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Abstract— Image quality assessment potentially benefits from
the addition of visual attention. However, incorporating aspects
of visual attention in image quality models by means of a per-
ceptually optimized strategy is largely unexplored. Fundamental
challenges, such as how visual attention is affected by the
concurrence of visual signals and their distortions; whether visual
attention affected by distortion or that driven by the original
scene only should be included in an image quality model; and how
to select visual attention models for the image quality application
context, remain. To shed light on the above unsolved issues,
designing and performing eye-tracking experiments are essential.
Collecting eye-tracking data for the purpose of image quality
study is so far confronted with a bias due to the involvement of
stimulus repetition. In this paper, we propose a new experimental
methodology to eliminate such inherent bias. This allows obtain-
ing reliable eye-tracking data with a large degree of stimulus
variability. In fact, we first conducted 5760 eye movement trials
that included 160 human observers freely viewing 288 images of
varying quality. We then made use of the resulting eye-tracking
data to provide insights into the optimal use of visual attention
in image quality research. The new eye-tracking data are made
publicly available to the research community.

Index Terms— Visual attention, fixation, eye-tracking, image
quality, saliency, gaze.

I. INTRODUCTION

D IGITAL imaging systems generate, as a side effect,
various types of distortion in visual signals [1]. Visual

distortions degrade the quality of digital media content and
consequently, may affect consumers’ visual experiences or
lead to analytical errors in visual inspection tasks [2], [3].
To prevent the appearance of visual distortions and to control
image quality, current imaging systems rely on algorithms that
can automatically predict image quality as perceived by human
observers. The basis of these algorithms is formed by the
so-called objective quality metric (OQM).

Substantial progress has been made on the development of
OQMs. The state of the art OQMs mainly benefit from the
advances in understanding and modelling early visual process-
ing in the human visual system (HVS) and its underlying
quality perception behaviour [4]–[6]. Significant findings in
visual psychophysics, such as contrast sensitivity and masking
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have been mathematically modelled and integrated in various
OQMs [7]–[12]. By incorporating functional aspects of the
HVS, distortion can be quantified in a way that reflects its
genuine annoyance to the human eye, which consequently
results in a more reliable image quality prediction.

A significant trend in current image quality research is
to investigate the impact of visual attention, which is an
essential aspect of the HVS. Visual attention refers to a
mechanism that enables the HVS to select the most relevant
information in a visual scene [13]. Such attentional selec-
tion is known to be guided by two types of mechanism,
namely the stimulus-driven, bottom-up mechanism and the
expectation-driven, top-down mechanism [13]. In the area of
computer vision, visual attention is mainly concerned with the
former attentional mechanism, and is often interchangeably
referred to as saliency [14]–[24]. The empirical foundation
of saliency modelling lies in the eye movements of human
observers [25]–[28]. Computational models of visual saliency
(i.e., bottom-up attentional mechanism) aim at explicitly
addressing the first few seconds of eye movements in free-
viewing a visual stimulus [13]. A saliency model generally
outputs a topographic map that represents conspicuousness of
scene locations, where some parts of a scene that appear to
an observer to stand out relative to their neighbouring parts.

Incorporating saliency has demonstrated great potential for
further improvement of OQMs [29]–[31]; however, finding
ways to achieve such integration in a perceptually optimised
way remains largely unexplored. The challenge lies in the fact
that our knowledge about how saliency is actually affected by
the concurrence of visual signals and their distortions as well
as the associated implications for image quality judgements
is very limited. Due to the lack of such knowledge, the vast
majority of existing work has focused on simply utilising a
specific saliency model as a weighting function to improve a
specific OQM [32]–[36]. However, the following issues such
as how to optimise the combination of saliency and OQMs and
how to determine appropriate saliency models remain, which
are the urgent topics to be investigated.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

Psychophysical studies have been attempted to better
understand visual saliency in relation to image quality
assessment [37]–[43]. For example, an eye-tracking study
was performed in [40] to investigate (via visual inspection
of fixation patterns) how task-free fixations (i.e., saliency)
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of undistorted images may be affected by two variables, i.e.,
quality rating task and visual distortion. Based on the
visualisations of eye-tracking data, white noise and blurring
(under quality rating conditions) are not observed to
significantly impact the fixation patterns (relative to the
task-free conditions), whereas the impact tends to be more
obvious in the case of compression artifacts. In [41], task-free
eye-tracking experiments were conducted to investigate how
JPEG compression affects fixations. It shows that the impact
of JPEG artifacts on fixations is more disruptive at low
image quality than the high quality. The eye-tracking data
in [42] indicate that fixations change as visual distortion
occurs, and that the extent of the change seems to be more
related to the strength of artifacts rather than the type of
artifacts. In general, psychophysical studies reveal that visual
distortions may lead to a deviation from the natural scene
saliency, and that such deviation tends to depend on the visual
content, the type of distortion and the level of distortion.

Notwithstanding the above effort, it should be noted that
the generalisability of the findings reported in these studies
remains limited by the choices made in their experimental
design. For example, some experiments used a limited number
of human subjects [38]; some experiments were restricted
to a small degree of stimulus variability in terms of scene
content, distortion type and degradation level [40]–[42]; and
some eye-tracking studies involved top-down aspects of visual
attention (e.g., the involvement of a quality rating task) rather
than studying free-viewing bottom-up saliency [42], [43].

Apart from the above drawbacks, existing studies by their
nature potentially suffer from an inherent bias due to the
involvement of stimulus repetition. Typical eye-tracking data
collection for the purpose of image quality assessment often
involves each observer viewing the same scene repeatedly
several times (with multiple variations of distortion) through-
out a session. This repetition (i.e., repeated versions of the
same scene) becomes massive as the number of distortion
types and/or levels increases and would potentially skew the
intended eye-tracking data. In [44], eye-tracking data were
collected where participants first viewed 12 short videos and
then after a 2-min break they viewed the same 12 videos again.
The results showed that there was a notable difference in the
locations of the participants’ gaze for the first and second
viewings of the same video. The eye-tracking experiments
in [45] included 10 original videos and their 50 impaired
versions (i.e., five levels of degradation per original). The
results showed evidence for a memory or learning effect
for several viewings of the same video content, and that
the observers’ gaze behaviour tended to be affected by the
involvement of stimulus repetition. Both studies suggest that to
ensure the consistency of oculomotor behaviour throughout the
experiment (i.e., observing stimuli naturally rather than being
forced to learn where to look for visual artifacts, e.g.) and
as such to guarantee the reliability of fixation data collection,
there is a need for reducing the impact of stimulus repetition.

