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Abstract 

Pairing a taste with either internal pain (e.g. from hypertonic saline injection) or nausea (e.g. 

from LiCl administration) will reduce subsequent consumption of that taste. Here we 

examine the responses to a taste paired with either hypertonic saline or LiCl using the 

analysis of licking microstructure (mean lick cluster size: Experiments 1-3), taste reactivity 

(examining the distribution of appetitive and aversive orofacial responses: Experiments 2-3), 

and immobility (as a measure of fear: Experiments 2-3). At both high (10ml/kg 0.15M LiCl, 

10ml/kg 1.5M NaCl) and low dose levels (2ml/kg 0.15M LiCl, 4ml/kg 1.5M NaCl), pairing a 

taste with either LiCl-induced nausea or internal pain produced by hypertonic NaCl caused 

reductions in voluntary consumption, in appetitive taste reactivity responses, and in lick 

cluster size. However, only pairing with LiCl resulted in conditioned aversive taste reactivity 

responses to the taste. In contrast, pairing with hypertonic NaCl resulted in the taste eliciting 

higher levels of immobility (reflecting fear) than did pairing the taste with LiCl. The clearly 

dissociable effects of LiCl and hypertonic saline on aversive taste reactivity and fear 

responses, despite equivalent effects on consumption, demonstrates selective conditioning 

effects between internal pain and nausea.  

 

Keywords: CTA, conditioned nausea, internal pain, taste reactivity, licking analysis, rats 



INTERNAL PAIN &  NAUSEA 3 
 

1. Introduction 

 Although rats are incapable of vomiting, they readily learn to avoid foods paired with 

toxins that have previously caused them gastrointestinal malaise by acting on the emetic 

system of the midbrain and brainstem (Garcia, Hankins, & Rusiniak, 1974). This 

phenomenon is termed conditioned taste aversion (CTA) and potentially represents a key 

behavioral mechanism for toxin avoidance as well as providing a useful model for the study 

of anticipatory nausea in chemotherapy (Domjan, 1980; Garcia, Kimmeldorf, & Koelling, 

1955; Garcia & Koelling, 1967; Parker, 2014; Reilly & Schachtman, 2009). Moreover, 

pairing a novel taste with emesis not only results in a reduction in consumption of that taste, 

but also produces a reduction in its palatability that can be revealed through a range of 

techniques (for reviews see, Lin, Arthurs, & Reilly, 2014; Parker, Rana, & Limebeer, 2008). 

However, emetic treatments are not alone in producing a reduction in consumption: pairing 

tastes with a wide variety of other events, including pain produced by footshock or injection 

of hypertonic saline, as well as the administration of many drugs of abuse, reliably produces 

dramatic reductions in voluntary consumption (e.g., Arthurs, Lin, Amodeo, & Reilly, 2012; 

Dwyer, Boakes, & Hayward, 2008; Parker, 1995a; Pelchat, Grill, Rozin, & Jacobs, 1983). 

Thus, one central issue in the analysis of taste aversion is whether emetic and non-emetic 

treatments operate through the same learning mechanisms. A key question in making this 

comparison is whether emetic and non-emetic treatments produce the same sorts of 

conditioned changes in taste palatability (compare, for example, Lin, Arthurs, & Reilly, 2016; 

with, Parker, 2003). We address this question by directly comparing the effects of an emetic 

treatment (injection of LiCl) with a non-emetic treatment (internal pain produced by injection 

of hypertonic NaCl). But before turning to the analysis of taste aversion mechanisms, it is 

important to consider the experimental methods used to assess palatability in rodents. 
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 In the taste reactivity test (TR), rats are implanted with intraoral cannulas and the 

orofacial and somatic responses accompanying an intraoral infusion of the taste are recorded 

(Grill & Norgren, 1978). This supports a direct examination of the hedonic responses elicited 

by the infused solution. These can be classified as aversive (i.e., rejection responses) such as 

gaping, chin rubbing, and paw treading (elicited, for example, by unpleasant sour or bitter 

tastes), or appetitive (i.e. ingestive responses) such as tongue protrusions and paw licks 

(elicited, for example, by pleasant sweet tastes). In terms of taste aversion, Pelchat et al. 

