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Abstract 

The presence of a hole, cut-out or void in a structure makes it difficult to be modelled for 

calculating natural frequencies. A theoretical basis for simplifying the modelling of cut-outs 

in a structure by attaching a negative structure is presented. The Dynamic Stiffness Method 

has been used to prove that this method yields the required natural frequencies. The 

derivations also show the presence of additional natural frequencies which correspond to the 

vibration of the positive and negative parts vibrating together while the actual structure with 

the hole or cut-out usually remains stationary. 

 

1. Introduction 

Determination of natural frequencies, critical loads and stress distribution in solid bodies with 

voids, holes, cut-outs or damages is increasingly becoming important in applications such as 

optimisation and damage detection [1-6]. The natural frequencies of such systems are 

commonly obtained using the Finite Element Method (FEM) [7-16].  There have also been 

some papers [17-19] which use analytical procedures such as the Rayleigh-Ritz Method 

(RRM) [20-22] in which the potential and kinetic energy terms of the structure are found by 

subtracting the energy terms associated with the void part from that of the larger structure 

(without the void), by taking the displacement forms of the void to be the same as those of 

the larger structure. In one recent approach [23], called the Independent Coordinate Coupling 

Method (ICCM), the displacement forms of the void and the larger domain are constrained to 

have similar values using Lagrangian type constraints in an average integral form. This 

method has been generalized in [24] which deals with the modeling of plate-like structures 

with holes as a basis for a structural optimization process. Once the coupling is done, the 

energy terms corresponding to the void are subtracted from that of the larger structure and the 

Rayleigh-Ritz minimisation is then carried out.  

This work stems from the authors’ attempts to investigate the possibility of using the modes 

of both the structure without any void and a negative structure corresponding to the void and 

then combining the two sets of modes while enforcing the embedding continuity conditions 

by the penalty method [25, 26] or the Lagrangian Multiplier Method (LMM) [27] in a 

Rayleigh-Ritz procedure.  Numerical experimentation with this idea using discrete systems, 

beams and plates with cut-outs and holes showed that while it is possible to obtain the 

required frequencies, the presence of additional natural frequencies and the difficulty in 
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choosing appropriate shape functions and constraint enforcement methods pose some 

challenges [28]. Thus the authors proceeded to study the theoretical basis for combining 

positive and negative structures, using the Dynamic Stiffness Method (DSM), the derivations 

and findings of which are presented in this paper, along with some numerical results. The 

paper shows that the required natural frequencies are obtainable from the model incorporating 

a negative structure, and explains the additional frequencies.  

 

2. The theoretical basis 

2.1 Existence of natural frequencies of the structure with a hole in the proposed 

model 

In order to develop a theoretical framework, the question will first be addressed of whether or 

not all the required natural frequencies and modes of at least a certain class of structures 

containing voids can be obtained through the proposed method. The hypothesis taken is that 

these characteristics are obtainable by combining the modes of positive and negative 

structures, i.e. by embedding a negative structure with known modes into a larger positive 

structure with known modes, and analysing the combined system.  
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Consider the case of a structure A which contains a hole, represented in Fig. 1a by a 

rectangular plate with a circular hole. Now consider two elastic structural bodies C+ and C-, 

having identical shapes that would fill the void in A, one (C+) with the same distribution of 

elastic and inertial properties as that of A, and the other (C-) with negative properties but of 

the same magnitude. In this case C+ and C- will be circular plates. Then consider joining C+ 

and C- by means of a very stiff elastic continuum S1, which acts as a penalty against any 

differential displacement between the two elements. The resulting structure has the potential 

to exist as an empty element (E). The term ‘empty’ is used here to indicate that the element 

could be subjected to any dynamic displacement without inducing any forces (or moments) at 

the boundaries. This empty element state occurs only in modes in which C+ and C- vibrate 

together with the same displacement. The combined unit, being empty, would not change the 

behaviour of any structure to which it is attached as there will not be any unbalanced forces 

or moments. This combined unit is now connected to Structure A along the common 

boundary with the hole (in this case having a circular circumference), by constraining the 

degrees of freedom to be the same. This may be done either by using a penalty parameter or 

by using sufficiently large number (say r) of discrete constraints. It may be seen that the 

resulting structure A  (see Fig. 1b) is capable of possessing all the natural frequencies and 

modes of A, because it was formed just by the addition of the empty element E. Furthermore, 

if the penalty stiffness is sufficiently large, from the asymptotic modelling theorems [29], the 

combination of A and C+ is equivalent to B (the rectangular plate without any hole). 

Connecting B to C- using S1 gives B  as shown in Fig. 1c. It is therefore deduced that the 

natural frequencies and modes of B  would include those of A. The hole in a plate is only an 

illustration but the same argument will hold for a body with cut-outs or voids. This will be 

proved formally for discrete systems in the next section. 

2.2 Proof of existence of the required natural frequencies for discrete systems 

Consider a discrete structural system A (Fig. 2a) having n1 vibratory degrees of freedom 

which is obtainable from a larger system B (Fig. 2b) by removing some elements. A 

represents the structure with a cut-out and B is a larger structure which would be the result of 

filling the cut-out part. For simplicity, the discrete systems are represented with spring-mass 

arrangements. The proposed method involves attaching a negative structure C- (Fig. 2c) to the 

larger positive structure B to obtain B  as illustrated in Fig. 2d. Thus C- would potentially 

cancel the stiffness and inertia in a part of A so as to produce A if it is rigidly connected to its 

positive counterpart within B. The masses associated with the degrees of freedom of A are 
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shown as lightly filled circles and rectangles. The circles correspond to the internal degrees of 

freedom that do not lie on the common boundary with the hollow domain while the 

rectangles correspond to degrees of freedom that are on the boundary. The set of internal 

degrees of freedom of A will be denoted by vector qAi and the common degrees of freedom 

will be denoted by qe. Let the natural frequencies of A be A, a vector set containing 