B. Contributions of the Paper

1) Recent literature [46], [47] has revealed potential
limitations of existing approaches taken to integrate saliency

to OQMs, and the need to investigate the real interactions
between natural scene saliency and visual distortions via
eye-tracking. To ensure the validity of fixation data collection,
we propose a new experimental methodology with carefully
justified control mechanisms. This methodology allows
reliably obtaining a substantial eye-tracking data with a large
degree of stimulus variability in terms of scene content,
distortion type as well as degradation level.

2) Unlike previous eye-tracking studies that have focused
more on a limited dataset and rather qualitative analysis, the
resulting eye-tracking data enable us to thoroughly evaluate
the relation between saliency and distortion. In particular, we
perform an exhaustive statistical analysis to provide a compre-
hensive view of the extent to which different types of distortion
with each represented at different levels of degradation can
actually affect fixation deployment.

3) Up until now, little has been known about how to optimise
the integration of saliency and OQMs in a perceptually mean-
ingful way. An important question has arisen whether saliency
derived from an original natural scene or that from the same
scene affected by unnatural artifacts should be included in
OQMs. Based on our eye-tracking data, we assess whether the
difference between both types of saliency is sufficiently large
to actually affect the performance gain for existing OQMs.

4) Being able to effectively apply saliency in OQMs requires
pre-screening of saliency models, since the effectiveness
of saliency models differs in different application domains.
On the basis of our eye-tracking data, we benchmark the state
of the art saliency models for the purpose of image quality
assessment. We explicitly evaluate whether these saliency
models possess sufficient capabilities of detecting natural
scene saliency and its deviation due to quality changes, and
the added value of modelled saliency to OQMs.

5) Moreover, we have made the eye-tracking data publicly
available [48] to facilitate research on saliency modelling in
image quality assessment.

III. EYE-TRACKING: REFINED

EXPERIMENTAL METHODOLOGY

Unlike previous studies, our experiment contains a large
degree of stimulus variability in terms of scene content, dis-
tortion type as well as distortion level. In addition, a dedicated
protocol is devised to eliminate potential bias due to the
involvement of massive stimulus repetition, which inherently
occurs in a typical image quality study. An eye-tracking
database was collected with 160 human observers and 288 test
stimuli, and from 5760 eye movement trials.

A. Stimuli

A set of test stimuli is constructed by systematically select-
ing images from a widely recognised image quality assessment
database (i.e., LIVE database [49]).

1) Construction of Source Images: from the fixation deploy-
ment perspective, natural scenes can be classified based on the
degree of saliency dispersion [31]. As the observation revealed
from eye-tracking studies in [50] and [51], if an image contains
highly salient objects, then most viewers will concentrate their
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Fig. 1. Illustration of source images with different degrees of saliency dispersion used in our experiment, which yield 288 test images.

fixations around them, whereas if there is no obvious object-
of-interest viewers’ fixations will appear as a more evenly
distributed pattern. Thus, images with salient objects tend to
have less variation in fixations between viewers than images
without salient objects. By use of eye-tracking data in [31],
the degree of saliency dispersion—the degree of agreement
between observers for human fixations—was determined and
used to categorise all source images in the LIVE database.
The results showed that the majority of images (i.e., 19 out
of 29) clustered around the range of medium degree of saliency
dispersion. To mitigate the unbalanced distribution of source
images, we decided to remove some images having a medium
degree of saliency dispersion. This yielded a rather balanced
set of 18 source images as illustrated in Fig. 1. The new make-
up consists of 6 images of a small degree of saliency dispersion
(e.g., images with distinct foreground/background configura-
tions); 4 images of a greater saliency dispersion (e.g., images
without any specific object-of-interest); and 8 images that fall
into the range of medium degree of saliency dispersion.

2) Construction of Test Images: Test stimuli used in our
experiment cover the full range of distortion types available
in the LIVE database, including white noise (WN), JPEG
compression (JPEG), Gaussian blur (GBLUR), JPEG2000
compression (JP2K) and simulated fast-fading in wireless
channels (FF). For each distortion type, three distorted versions
per source image were systematically selected, which were
intended to reflect three distinct levels of perceived quality:
“High” (i.e., with perceptible but not annoying artifacts),
“Medium” (i.e., with noticeable and annoying artifacts) and
“Low” (i.e., with very annoying artifacts). Taking advantage
of the LIVE database that contains per image a “ground truth”
mean opinion score (i.e., DMOS), distortion strengths/levels
were adjusted perceptually by using the following mapping:
DMOS = [10, 40] to “High” quality, DMOS = [40, 70]
to “Medium” quality and DMOS = [70, 100] to “Low”
quality. By doing so, for a specific distortion type, the selected
18 “High” quality versions of source images are meant to have
approximately the same perceived quality; and similarly for
other distortion levels (i.e., “Medium” and “Low”). In addition,
a “High” quality version of any source image chosen under
a specific distortion type is meant to have approximately the
same perceived quality as the “High” quality version of the
same source image chosen under any other distortion type;
and similarly for other distortion levels (i.e., “Medium” and
“Low”). The selection procedure resulted in a set of 288 test
stimuli (including the originals) from the LIVE database.
Fig. 2 illustrates the average DMOS of images (i.e., 90 images

Fig. 2. Illustration of average DMOS of images assigned to a pre-defined
level of distortion. The distortion levels are meant to reflect three perceptually
distinguishable levels of image quality (i.e., denoted as “High”, “Medium” and
“Low”). The error bars indicate a 95% confidence interval.

based on 18 source images × 5 distortion types) assigned
to individual distortion levels. It clearly shows three distinct
means of DMOS (i.e., 30, 55 and 83 within the score range
[0, 100]); and hypothesis testing (i.e., based on t-test preceded
by a test for the assumption of normality) reveals that the
difference between these three pre-defined categories is statis-
tically significant (i.e., with P < 0.01 at the 95% confidence
level).