(1983) observed that while pairing sucrose with either LiCl-induced nausea or peripheral pain 

produced by footshock reduced the voluntary consumption of sucrose, only LiCl produced a 

change in TR responses (both an increase in aversive responses and a decrease in appetitive 

responses). Thus the assessment of TR behaviors provides information about why voluntary 

consumption has changed rather than merely assessing the size of that change.  

 An alternative approach for assessing palatability involves analyzing the 

microstructure of licking behavior (Davis, 1973, 1989; Dwyer, 2012; Lin, Amodeo, Arthurs, 

& Reilly, 2012). Rats ingest fluids in sustained runs of licks separated by pauses of varying 

length (clusters), and the mean number of licks per cluster (lick cluster size) is lawfully 

related to the nature of the solution ingested. For sweet-tasting solutions cluster size 

monotonically increases with concentration (e.g., Davis & Smith, 1992; Dwyer, 2008) while 

consumption shows an inverted U-shape relationship with increases in the concentration of 

the sweet solution (e.g., McCleary, 1953; Richter & Campbell, 1940): in effect, the more 

palatable the solution the larger the lick cluster size. In addition, there is a monotonic 

decrease in lick cluster size for quinine solutions as concentration increases (Hsiao & Fan, 

1993; Spector & John, 1998) which parallels the increase in aversive TR responses elicited 

by this unpalatable bitter taste (Grill & Norgren, 1978; Parker & Lopez Jr, 1990). In the 

context of taste aversion learning, pairing a taste with LiCl has been reliably found to produce 
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a reduction in lick cluster size (e.g., Arthurs et al., 2012; Baird, St. John, & Nguyen, 2005; 

Dwyer et al., 2008). 

 Returning to conceptual issues, one influential analysis of taste aversion involves 

drawing a qualitative distinction between treatments that produce emesis and non-emetic 

treatments that produce the anticipation of a danger (Garcia, Kovner, & Green, 1970; Rozin 

& Kalat, 1971). This distinction, subsequently developed by Parker (2003) based on research 

using the TR method, suggests that taste aversions develop when a novel taste is followed by 

the state of nausea that causes both conditioned disgust, commonly observed as aversive TR 

responses, and decreased consumption of the taste. In addition, Parker also suggests that a 

different kind of process (taste avoidance learning, TAL) is engaged when a taste is followed 

by changes in the physiological state of the organism (changes in homeostasis) produced by 

non-emetic treatments and causes avoidance of the taste without disgust. That is, TAL 

reflects the anticipation of the negative consequences – a fear response. Parker suggests that 

rats display conditioned aversive responses exclusively to solutions paired with emetic drugs: 

for example, LiCl, apomorphine, or nicotine. In contrast, many treatments which do not 

produce nausea do not appear to produce conditioned aversive responses in the TR test: for 

example, many drugs of abuse, pain and lower intestinal discomfort (for extended reviews, 

see Parker, 2003, 2006, 2014). Interestingly, antiemetic treatments can block the expression 

of aversive TR responses without blocking the reduction in consumption seen with LiCl-

paired tastes (Limebeer & Parker, 2000). In line with Garcia’s classic description of the 

nature of the learning acquired when pain or emesis are employed as USs (Garcia et al., 

1970), Parker’s account suggests that conditioned nausea is the primary elicitor of changes in 

palatability, and therefore a necessary condition for developing a “true” conditioned taste 

aversion based on acquired disgust. Importantly, this approach is based on treating appetitive 

and aversive TR responses as reflecting two separate dimensions, with aversive responses 
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taken as an indication of disgust and appetitive responses as an indication of positive hedonic 

value. 

 Although Parker’s analysis of the distinction between CTA and TAL has been 

influential, Reilly and colleagues have recently questioned this account (Lin, et al., 2014, 

2016). They note that even though drugs of abuse may not cause aversive TR responses, they 

do produce significant reductions in appetitive TR responses (see, for example, Parker, 1991). 