AAAn1. Now consider another discrete system C+ (Fig. 2e) with m vibratory 

degrees of freedom which is the positive counterpart of C- and represents the component of B 

if it did not have the cut-out. This means System C- has the same magnitude of stiffness and 

inertial properties as C+ but with opposite sign. The masses associated with the positive 

structure are shown as black circles or squares and their negative counterparts are shown as 

white circles and squares with dotted boundaries. Now consider linking these to system A at a 

common boundary where the masses associated with the shared degrees of freedom qe are 

shown in squares. The circles depict the masses that are not associated with a common 

boundary with A (i.e. at internal degrees of freedom). These sets of internal degrees of 

freedom of C+ and C- are labelled qPi and qNi respectively, to indicate the internal degrees of 

freedom of the positive and negative structures. The natural frequencies of C+ are 

C[C,C, C,m]. As both inertial and elastic (stiffness) properties of C- are equal and 

opposite to those of C+, each term in the equation of motion of C- would be equal and 

opposite to the corresponding term for C+. This means the natural frequencies and modes of 

C- are identical to those of C+. For the purpose of this proof, it is necessary to consider 

System A  shown in Fig. 2f, which is formed by joining A, C+ and C- rigidly at the common 

boundary (i.e. the degrees of freedom at the boundary between the three systems are common 

for them) and joining other corresponding degrees of freedom between C+ and C- by means 

of elastic springs S1.  

As the connection between A and C+ in A  is rigid,  

BA             (1) 
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In order to justify the use of a system with embedded/tied negative structure representing a 

structure with a void/hole/cut-out, it will be shown that: 

The eigensolution of system A is also an eigensolution of system B .           Statement (a) 

In the modes of the above eigensolution, positive and negative structures C+ and C- vibrate 

together, while A vibrates in one of its natural modes.            Statement (b) 

 

Fig. 2 Spring-mass systems representing embedded negative structures 
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It will also be shown that this model will produce additional natural frequencies and modes, 

and that in general these extra modes do not involve vibration of the actual structure A which 

will remain stationary. The only exceptions are cases where such spurious modes also share 

the same eigenvalues as those of A. 

Proof: 

The eigenvalue equation for A  may be written as: 

(

 
 

𝐊Cii + KS1i −KS1i 0 𝐊Cie

−KS1i −KCii + KS1i 0 −𝐊Cie

0 𝟎 𝐊Aii 𝐊Aie

𝐊Cei −𝐊Cei 𝐊Aei 𝐊Aee )

 
 

(

q
Pi

q
Ni

q
Ai

𝐪e

) =

                                                         𝜔2 (

MCii 0 0 MCie

0 −MCii 0 −MCie

0 0 MAii MAie

MCei −MCei MAei 𝐌Aee

)(

q
Pi

q
Ni

q
Ai

𝐪𝐞

)    (2) 

Combining the stiffness and mass terms this may be written as: 

(

 

𝐊Cii
∗ + KS1i −KS1i 0 𝐊Cie

∗

−KS1i −𝐊Cii
∗ + KS1i 0 −𝐊Cie

∗

0 𝟎 𝐊Aii
∗ 𝐊Aie

∗

𝐊Cei
∗ −𝐊Cei

∗ 𝐊Aei
∗ 𝐊Aee

∗ )

 (

q
Pi

q
Ni

q
Ai

𝐪𝐞

) = 𝟎      (3) 

where 

𝐊Cii
∗ = 𝐊Cii −  𝜔2MCii,   𝐊Cie

∗ = 𝐊Cie −  𝜔2MCie,   𝐊Cei
∗ = 𝐊Cei −  𝜔2MCei = (𝐊Cie

∗ )𝑻, 

𝐊Aii
∗ = 𝐊Aii −  𝜔2MAii,   𝐊Aie

∗ = 𝐊Aie −  𝜔2MAie,   𝐊Aei
∗ = 𝐊Aei −  𝜔2MAei = (𝐊Aie

∗ )𝑻, 

𝐊Aee
∗ = 𝐊Aee −  𝜔2MAee, 

Equation (3) can be expressed in terms of the vectors ui = (q
Pi

+ q
Ni

)/2 and 

  vi = (q
Pi

− q
Ni

)/2 as 

(

 

2𝐊Cii
∗ 4KS1i 0 2𝐊Cie

∗

0 2𝐊Cii
∗ 0 0

0 𝟎 𝐊Aii
∗ 𝐊Aie

∗

0 2𝐊Cei
∗ 𝐊Aei

∗ 𝐊Aee
∗ )

 (

ui

vi

q
Ai

𝐪e

) = 𝟎       (4) 

The determinantal eigenvalue equation of the matrix in Eq. (4) is 

(|2𝐊𝐶𝑖𝑖
∗ |)2 |

𝐊𝐴𝑖𝑖
∗ 𝐊𝐴𝑖𝑒

∗

𝐊𝐴𝑒𝑖
∗ 𝐊𝐴𝑒𝑒

∗ |=0         (5) 

So the eigenvalues are given by one of the two following cases. 
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Case (1) 

|
𝐊𝐴𝑖𝑖

∗ 𝐊𝐴𝑖𝑒
∗

𝐊𝐴𝑒𝑖
∗ 𝐊𝐴𝑒𝑒

∗ | = 0 , i.e. those of structure A,                 (6a) 

Noting that the combination of  q
Ai

and 𝐪e results in the full set of degrees of freedom of 

Structure A (𝐪A) it may be seen that the eigenvalues are therefore the eigenvalues of A, with 

the boundary between A and C being unconstrained. 

When Eq. (6a) is satisfied,  

[
𝐊𝐴𝑖𝑖

∗ 𝐊𝐴𝑖𝑒
∗

𝐊𝐴𝑒𝑖
∗ 𝐊𝐴𝑒𝑒

∗ ] (
q

Ai

𝐪e
) = (

0
𝟎
)                   (6b) 

Thus the natural frequencies and modes of A are a subset of the natural frequencies and 

modes of A . i.e. 

 A  Aω .          (7) 

From Eq. (1), 

 A  Bω .          (8) 

This proves Statement (a) 

The modes of this case for the domain of structure A obviously correspond to the natural 

modes of A. It is interesting to investigate what happens to the components C+ and C- 

Substituting the second row of Eq. (6b) into the fourth row of Eq. (4) gives 𝐊𝐶𝑒𝑖
∗ 𝐯𝑖 = 𝟎. 