B. Proposed Experimental Protocol

There is little consensus on which method is the most
appropriate for the conduct of an eye-tracking experiment for
the purpose of image quality study. A within-subjects method,
in which the same group of subjects views all test stimuli,
is commonly used in relevant studies [29], [40]–[42]. This
experimental methodology, however, potentially contaminates
the results due to carry-over effects, which refer to any
effect that carries over from one experimental condition to
another [52]. Such effects become more pronounced as the
number of test stimuli and/or the rate of stimulus repetition
increase in eye-tracking. In our case, the test dataset con-
tains a total of 288 stimuli representing 16 repeated versions
(i.e., 15 distorted + 1 original) per source image, which makes
the use of a within-subjects method prone to undesirable
effects such as fatigue, boredom and learning from practice
and experience, and thus increases the chances of skewing
the results. To overcome these problems, an alternative
method, namely between-subjects [53] was employed in our
experiment. In a between-subjects method, multiple groups of
subjects are randomly assigned to partitions of test stimuli,
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Fig. 3. (a) Two sample stimuli of distinct perceived quality (DMOS = 95.96 (top image) and DMOS = 32.26 (bottom image)). (b) The collection of human
eye fixations over 20 subjects. (c) Gaze maps (the darker the regions are, the lower the saliency is). (d) Saliency superimposed on the sample stimuli.

each contains little or no stimulus repetition. We decided to
divide the test dataset into 8 partitions of 36 stimuli each;
and to allow only 2 repeated versions of the same scene in
each partition. To further reduce the carry-over effects, each
session per subject was divided into two sub-sessions with
a “washout” period between sub-sessions; and by doing so,
each subject effectively had to view 18 stimuli without no
stimulus repetition in a separate session. Mechanisms were
further applied to control the order in which participants per
group perform their tasks: (1) half of the participants view the
first half partition of stimuli first, and half of the participants
view the second half partition first; (2) the stimuli in each
sub-session are presented to each subject in a random order.
A dedicated control mechanism was also adopted in each
sub-session to deliberately include a mixture of all distortion
types and the full range of distortion levels. We recruited
160 participants in our experiment, consisting of 80 male
and 80 female university students and staff members (between
19 to 42 years of age), all inexperienced with image quality
assessment and eye-tracking. The participants were not tested
for vision defects, and we considered their verbal expression
of the soundness of vision was adequate. The participants were
first randomly divided into 8 groups of equal size, each with
10 males and 10 females; and the 8 groups of subjects were
then randomly assigned to 8 partitions of stimuli. Based on
the rule of thumb for determining sample size in relevant
studies (i.e., 5-15 subjects per test stimulus), we assume 20 per
stimulus is an adequate sample size (note that the validity of
sample size will be further quantitatively tested in Sec. IV).

C. Experimental Procedure

We set up a standard office environment as to the recom-
mendations of [54] for the conduct of our experiment. The
test stimuli were displayed on a 19-inch LCD monitor (native
resolution is 1024 × 768 pixels). The viewing distance was
set to be approximately 60cm. Eye movements were recorded
using an image processing based contact-free tracking system
with sufficient head movement compensation (SensoMotoric
Instrument (SMI) RED-m). The eye tracking system features
a sampling rate of 120Hz, a spatial resolution of 0.1 degree
and a gaze position accuracy of 0.5 degree. Each subject

was provided with instructions on the purpose and general
procedure of the experiment before the start of the actual
experiment. Each session per subject contained two successive
sub-sessions with a break of 60 minutes between sub-sessions.
Since each subject had only two viewings of the same scene,
the 60-minute “washout” period was considered sufficient
to balance between further reducing the carry-over effects
and completing the entire data collection within a reasonable
timescale. Each individual sub-session was preceded by a
9-points calibration of the eye-tracking equipment. The partic-
ipants were instructed to look at the stimuli in a natural way
(“view it as you normally would”). Each stimulus was shown
for 10 seconds followed by a mid-gray screen of 3 seconds.

IV. EXPERIMENTAL RESULTS

A. Gaze Map

A gaze map representative for stimulus-driven,
bottom-up visual attention is derived from the recorded
fixations [29]–[31]. Fixations were extracted from the raw
eye-tracking data using the SMI BeGaze Analysis Software
with minimum fixation duration threshold set to 100ms.
A fixation was rigorously defined by SMI’s Software using
the dispersal and duration based algorithm established in [55].
Fig. 3(b) illustrates the collection of fixations over all subjects
(i.e., 20) for each of the two sample stimuli. To construct
a topographic gaze map for an average human observer,
each fixation location (contained in the aggregated data as
shown in Fig. 3(b)) gives rise to a gray-scale patch that
simulates the foveal vision of the HVS. The activity of
the patch is modelled as a Gaussian distribution of which
the width approximates the size of the fovea (2 degree
of visual angle). As treated similarly in relevant literature
(see e.g., [29], [41], [42]) the duration of fixation was not
included when creating a gaze map.

B. Validation: Proposed Reliability Testing

Since standardised methodology for the collection of
eye-tracking data does not exist, researchers often follow
best practice guidelines for the design of their own experi-
ments. The resulting data, however, differ in their reliability
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Fig. 4. Illustration of inter-observer agreement (IOA) value averaged over
all stimuli assigned for each subject group in our experiment. The error bars
indicate a 95% confidence interval.

depending on the choices made in the experimental method-
ology, such as the sample size and the ways of presenting
stimuli [56]. To make use of eye-tracking data as a solid
“ground truth”, it is crucial to validate the reliability of the
collected data. We, therefore, propose and perform systematic
reliability testing to assess: (1) whether the variances in the
eye-tracking data obtained from different subject groups (in a
between-subjects method) are similar; (2) whether the sample
size (number of participants) per stimulus is sufficient to
create a stable gaze map; and (3) whether the eye-tracking
data collected in our study are comparable to similar data
obtained from other independent studies. Note, hereafter, when
performing a statistical significance test, if the assumption of
normality is tested to be satisfied a parametric test (e.g., t-test)
is used; otherwise a nonparametric alternative (e.g., Wilcoxon
signed rank test) is used.

