value 

N0 (Node negative) 0 (1; 109183) 39 <0.00005 

Node positive 

(N1 & N2) 

0 (2; 260) 31 <0.00005 
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5.3.3.3 WAVE 3 expression and tumour grade/differentiation 

Moderately and poorly differentiated colorectal carcinoma tissues express WAVE 3 

at a significantly higher level than normal colorectal tissue samples (Table 5.19). 

Those carcinoma tissue samples graded as well differentiated had a very small 

sample size of 2 and so the statistical analysis was not included. There was no 

significant difference in WAVE 3 expression demonstrated between different grades 

of tumours. 

 

 

Table 5.19 Median values and significance levels of WAVE 3 expression of Normal versus 

grade/differentiation of tumour samples. 

 

Histological 

grade 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample No. 

 

p-Value 

Mod-Diff 0 (1; 41965) 54 <0.00005 

Poorly-Diff 0 (2; 142860) 14 <0.00005 
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5.3.3.4 WAVE 3 expression and presence of distant metastases 

WAVE 3 expression was significantly higher in tumours both with and without 

metastatic disease either at the time of surgery or having developed in the follow-up 

time period (Table 5.20). However, No significant differences in WAVE 3 expression 

were found between those tumours with metastatic disease and those without 

(p=0.3933). 

 

Table 5.20 Median values and significance levels of WAVE 3 expression of Normal 

versus presence of distant metastatses. 

 

Metastases 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as 

reference) 

 

Sample No. 

 

p-Value 

No distant 

mets 

0 (7; 85716) 50 <0.00005 

Distant mets 

present 

0.0 (4820; 259) 19 0.0005 
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5.3.3.5 WAVE 3 expression and overall disease Stage 

Expression of WAVE 3 was significantly higher in all disease stages compared to 

normal colorectal tissues (Table 5.21).  

There was no statistically significant difference found in the expression of WAVE 3 

when comparing between the different stages. 

 

Table 5.21 Median values and significance levels of WAVE 3 expression of Normal versus 

Overall Disease Stage samples. 

 

Stage 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as reference) 

 

Sample No. 

 

p-Value 

I 0.00 (7.19; 6.79) 9 0.0449 

II 0 (2; 141936) 30 <0.00005 

III 0.0 (1.2; 124.6) 26 <0.00005 

IV 2.6 (2255; 1038) 6 0.0006 

 

 

 

 

 

 

 



166 
 

Expression of WAVE 3 was significantly higher in carcinoma tissue samples from all 

Dukes stage tumours compared to normal colorectal tissues (Table 5.22).  Again, no 

significant difference was found between the different stages of Dukes classification 

(p=0.557). 

 

 

Table 5.22 Median values and significance levels of WAVE 3 expression of Normal versus Dukes-

Stage samples. 

 

Dukes-Stage 

 

Median copy number per 50µg RNA 

(Interquartile range; Mean copy no. as reference) 

 

Sample 

No. 

 

p-Value 

A 0.00 (14.2; 8.72) 7 0.012 

B 0 (1; 129033) 33 <0.00005 

C 0.0 (4; 296) 32 <0.00005 

 

 

 

5.3.3.6 WAVE 3 expression and Survival 

There was no statistically significant correlation between WAVE 3 expression in 

carcinoma tissues and patient outcomes in terms of overall survival or disease free 

survival. 

 

 



167 
 

5.4 Immunohistochemistry Results 

Immunohistochemistry (IHC) results are presented with a descriptive analysis. This is 

because the quantitative analysis has been performed using qPCR methods and the 

results are as already shown. This method of analysis allows the distribution of the 

specified molecules through the cells and the cell structures to be studied rather than 

just how much of the molecule is present.   
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5.4.1 WAVE 1 

5.4.1.1 WAVE 1 in normal colorectal tissues 

In the normal colorectal tissues, the distribution of WAVE 1 on IHC staining is shown 

to be distributed within the cytoplasm of the epithelial cells that line the glands and 

crypts. This is along the luminal surfaces and would fit with the normal physiology of 

colorectal mucosa as the luminal epithelial cells within the crypts migrate towards the 

surface mucosa as they mature until they are eventually shed. There is no staining 

found in the stromal areas (Figure 5.3).  

 

5.4.1.2 WAVE 1 in colorectal carcinoma tissues 

The colorectal carcinoma tissues demonstrated a subtle difference in the staining of 

WAVE 1 compared to the normal colorectal tissues. In the carcinoma tissues there 

was still the cytoplasmic staining along the luminal surfaces of the crypts epithelial 

cells but this became less intense as the T- stage increased. However, there was a 

change in the staining distribution within the tissues with an increasing cell 

membrane distribution in the more basal cell layers of the crypts that border the 

stroma. This appearance became more pronounced the higher the T-stage of the 

tumour tissue. In addition, with the higher T-stages came a very small amount of 

staining found in the stromal areas (Figure 5.3). 
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5.4.2 WAVE 2 

 

5.4.2.1 WAVE 2 in normal colorectal tissues 

In the normal colorectal tissues, the distribution of WAVE 2 on IHC staining is again 

shown to be distributed within the luminal cytoplasm of the epithelial cells that line 

the glands and crypts and along the mucosal surface. There is very little to no 

staining found in the stromal areas (Figure 5.4). On higher power it is possible to see 

darker staining at the polar membrane surfaces of some cells which would be in 

keeping with the distribution required for cell motility and migration as described in 

chapter 2. 