This implies that 𝐯𝑖 = 𝟎  , so that 𝐪𝑃𝑖  and 𝐪𝑁𝑖  are equal and the constraints between the 

positive structure and its negative counterpart, C- are fulfilled.  

Thus the positive and negative structures C+ and C- vibrate together which proves Statement 

(b). 

This is understandable as the net energy from the vibration of the positive and negative 

components will be zero and there will not be any residual stress at the boundary between A 

and C making it an unconstrained boundary for A. This case accounts for n1 modes. 

 

Case (2) 

The second scenario for Eq. (5) is 

 |2𝐊𝐶𝑖𝑖
∗ | = 0                    (9a) 
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This root has a multiplicity of 2 and corresponds to the structures C+ and C-, but with the 

boundary between A and C being fixed (this is because the only degrees of freedom included 

are internal ones).  

Thus Eq. (9a) is associated with the following equations 

𝐊𝐶𝑖𝑖
∗ 𝐪P𝑖 = 𝐊𝐶𝑖𝑖

∗ 𝐪N𝑖 = 𝟎                  (9b) 

   𝐪e = 𝟎                    (9c) 

This case offers 2(m-r) eigenvalues. 

From Eq. (9c) and the third row of Eq. (4), 𝐊𝐴𝑖𝑖
∗ 𝐪𝐴𝑖 = 𝟎, which may be satisfied in two ways. 

Case (2a)  

𝐪𝐴𝑖 = 𝟎                  (10a) 

Case (2b)  

 |𝐊𝐴𝑖𝑖
∗ | = 0                  (10b) 

Case (2b) implies that the solution also corresponds to the eigensolution for Structure A when 

its boundary with C is fully constrained. Thus, the eigenvalues of A with the boundary 

constrained must coincide with the eigenvalues of Structures C+ and C-, also with their 

boundaries clamped. This can be treated as a special case, the more likely scenario being 

Case (2a). For Case (2a), from Eqs (10a) and (9c), none of the degrees of freedom of A 

would participate in the vibration.  Structures C+ and C- with their boundaries with A fully 

constrained, will vibrate in their natural modes. For this case, consider the first row of Eq. (4). 

𝟐𝐊𝐶𝑖𝑖
∗ 𝐮𝑖 + 4KS1i𝐯𝑖 + 2𝐊𝐶𝑒𝑖

∗ 𝐪𝑒 = 𝟎 

From Eqs (9b) and (9c) it may be seen that the first and third terms of the above equation are 

zero, so that KS1i𝐯𝑖 = 𝟎 . 

If C+ and C- are connected by elements that provide non-zero stiffness (i.e. if  KS1i ≠ 𝟎 ) then 

vi = 0 .  This means that, as for Case (1), C+ and C- vibrate together. 

Once again, the vibration of C+ and C- with the same displacements at corresponding degrees 

of freedom does not result in any residual stress at the boundary between A and C. However, 

if there are no connections between their internal degrees of freedom, these degrees of 

freedom may have different magnitude of displacements.  

Although the above derivations were based on connected discrete systems, they hold for 

continuous systems consisting of skeletal frame members too as long as the connections 
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between the individual systems are made at a discrete number of points. The stiffness 

matrices 𝐊Cii
∗ ,   𝐊Cie

∗ ,   𝐊Cei
∗ , 𝐊Aii

∗ ,   𝐊Aie
∗ ,   𝐊Aei

∗ , 𝐊Aee
∗  would then represent the exact dynamic 

stiffness matrices of the continuous systems, which take into account the distribution of mass. 

Such matrices are readily available for skeletal structural elements [30] and certain types of 

plates and shell structures. For the sake of this proof, it is not necessary to have a knowledge 

of the stiffness coefficients, but the existence of such a frequency dependent stiffness 

coefficient relating the action (force or a moment) required at a given point in a structure to 

produce a unit displacement (translation or rotation) at the same or a different point on the 

structure is sufficient. This is true irrespective of the number of connecting points. As the 

number of points increases towards infinity, the negative structure C- would be rigidly 

connected to B almost everywhere on their common boundary between the negative structure 

and the remaining structure A. It is useful to note that the common boundary is the boundary 

between the structure with the void A and the negative structure and does not include the 

connection between the positive and negative parts that cancel each other. This means that 

the natural frequencies of a structure A that contains a void or hole or cut-out would be a 

subset of the natural frequencies of the corresponding structure without the void B when it is 

rigidly connected to a negative structure with the same magnitude of elastic and inertial 

properties along the common boundary.  

In practice, the rigid connections between A and C- can be enforced by using the penalty 

method.  Thus it may be possible to use the penalty method in conjunction with the DSM for 

using this approach. However, generally for problems where a DSM formulation is not 

available, a numerical method such as the Rayleigh-Ritz Method could be applied. The 

results found indicate that while the method works with the Rayleigh-Ritz scheme, care 

should be taken to include a sufficient number of admissible functions to represent the 

vibration modes of the positive and negative structures and to enable the two parts to cancel 

each other. 

 

3. Illustrative Examples and Discussion 

A set of numerical experiments were carried out in order to investigate whether or not the 

above proof holds for vibration analysis of beams. First consider a beam which is split into 

three segments of length of li (i = 1,2,3). The beam has the total length L, Young’s modulus E, 

second moment of area I and mass per unit length ρ, as shown in Fig. 3a. The natural 

frequencies are obtained by solving the eigenvalue equation using the DSM (the dynamic 
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stiffness matrix used is given in Appendix A) and RRM. The following admissible functions 

are used for the RRM with very high stiffness translational and rotational springs of very high 

stiffness to enforce the clamped condition as explained in [31, 32].  

 

𝑣(𝑥) = ∑ 𝑎𝑗𝜙𝑗(𝑥)
𝑗̂
𝑗=1              (11a) 

𝜙𝑗(𝑥) = (
𝑥

𝐿
)

𝑗−1

    (𝑗 = 1,2,3)            (11b) 

𝜙𝑗(𝑥) = cos (
(𝑗−3)𝜋𝑥

𝐿
)    (𝑗 > 4)            (11c) 

where v is the lateral displacement and x is the axial coordinate along the beam and 𝑗̂ is the 

number of admissible functions. 