1) Homogeneity of Variances Between Groups: Since a
between-subjects method is adopted, assuming the represen-
tativeness of participants in each group is satisfied, we test
whether variances of eye-tracking data across all groups are
homogeneous. To identify such homogeneity, we measure the
inter-observer agreement (IOA), which refers to the degree
of agreement in saliency among observers viewing the same
stimulus [57], [58]. In our implementation, per stimulus and
per subject group, IOA is quantified by comparing the gaze
map generated from the fixations over all-except-one observers
to the gaze map built upon on the fixations of the excluded
observer; and by repeating this operation so that each observer
serves as the excluded subject once. The similarity between
two gaze maps is commonly measured by AUC (i.e., area
under the receiver operating characteristic curve) [13]. Fig. 4
illustrates the IOA value averaged over all stimuli assigned to
each subject group in our experiment. It shows that the IOA
remains similar across eight groups. A statistical significance
test (i.e., analysis of variance (ANOVA)) is performed and the
results show that there is no statistically significant difference
between groups (i.e., with P > 0.05 at the 95% confidence
level). The above evaluation indicates that a high degree of
consistency across groups is found in our data collection.

2) Data (Saliency) Saturation: There is, unfortunately, no
general agreement on how many participants are adequate
to achieve reliable eye-tracking data. Researchers often use
“data saturation” as a guiding principle to check whether a

Fig. 5. Illustration of inter-k-observer agreement (IOA-k) value averaged
over all stimuli contained in our entire dataset. The error bars indicate a 95%
confidence interval.

given/chosen sample size is sufficient to cause a “saturated”
gaze map. This means a gaze map reaches the point at which
no new information is observed. We test the adequacy of
sample size required to reach saliency “saturation” (i.e., a
proxy of sufficient degree of reliability) in our experimental
data. The validation is again based on the principal of IOA,
which is extended to an inter-k-observer agreement measure
(i.e., referred to as IOA-k, and k=2, 3...20). More specifically,
for a given stimulus, IOA-k is calculated by randomly selecting
k participants among all observers. Fig. 5 illustrates the IOA-k
value averaged over all stimuli contained in our entire dataset.
It shows that “saturation” occurs with 16 participants, although
a reasonably high degree of consistency in fixation deployment
is already reached with 12 participants. It demonstrates that
our chosen number of 20 observers for each subject group is
fairly sufficient to yield a stable/saturated gaze map.

3) Cross-Database Similarity: To further evaluate the reli-
ability of our eye-tracking data as a “ground truth”, we
compare our data to other relevant databases that are publicly
available and obtained from independent laboratories. In terms
of free-viewing eye movement recordings related to the LIVE
database, there exist three widely cited eye-tracking databases
(with stimuli being only the 29 source images of the LIVE
database), namely TUD [29], UN [59] and UWS [30]. An
exhaustive comparative study is already conducted in [59],
and shows a high degree of similarity between these databases,
despite the fact that they were independently collected under
different experimental conditions. As a reference provided
in [59], for the same image, when comparing its two indepen-
dently generated gaze maps by means of Pearson correlation,
the result that falls into the range [0.8, 0.9] indicates a high
degree of similarity. Since we only selected 18 source images
from the LIVE database, the comparison had to be based
on these 18 images only. The Pearson correlation averaged
over all images between our data and TUD is 0.87; and is
0.87 and 0.89 with respect to UN and UWS, respectively. This
suggests that our eye-tracking data should be considered as
reliable “ground truth”.

C. Validation: Impact of Stimulus Repetition

We hereby investigate the impact of stimulus repetition on
the reliability of data collection, via a dedicated eye-tracking
experiment combining the ideas of both [44] and [45] as
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Fig. 6. The construction of stimuli in a single trail. The boxes indicate
35 stimuli in random order. The 5 original images, as a group, are inserted
in the front end, middle and back end of each trail in random order.

mentioned in Section II-A. Note our main purpose here is to
raise awareness of the need for eliminating stimulus repetition
in the scenario where subjects have to view the same scene
repeatedly, e.g., 16 times, rather than compare the general
usage of different subjective testing methodologies. Our
experiment aims to investigate two aspects: 1) how stimulus
repetition affects fixation behaviour when viewing several
distorted versions of the same scene (as also similarly studied
for videos in [45]); 2) how stimulus repetition affects fixation
behaviour when viewing several times the same undistorted
scene (as also similarly studied for videos in [44]).

We chose five source images to construct our test stimuli.
In creating distorted stimuli, we selected 7 distorted images
(covering all available distortion types and the full range of
DMOS) per content from the LIVE database, resulting in
35 distorted images. In creating undistorted stimuli, we just
used the 5 source images three times. This gave a total of
50 test stimuli. As illustrated in Fig. 6, the 35 distorted stimuli
were presented in a random order to each participant. The three
groups of the same source images (presented in a random order
within group) were positioned in the beginning, middle and
end of the presentation. Therefore, in terms of the distorted
stimuli, there are 7 repetitions per content; and in terms of
the undistorted stimuli, there are 3 repetitions per content. We
recruited 20 participants (10 females and 10 males) in our
experiment. Each participant viewed freely all stimuli. Each
stimulus was shown for 10 seconds followed by a mid-grey
screen for 3 seconds. We followed the same experimental set-
up as described in Section III-C.