 

5.4.2.2 WAVE 2 in colorectal carcinoma tissues 

The colorectal carcinoma tissues demonstrated a more substantial difference in the 

staining of WAVE 2 distribution compared to the normal colorectal tissues. In the 

carcinoma tissues there was still the cytoplasmic staining along the luminal surfaces 

of the crypts epithelial cells. However, there was an increase in the depth of staining 

present suggesting larger amounts of the WAVE 2 molecule being present and there 

also appeared to be a significant increase in cell membrane distribution along the 

more basal layers of the crypts, bordering the stroma. This appearance became 

significantly more pronounced the higher the T-stage of the tumour tissue.  With the 

higher T-stages came a larger amount of cytoplasmic and membrane staining within 

the stromal areas of these tissues (Figure 5.4). 
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5.4.3 WAVE 3  

 

5.4.3.1 WAVE 3 in normal colorectal tissues 

In the normal colorectal tissues, the distribution of WAVE 3 on IHC staining is again 

shown to be distributed within the luminal cytoplasm of the epithelial cells that line 

the glands and crypts and along the mucosal surface. There is a little staining found 

in the cytoplasm of some cells within the stromal areas (Figure 5.5).  

 

5.4.3.2 WAVE 3 in colorectal carcinoma tissues 

Again, the colorectal carcinoma tissues demonstrated a more substantial difference 

in the staining of WAVE 3 distribution compared to the normal colorectal tissues. The 

appearances were very similar to WAVE 2. In the carcinoma tissues there was 

cytoplasmic staining along the luminal surfaces of the crypts epithelial cells with a 

significant increase in cell membrane distribution along the basal cell layers of the 

crypts. This was associated with an increase in the depth of staining present 

suggesting larger amounts of the WAVE 3 molecule being present. This appearance 

became significantly more pronounced the higher the T-stage of the tumour tissue.  

With the higher T-stages came a larger amount of cytoplasmic and membrane 

staining within the stromal areas of these tissues (Figure 5.5). 
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5.5 Discussion 

The expression of WAVE 1, 2 and 3 was examined in a number of available clinical 

colorectal samples. They were examined using Q-PCR techniques and frozen IHC 

staining.  

 

For WAVEs 2 and 3, their respective protein expression was at its lowest in the 

normal colorectal tissues as shown by Q-PCR and as seen on the frozen sections. 

The IHC stained sections showed that this expression was very focally located within 

the luminal cytoplasm of the epithelial cells lining the colonic crypts and glands, with 

some minimal expression in the cytoplasm of occasional stromal cells. 

 

Within the colorectal carcinoma tissues, the expression profiles varied between the 

WAVE proteins.  

 

WAVE 1 expression stained for on the frozen sections showed only a subtle change 

between normal colorectal tissues and colorectal carcinoma tissues. These changes 

were mainly in distribution of expression rather than in amount of expression. The 

staining pattern that was present moved to involve the cytoplasm of the basal cell 

layers of the crypts, rather than the luminal, and a very small amount was seen 

within the cytoplasm of some stromal cells. This is potentially in keeping with the Q-

PCR results which actually showed that there was no statistically significant change 

in overall WAVE 1 expression between the normal colorectal tissues and the 

colorectal carcinoma tissues. As the IHC results show, it may be that the expression 

levels remained the same but the distribution of that expression changed.  
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These findings are in contrast to other studies which have shown an increase in the 

expression of WAVE 1 in breast and prostate cancer (Fernando et al., 2007; 2008)  

 

WAVE 2 expression stained for on the frozen sections demonstrated a more 

substantial difference when compared to the normal colorectal tissue sections and 

indeed in comparison to WAVE 1 staining. Within the T2 stage tumours there was 

still the luminal cytoplasmic staining of the epithelial cells along the crypts but there 

was an increase in the intensity of the staining which suggested an increase in 

WAVE 2 expression. In addition, this intense staining now also included a 

cytoplasmic and cell membrane distribution within the basal cell layers of the crypts. 

Although not as intense, a cytoplasmic distribution was also seen within the stromal 

cells. These appearances became more pronounced with deeper staining, the higher 

the T-stage of the tumour tissue.  

 

The Q-PCR results were somewhat in keeping with the IHC staining with a 

significantly higher WAVE 2 expression level found in carcinoma tissues compared 

to normal colorectal tissues. On analysis of WAVE 2 expression between the 

different T-stages of tumour tissues, it was found that there was a significant 

difference in the expression levels between the stages and there was an increase in 

WAVE 2 expression as the carcinoma T-stage increased (T3 and T4). In the lower, 

T2, stage there was no significant difference between WAVE 2 expression in the 

carcinoma tissues compared to normal tissues. 

 

There was a higher WAVE 2 expression in the less histologically differentiated 

tumours (moderately differentiated and poorly differentiated) than compared to 
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normal tissues. WAVE 2 expression is significantly higher in the tumours of patients 

with a higher overall disease stage (stage II, III and IV) compared to normal 

colorectal tissues and stage I carcinoma tissues. Additionally, WAVE 2 expression is 

significantly higher in the carcinoma tissues of those patients classified as having 

Dukes B and C stage disease compared to normal colorectal tissue expression and 

Dukes A stage carcinoma tissues. 

 

The WAVE 2 expression showed no difference in tissues from tumours that had 

nodal disease compared to those that did not have nodal disease. In addition, there 

was no difference in WAVE 2 expression from tumour tissues that had metastatic 

disease compared to those that did not have metastatic disease. The possibility here 

is that the WAVE 2 expression being analysed is from the primary tumour site and 

may not be representative of the cell phenotypes which have actually metastasised 

via the lymphatics and vasculature. Or in addition it could be that low numbers in 

certain categories may have impacted the statistical analysis.  

 

The final point for WAVE 2 expression is that in those colorectal carcinoma tissues 

analysed, a higher WAVE 2 expression was associated with a significantly lower 

mean survival period (33 months) and a shorter disease free survival period (30 

months) compared to those with a low WAVE 2 expression who had a longer mean 

survival period (136 months) and disease free survival period (131 months).    

These findings for WAVE 2 fit with earlier studies, whereby there is increased WAVE 

2 expression in hepatocellular and breast cancer (Yang et al., 2006; Fernando et al., 

2007) associated with shorter survival times and a higher WAVE 2 co-localisation 

level and co-expression level with Arp 2 in colorectal cancer and lung 
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adenocarcinoma when associated with metastases (Iwaya et al., 2007; Semba et al., 

2006).  