The shaded beam and white beam depict positive and negative structures respectively. The 

negative component has the same magnitude of stiffness and mass as those of the positive 

counterpart. They are connected sharing a common boundary at the joints in the DSM model, 

or using springs of high stiffness or Lagrangian constraints in the RRM model. Effectively 

this results in two independent cantilevers (Fig. 3b).  

 

 

Fig 3. (a) A beam with a negative part, (b) the resultant structure 

 

Table 1 shows the natural frequency parameters of the original structure for the first six 

modes for four cases where: (i) the positive and negative beams share the common boundary 

(at the two joints) and are connected with internal spring connection, (ii) the two beams share 

the common boundary only but have no internal connections, (iii) the negative beam is 

connected using the positive penalty springs and (iv) using Lagrangian constraints. The 

results for Cases (i) and (ii) are obtained using the DSM and the results for Cases (iii) and (iv) 

are obtained using the RRM with 𝑗̂ =250, which is sufficient to obtain a result converged to 

five significant figures [31]. As can been seen from Table 1, the natural frequency parameters 

(a) (b) 

L 

l1 l2 l3 
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for the cases (i) and (ii) are identical. This illustrates that the natural frequencies of the 

original structure can be obtained without the internal connection between the positive and 

negative beams as predicted by Statement (a). This means enforcement of rigid connections 

only at the boundary nodes with the negative beam is sufficient. The results for cases (iii) and 

(iv) have a good agreement with cases (i) and (ii). However, the RRM requires a sufficient 

number of internal connections to ensure that the negative part and its positive counterpart 

cancel each other. Convergence tests showed that 125 constraints with penalty stiffness of 

magnitude that is 1011 times the elastic stiffness are sufficient to obtain converged results to 

the five significant figures.  

 

Table 1 The natural frequency parameter of the original structure, 

Ω = 𝑙𝑖 √𝜔2𝜌/𝐸𝐼
4

, where l is the length of the resultant cantilever beam 

Mode 

Ω 

(i) (ii) (iii) (iv) 

1 1.8751 1.8751 1.8751 1.8751 

2 4.6941 4.6941 4.6941 4.6941 

3 7.8548 7.8548 7.8547 7.8548 

4 10.996 10.996 10.995 10.996 

5 14.137 14.137 14.137 14.138 

6 17.279 17.279 17.279 17.279 

 

Figure 4 shows the first (top row), second (middle row) and third (bottom row) modes of 

these two cantilever segments, which correspond to the first three modes of the non-

dimensional frequency parameters given in Table 1 respectively. Those on the left side of the 

figure are for the left segment and those on the right side are for the right segment. They have 

different lengths and so different natural frequencies, however, they have the same non-

dimensionalised frequency parameters for the same modes. The horizontal axis is the axial 

coordinate and the vertical axis is the displacement of beams. The solid thick lines depict the 

mode shapes of the resultant systems and the circles and thin line depict the negative 

structure and the associated positive counterpart respectively, which give in sum the void 

system. As the figure shows, when the original structure vibrates with its natural modes the 

negative part and its positive counterpart vibrate together in accordance with Statement (b). 
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Fig. 4 First three pairs of natural modes of the cantilever beam segments. 

 

Fig. 5 shows the spurious modes corresponding to Case (2a), obtained using the RRM with 

penalty springs, where the negative structure and its positive counterpart vibrate together 

without any violation of constraints. As can been seen from the figure, the empty structure 

with fixed ends vibrates while the remaining structure stays stationary including at the 

common nodes, as predicted in Eq. (10a), in the proof for Case (2). 
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Fig. 5 Spurious modes corresponding to Case (2a). 

 

For validation purposes, consider also the case where the positive component and the 

negative component are connected using Lagrangian constraints. The natural frequencies 

obtained using the penalty method and Lagrangian Multiplier Method agree with each other 

(Table 1). Using Lagrangian constraints with RRM gives the same spurious modes as ones 

using the penalty springs.  

It is interesting to mention here the Independent Coordinate Coupling Method (ICCM), 

introduced by Kwak and Han [23]. In the ICCM Method, the energy of the hollow part of a 

structure is effectively subtracted from the energy of a larger structure. Although the positive 

and negative structures are not treated as independent as in the RRM with embedded or 

attached negative structure, the ICCM could also be considered a negative structures 

approach, except that the choice of admissible functions is made before the minimisation. For 

this reason, it was decided to recalculate the natural frequencies and modes using the ICCM. 

The results confirmed the published results, thus showing that the natural frequencies of the 

beam with the hole can be obtained. As predicted in the derivations presented here, additional 

modes where only the hollow part showed some displacements were also observed. It was 

easy to eliminate these due to non-participation of the actual beam. 

 

The second case considered is the vibration of an unconstrained rectangular plate with a 

rectangular hole (see Fig. 6). Unlike beams, exact solutions for rectangular plates are 

available only for plates with at least one set of opposite edges with simply supported or slip-

shear boundary conditions. Thus the analysis uses a combination of the Rayleigh-Ritz 

Method (for the positive plate) and the Finite Element method (for the negative plate). The 
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basic equations needed to formulate the eigenvalue equations are given in Appendix B and 

are taken from references [33-38]. The positive and negative plates have been connected 

using the Penalty Method. Detailed energy formulations for the positive and negative plates 

are available in [33]. The stiffness and mass matrices for the negative plate are equal and 

opposite to those of a positive plate with the same magnitude of elastic modulus and density. 

 

 

 

 

Fig. 6. An unconstrained rectangular plate with a rectangular hole 

Hole modelled by 

attaching a negative 

plate modelled by finite 

elements 



16 

 

 

 

Fig. 7 The first five bending modes of a completely free square plate with a square hole at the 

centre.  

 

The first five non-zero modes of the plate are shown in Fig. 7. The variation of natural 

frequencies of the plate with  𝑁𝑅 , the number of admissible functions (in each Cartesian 

coordinate direction) employed in the Rayleigh-Ritz Method, and 𝑁𝐹, the number of degrees 

of freedom in the finite element model of the negative plate, will be presented.  