1) The Effects for Distorted Stimuli (7 Repetitions): For
each participant, first the similarity in fixations between each
distorted image and the corresponding source image (presented
in the beginning) is measured by AUC. Then, the 7 AUC
values per content are ranked in the order of viewing, averaged
over all contents and all participants as shown in Fig. 7.
It clearly shows the general trend that the similarity decreases
as the viewing order increases, independent of the image
content, distortion type and distortion level. The results of
t-test show that there is a statistically significant difference

Fig. 7. Illustration of the impact of stimulus repetition on fixation behaviour.
When viewing 7 distorted versions of the same scene, the similarity in
fixations (measured by AUC) relative to its original decreases as the viewing
order increases. The error bars indicate a 95% confidence interval.

Fig. 8. Illustration of the impact of stimulus repletion on fixation behaviour.
When viewing 3 times the same undistorted scene, the similarity in fixations
(measured by AUC) relative to its baseline taken from the TUD database
decreases as the viewing order increases. The error bars indicate a 95%
confidence interval.

between the 1st viewing and the N th viewing (N = 3 to 7)
with P<0.05 at the 95% confidence level. This suggests
that stimulus repetition can significantly impact the fixation
behaviour, and consequently bias the intended fixation data.

2) The Effects for Undistorted Stimuli (3 Repetitions): A
mean gaze map (over all subjects) is produced for each undis-
torted stimulus, and is compared by AUC to the corresponding
baseline gaze map taken from the TUD database [29]. The
gaze maps contained in the TUD database were collected
under task-free, no distortion, no stimulus repetition condi-
tions, using the source images of the LIVE database. Fig. 8
illustrates the AUC values in viewing order, averaged over
all 5 source images. It shows that the similarity dramatically
drops after the first viewing of a scene, independent of
image content. A Wilcoxon signed rank test shows that there
is a statistically significant difference between the first and
the second (or the third) viewing with P<0.05 at the 95%
confidence level.

The above study provides evidence that when subjects view
the same stimuli repeatedly the fixation data are likely to be
biased, and care should be taken to eliminate the effect of
stimulus repetition in such a scenario.

D. Fixation Deployment

Fig. 9(a) illustrates an overview of all distorted versions
(5 distortion types × 3 distortion levels) of a source image
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Fig. 9. (a) Illustration of all distorted versions of a source image (of a large degree of saliency dispersion) and their corresponding gaze maps. The same
layout of distorted images and gaze maps for a different source image (of a small degree of saliency dispersion) is illustrated in (b).

(of a large degree of saliency dispersion) and their cor-
responding gaze maps (i.e., referred to as distorted scene
saliency (DSS)). The same layout of distorted images and DSS
for a different source image (of a small degree of saliency dis-
persion) is illustrated in Fig. 9(b). The grids visualise typical
correspondences and differences between DSS rooted from the
same source image. In general, there exist consistent patterns
among the relevant DSS, e.g., the highly salient regions tend
to cluster around the same positions. However, there are some
deviations, which are seemingly caused by either the distortion
type or distortion level. It is observed in Fig. 9(a) that as the
quality degrades (i.e., the strength of distortion increases) the
saliency patterns become more convergent (i.e., less amount
of heated areas in DSS); and that at the same distortion level
how saliency disperses tends to depend on the distortion type,
e.g., at “High” quality saliency is more spread out for JPEG,
JP2K and FF than for WN and GBLUR. In addition, the two
examples (rooted from two different source images) exhibit
different trends in terms of the variation in the array of DSS.
For example, the change in quality seems to cause a more
obvious rate of convergence in saliency in Fig. 9(a) than in
Fig. 9(b). This may be due to the fact that the two source
images fall into distinct categories of visual content in terms of
saliency dispersion (see Fig. 1). It implies that image content
also has an impact on the deployment of DSS, as already
mentioned in [31].

V. INTERACTIVE RELATIONS BETWEEN SALIENCY

AND IMAGE QUALITY ASPECTS

The resulting eye-tracking data represent sufficient statis-
tical power, which allows further statistical analysis on the
observed tendencies in the changes of saliency induced by
the changes of image quality aspects. More specifically, we
evaluate the impact of three individual categorical variables

(i.e., distortion type, distortion level and image content) on
the deployment of fixation.

A. Investigation Framework

We use saliency derived from the original undistorted scene
(i.e., referred to as scene saliency (SS)) as the reference, and
quantify the deviation of DSS from its corresponding reference
SS. The deviation between two gaze maps is often quantified
by three similarity measures widely used in the literature.
They are Pearson linear correlation coefficient (CC) [60], [61],
normalized scanpath saliency (NSS) [62], [63] and AUC [13].
The use of these measures is already described in more detail
in [64], and we only briefly repeat their meaning in our context
as follows:

CC: when CC is close to -1 or 1, the similarity between SS
and DSS is high; when CC is close to 0, the similarity is low.

NSS: When NSS>0, the higher the value of the measure
the more similar DSS and SS are; whereas NSS<0 indicates
that being able to use DSS to reproduce its reference SS is
likely due to chance only.

AUC: AUC=1 means DSS can predict perfectly the char-
acteristics of its reference SS; whereas AUC=0.5 corresponds
to a prediction at chance level.

B. Investigation Results

The statistical evaluation is based on 270 data points (i.e.,
270 distorted stimuli rooted from 18 originals) of SS-DSS
similarity (i.e., the similarity calculated by CC, NSS and
AUC between a given DSS and its corresponding SS). A full
factorial ANOVA is conducted with the SS-DSS similarity
as the dependent variable (the test for the assumption of
normality indicates that the dependent variable is normally
distributed); and the distortion type, distortion level and image
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TABLE I

RESULTS OF THE ANOVA TO EVALUATE THE IMPACT OF DISTORTION TYPE, DISTORTION LEVEL AND IMAGE CONTENT ON THE MEASURED
SIMILARITY BETWEEN SS AND DSS. df DENOTES DEGREE OF FREEDOM, F DENOTES F-RATIO AND Sig DENOTES THE SIGNIFICANCE LEVEL

Fig. 10. Illustration of rankings of five distortion types contained in our
database in terms of the SS-DSS similarity measured by CC, NSS and AUC,
respectively. The error bars indicate a 95% confidence interval.

content as independent variables. The results are summarized
in Table. I, and show that all main effects (except for the case
of distortion type when AUC and NSS are used for SS-DSS
similarity) are statistically significant.