WAVE 3 expression stained for on the frozen section again demonstrated a more 

substantial difference when compared to the normal colorectal tissue sections.  The 

appearances were very similar to the WAVE 2 distribution and intensity. In the 

carcinoma tissues there was cytoplasmic staining along the luminal surfaces of the 

crypts epithelial cells with a significant increase in cell membrane distribution along 

the basal cell layers of the crypts. This was associated with an increase in the depth 

of staining present suggesting an increase in WAVE 3 expression. This appearance 

became significantly more pronounced the higher the T-stage of the tumour tissue.  

With the higher T-stages also came a larger amount of cytoplasmic and membrane 

staining within the stromal areas of these tissues.  

 

The Q-PCR results were somewhat in keeping with the IHC staining with significant 

WAVE 3 expression levels found in carcinoma tissues compared to normal colorectal 

tissues. On analysis of WAVE 3 expression between the different T-stages of tumour 

tissues, there was higher expression in T2, 3 and 4 tumours compared to normal 

colorectal tissue.  

 

There was a higher WAVE 3 expression in the less histologically differentiated 

tumours (moderately differentiated and poorly differentiated) than compared to 

normal colorectal tissues. WAVE 3 expression is significantly higher in the tumours 

of patients with a higher overall disease stage (stage II, III and IV) compared to 

normal colorectal tissues and stage I carcinoma tissues. Additionally, WAVE 3 

expression is significantly higher in the carcinoma tissues of those patients classified 
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as having Dukes B and C stage disease compared to normal colorectal tissue 

expression and Dukes A stage carcinoma tissues. 

 

Finally, WAVE 3 expression showed no difference in tissues from tumours that had 

nodal disease compared to those that did not have nodal disease. In addition, there 

was no difference in WAVE 3 expression from tumour tissues that had metastatic 

disease compared to those that did not have metastatic disease. 

 

A similar pattern of WAVE 3 expression has been found in breast and prostate 

cancer, with high WAVE 3 levels being expressed in advanced breast cancer tissues 

(Sossey-Alaoui et al., 2007) and high WAVE 3 expression levels found in prostate 

cancer tissues compared to normal prostate tissues along with stronger IHC staining 

in the cancer tissues (Fernando et al., 2008; 2010). 
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CHAPTER 6  

RESULTS 

CELL CULTURE EXPERIMENTS 
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6.1 Introduction 

 As discussed in chapter 2, the WAVE proteins have been linked with the 

aggressiveness and invasiveness of cancer cells, in relation to their function as 

nucleators of actin through their association with the Arp2/3 complex, driving 

lamellipodia formation and cell motility (Fernando et al., 2009). 

Cell motility is an essential mechanism that underlies numerous cellular processes 

and is physiologically important in normal, healthy cells. However, it also has the 

ability to drive the migration of abnormal cells and when unregulated contributes to 

the aggressive spread of tumour cells and is acknowledged as a promoting aspect of 

cancer metastasis (Wang et al., 2007; Liotta, 1986). The gene expression profiles of 

invasive tumour cells were compared to those of the primary tumour cell population 

in an in vivo study that utilised a xenograft tumour model. The results showed an up-

regulation of genes involved in cell motility pathways including those of actin 

polymerisation. These included the Arp2/3 complex as well as Cdc42, an upstream 

stimulator of Arp2/3 found to regulate N-WASP (Wang et al., 2007).  

A large amount of the work in the cancer metastasis field has focused on the 

importance of the Rho GTPases and the part they play in cellular motility (Chapter 

2). The role played by proteins further down in the motility pathway have been 

investigated to a lesser extent. However, as more evidence emerges to link the 

WASP family proteins with cancer cell motility and the findings of their upregulated 

expression in aggressive and metastatic cancers, it is important to explore the 

potential contribution of WAVE proteins in cancer metastasis (Lane et al, 2014; 

Fernando et al, 2009; Kurisu et al., 2005; Iwaya et al., 2007; Sossey-Alaoui et al., 

2007). 
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6.2 Methods and materials 

6.2.1  Cell lines 

RKO, HRT-18 and CaCo2 cell lines were cultured and maintained as described in 

section 4.2.4. 

 

6.2.2  Generation of WAVE 1 and 3 knockdown colorectal cancer cell lines 

Hammerhead ribozyme transgenes that specifically target and cleave WAVE 1 or 3 

mRNA transcripts were generated. The WAVE 1 targeted ribozyme was cloned into 

the RKO, CaCo2 and HRT-18 colorectal cancer (CRC) cell lines and the WAVE 3 

targeted ribozyme was cloned into the CaCo2 CRC cell line. 

The protocols followed to generate ribozymes, for insertion into the plasmid vector, 

to amplify the plasmid in E.coli, for plasmid extraction and for electroporation to 

introduce the plasmids into the cell lines are outlined in section 4.3.   

 

6.2.3  Synthesis of complementary DNA and reverse transcription polymerase 

chain reaction 

See section 4.4.3. RNA was isolated from wild type RKO, HRT-18 and CacCo2 cells 

and their plasmid transfected equivalents. Complementary DNA (cDNA) was 

generated from the standardised RNA extractions using reverse transcription 

polymerase chain reaction (RT-PCR). This then enabled subsequent analysis of the 

degree of WAVE 1, 2 and 3 expression in the three CRC cell lines, using 

conventional and quantitative PCR techniques and primer sequences as shown in 



182 
 

table 4.3 in the general methods section. GAPDH expression was also examined in 

the cell lines to validate the cDNA quality and to demonstrate normalised levels of 

cDNA within the separate cell line samples. All primers were synthesised and 

provided by Invitrogen (Paisley, UK).  
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6.3  Results 

6.3.1  Expression of WAVE 1, 2 and 3 at the mRNA level in colorectal cancer 

cell lines 

The results of the PCR screen demonstrating the expression of WAVEs 1, 2 and 3 

are shown in figure 6.1. WAVE 1 expression was seen in all of the CRC cell lines 

with the CaCo2 and RKO cell lines showing the strongest expression of this 

transcript. WAVE 3 expression was only demonstrated in the CaCo2 cell line. 