Table 2 gives the non-dimensional frequency parameter 𝛺 defined by 𝛺 = 𝜔𝑎2√𝜌ℎ 𝐷⁄ . The 

natural frequency parameters were obtained with 20 Rayleigh-Ritz terms (NR = 20) and 400 

Finite Elements ( 𝑁𝐹 = 1323). As the plate is completely free, the first three natural 

frequencies are zero corresponding to the rigid-body modes. The first 5 non-zero frequency 

parameters give results which agree with the FEM results obtained with 972 elements (3220 

dof) to 3 significant figures.  
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Table 2. Natural frequency parameters 𝛺 of first five bending modes. 

 

Mode 

 

1st 2nd 3rd 4th 5th 

(1) RRM (+) and FEM (-) 10.64 15.22 22.27 31.54 31.54 

(2) FEM only 10.63 15.20 22.25 31.48 31.48 

 

 

It may be noted that just with the first 100 Rayleigh-Ritz modes and 1323 dof in the FEM 

model, the first 5 non-zero frequencies agree within 2% of the converged results.  Table 3 

shows the number of degrees of freedom required to obtain frequency parameters within 2% 

of the converged results for the first five non-rigid body modes. This is achieved with 1423 

number of degrees of freedom, of which 100 degrees of freedom (number of modes) are for 

the larger positive plate, and 1323 dof are for the FE representation of the negative plate. 

Therefore, the use of a negative structure for the hollow part, represented by an FEM model, 

together with the first few modes of the positive plate offers a way of calculating natural 

frequencies and modes of a plate with a hole.  

 

Table 3. The effect of the number of the Rayleigh-Rtiz modes on natural 

frequency parameters 𝛺 (with 400 elements, (1323 dof) for the negative plate). 

FEM  

(3220 dof) 

Present (No. of modes) 

10 20 40 60 80 100 

10.63 
11.13 

(4.74 %) 

10.88 

(2.39%) 

10.82 

(1.83 %) 

10.78 

(1.45 %) 

10.75 

(1.17 %) 

10.73 

(0.98 %) 

15.20 
15.48 

(1.88 %) 

15.37 

(1.15 %) 

15.29 

(0.63 %) 

15.28 

(0.56 %) 

15.26 

(0.43 %) 

15.26 

(0.43 %) 

22.25 
24.87 

(11.8 %) 

23.03 

(3.52 %) 

22.76 

(2.31 %) 

22.65 

(1.81 %) 

22.57 

(1.45 %) 

22.51 

(1.18 %) 

31.48 
32.89 

(4.48 %) 

32.65 

(3.72 %) 

32.23 

(2.38 %) 

32.03 

(1.75 %) 

31.96 

(1.52 %) 

31.90 

(1.33 %) 

31.48 
32.89 

(4.48 %) 

32.65 

(3.72 %) 

32.23 

(2.38 %) 

32.03 

(1.75 %) 

31.96 

(1.52 %) 

31.90 

(1.33 %) 
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4. Conclusions 

Using the Dynamic Stiffness Method, it has been shown that all the natural frequencies and 

modes of a structure (A) which contains a cut-out, hole or void are contained in the natural 

frequencies and modes of a larger structure attached to a negative structure (C-) which has 

equal and opposite stiffness and inertial properties of a part of the larger structure (B), which 

occupies the space of the cut-out, hole or void, provided that all degrees of freedom at the 

boundary between the positive structure and the actual structure (A) are constrained to be 

equal to those of the negative structure (C-). It has also been shown the positive and negative 

combined model also produces additional modes in which the corresponding positive and 

negative parts vibrate together at the natural frequencies of the negative structure when its 

boundary with the positive structure is fully constrained, while the actual structure remains 

stationary. It was found that there is no need to enforce continuity of displacements between 

the positive and negative structure except at the boundaries.  

The above predictions have been demonstrated through two examples by calculating the 

natural frequencies and modes of: (a)  a system of two cantilevers which was modelled by 

attaching a negative mid segment to a clamped-clamped beam; (b) a square plate with a 

square hole by attaching a small negative square plate in a larger positive plate. The plate 

problem was solved using a combination of the Rayleigh-Ritz Method and the Finite Element 

Method. When applying the method in a Rayleigh-Ritz scheme, while it was possible to 

obtain the natural frequencies and modes of the required structure with a cut-out, it was found 

to be necessary to enforce continuity between the positive and negative structural elements 

throughout the domain of the negative structure, not just at the boundaries. Further work is 

needed to determine the reasons. It was found that the Rayleigh-Ritz model had to be built 

carefully, by determining suitable penalty parameters for enforcing continuity of 

displacement between positive and negative structures, and the number and shapes of 

admissible functions. 
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Appendix A. Dynamic Stiffness Matrix of a Three Part Beam with Clamped Ends 

Consider a beam which has three segments, each of length of li (i = 1,2,3). The beam has total 

length L, Young’s modulus E, second moment of area I and mass per unit length ρ, as shown 

in Fig. A1. There are four degree of freedoms numbered as shown in the figure. The natural 

frequencies of the beam can be found by searching frequencies ω, that satisfy Eq. (A1). The 

dynamic stiffness matrix (K*) is given as follows. 

 

 

Fig. A1. A clamped-clamped beam with three segments. 

 

𝐊∗𝐝 = 𝟎               (A1a) 

 

𝐊∗ =

(

 
 

𝐾1,1 𝐾1,2

𝐾2,2

𝐾1,3 𝐾1,4

𝐾2,3 𝐾2,4

𝑆𝑦𝑚

𝐾1,1 𝐾1,1

𝐾1,1)

 
 

              𝐝 = (

𝑣1

𝜃2
𝑣3

𝜃4

)          (A1b) 

where 

𝐾1,1 = (
𝐸𝐼

𝑙1
3)𝑇(1) + (

𝐸𝐼

𝑙2
3)𝑇(2)                 𝐾1,2 = −(

𝐸𝐼

𝑙1
2)𝑄(1) + (

𝐸𝐼

𝑙2
2)𝑄(2) 

𝐾1,3 = −(
𝐸𝐼

𝑙2
3)𝑇(2)𝑡(2)                             𝐾1,4 = (

𝐸𝐼

𝑙2
2)𝑄(2)𝑞(2) 