In addition, using the analysis of the licking microstructure, Reilly’s group examined the 

effect of pairing a novel taste with the administration of gallamine hydrochloride (10mg/kg), 

hypertonic saline (1.0 M) (Lin, Arthurs, & Reilly, 2013; Lin et al., 2014) and amphetamine 

(Lin, Arthurs, Amodeo, & Reilly, 2012). They found that these USs not only produced a 

reduction in consumption of the CS, but also decreased lick cluster size. In reviewing these 

results, Lin et al. (2014, 2016) argue that a reduction in appetitive responses or a reduction in 

lick cluster size might reflect a decrease in palatability that was less than that required to 

elicit strongly aversive taste reactivity responses such as gaping. Thus, internal pain or drugs 

of abuse might simply be producing lower levels of aversion than nausea produced by LiCl. 

That is, the difference in between drug/pain-induced and nausea-induced taste aversion would 

be quantitative rather than qualitative (i.e., a difference of degree vs a difference of kind). 

Reilly’s analysis also includes a critique of the taste reactivity method per se and the details 

of the ways in which it has been applied. This includes the suggestion that TR responses 

should be viewed as a single continuum from highly positive (many appetitive TR responses) 

to highly negative (many aversive TR responses), and that mild aversions might be seen 

through the reduction in appetitive TR responses. This critique raises the possibility that 

focusing taste reactivity analysis mainly on strongly aversive responses such as gaping may 

leave the method insensitive to mild aversions.  
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 The theoretical analyses of CTA provided by Parker and Reilly clearly and materially 

diverge – a difference emphasized by the reliance on different methodologies and different 

interpretations of TR responses. Moreover, much of the analysis of the similarities or 

differences in the effects of different USs in taste aversion learning rests on comparisons 

between separate experiments and between USs delivered in very different ways. For 

example, the comparison of peripheral pain from footshock with internally experienced 

emesis from LiCl injection is confounded with differences in the location and nature of 

delivery of these treatments. In contrast, hypertonic NaCl appears to be an ideal tool for 

producing internal pain as a comparison to nausea produced by LiCl. Hypertonic saline is 

thought to produce activation of pain fibers through elevating extra-cellular sodium 

concentration (and thus increasing sodium influx and depolarization) and human studies 

suggest the pain experienced is both local and referred (Staahl & Drewes, 2004). It is a well-

established model of visceral pain (Giesler & Liebeskind, 1976; Ness & Gebhart, 1990) and 

matches the injection administration methods used for LiCl. Despite this, it has received no 

analysis using TR methods. Thus, the primary experimental aim for the current studies was to 

directly compare the effects of internal pain induced by hypertonic NaCl and nausea induced 

by LiCl using the TR test. However, before making this direct comparison, we first ensured 

that we could replicate the reduction in lick cluster size after taste-hypertonic NaCl pairing. 

We used one-trial conditioning (Experiment 1) with a high hypertonic NaCl dose to 

recapitulate the way in which LiCl can produce taste aversion learning with only a single 

training trial. Following this, we used the TR method to compare internal pain and nausea-

based aversions. In particular, we compared the effect of both USs on TR with doses chosen 

to produce comparable levels of consumption change. This was done using both low doses 

LiCl and hypertonic NaCl in order to avoid floor effects (Experiment 2), and high US doses 

in order to avoid weak effects that might be undetectable by the TR test (Experiment 3).  
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2. Experiment 1 

One notable feature of taste aversion learning based on LiCl is the rapidity of 

acquisition, with one-trial learning being commonly reported. In contrast, prior studies of 

aversion learning based on hypertonic saline have used multiple pairings, with conditioning 

effects only emerging after several trials (e.g. Lin et al., 2013). In Experiment 1, we 

examined the effects of pairing a palatable flavor with internal pain in rats using the analysis 

of the licking microstructure in a one-trial conditioning design. Rats were given access to a 

saccharin solution and immediately afterwards received a hypertonic NaCl injection, control 

rats received unpaired exposure to saccharin and hypertonic NaCl. Consumption and lick 

cluster size were recorded in training and across six extinction test sessions.  