Unfortunately, the WAVE 2 primers consistently failed and so an expression profile 

was unable to be obtained for the CRC cell lines. It was decided to proceed with the 

knockdown of WAVE 1 and 3 expression in the relevant CRC cell lines with the 

option to attempt knockdown of WAVE 2 at a later date should a successful primer 

be designed within the duration of this study.  
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6.3.2 Generation of WAVE 1 and WAVE 3 ribozyme transgene pEF6 plasmids 

 

Firstly, in order to create the WAVE 1 and WAVE 3 ribozyme transgenes that 

specifically target and cleave WAVE 1 and 3 mRNA transcripts, a suitable targeting 

site for the hammerhead ribozymes was identified on the predicted secondary 

structure of the WAVE 1 and 3 mRNA transcripts. This was achieved using a 

software programme (described in section 4.3.1) that predicts the way the mRNA 

transcripts fold.  

Initial synthesis of the WAVE 1 and 3 ribozyme transgenes was carried out following 

the touchdown PCR parameters as outlined in section 4.3.1. Following the plasmid 

integration and consequent amplification in E.coli, the plasmids were extracted for 

analysis. It is crucial for the ribozyme transgenes to be integrated into the plasmid 

vector in the correct orientation and so orientation checks were performed with PCR 

and electrophoresis. Bands of approximately 140bp resulting from a T7F vs RbBMR 

reaction indicated correct orientation. However, a 140bp band from a T7F vs RbToP 

reaction was taken as indicating incorrect orientation of the ribozyme transgene 

insert. This is demonstrated in Figure 6.2. As can be seen, colonies 4 and 7 display 

bands of 140bp for T7F and RbBMR PCR reactions for WAVE 1 ribozyme 1 (W1R1) 

samples which indicates correct orientation of the ribozyme transgene within the 

plasmid vector. These colonies were therefore chosen to be used for plasmid 

amplification, purification and transfection into the RKO, HRT-18 and CaCo2 cell 

lines. Additionally, colonies 2 and 6 were identified as carrying WAVE 1 ribozyme 2 

(W1R2), colonies 1 and 4 were selected for WAVE 3 ribozyme 1 (W3R1) and colony 

8 was selected for WAVE 3 ribozyme 2 (W3R2).  
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6.3.3 Confirmation of successful WAVE 1 and WAVE 3 knockdown in RKO 

and CaCo2 cell lines at the mRNA level with polymerase chain reaction (PCR) 

and quantitative PCR (Q-PCR). 

 

Conventional and quantitative/real time PCR (Q-PCR) were used to test for 

successful knockdown of WAVE 1 and 3 expression following the transfection of 

RKO, HRT-18 and CaCo2 wild type cells with the ribozyme transgenes.  

 

Figure 6.3 displays the results of the expression analysis and knockdown verification 

at the mRNA level. All CRC cell lines displayed similar WAVE 1 expression in their 

wild type and pEF6 plasmid control cells (wild type cells transfected with a closed 

pEF6 plasmid alone to demonstrate that the plasmid by itself would have no effect 

on cellular functions being assayed). WAVE 3 expression was similar in CaCo2 WT 

and CaCo2 pEF6 cell lines.  

 

Conventional PCR techniques demonstrated a reduction in WAVE 1 mRNA 

expression levels in the RKO W1R1 cell line and a reduction in the mRNA 

expression levels of WAVE 3 in the CaCo2 W3R1 cell line when compared to their 

respective wild types and pEF6 controls.  

 

The expression analysis was performed along with that of the housekeeping gene, 

GAPDH (glyceraldehyde 3-phosphate dehydrogenase). This worked as a control to 

ensure that a uniform level of cDNA was present within the samples and, as a 

consequence, that any reduction in band intensity was due to a reduction in 

expression levels. GAPDH expression analysis illustrated a uniform expression level. 
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A negative control was provided, with water substituted for cDNA, so that 

contaminants would be highlighted. There was no evidence of DNA contamination in 

the primers or PCR water used as demonstrated by the lack of PCR product band. 

 

Figure 6.4 demonstrates the quantitative analysis of WAVE 1 and WAVE 3 

knockdown at the mRNA level using Q-PCR techniques. This focused on those cell 

lines already implicated in having reduced expression levels as described above. 

Therefore, expression analysis of RKO W1R1 and CaCo2 W3R1 was undertaken 

using this method, along with GAPDH to normalise the values obtained for WAVE 1 

and 3. In addition, standards of known transcript level were simultaneously amplified 

enabling a calculation of the expression level in the WAVE 1 and 3 samples. These 

Q-PCR experiments were repeated at least three times.  

 

Statistical analysis using a 2 sample, 2 tailed t-test shows a significant reduction in 

the expression of WAVE 1 in RKO W1R1 cell line (p = 0.0042) and WAVE 3 in the 

CaCo2 W3R1 cell line (p = 0.0067) compared to their respective pEF6 control cell 

lines. These cell lines were subsequently used in experiments to test the biological 

impact of WAVE 1 and 3 knockdown. No significant difference was seen in the 

expression of WAVE 1 and WAVE 3 when the wild type and pEF6 control cells of 

either cell line were compared. 
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6.3.4 Impact of WAVE 1 and WAVE 3 knockdown on cell growth rate 

The effects of suppressing WAVE 1 expression on the growth of RKO cell lines and 

suppressing WAVE 3 expression on the growth of CaCo2 cell lines was investigated 

following 3 and 5 day incubation periods using an in vitro cell growth assay as 

described in chapter 4. Figure 6.5 displays the results. 

