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Abstract: The first rational synthesis of a BN-doped coronene 

derivative in which the central benzene ring has been replaced by 

a borazine core, is described. This includes six C-C ring-closure 

steps that, through intramolecular Friedel-Crafts-type reactions, 

allow the stepwise planarization of the hexaarylborazine 

precursor. All together, UV-vis absorption, emission and 

electrochemical investigations show that the introduction of the 

central BN core induces a dramatic widening of the HOMO-LUMO gap 

and an enhancement of the blue-shifted emissive properties with 

respect to its all-carbon congener. 

 

Figure to the table of contents 
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Graphene is one of the leading materials in today’s science,[1] but 

the lack of a bandgap limits its application to replace 

semiconductors in optoelectronic devices.[2] To overcome this 

limitation, the replacement of C=C bonds by isostructural and 

isoelectronic bonds like polar B=N,[3] is emerging as an effective 

strategy to open a bandgap in monoatomic graphene layers.[4] To the 

best of our knowledge, only one example of a BN-doped covalent 

network featuring a regular doping pattern has been described so 

far through surface-assisted reaction.[5] Otherwise, only sheets 

containing B, N and C (h-BNC) over wide compositional ranges 

randomly distributed in domains of h-BN and graphitic phases have 

been prepared so far.[6] At the molecular level, notable examples 

include BN-doped polycyclic aromatic hydrocarbons.[7] Among those, 

the isolation of the first hexa-peri-hexabenzoborazinocoronene 

(HBBNC)[8] from pyrolysis of a borazino precursor by Bettinger and 

co-workers is an important example in view of the creation of 

hybrid graphenes featuring controlled BN-doping patterns (Figure 

1). However, the stunted solubility of this molecule limited in-

depth structural and physical studies.  

 

 
Figure 1. HBC and its borazino-doped analogue HBBNC. 

 

Herein we describe the first rational synthesis of B3N3-doped 

benzocoronene 1 that, being soluble in common organic solvents, 
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allowed a direct comparison of optoelectronic properties with 

those of its full-carbon congener. Generally, controlled BN-doping 

patterns in PAHs are obtained through bottom-up synthesis 

involving aniline-type precursors[3] that undergo planarization 

through intramolecular electrophilic aromatic substitution 

reactions, simultaneously forming C-B and B-N bonds in the 

presence of BCl3 and a Lewis acid. At the synthetic planning level, 

this consideration guided us to contemplate at first a convergent 

path relegating the formation of the HBBNC core to the last step 

(Scheme 1, path A). However, the scarce yield for preparing the 

triamino-spherand precursor forced us to defer this synthetic path 

and to anticipate the B3N3 formation in an earlier step. 
 

 
Scheme 1. Retro-synthetic strategies toward HBBC. 

 

This would lead to the HBBNC core through two, three or six ring-

closure reactions involving the aryl substituents (Scheme 1, paths 

B, C and D). As we have predicted a potential instability of the 

strained borazine precursors[9] of paths B & C, a decision was made 

to undertake plan D. Commonly, the planarization of covalently-

preorganized aryl moieties into PAHs is obtained through Scholl-
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type oxidative ring-closure reactions.[2b,10] However, the 

vulnerability of the borazine ring under oxidative conditions[11,3c] 

directed us to consider a Friedel-Craft-type substitution as the 

planarization reaction. This line of thought led us back to 

hypothetical borazine precursors bearing appropriate leaving 

groups (LG) at the ortho positions of the B-aryl substituents (path 

D) that, triggered under given conditions, can yield reactive 

arylium species. One can hardly fail to notice that the presence 

of ortho LG additionally exerts protection to the B-atom centers, 

making the borazine precursor enough stable to be handled. 

Embracing this synthetic strategy, we prepared a borazine 

precursor bearing F and peripheral xylyl moieties as LGs and 

solubilizing groups, respectively. 

 
Scheme 2. Synthetic path for preparing xylyl-substituted HBBNC 1; full-carbon 
congener 2.[13]  
 
Following literature protocols,[12] hexafluoro borazine 5 was thus 

obtained after reaction of 4-xylyl aniline 3 with BCl3 upon 

subsequent addition of difluoro ArLi 4 (Scheme 2). A crystal of 
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borazine 5, suitable for X-ray diffraction, was obtained by vapor 

diffusion of MeOH to a CH2Cl2 solution of 5 (Figure 2). The quasi-

orthogonal arrangement of the aryl moieties forces the F 

substituents to nest atop the B atoms (B…F = 2.922 Å), negatively 

shielding the electrophilic center. Capitalizing on the Friedel-

Crafts ring-closure reaction of fluoroarenes developed by Siegel 

and co-workers,[14] borazine 5 could be planarized into HBBNC 1 (5%, 

61% per C-C bond formation) in the presence of [iPr3Si
…CB11H6Cl6] and 

Me2SiMes2 at 110 °C in PhCl operating in a Schlenk line. Together 

with HBBNC 1, partially fused BN-derivative 7 was obtained as 

major product (17% yield), suggesting that the ring closure 

proceeds stepwise with the last aryl fusion likely being the rate-

determining step. All-carbon congener HBC 2 (Scheme 2) was also 

prepared for comparison purposes (Scheme S1, SI).[13] 

 
Figure 2. X-ray structure and ESP mapped on the vdW surface up to an electron 
density of 0.001 electron.bohr-3 for 5. Atom colors: pink B, blue N, green F, 
gray C; space group: P21/c. B-N distances in Å are shown. 
 