1) Impact of Distortion Type on SS-DSS Similarity: As
shown in Table I, “distortion type” has a statistically significant
effect on SS-DSS similarity measured by CC. The same
effect, however, is not found when the SS-DSS similarity is
calculated based on NSS or AUC. The inconsistency in the
results is attributed to the fact that different similarity measures
capture different characteristics of saliency changes while
being coherent in measuring SS-DSS similarity, as already
mentioned in [64]. CC focuses on the similarity in terms of
the spatial distribution of fixation, whereas NSS and AUC are
based on the estimation of similarity in terms of the locality
and density of fixations. Fig. 10 illustrates the rankings of
the five available distortion types in terms of the SS-DSS
similarity measured by CC, NSS and AUC, respectively. They
consistently produce the same rank order for the five distortion
types. For each subplot, the results of hypothesis testing (i.e.,
Wilcoxon signed rank test) show that the impact of distinct
distortion types (e.g., FF and GBLUR) on SS-DSS similarity
is statistically different with P<0.05 at the 95% confidence
level. The distortions contained in FF (i.e., high-frequency,
localised artifacts) produce a large extent of saliency deviation,
whereas the GBLUR distortions (i.e., low-contrast, uniformly
distributed artifacts) cause only slight changes in saliency.

2) Impact of Distortion Level on SS-DSS Similarity: Table I
shows that “distortion level” has a statistically significant
effect on SS-DSS similarity, independent of the similarity

Fig. 11. The measured SS-DSS similarity in terms of CC, NSS and AUC for
images of different perceived quality. The error bars indicate a 95% confidence
interval.

Fig. 12. The measured SS-DSS similarity in terms of CC, NSS and AUC
for images of different visual content (i.e., classified by the degree of saliency
dispersion). The error bars indicate a 95% confidence interval.

measure used. The degree of saliency deviation increases
as the perceived quality decreases (or strength of distortion
increases). Fig. 11 illustrates the measured SS-DSS similarity
(again in terms of CC, NSS and AUC) for three levels of
perceived quality. It reveals a statistically significant (i.e.,
based on t-test with P<0.05 at the 95% confidence level) drop
in SS-DSS similarity at low quality relatively to teh other two
cases, which means that the distraction power of the annoying
artifacts (or strong distortions) present in an image comes into
impact the perception of the natural scene.

3) Impact of Image Content on SS-DSS Similarity: Table I
also shows that SS-DSS similarity is strongly affected by
“image content” (i.e., classified by the degree of saliency
dispersion). Fig. 12 illustrates the measured SS-DSS similarity
(again in terms of CC, NSS and AUC) for images having
different degrees of saliency dispersion. In the case of images
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TABLE II

PERFORMANCE FOR 10 OQMs (CC WITHOUT NON-LINEAR FITTING) AND THEIR CORRESPONDING SALIENCY-BASED
VERSIONS ON OUR DATABASE WITH 270 DISTORTED STIMULI

TABLE III

RESULTS OF STATISTICAL SIGNIFICANCE TESTING FOR INDIVIDUAL OQMs. “1” MEANS THAT THE DIFFERENCE IN PERFORMANCE IS STATISTICALLY

SIGNIFICANT WITH P<0.05 AT THE 95% CONFIDENCE LEVEL. “0” MEANS THAT THE DIFFERENCE IS NOT SIGNIFICANT

that do not contain highly salient objects (i.e., a large degree
of saliency dispersion), adding artifacts to these images results
in substantial changes between SS and DSS, as indicated by
the statistically significant (i.e., based on t-test with P<0.05 at
the 95% confidence level) drop in SS-DSS similarity relatively
to the other two cases. On the other hand, images with highly
salient objects (i.e., a small degree of saliency dispersion) are
less sensitive to the distortions, as evidenced by the statistically
significantly larger (i.e., based on t-test with P<0.05 at the
95% confidence level) values of CC, NSS and AUC.

VI. SS VERSUS DSS ON THE PERFORMANCE

GAIN OF OQMs

Previous research [29] has demonstrated that adding
“ground truth” SS does improve the performance of OQMs
in predicting perceived image quality. The findings, however,
also showed that the performance gain could be potentially
optimised by taking into account the interactions between SS
and distortion. DSS, to some extent, represents the interactive
effect of the concurrence of natural scene and unnatural
artifacts. The added value of DSS as opposed to SS in OQMs,
however, has not been investigated. To provide insights into
this matter, both types of saliency are added to several OQMs
well-known in the literature.

A. Investigation Framework

We follow the general framework established in [65] for
assessing the added value of saliency in OQMs. The basic
idea is to quantify the performance gain of an OQM by
comparing its predictive power with and without saliency. The
predictive power of an OQM can be simply measured by the
Pearson correlation (i.e., CC) between the output of the OQM
and the subjective quality ratings [66]; and the performance
gain can be effectively expressed by the increase in CC
(i.e., �CC). The OQMs used in our evaluation are six full-
reference (FR) OQMs, peak signal-to-noise ratio (PSNR) [1],
universal quality index (UQI) [67], structural similarity
index (SSIM) [12], multi-scale SSIM (MS-SSIM) [68],
visual information fidelity (VIF) [69] and feature similarity
index (FSIM) [70]; and four no-reference (NR) OQMs,
generalized block-edge impairment metric (GBIM) [71],

NR blocking artifact measure (NBAM) [72], NR perceptual
blur metric (NPBM) [73] and just noticeable blur
metric (JNBM) [74].

B. Investigation Results

1) Original Versus Saliency-Based OQMs: Per OQM,
adding SS and DSS (i.e., as the implementation detailed
in [65]) results in two new saliency-based OQMs. The
performance (i.e., CC) of an OQM is calculated based on the
subjective quality scores contained in our database, which
is summarised in Table II. In general, it shows that the
performance of OQMs is improved by using both SS and
DSS. The gain (i.e., �CC) ranges from 0.002 (FSIM extended
with SS) to 0.058 (GBIM extended with DSS). Note VIF and
FSIM obtain relatively small gain by adding saliency, due
to the fact that some well-established saliency aspects (i.e.,
information content feature in VIF [75] and phase congruency
feature in FSIM [76]) are already embedded in these metrics,
which consequently causes a saturation effect in saliency
optimisation [65].