There was no significant difference in cell growth rates between the wild type, pEF6 

control or WAVE 1 or WAVE 3 suppressed cells following a 3 day and a 5 day 

incubation period.  
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6.3.5  Impact of WAVE 1 and WAVE 3 knockdown on cell invasiveness 

 

The invasive ability of the RKO and CaCo2 cell lines was examined using an in vitro 

Matrigel invasion assay (see section 4.5.2) comparing wild type cells and pEF6 

control cells to RKO cells carrying the WAVE 1 ribozyme transgenes (Figure 6.6), 

and CaCo2 cells carrying the WAVE 3 ribozyme transgene (Figure 6.7). 

Knockdown of expression of both WAVE 1 and WAVE 3 resulted in a significant 

decrease in the invasive ability of the CRC cells. Knockdown of WAVE 1 expression 

in RKO W1R1 cells produced a 50% reduction in invasive ability that was found to be 

significant (p=0.02) when compared to RKO pEF6 control cells. 

Knockdown of WAVE 3 expression in CaCo2 W3R1 cells produced a 58% reduction 

in invasive ability that was also found to be significant (p=0.04) when compared to 

CaCo2 pEF6 control cells. 

No significant difference was seen between the wild type and their respective pEF6 

control cell lines.   
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6.3.6  Impact of WAVE 1 and WAVE 3 knockdown on cell adhesiveness 

 

The ability of the RKO and CaCo2 cell lines to adhere was examined using an in 

vitro Matrigel adhesion assay (see section 4.5.3) comparing wild type cells and pEF6 

control cells to RKO cells carrying the WAVE 1 ribozyme transgenes (Figure 6.8), 

and CaCo2 cells carrying the WAVE 3 ribozyme transgene (Figure 6.9). 

No changes in the cells adhesive abilities were seen for WAVE 1 or WAVE 3 

knockdown cells (p=0.797; p=0.906). 
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6.3.7  Results of WAVE 1 and WAVE 3 knockdown on cell motility 

A migration assay (see section 4.5.4) was used to assess the migratory capacity of 

the RKO and CaCo2 cell lines (Figure 6.10). WAVE 3 suppression was found to 

significantly decrease cell motility in CaCo2 W3R1 cells (p=0.02) relative to both wild 

type and pEF6 cells. The motility of RKO cells carrying the WAVE 1 ribozyme 

transgene (RKO W1R1) was reduced but not significantly so (p=0.058) when 

compared to wild type and pEF6 control cells.   
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Figure 6.11 – Representative images of the RKO and CaCo2 cell lines during the migration assay at 
Time = 120 minutes. (A) WAVE 1 knockdown in RKO cell line. (B) RKO WT cell line. (C) CaCo2 WT 
cell line. (D) WAVE 3 knockdown in CaCo2 cell line. 
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6.4 Discussion 

 

Due to the role of WAVE proteins in cell migration it is a logical progression to 

hypothesise a role for them within the cancer metastasis pathway, a route which 

itself is associated with uncontrolled levels of cell migration. Indeed, elevated 

expression levels of WAVE 2 have been linked with aggressive and metastatic 

colorectal cancer and co-localised with Arp2/3 (Iwaya et al., 2007) when compared 

to normal colorectal tissues. 

 

Unfortunately, the WAVE 2 primers that had been designed using the Beacon 

designer programme and synthesised by Invitrogen (Paisley, UK) were not 

functioning when the expression analyses were being carried out. This prevented a 

WAVE 2 expression profile being compiled and therefore a cell line to target WAVE 2 

expression in could not be identified. A decision to proceed with WAVE 1 and WAVE 

3 expression knockdown was made at this point with the hope that should the WAVE 

2 primers be successfully redesigned and synthesised during the time course of this 

study then the gamut of experiments performed on WAVE 1 and 3 would be 

repeated for WAVE 2. Unfortunately, this was not to be the case and has meant that 

WAVE 2 has not been as thoroughly investigated as WAVE 1 and 3 have been in 

this study. 

 

Transfection of wild type RKO, CaCo2, and HRT-18 with either of the two 

hammerhead ribozyme transgenes designed to target WAVE 1 (WAVE 1 ribozyme 
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1, WAVE 1 ribozyme 2) mRNA transcripts, resulted in the successful knockdown of 

the target gene at the mRNA level in the RKO cell line with WAVE 1 ribozyme 1 

(W1R1). This was successfully demonstrated using conventional PCR and Q-PCR 

techniques. Transfection of wild type CaCo2 cells with either of the two hammerhead 

ribozyme transgenes available for targeting WAVE 3 (WAVE 3 ribozyme 1, WAVE 3 

ribozyme 2) mRNA transcripts, resulted in the successful knockdown of the target 

gene at the mRNA level with WAVE 3 ribozyme 1 (W3R1). Again this was 

demonstrated using conventional PCR and Q-PCR techniques. Therefore, the RKO 

W1R1 and CaCo2 W3R1 cell lines were used in the subsequent functional assay 

experiments. 

 

In addition, wild type RKO and wild type CaCo2 cells were transfected with the 

empty vector, pEF6, to generate RKO pEF6 and CaCo2 pEF6 plasmid control cell 

lines. Conventional PCR techniques assessed mRNA expression levels of WAVE 1 

and WAVE 3 in the wild type and pEF6 control cell lines. These confirmed similar 

expression levels to each other and, therefore, that the reduction in WAVE 1 and 3 

expression levels in the RKO W1R1 and CaCo2 W3R1 transfected cells was caused 

by specific gene targeting as oppose to being an artefact caused by the process of 

gene manipulation. With this established, the pEF6 cell lines were used as controls 

for the functional assay experiments.    

 

The functional assays performed looked at the effects knockdown of WAVE 1 and 3 

expression had on growth, adhesion, invasion and motility. 