Molecule 1 was characterized using NMR, UV/Vis, IR spectroscopies 

and HR-MALDI spectrometry. At first, HBBNC 1 was unambiguously 

identified by HR-MALDI through the detection of the peak 

corresponding to the molecular ion at m/z 837.3652 (C60H42B3N3
+, 

calc.: 837.3658). Solution 1H-NMR spectra further confirmed the 

structure of HBBNC 1 (Figure 3B). Specifically, coupled Ha and Hb 

protons appear as triplet (8.05 ppm) and doublet (8.55 ppm), 

respectively, whereas one singlet (8.58 ppm) is observed for Hc 
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proton. An analogous resonance pattern (Figure 3A) is also 

observed for reference 2. Notably, the presence of the inner B3N3 

cycle in 1 induces a high-field shift of the proton resonances 

with respect to those of 2, suggesting a significant decrease of 

the magnetic anisotropic properties of the B3N3-doped derivative. 

Analogously, a remarkable high-field shift was also observed for 

the boron resonance (at 30.59 ppm) in the 11B-NMR spectrum (Figure 

S24) of 1 when compared to that of precursor 5 (at 34.9 ppm).  

 
Figure 3. Exerts of the 1H-NMR spectra (400 MHz, CDCl3) in the aromatic region 
for HBBNC 1 (bottom) and HBC 2 (above). 
 

To further corroborate the chemical structure of  1, crystals 

suitable for X-ray diffraction analysis were obtained by vapour 

diffusion of iPrOH to a C6H6 solution of 1
 (Figure 4A). The X-ray 

analysis confirms the nearly flat shape of the BNC framework, 

displaying a similar structure to that of all-carbon congener 1, 

with shorter B-N lengths (1.433 – 1.442 Å, Figure 4A) than those 

measured in hexagonal boron nitride (h-BN, 1.446 Å). To appraise 

the effect of the BN doping on the aromatic π-surface, we further 

determined the charge distribution of the crystal structure of 1 
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in the form of ESP (Figure 4B) calculated with Gaussian 09 at 

B3LYP/6-31G(d,p) level of theory (SI). 

 

 
Figure 4. A: Horizontal (top) and side (bottom) view of the X-ray crystal 
structures of HBBNC (with the B-N distances in Å) 1 (right) and HBC 2 (left). 
Atom colors: pink B, blue N, gray C; space groups: I2/a and P-1, respectively. 
B: ESP mapped on the vdW surface up to an electron density of 0.001 
electron.bohr-3. 

As expected, the π-surface of 2 is negatively charged showing the 

presence of a homogenous π-cloud above and below the HBC skeleton. 

On the other hand, 1 displays a great charge polarization of the π-

surface, with the N and B atoms negatively and positively charged, 
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respectively, and the outer hexaphenylene rim negatively charged. 

These results are consistent with the expected ambipolar character 

of the molecule.[15] UV-vis absorption and emission properties in 

CH2Cl2 of molecules 1 and 2 are displayed in Figure 5 and Table 1. 

The lowest-energy electronic transition of 1 appears in the near-

UV (375 nm) at significantly higher energy with respect to that of 

2 (446 nm). In line with theoretical predictions,[4a-b,11] this 

finding suggests that the B3N3-doping widens the molecular optical 

bandgap (ΔΕopt = 0.53 eV). In addition, the absorption bands of 1 

show noticeable vibrational substructures evidencing a high degree 

of rigidity of the molecular skeleton.[16]  

 

Table 1. Photophysical data for 1 and 2 in solution and at the 

solid state. 