The observed effects are statistically analysed with hypothe-
sis testing, selecting the metric strategy (SS-based vs. original
or DSS-based vs. original) as the independent variable and
the performance gain as the dependent variable. A Wilcoxon
signed rank test is performed using the data points contained
in Table II. The results, with P<0.01 at the 95% confidence
level reveal that both SS and DSS statistically significantly
improve the original OQMs. To further check the effectiveness
of adding saliency for individual OQMs, the differences were
statistically analysed per OQM (i.e., as the implementation
detailed in [65]): in the case of normality, t-test was performed;
otherwise a Wilcoxon signed rank test was conducted, as the
results summarised in Table III.

2) SS-Based Versus DSS-Based OQMs: As can be seen in
Table II, on average (over all OQMs), the gain achieved by use
of SS is similar to that of using DSS. To check the effects with
a statistical analysis, a Wilcoxon signed rank test is performed,
selecting the type of saliency as the independent variable and
the performance as the dependent variable. The test results
(i.e., p>0.05 at the 95% confidence level) show that there is
no statistically significant difference between the inclusion of
both types of saliency.
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Fig. 13. Comparison of performance gain between SS-based and DSS-based OQMs, with the effect of (a) distortion type dependency, (b) perceived quality
level dependency and (c) saliency dispersion degree dependency. The error bars indicate a 95% confidence interval.

In response to the investigation framework identified in
Section V, we further assess how the performance gain
between SS-based and DSS-based OQMs is affected by the
observed main effects, i.e., the distortion type, distortion level
and image content. More specifically, our database is again
characterised at three individual aggregation levels, using
“distortion type”, “distortion level” and “image content” as
the classification variables, respectively.

Fig. 13(a) illustrates the performance gain (i.e., �CC)
averaged once over all SS-based OQMs and once over all
DSS-based OQMs, when assessing WN, JPEG, GBLUR, JP2K
and FF, respectively. It shows that both types of saliency are
beneficial for OQMs (i.e., �CC values are positive in all
cases). Results of a Wilcoxon signed rank test show that the
difference in performance gain between the use of SS and
DSS is not statistically significant different with P>0.05 at
the 95% confidence level for all distortion types except for
JP2K. For JP2K, using DSS improves the OQMs’ performance
more, which is in line with the conclusions drawn in [65]
that when saliency is added in OQMs for accessing localised
distortion, such as JP2K, taking into account the interactions
between saliency and distortion can be used to optimise the
performance gain. Note the same trend is also observed for
the localised JPEG and FF distortion, although the results are
not significant in our current samples.

Fig. 13(b) shows the comparison of �CC between SS-based
and DSS-based OQMs, when accessing images with three
distinct levels of perceived quality. At low quality, OQMs
do not benefit from the use of saliency (i.e., marginal values
of �CC). At high quality, there is no statistically significant
difference (i.e., based on t-test with P>0.05 at the 95%
confidence level) between the added value of SS and DSS,
which is attributed to the fact that SS and DSS is very similar
(i.e., a small degree of SS-DSS deviation as shown in Fig. 11).
In terms of the medium level of quality, the results of a t-test
(with P<0.05 at the 95% confidence level) demonstrate that
adding DSS to OQMs yields statistically significantly higher
performance gain than adding SS, suggesting that the use of
saliency in OQMs potentially benefits from taking into account
the interactions between saliency and distortion.

Fig. 13(c) illustrates the difference in �CC between
SS-based and DSS-based OQMs, when accessing images with
three distinct degrees of saliency dispersion. Adding saliency
deteriorates the performance of OQMs for assessing images
with a large degree of saliency dispersion, which should
be avoided in saliency optimisation. This is mainly due to
the uncertainty of a dispersed gaze map, which confuses
the workings of OQMs by e.g., unhelpfully downplaying the
importance of high distortion in certain regions [31]. Images
with a medium range of saliency dispersion do not profit from
adding saliency to an OQM (i.e., marginal �CC). For images
having a small degree of saliency dispersion, the use of DSS
produces statistically significantly (i.e., based on t-test with
P<0.05 at the 95% confidence level) larger �CC than that
of using SS. Again, this suggests the interactions between
saliency and distortion play a significant role in optimising
the increase in the performance of OQMs.

VII. STUDY OF MODELLED SS AND DSS

A realistic OQM, however, will use a computational
saliency model rather than eye-tracking. Before the application
of a saliency model, it is highly desirable to validate its
performance against the ground truth. Benchmarking saliency
models against ground truth SS has been attempted [13],
[65], [77]; however, little is known about the performance
of existing saliency models in detecting DSS. Questions still
remain whether these saliency models sufficiently cope with
the distortions added to the undistorted scenes, or at least
whether they operate on the original and the distorted stimuli
in a similar manner. In addition, the benefits of including
SS versus DSS in OQMs have been demonstrated by use of
eye-tracking data in Section VI. It is worthwhile to verify
whether the findings still remain significant, and potentially
useful, when computational saliency is used in this place.

A. Predictive Power of Saliency Models

Our evaluation is carried out with 27 state of the art saliency
models, namely ITTI, Torralba, AIM, STB, GBVS, GR, LC,
SR, DVA, SUN, FTS, Judd, SDSR, PQFT, CBS, AWS, Gazit,
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Fig. 14. Illustration of modelled saliency maps generated by twenty-seven saliency models for one of the source images (a) and one of its distorted versions
(i.e., JPEG, DMOS=90.43) (b) in our database.