204 
 

The growth assays performed to determine the effects of WAVE 1 knockdown on cell 

growth showed no significant difference between the RKO W1R1 knockdown cells 

and the corresponding RKO wild type and pEF6 control cell lines. The knockdown of 

WAVE 3 in the CaCo2 W3R1 cell line showed a very mild reduction in cell growth 

(11%) when compared to the CaCo2 wild type and pEF6 control cell lines, however, 

it was not statistically significant. 

 

Similarly, assays carried out to determine the effects of WAVE 1 and 3 knockdown 

on cell adhesion revealed no significant difference between the knockdown cell lines 

(RKO W1R1 and CaCo2 W3R1) and their respective wild type and pEF6 control cell 

lines. The values obtained from this assay were widely distributed, yielding a very 

large standard error. 

 

Cell invasiveness was found to be significantly reduced in both WAVE 1 and WAVE 

3 knockdown cell lines (RKO W1R1, CaCo2 W3R1) compared to the pEF6 control 

cell line. WAVE 1 knockdown resulted in a 50% reduction in invasive ability and 

WAVE 3 knockdown resulted in a 58% reduction in invasive ability. 

 

When analysing the consequences of WAVE knockdown on cell motility in RKO 

W1R1 cells, it was found that a decrease in WAVE 1 expression resulted in a 51% 

decrease in cell motility, which did not reach significance. In contrast, WAVE 3 

knockdown in CaCo2 W3R1 cells showed that a decrease in WAVE 3 expression 

resulted in a significant reduction in motility. In fact a reduction of 91%. 
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These functional assays revealed similar roles for WAVE 1 and 3, particularly 

regarding cell invasion and cell motility where both traits were suppressed following 

WAVE 1 or 3 knockdown. The extent of trait suppression differed between the 

WAVE members as WAVE 3 knockdown was observed to suppress invasive and 

migratory ability to a greater and more significant extent than WAVE 1 knockdown 

when compared to wild type and pEF6 control cells. Although WAVE 1 knockdown 

was seen to inhibit cellular motility, these changes were not significant. 

 

These effects on motility and invasion when WAVE 1 and 3 expression are knocked 

down have been seen in other studies. Fernando et al (2008; 2010) knocked down 

endogenous expression of WAVE 1 and WAVE 3 in prostate cancer cell lines. Both 

showed a significant reduction in invasiveness. Sossey-Alaoui et al (2007) 

investigated the effects of WAVE 3 expression knockdown in breast cancer cell lines. 

This resulted in a suppression of the in vitro invasive capabilities of the cells. The 

team took this further and injected the knockdown cells into a xenograft mouse 

model and found that there was a reduced rate of tumour growth at the primary site 

and an inhibition of the metastatic spread of the cells to distant sites, as would 

normally be seen in mice implanted with this cell line.   

The growth assays performed in this study showed no effect on proliferation when 

WAVE 1 or 3 expression was knocked down. There are some conflicting findings in 

other studies performed whereby Fernando et al (2008; 2010) found a reduction in 

growth when WAVE 1 was knocked down in prostate cancer cell lines, but not when 

WAVE 3 was. However, Sossey-Alaoui et al (2007) did find a reduction in growth 

when WAVE 3 was knocked down in breast cancer cell lines. 
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WAVE1 and 3 display similar effects, to differing degrees, on cell function when their 

expression is knocked down in the colorectal cancer cell lines, RKO and CaCo2. 

Such findings suggest they are involved in common signalling pathways in facilitating 

cell motility and that they have an effect on invasion, a trait over which they have 

previously been attributed to having less influence. Structurally, WAVE1 and 3 share 

the same protein domains fundamental to their functional roles in the cell, however 

an alignment of their protein sequences reveal only 49.7% identity (Pearson et al, 

1997). As these two molecules do not share identical protein sequences, it can be 

postulated that these differences could translate into cellular traits that vary in their 

overall impact due to differing abilities to regulate or be regulated by different protein 

partners and thus potentially influence signalling pathways to a greater or lesser 

degree. Indeed, Sossey-Alaoui et al, (2010) found that WAVE 3 promotes cell 

motility through the regulation of MMP-1, 3 and 9 expression. This could explain the 

significant reduction in cellular motility, 91%, when WAVE 3 expression was knocked 

down compared to the 51% (and not statistically significant) reduction when WAVE 1 

was knocked down, as Sossey-Alaoui et al found that a reduction in WAVE 3 

expression reduced the expression of these MMP’s also. WAVE 1 expression has 

been associated with regulation of MMP-2 expression (Suetsugu et al., 2003).   

 

An additional observation made during the functional assays was of the appearance 

of the cells. During the migration, adhesion and invasion assays the RKO cell line 

had a distinct elongated/mesenchymal shape. In contrast, the Caco2 cell line 

appeared more rounded and amoeboid, except during the invasion assay where they 

too became more elongated/mesenchymal in shape. These observations are in 

keeping with previously discussed methods of cancer cell migration and invasion of 
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the ECM in 3D environments (Kurisu et al., 2010; Hanahan et al., 2011; Sanz-

Moreno et al., 2008; 2007). However, it does raise the question as the 

rounded/amoeboid shape has been associated with infiltration of the ECM without 

the aid of MMP’s whereas the elongated/mesenchymal shape is associated with 

motility and invasion in the presence of MMP’s.     

 

The results presented here provide evidence that WAVE 3 and to a lesser extent 

WAVE 1 are indeed pro-tumorigenic in that their presence is closely linked to the 

invasion and motility of cancer cells. 