 Absorption Emission 

Molecule λ (nm) (ε, M-1 cm-1)[a] λmax,fl 
(nm) 

Eopt,fl 
(eV)[b] 

τfl 
(ns) Φfl

[c] λmax,PH 
(nm)[d] 

τph 
(s)[d] 

2 

(CH2Cl2) 

446 (1000) 

388 (53800) 

358 (159100) 
485[a] 2.76 

16.4[a] 

27.9[f] 

0.03[a] 

0.05[f] 
570 0.8 

2 (solid) - 487 - 
3.7(64%)[e] 
12.1(36%)[e] 

- - - 

1 

(CH2Cl2) 

375 (24000) 

314 (31200) 404[a] 3.29 
8.2 [a] 

10.9[f] 

0.43[a] 

0.77[f] 
492 4.0 

1 (solid) - 426 - 
1.5(43%)[e] 
8.0(57%)[e] 

- - - 

[a]Recorded in air-equilibrated CH2Cl2 at rt 
[b]Calculated from the higher-energy maxima 

of the emission spectra in air-equilibrated CH2Cl2 at rt (Eopt = 1240/λfl). [c]Quinine 
sulfate in 0.5 M H2SO4 was used as the standard (ΦQS = 0.546). 

[d]Recorded in a 1:1 
CH2Cl2:CH3OH v/v rigid matrixes at 77 K (Figure S31). 

[e]Fitting of the emission decays 
are biexponential.	  [f]Calculated for O2-free solutions. 

 

Consistently, the emission spectra (Figure 5) in solution at rt 

reflect the same trend, with the intense emission peak of 1 (λmax = 

404 nm, Φfl = 0.43) significantly blue-shifted with respect to that 

of 2 (λmax = 485 nm). Notably, the Φfl value significantly increases 

to 0.77 in O2-free solutions. Phosphorescence spectra at low 

temperature (Figure 5) showed long-lasting emission profiles (τPhos 

= 4 s) with 1 providing the highest-energy triplet emission (λmax,Phos 

= 492 and 570 nm for 1 and 2, respectively).[17] Furthermore, 1 
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displays appreciable solid-state fluorescence emission in the 

violet-blue region (λmax = 426 nm vs λmax = 487 nm for 2) at rt 

(Figure S32).  

 
 

Figure 5. Absorption (black) and normalized fluorescence (blue) spectra of 1 (B, 
λex = 315 nm) and 2 (A, λex = 355 nm) in air equilibrated CH2Cl2 at rt; 
fluorescence (blue dotted) and phosphorescence (red) spectra at 77 K in a 
CH2Cl2:CH3OH (1:1, v/v) rigid matrix. 	  
 

Cyclic voltammetry (CV) measurements showed a quasi-reversible 

first oxidation wave at approximately 1.46 V vs. SCE in CH2Cl2 for 

HBBNC 1 (Figures 6 and S34), which is considerably higher in 
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energy with respect to that of its carbon congener (E1/2ox= 1.27 V 

vs. SCE).[18] On the other hand, no relevant reduction waves were 

detected at any scan rates under the same experimental conditions 

for both molecules. Taken together, these data allowed us to 

estimate the energies of the HOMO and LUMO orbitals, resulting to 

be -5.80 (HOMO) and -2.51 eV (LUMO) for 1 and -5.61 (HOMO) and -

2.85 eV (LUMO) for 2 (Figure 6 and Table S4). To shed further 

light on the structure-property relation, we calculated the HOMO 

and LUMO orbitals for 1 and 2 (Figure 6 and S35). As observed by 

others,[4a-b,11] it transpires that both orbitals are homogenously 

distributed on the π-surface of 2, whereas the LUMO for 1 is only 

located on the hexaphenylene rim. This suggests that the one-e- 

reduction of 1 is likely to be confined on the hexaphenylene 

periphery excluding the B3N3 ring, whereas that of 2 is localized 

on the entire carbon π-surface.  

 
Figure 6. Left. Frontier orbital energies estimated from the CV and 
photophysical data for 1 and 2. Reduction potentials of the triplet excited 
states are evidenced by the narrower optical energy gaps (ET* = E1/2

ox-Eopt
T). 
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Fc+/Fc = 0.46 V vs. SCE; -4.8 eV vs vacuum. Right. HOMO and LUMO profiles for 1 
and 2 at B3LYP/6-31G(d,p) level of theory (GAUSSIAN09). 

 

In conclusion, in this paper we have described the first synthetic 

methodology to prepare a soluble HBBNC molecule following a 

planarization strategy based on a Friedel-Crafts reaction. This 

involves the simultaneous formation of six C-C bonds starting from 

a hexafluoro borazine precursor. First X-ray diffraction confirmed 

the presence of the inner B3N3 cycle, with short B-N bond lengths. 

The remarkable UV absorption, strong blue-violet singlet emission, 

and green phosphorescence of this class of hybrid B3N3-doped 

molecules are in line with the theoretical predictions. Given the 

importance and ubiquity of graphene in scientific research, the 

development of novel synthetic strategies leading to hybrid 

graphene derivatives featuring precise doping patterns will 

undoubtedly lead to new discoveries and applications in materials 

science. In this respect, the synthesis and photophysical study of 

this long-awaited compound marks an important milestone toward the 

understanding of the optoelectronic properties of doped molecular 

graphenes. 
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