𝐾2,2 = (
𝐸𝐼

𝑙1
) 𝑆(1) + (

𝐸𝐼

𝑙2
) 𝑆(2)                           𝐾2,3 = −(

𝐸𝐼

𝑙2
2)𝑄(2)𝑞(2) 

𝐾2,4 = (
𝐸𝐼

𝑙2
) 𝑆(2)𝐶(2)                        𝐾3,3 = (

𝐸𝐼

𝑙2
3)𝑇(2) + (

𝐸𝐼

𝑙3
3)𝑇(3) 

𝐾3,4 = −(
𝐸𝐼

𝑙2
2)𝑄(2) + (

𝐸𝐼

𝑙3
2)𝑄(3)                    𝐾4,4 = (

𝐸𝐼

𝑙2
) 𝑆(2) + (

𝐸𝐼

𝑙3
) 𝑆(3) 

with 

L, E, I, ρ 

l1 l2 l3 1 

2 

3 

4 

(3) (2) (1) 
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S(𝑖) = λ(𝑖)(cosh λ(𝑖) sin λ(𝑖) − sinh λ(𝑖) cos λ(𝑖))/(1 − cosh λ(𝑖) cos λ(𝑖)) 

C(𝑖) = (sinh λ(𝑖) −sin λ(𝑖))/(cosh λ(𝑖) sin λ(𝑖) − sinh λ(𝑖) cos λ(𝑖)) 

Q(𝑖) = λ(𝑖)
2(sinh λ(𝑖) sin λ(𝑖))/(1 − cosh λ(𝑖) cos λ(𝑖)) 

q(𝑖) = (cosh λ(𝑖) −cos λ(𝑖))/(sinh λ(𝑖) sin λ(𝑖)) 

T(𝑖) = λ(𝑖)
3(sinh λ(𝑖) cos λ(𝑖) + cosh λ(𝑖) sin λ(𝑖))/(1 − cosh λ(𝑖) cos λ(𝑖)) 

t(𝑖) = (sinh λ(𝑖) −sin λ(𝑖))/(sinh λ(𝑖) cos λ(𝑖) + cosh λ(𝑖) sin λ(𝑖)) 

and 

λ(𝑖) = 𝑙𝑖 √𝜔2𝜌/𝐸𝐼 
4

           (𝑖 = 1,2,3) 

 

Appendix B 

 

B.1 Rayleigh – Ritz Method 

 

The positive plate has completely free edges and the out-plane displacement w is defined by 

the following admissible functions [33].  

 

𝑤(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑦 ) sin𝜔𝑡                                                          (B1) 

with 

𝑊(𝑥, 𝑦 ) = ∑∑𝐺𝑖𝑗𝜙𝑖(𝑥)𝜙𝑗(𝑦)

𝑁𝑅

𝑗=1

𝑁𝑅

𝑖=1

                                                    (B2) 

and 

𝜙𝑖(𝑥) = (
𝑥

𝑎
)
𝑖−1

                     for 𝑖 = 1,2 and 3 

𝜙𝑖(𝜉) = cos (
(𝑖 − 3)𝜋𝑥

𝑎
)              for 𝑖 ≥ 4 

 

where ω is the circular frequency and t is time. Gi,j are undetermined weighting coefficients. 

The above equations are substituted into the strain energy expression, Vmax and kinetic energy 

expression, Tmax given by Eqs (B3) and (B4) respectively to obtain the stiffness matrix and 

mass matrix used in the Rayleigh – Ritz analysis. 

 

𝑉𝑚𝑎𝑥 =
1

2
𝐷 ∫ ∫ [(

𝜕2𝑊

𝜕𝑥2
)

2

+ (
𝜕2𝑊

𝜕𝑦2
)

2

+ 2𝜈
𝜕2𝑊

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2
+ 2(1 − 𝜈) (

𝜕2𝑊

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

   (B3) 

and 

𝑇𝑚𝑎𝑥 =
𝜔2𝜌ℎ

2
∫ ∫ 𝑊2

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦                                                           (B4) 

where 
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𝐷 =
𝐸ℎ3

12(1 − 𝜈2)
 

E is Young’s modulus, ν is Poisson’s ratio, ρ is the density of the material and h is the 

thickness of the plate.  

 

 

B.2 Finite Element Method 

 

The hollow part is represented by the addition of the negative plate which is divided into a 

finite number of rectangular elements which have four nodes and 12 associated degrees of 

freedom, see Fig. B1. One can use the same energy expressions as in Eqs (B3) and (B4) to 

develop the stiffness and mass matrices using the Finite Element Method. However, the 

energy functional must have a minus sign as the negative plate has negative elastic modulus 

and negative density whose magnitudes are the same as its positive counterpart. The element 

stiffness and mass matrices used are given below, which are developed referring to [34-36].  

For the rectangular element used in the present study, the eigenvalue equation given in Eq. 

(B5) is satisfied. 

 

 

Fig. B1. A rectangular element 

 

 

{[𝑲𝒆] − ω2[𝑴𝒆]}{𝒅} = {𝟎}              (B5) 

 

{𝒅} = {𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒}
𝑇           and          {𝒅𝒊} = {𝑤𝑖 𝜃𝑥,𝑖 𝜃𝑦,𝑖}𝑇 

 

[Ke] and [Me] are the element stiffness and mass matrices respectively. {d} is the 

displacement vector including transverse displacement and rotations about the x and y axes. 

 

The element stiffness matrix is given as follows. 