2.1 Method 

2.1.1. Subjects 

Thirty-two Lister Hooded rats, with a mean free-feeding weight of 362 g (range, 316-

415 g) at the start of the experiment, were used. Rats were supplied by Harlan, UK and all 

procedures reported here were conducted in accordance with the Animals Scientific 

Procedures Act (1986) requirements for animal experimentation in the UK. Rats where 

housed in fours in standard (56 × 38 × 22 cm) plastic cages in a colony room under 12hr/12hr  

light/dark cycle (lights on at 07:30) and at an ambient temperature of 21º C. All experimental 

manipulations took place during the light phase and under an ad libitum food schedule. 

Before the start of the experiment, rats were moved to water restriction schedule with 60 

minutes access to water in the home cage per day, given approximately one hour after the 

experimental sessions.  

2.1.2. Fluids and apparatus 
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The CS was a 0.1% (w/w) sodium saccharin solution, and the US was sodium 

chloride (1.5 M NaCl) administered intraperitoneally (i.p.) at a volume of 10 ml/kg of body 

weight. Training and testing phases took place in a room contained 16 custom-made 

automated drinking chambers measuring 32 × 15 ×12 cm, with acrylic walls, steel mesh 

flooring and wire mesh lids. 50 ml drinking bottles with metal spouts could be inserted at one 

end of each box. A contact sensitive lickometer registered the licks made by rats to the 

nearest 0.01 s, and MED-PC software (Med Associates, Inc) controlled the equipment and 

recorded the data.  

2.1.3. Procedure 

 Rats received two sessions of habituation to the experimental boxes before starting the 

training phase. In each session, they had access to a bottle containing water for  

3 minutes. Rats were randomly assigned to two groups of 16: Group Control or Group 

Hypertonic (see Table 1). The training phase consisted of two 3-minute sessions (one per 

day), during which rats had access to either saccharin or distilled water. Group Hypertonic 

received hypertonic saline injection (1.5M, 10ml/kg) immediately after drinking saccharin 

(and no injection after drinking water). Group Control received a hypertonic saline injection 

(1.5M, 10ml/kg) after drinking water (and no injection after drinking saccharin). Half the rats 

in each group received saccharin on the first training day and water on the second, with the 

remainder receiving the solutions in the reverse order. Once the training was completed, rats 

received six test sessions (one per day) in which they had access to bottle containing the 

saccharin solution for 15 minutes.  

2.1.4. Data analysis 

Consumption was measured by weighting bottles before and after each experimental 

session. For the analysis of mean lick cluster size, a cluster was defined as a series of licks 

separated by pauses no more than 0.5 s interval, a criterion recommended by Davis (1989) 



INTERNAL PAIN &  NAUSEA 10 
 

and used our previous studies of CTA and licking behavior (e.g., Dwyer, 2009; Dwyer, 

Burgess, & Honey, 2012; Dwyer, Gasalla, & López, 2013). Although alternative criteria have 

been used (e.g., 1 s, Spector, Klumpp, & Kaplan, 1998) parametric analysis have found little 

practical differences between them, given that most pauses greater than 0.5 s are also greater 

than 1 s (Davis & Smith, 1992). Data from saccharin consumption and lick cluster size in 

training were subject to independent t tests. Mixed analyses of variance (ANOVA) were used 

to analyze the test data with group as a between subject factor and a within-subject factor of 

extinction session. In addition, the assessment of lick cluster size requires at least some 

voluntary consumption. Because some rats displayed a total suppression of licking at the start 

of test, data from the first test session in which the rat reached a minimum criteria of 1 ml 

consumption was used for an additional analysis of lick cluster size (as an example, for some 

rats this was reached on first test session but for others reached it only on the fifth session). 

All tests reported here used a significance value of p = .05. 

2.2. Results 

 Figure 1 shows the data from training and test sessions (consumption Panel A and lick 

cluster size Panel B). The groups did not significantly differ in either saccharin intake [t(30) = 

1.10; p = .279] or lick cluster size to saccharin [t(30) = .82; p = .420] during training.  