 

The in vitro assays performed in this study mimic key stages of the metastasis 

cascade. In particular the invasion of cells through a basement membrane and the 

capacity to migrate and disseminate through surrounding extracellular matrix and 

tissues is of vital importance in allowing tumour cells to escape the main tumour 

body and spread to secondary sites. The reduced capacity of WAVE 1 and 3 

suppressed cells to invade through an artificial basement membrane and migrate 

across a substrate implicates WAVE 1 and particularly WAVE 3 in the processes of 

cancer progression and metastasis.  
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CHAPTER 7 

GENERAL DISCUSSION 
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7.1 Introduction 

The incidence rates of colorectal cancer have increased steadily over the past 50 

years and is the fourth most common malignancy in the United Kingdom. The risk of 

colorectal cancer increases with age and is a significant health issue in modern 

society. Colorectal cancer is the second most common cause of cancer related 

deaths in the United Kingdom. More than half of patients diagnosed are diagnosed at 

a late stage (Stage III and IV) with around a quarter (26%) found to already have 

metastases at diagnosis (26%). Approximately 50% of diagnosed patients will 

progress to Stage IV, metastatic disease, “Metastases rather than primary tumours 

are responsible for most cancer deaths” (Chambers et al., 2002) 

 

As with many other forms of cancer, the main factor in determining patient survival is 

the metastatic potential of the tumour. The metastatic spread of a tumour is a 

multistage complex process involving the loss of adhesion between cells of the 

primary tumour (comprising of changes in cellular adhesion properties) and 

dissemination of these tumour cells from the main tumour body, degradation of the 

basement membrane (via the production and secretion of proteases), invasion of the 

surrounding stromal tissue (through mesenchymal and amoeboid migration), entry 

into the circulatory system (aided by the secretion of angiogenic factors), transport 

around the body, extravasation and invasion at the secondary site and development 

of a secondary tumour. A number of changes must occur to enable a tumour cell to 

gain these varying abilities to metastasise. These changes may occur due to genetic 

alterations in the cell or in the regulation of gene expression. Numerous 

abnormalities may develop and accumulate to facilitate a metastatic phenotype. 
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WAVE 1, 2 and 3 are known to play an important role in cellular actin systems which 

are closely involved with cell migration and have implications for cell invasion too. 

When such processes are uncontrolled they are a major contributor to cancer 

metastasis. As such, tumor invasion and metastasis are increasingly being 

associated with deregulation of the actin system (Lambrechts et al., 2004).  

 

This point continues to be emphasised by findings that several human cancers are 

associated with increased expression and/or activity of particular WAVE proteins 

(Kurisu et al., 2005; Yang et al., 2006; Sossey-Alaoui et al., 2007; Fernando et al., 

2007, 2008 & 2010). Indeed, a trend of higher WAVE expression was linked with 

metastatic colorectal carcinoma (Iwaya et al., 2007). 
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7.2 The role of WAVE 1 

WAVE 1 expression immunohistochemically stained for on frozen sections showed 

only a subtle change between normal colorectal tissues and colorectal carcinoma 

tissues, mainly in the distribution of expression as opposed to a change in 

expression levels. This correlated with the Q-PCR results which actually showed that 

there was no statistically significant change in overall WAVE 1 expression between 

the normal colorectal tissues and the colorectal carcinoma tissues. On knockdown of 

WAVE 1 expression within the RKO colorectal carcinoma cell line (RKO W1R1) 

there was no effect on cell growth or the adhesive ability of the cells as shown by the 

in vitro tumour cell growth assay and the in vitro tumour cell matrigel adhesion 

assay. There was a 51% reduction in cell motility as shown by the in vitro tumour cell 

motility assay, but this was not statistically significant. However, there was a 50% 

reduction in the cells invasive ability, as shown by the in vitro tumour cell matrigel 

invasion assay, and this was considered significant. Overall, the implication is that 

WAVE 1 is involved in the invasive ability of colorectal cancer cells and, to a less 

significant extent, their migratory ability and that as tissues become malignant, that 

expression becomes more generalised throughout the tumour allowing invasion and 

migration to occur through the stromal tissues, beginning the pathway toward 

metastasis.  
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7.3 The role of WAVE 3 

WAVE 3 expression stained for on frozen carcinoma sections demonstrated a more 

substantial difference when compared to normal colorectal tissue sections and 

compared to WAVE 1 staining. There was overall an increase in the intensity of 

staining suggestive of an increase in WAVE 3 expression levels compared to normal 

tissue staining. The distribution of the staining was also more widespread and 

distinct, with a significant increase in cell membrane distribution along the basal cell 

layers of the crypts and  a larger amount of cytoplasmic and membrane staining 

within the stromal areas, particularly in the higher T-stage tissues. The Q-PCR 

results revealed a significantly higher WAVE 3 expression level in carcinoma tissues 

compared to normal colorectal tissues, in keeping with the increased intensity of 

staining identified. There was higher WAVE 3 expression in T2, 3 and 4 tumours 

compared to normal colorectal tissue. There was no difference in WAVE 3 

expression in tissues from tumours that had nodal disease compared to those that 

did not have nodal disease and no difference in WAVE 3 expression from tumour 

tissues that had metastatic disease compared to those that did not have metastatic 

disease. 

On knockdown of WAVE 3 expression within the Caco2 colorectal carcinoma cell 

line (CaCo2 W3R1) there was no effect on cell growth or the adhesive ability of the 

cells as shown by the in vitro tumour cell growth assay and the in vitro tumour cell 

matrigel adhesion assay. There was, however, a significant reduction in cell motility 

of 91%, as shown by the in vitro tumour cell motility assay, and a significant 58% 

reduction in the cells invasive abilities, as shown by the in vitro tumour cell matrigel 

invasion assay. 
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Again, the overall implication is that WAVE 3 is significantly involved in the invasive 

ability of colorectal cancer cells and their migratory ability. As tissues become 

malignant increased expression becomes more generalised throughout the tumour 

bulk, allowing invasion and migration to occur through the stromal tissues and 

progressing along the pathway toward metastasis. 
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7.4 The role of WAVE 2 

WAVE 2 expression immunohistochemically stained for on frozen sections also 

demonstrated a more substantial difference when carcinoma tissue was compared to 

normal colorectal tissue sections and in comparison to WAVE 1 staining. There was 

overall an increase in the intensity of staining suggestive of an increase in WAVE 2 

expression levels compared to normal tissue staining. The distribution of the staining 

was also more widespread and distinct, with a significant increase in cell cytoplasmic 

and cell membrane distribution within the basal cell layers of the crypts and  a larger 

amount of cytoplasmic and membrane staining within the stromal areas, particularly 

in the higher T-stage tissues. 