 

[𝑲𝒆] =
𝐷

15𝑎𝑒𝑏𝑒
[𝑻][𝑺][𝑻]              (B6) 

 

where, 

ae 

be 

x 

y 
z, (w) 

θy 

θx 

1 

2 

3 

4 



25 

 

 

 

[𝑺] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑠1,1

𝑠2,1 𝑠2,2

𝑠3,1 𝑠3,2 𝑠3,3

𝑠4,1 𝑠4,2 𝑠4,3

𝑠5,1 𝑠5,2 𝑠5,3

𝑠6,1 𝑠6,2 𝑠6,3

𝑠4,4

𝑠5,4 𝑠5,5

𝑠6,4 𝑠6,5 𝑠6,6

Sym

𝑠7,1 𝑠7,2 𝑠7,3

𝑠8,1 𝑠8,2 𝑠8,3

𝑠9,1 𝑠9,2 𝑠9,3

𝑠7,4 𝑠7,5 𝑠7,6

𝑠8,4 𝑠8,5 𝑠8,6

𝑠9,4 𝑠9,5 𝑠9,6

𝑠10,1 𝑠10,2 𝑠10,3

𝑠11,1 𝑠11,2 𝑠11,3

𝑠12,1 𝑠12,2 𝑠12,3

𝑠10,4 𝑠10,5 𝑠10,6

𝑠11,4 𝑠11,5 𝑠11,6

𝑠12,4 𝑠12,5 𝑠12,6

𝑠7,7

𝑠8,7 𝑠8,8

𝑠9,7 𝑠9,8 𝑠9,9

𝑠10,7 𝑠10,8 𝑠10,9

𝑠11,7 𝑠11,8 𝑠11,9

𝑠12,7 𝑠12,8 𝑠12,9

𝑠10,10

𝑠11,10 𝑠11,11

𝑠12,10 𝑠12,11 𝑠12,12]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

with 

 

𝑠1,1 = 60(𝛽2 + 𝛼2) − 12𝜈 + 42 

𝑠2,1 = 30𝛼2 + 12𝜈 + 3, 𝑠2,2 = 20𝛼2 − 4𝜈 + 4,   

𝑠3,1 = −(30𝛽2 + 12𝜈 + 3),      𝑠3,2 = −15𝜈, 𝑠3,3 = 20𝛽2 − 4𝜈 + 4,   

𝑠4,1 = 30(𝛽2 − 2𝛼2) + 12𝜈 − 42, 𝑠4,2 = −30𝛼2 + 3𝜈 − 3, 

𝑠4,3 = −15𝛽2 + 12𝜈 + 3, 𝑠4,4 = 60(𝛽2 + 𝛼2) − 12𝜈 + 42  

𝑠5,1 = 30𝛼2 + 12𝜈 + 3, 𝑠5,2 = 10𝛼2 + 𝜈 − 1, 𝑠5,3 = 0,   

𝑠5,4 = −(30𝛼2 + 12𝜈 + 3), 𝑠5,5 = 20𝛼2 − 4𝜈 + 4,   

𝑠6,1 = −15𝛽2 + 12𝜈 + 3, 𝑠6,2 = 0, 𝑠6,3 = 10𝛽2 + 4𝜈 − 4, 𝑠6,4 = −(30𝛽2 + 12𝜈 + 3), 

𝑠6,5 = 15𝜈,    𝑠6,6 = 20𝛽2 − 4𝜈 + 4,   

𝑠7,1 = 30(−2𝛽2 + 𝛼2) + 12𝜈 − 42, 𝑠7,2 = 15𝛼2 − 12𝜈 − 3,   

𝑠7,3 = 30𝛽2 − 3𝜈 + 3, 𝑠7,4 = −30(𝛽2 + 𝛼2) − 12𝜈 + 42,            𝑠7,5 = 15𝛼2 + 3𝜈 − 3, 

𝑠7,6 = 15𝛽2 + 3𝜈 − 3,    𝑠7,7 = 60(𝛽2 + 𝛼2) − 12𝜈 + 42    

𝑠8,1 = 15𝛼2 − 12𝜈 − 3, 𝑠8,2 = 10𝛼2 + 4𝜈 − 4, 𝑠8,3 = 0, 𝑠8,4 = −15𝛼2 − 3𝜈 + 3, 

𝑠8,5 = 5𝛼2 − 𝜈 + 1, 𝑠8,6 = 0, 𝑠8,7 = 30𝛼2 + 12𝜈 + 3, 𝑠8,8 = 20𝛼2 − 4𝜈 + 4,   

𝑠9,1 = −30𝛽2 + 3𝜈 − 3, 𝑠9,2 = 0, 𝑠9,3 = 10𝛽2 + 𝜈 − 1, 𝑠9,4 = −15𝛽2 − 3𝜈 + 3,   

𝑠9,5 = 0, 𝑠9,6 = 5𝛽2 − 𝜈 + 1,       𝑠9,7 = 30𝛽2 + 12𝜈 + 3, 𝑠9,8 = 15𝜈, 𝑠9,9 = 20𝛽2 − 4𝜈 + 4  

𝑠10,1 = −30(𝛽2 + 𝛼2) − 12𝜈 + 42, 𝑠10,2 = −15𝛼2 − 3𝜈 − 3, 𝑠10,3 = 15𝛽2 + 3𝜈 − 3, 

𝑠10,4 = 30(−2𝛽2 + 𝛼2) + 12𝜈 − 42, 𝑠10,5 = −15𝛼2 + 12𝜈 + 3, 𝑠10,6 = 30𝛽2 − 3𝜈 + 3, 

𝑠10,7 = 30(𝛽2 − 2𝛼2) + 12𝜈 − 42, 𝑠10,8 = −30(𝛽2 + 𝛼2) − 12𝜈 + 42,

𝑠10,9 = 15𝛽2 − 12𝜈 − 3, 

𝑠10,10 = 60(𝛽2 + 𝛼2) − 12𝜈 + 42 

𝑠11,1 = 15𝛼2 + 3𝜈 − 3, 𝑠11,2 = 5𝛼2 − 𝜈 + 1, 𝑠11,3 = 0, 𝑠11,4 = −15𝛼2 + 12𝜈 + 3, 

𝑠11,5 = 10𝛼2 + 4𝜈 − 4, 𝑠11,6 = 0, 𝑠11,7 = 30𝛼2 − 3𝜈 + 3, 𝑠11,8 = 10𝛼2 + 𝜈 − 1,   

𝑠11,9 = 0, 𝑠11,4 = −(30𝛼2 + 12𝜈 + 3), 𝑠11,5 = 20𝛼2 − 4𝜈 + 4 

𝑠12,1 = −15𝛽2 − 3𝜈 + 3, 𝑠12,2 = 0, 𝑠9,3 = 5𝛽2 − 𝜈 + 1, 𝑠12,4 = −30𝛽2 + 3𝜈 − 3,   

𝑠12,5 = 0, 𝑠12,6 = 10𝛽2 + 𝜈 − 1,       𝑠12,7 = 15𝛽2 − 12𝜈 − 3, 𝑠12,8 = 0,

𝑠12,9 = 10𝛽2 − 4𝜈 − 4, 
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𝑠12,10 = 30𝛽2 + 12𝜈 + 3, 𝑠12,11 = −15𝜈, 𝑠12,12 = 20𝛽2 − 4𝜈 + 4 

 

(α = 𝑎𝑒 𝑏𝑒 ,      ⁄ 𝛽 = 𝑏𝑒 𝑎𝑒⁄ ) 

 

and  

 

[𝑻] = [
𝒍

𝒍
𝒍

]               and              [𝒍] = [
1

𝑎𝑒

𝑏𝑒

] 

 

 

The element mass matrix is given in the following form. 