Fig. 15. Illustration of teh predictive power for 27 saliency models. Modelled
SS is evaluated against ground truth SS. Modelled DSS is evaluated against
ground turth DSS. The error bars indicate a 95% confidence interval.

salLiu, SDFS, SVO, RARE2012, LGS, SDCD, CA, SigSal,
BMS and CovSal (as already detailed in [13], [77], and [78]).
Fig. 14 shows the modelled saliency maps generated by these
models for one of the source images and one of its distorted
versions in our database. The predictive power of a saliency
model is quantified by SAUC (i.e., shuffled AUC as defined
in [13]).

Existing saliency models are usually evaluated against
the fixations collected with undistorted natural scene stimuli
(i.e., SS), we now check their corresponding performance
on distorted stimuli (i.e., modelled DSS). Fig. 15 illustrates
the predictive power (i.e., based on SAUC) of the saliency
models using the subset of undistorted stimuli and the subset
of distorted stimuli in our database, where modelled SS
is evaluated against ground truth SS and modelled DSS is
evaluated against ground truth DSS. The Pearson correlation

between the two sets of SAUC values is 0.98, indicating that
the performance of individual saliency models is consistent in
both cases. A t-test is also conducted between the two sets
of SAUC values; and the results (i.e., with P > 0.05 at the
95% confidence level) show that the average performance of
saliency models is the same for both cases.

B. Modelled SS Versus DSS in OQMs

We conducted a statistical evaluation using 27 state of the
art saliency models and 10 best-known OQMs as used in
Section VI. The study thus resulted in 270 saliency-augmented
OQMs; and the performance of each OQM was evaluated
against the entire LIVE database (with 779 stimuli). In each
case, both modelled SS and DSS are generated by applying a
saliency model to the reference and distorted image. Table IV
shows the performance (i.e. CC without non-linear regression)
in each case, averaged over 27 saliency models.

In contrast to the conclusions concerning Table II, Table IV
reveals the following consistent findings: (1) OQMs gen-
erally benefit from including both modelled SS and DSS.
A Wilcoxon signed rank test is performed using the data points
of Table IV. The results, with P<0.05 at the 95% confidence
level, show that both modelled SS and DSS statistically
significantly improve the original OQMs. (2) On average
(over all OQMs), there is no statistically significant difference
between the use of modelled SS and DSS, as demonstrated
by a Wilcoxon signed rank test with P>0.05 at the 95%
confidence level.

We also repeated the same experiment in Section VI to
evaluate how the observed effects, i.e., the distortion type,
distortion level and image content, impact the optimal use of
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TABLE IV

PERFORMANCE OF 10 OQMs (CC WITHOUT NON-LINEAR FITTING) AND THEIR CORRESPONDING SALIENCY-BASED VERSIONS ON
LIVE DATABASE WITH 779 DISTORTED STIMULI. NOTE THAT CC IS AVERAGED OVER ALL SALIENCY MODELS

Fig. 16. Comparison of performance gain between modelled SS-based and modelled DSS-based OQMs, with the effect of (a) distortion type dependency,
(b) perceived quality level dependency and (c) saliency dispersion degree dependency. The error bars indicate a 95% confidence interval.

modelled SS and DSS. Compared to the results reported in
Fig. 13, Fig. 16 shows: (1) In terms of the impact of distortion
type, the results of a t-test with P<0.05 at the 95% confidence
level show that the difference between the use of modelled SS
and DSS is not statistically significant for WN, FF, JPEG. For
JP2K, modelled DSS yields a statistically significantly (i.e.,
based on t-test with P<0.05 at the 95% confidence level) larger
�CC than modelled SS. The above findings are consistent with
the results determined by eye-tracking data in Fig. 13. For
GBLUR, modelled SS produces statistically significant (i.e.,
based on t-test) larger gain than modelled DSS with P<0.05
at the 95% confidence level, which is inconsistent with the
results as shown in Fig. 13. The relatively small gain obtained
from modelled DSS is mainly caused by the fact that saliency
models cannot fully capture the salient features of blurred
images (or modelled saliency computed on blurred images is
less accurate), which consequently reduces the usefulness of
including saliency to an OQM. (2) In terms of the impact of
distortion level and image content, Fig. 16 shows the consistent
findings as also presented in Fig. 13. We again performed the
t-tests on our data. The results show that using modelled DSS
in OQMs produces statistically significantly larger gain than
using modelled SS, with P<0.05 at the 95% confidence level,
when assessing the images of medium quality and images
having a small degree of saliency dispersion. The observed
tendencies can therefore serve as useful tools in optimising
the saliency integration in OQMs.

VIII. CONCLUSIONS

In this paper, we investigated a more reliable methodol-
ogy for collecting eye-tracking data for image quality study.
We proposed dedicated control mechanisms to effectively
eliminate potential bias due to the involvement of massive

stimulus repetition. The refined methodology resulted in a
new eye-tracking database with a large degree of stimulus
variability, including 288 test images distorted with different
types of artifacts at various levels of degradation. The database
contains 5760 eye movement trials recorded with 160 human
observers.

Based on the “ground truth” data, we thoroughly assessed
the interactions between saliency and distortion. An exhaustive
statistical evaluation was conducted to provide insights into the
tendencies in the changes of saliency induced by distortion.
We found that the occurrence of distortion in an image tends
to deviate fixation deployment. We also quantified the extent
of such deviation as a function of distortion type, degradation
level and image content, respectively. In terms of optimal use
of saliency in OQMs, we investigated whether saliency of the
undistorted scene or that represents the same scene affected by
distortion would deliver the best performance gain for OQMs.
The results show that both types of saliency are beneficial for
OQMs, but the latter which reflects the interactions between
saliency and distortion tends to further boost the effectiveness
of the integration of saliency in OQMs.

We make use of our new eye-tracking database to bench-
mark saliency models for the purpose of image quality assess-
ment. The evaluation indicates that existing saliency models
operate on the undistorted and distorted scenes in a similar
manner in terms of predicting human fixations. Moreover, the
findings regarding the benefits of including SS versus DSS in
OQMs still hold when using computational saliency instead
of eye-tracking data.

Avenues for future research include an in-depth understand-
ing of how visual attention plays a role in assessing image
quality, and a quest for a perceptually optimised saliency
integration strategy for quality assessment applications.
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