The Q-PCR results revealed a significantly higher WAVE 2 expression level within 

carcinoma tissues compared to normal colorectal tissues, in keeping with the 

increased intensity of staining identified. There was higher WAVE 2 expression in T3 

and T4 tumours compared to normal colorectal tissues, along with a significant 

difference in expression between the T stages. In addition, there was a higher WAVE 

2 expression in the less histologically differentiated tumours, in the tumours of 

patients with a higher overall disease stage (stage II, III and IV) and in the carcinoma 

tissues of those patients classified as having Dukes B and C stage. All of this Implies 

that a higher WAVE 2 expression level is associated with more aggressive and 

higher stage primary tumours.  

 

This is supported by the analysis of data that shows there is a significant inverse 

correlation between WAVE 2 expression and patient’s disease free survival and 

overall survival time. As mentioned above, the majority of patients who die from 

colorectal cancer die from metastatic disease. As such, the clinical implications of 
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this suggest that WAVE 2 plays an important role in the metastatic potential of 

colorectal carcinomas.  

 

In contrast, there is no statistically significant increase in WAVE 2 expression in 

those patients who had or developed distant metastases compared to those who did 

not. Nor is it more highly expressed in those with nodal disease compared to those 

who do not. It is possible that low numbers in certain categories may have impacted 

the statistical analysis when comparing expression in those tumours with nodal and 

metastatic disease to those without. It is also possible that the WAVE 2 expression 

profile would be different in tissues from the actual nodal and metastatic deposits as 

it is more likely that the cancer cells forming these deposits at distant sites to the 

primary tumour are expressing an invasive phenotype that includes overexpression 

of the WAVE proteins. (Klymkowsky et al., 2009; Polyak et al., 2009; Thiery at al., 

2009; Yilmaz et al, 2009; Barallo-Gimeno et al., 2005). 

Finally, the results from this study and with evidence from other studies (Semba et 

al., 2006; Iwaya et al., 2007; Fernando et al., 2007 and Yang et al., 2006) show that 

WAVE 2 has an important role in the metastatic potential and survival of patients 

with lung adenocarcinoma, colorectal cancer, breast cancer and liver cancer. It is an 

important gene and protein that could be potentially used as a prognostic marker 

(Yang et al., 2006) and once the mechanisms surrounding its action are better 

understood, potentially as a therapeutic target. 
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7.5 Final Thoughts and Recommendations/Future work 

This study has highlighted the clinical significance of the WAVE proteins in colorectal 

cancer tissues and also the functional role of WAVE 1 and particularly 3 in colorectal 

cancer cell lines. It is clear that these proteins govern cell invasion and motility 

through complex signalling networks which, unfortunately, are not well defined. Their 

contribution to spread of colorectal cancer tumour cells may hold potential as a 

future therapeutic target, however the precise roles played in the process of cellular 

metastasis is not yet fully clear. 

 

Future work in a number of areas may clarify some of the questions raised by this 

thesis: 

 

Following on from the significance of WAVE 2 expression within colorectal tissue 

samples, as described within this thesis, generation of colorectal cancer cell lines 

with knockdown of WAVE 2 expression would be beneficial. The functional assays 

described within this study could then be performed to allow comparison with the 

work already described within this thesis. 

 

It would be beneficial to utilise a range of cell lines. Those that originate from primary 

colorectal tumour sites, those that originate from metastatic deposits and those that 

originate from nodal deposits. This would give an idea as to if and how WAVE 1, 2 

and 3 expression differs depending on the site and aggressiveness of the tumour 

and allow comparisons to be made.   
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Assessment of protein expression levels within a cell gives a more accurate 

indication of actual translated levels of the respective protein following any post 

translational regulations, as such the use of Western Blot analysis would be of use to 

clarify the knockdown of WAVE 1, 2 and 3 beyond the mRNA stage and form a 

complete picture.  

 

In addition, the use of immunocytochemistry would allow an assessment of the 

location of the expressed WAVE proteins within the cells and of how the 

cytoskeleton is working, particularly of interest would be to see the expression and 

localisation of WAVEs and actin in cells showing both elongated/mesenchymal 

phenotype and round/amoeboid phenotype.  

 

Further collection of primary colorectal cancer tissue samples would increase the 

availability of stage specific sub-group samples of tissues available to be analysed. 

The collection of tissue samples from metastatic deposits, such as from the liver and 

lung, is feasible due to the increase of metastatic resections (Socola et al., 2015; 

Padman et al., 2013) and would allow greater comparison of the expression of 

WAVE 1, 2 and 3 between the different locations and give a better understanding of 

the significance of WAVEs in metastatic disease (Iwaya et al., 2007). 

 

To generate individual cell lines with multiple knockdowns of WAVE 1, 2 and 3 

expression to assess the redundancy of the molecules on cell function.  

As the functional assays used in this study were in vitro, the use of in vivo models 

would provide a better indication of the therapeutic implications of the WAVE 
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proteins in primary colorectal cancer and metastases as was seen in previous in vivo 

models used when investigating the effects in breast cancer and melanoma (Sossey-

Alaoui et al., 2007; Kurisu et al., 2005). 

 

Finally, further work into the complex signalling networks that the WAVE proteins 

govern would enable greater understanding of the importance of the WAVE proteins 

within the system and potentially highlight possible targets for therapeutic 

intervention. 
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