 

[𝑴𝒆] =
𝜌𝑎𝑒𝑏𝑒

25200
[
𝐦11 𝐦21

T

𝐦21 𝐦22
]              (B7) 

 

where 

𝐦11 =

[
 
 
 
 
 
 

3454
461𝑏𝑒 80𝑏𝑒

2

−461𝑎𝑒 −63𝑎𝑒𝑏𝑒 80𝑎𝑒
2

Sym

1226 274𝑏𝑒 −199𝑎𝑒

274𝑏𝑒 −60𝑏𝑒
2 42𝑎𝑒𝑏𝑒

−199𝑎𝑒 −42𝑎𝑒𝑏𝑒 40𝑎𝑒
2

3454
−461𝑏𝑒 80𝑏𝑒

2

−461𝑎𝑒 63𝑎𝑒𝑏𝑒 80𝑎𝑒
2]
 
 
 
 
 
 

 

 

𝐦21 =

[
 
 
 
 
 
 

1226 199𝑏𝑒 −274𝑎𝑒

199𝑏𝑒 40𝑏𝑒
2 −42𝑎𝑒𝑏𝑒

274𝑎𝑒 42𝑎𝑒𝑏𝑒 −60𝑎𝑒
2

394 −116𝑏𝑒 −116𝑎𝑒

116𝑏𝑒 −30𝑏𝑒
2 −28𝑎𝑒𝑏𝑒

116𝑎𝑒 −28𝑎𝑒𝑏𝑒 −30𝑎𝑒
2

394 116𝑏𝑒 −116𝑎𝑒

−116𝑏𝑒 −30𝑏𝑒
2 28𝑎𝑒𝑏𝑒

116𝑎𝑒 28𝑎𝑒𝑏𝑒 −30𝑎𝑒
2

1226 −199𝑏𝑒 −274𝑎𝑒

−199𝑏𝑒 40𝑏𝑒
2 42𝑎𝑒𝑏𝑒

274𝑎𝑒 −42𝑎𝑒𝑏𝑒 −60𝑎𝑒
2 ]

 
 
 
 
 
 

 

 

𝐦22 =

[
 
 
 
 
 
 

3454
461𝑏𝑒 80𝑏𝑒

2

461𝑎𝑒 63𝑎𝑒𝑏𝑒 80𝑎𝑒
2

Sym

1226 274𝑏𝑒 199𝑎𝑒

−274𝑏𝑒 −60𝑏𝑒
2 −42𝑎𝑒𝑏𝑒

199𝑎𝑒 42𝑎𝑒𝑏𝑒 40𝑎𝑒
2

3454
−461𝑏𝑒 80𝑏𝑒

2

461𝑎𝑒 −63𝑎𝑒𝑏𝑒 80𝑎𝑒
2]
 
 
 
 
 
 

 

 

 

 

B.3 Penalty Method 

 

The continuity conditions between the two plates are satisfied asymptotically by inserting 

artificial springs with very high stiffness between them and adding the potential energy due to 

the springs as penalty terms to the Rayleigh-Ritz minimisation equations. Using the notation 

in reference [37] the potential energy, Lmax is given by the following equations. 
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𝐿𝑚𝑎𝑥 =
1

2
∑∑𝑘𝑤 {𝑊(𝑥𝑖, 𝑦𝑗  ) − 𝑑ℎ𝑖,𝑗

}
2

Nh

𝑗

Nh

𝑖

                             (B8) 

 

Nh is the number of the finite element nodes in the x and y directions for the hollow part, and 

xi and yj are the coordinates of the positive plate corresponding to the nodes. dhi,j is the 

transverse displacement of the negative plate at the nodes and kw is the penalty parameter. For 

this study, the value of kw was chosen as 1010 times the plate flexural rigidity, D (i.e. kw = 

1010D) since the value is sufficient to be considered as an asymptotically rigid connection 

from the results in [38]. 

 

 

B.4 Eigenmatrix Equation 

 

The total energy functional, (𝑉𝑚𝑎𝑥 + 𝐿𝑚𝑎𝑥) − 𝑇𝑚𝑎𝑥  is minimised with respect to the 

unknown weighting coefficients and nodal degrees of freedom using the Rayleigh – Ritz 

procedure which yields an eigenvalue equation  

 

{[𝑲] − ω2[𝑴]} {
𝑮
𝒅𝒉

} = {𝟎}               (B9) 

in which 

[𝑲] = [
𝑲𝑝𝑜𝑠 + 𝑲𝑝 −𝑲𝑝ℎ

𝑇

−𝑲𝑝ℎ 𝑲𝑛𝑒𝑔 + 𝑲𝑝ℎℎ
],           [𝑴] = [

𝑴𝑝𝑜𝑠 𝟎

𝟎 𝑴𝑛𝑒𝑔
] 

 

where [K] and [M] are stiffness and mass matrices, and the subscripts pos and neg stand for 

the positive and negative structure respectively. [Kp] are stiffness sub-matrices due to the 

penalty terms. {G}T and {dh}T are sets of coefficient vectors for the positive plate and 

degrees of freedom of the negative plate respectively. The non-dimensional frequency 

parameters, 𝛺 = 𝜔𝑎2√𝜌ℎ 𝐷⁄  are obtained by solving the above eigenvalue equation. 

 

 

 

 