 During test, Group Hypertonic showed lower saccharin intake than Group Control 

across all test sessions. ANOVA revealed main effects of test session, F(5,150) = 47.03, p < 

.001, group, F(1,30) = 49.38, p < .001, and a significant session by group interaction, 

F(5,150) = 5.92, p < .001. Simple main effect analyses revealed that Group Hypertonic 

displayed lower saccharin consumption than Group Control in all test sessions (lowest 

F(1,30) > 15.51, p < .001 for the last test session). Although mean lick cluster size was 

initially reduced in Group Hypertonic, by the end of testing there was no difference from 

Group Control. ANOVA revealed significant main effects of session, F(5,150) = 23.7,  p < 
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.001, group, F(1,30) = 19.61,  p < .001, and a significant session by group interaction, 

F(5,150) = 6.20,  p < .001. An analysis of simple effects revealed that lick cluster size 

differed between groups during sessions 1 to 4, lowest F(1,30) = 9.62,  p = .004 on session 4, 

but not during sessions 5 and 6 (F(1,30) = 2.28,  p = .142 and F(1,30) = 0.20,  p = .656  

respectively).  

 In order to ascertain if the lick cluster analysis was affected by total suppression of 

licking behavior, a further analysis applied a minimum criterion of at least 1ml consumption.  

The data from the first session in which each individual rat reached this criterion was collated 

and analyzed for both lick cluster size and consumption. Rats in Group Control reached this 

criterion in a mean of 1.12 sessions (SEM 0.12), while Group Hypertonic reached it in a 

mean of 3.18 sessions (SEM = 0.40), t(30) = 4.92, p < .001. At this point, mean consumption 

in Group Control (8.00, SEM = 3.81) was higher than in Group Hypertonic (3.38, SEM = 

1.74), t(30) = 4.40, p < .001. However, there was no longer a significant difference between 

the groups in terms of lick cluster size (mean Control = 26.41, SEM = 9.74; mean Hypertonic 

= 20.61, SEM = 13.11; t(30) = 1.42, p = .166).  

 In summary, pairing 0.1% saccharin solution with hypertonic NaCl reduced both 

consumption and lick cluster size – the consumption difference persisted across extinction 

testing while the lick cluster difference did not. This replicates the effects reported by Lin et 

al. (2013) and demonstrates that one-trial conditioning is possible with internal pain as the 

US, clearly demonstrating that rapid aversion learning is not restricted to nausea-producing 

treatments. Notably, there was no difference between groups in lick cluster size when the 

analysis was restricted to the first day in which rats consumed at least 1ml, while the 

consumption difference was maintained. This stands in contrast to studies of the extinction of 

LiCl-based aversions where at least some reduction in lick cluster size is still present after 

consumption has begun to recover (Dwyer, 2009; Dwyer et al., 2013). 
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3. Experiment 2 

 In Experiment 1, a single pairing of saccharin with the internal pain produced by 

hypertonic NaCl reduced both consumption and lick cluster size. However, the fact that the 

reduction in lick cluster size was dependent on strong suppression of consumption is a 

reminder that these lick analysis procedures rely on voluntary consumption and that mean 

lick cluster size might be difficult to assess reliably when there is very limited consumption. 

The taste reactivity method – through using intra-oral infusion of the cue solutions – ensures 

that rats are exposed to the CS without the need for voluntary consumption. Moreover, as 

noted in the introduction, the taste reactivity method has never been applied to the analysis of 

conditioning using hypertonic saline to produce internal pain.  

 Therefore, Experiment 2 used intraoral infusion and TR methods to compare the 

effects of pairing a flavor CS with either internal pain produced by hypertonic saline (1.5M, 

4ml/kg) or nausea induced by LiCl (0.15M, 2ml/kg). These doses were chosen on the basis of 

pilot work suggesting that they have equivalent effects on solution consumption and do not 

produce complete 1-trial learning – thus affording an analysis of the development of 

conditioning. Rats received 4 training sessions in which intraoral infusions of a saccharin 

solution were followed by i.p. injections of hypertonic NaCl, isotonic NaCl or LiCl 

respectively (see Table 1). Orofacial responses to the solution were recorded in all training 

sessions and a single non-reinforced test, before being followed by a series of tests of 

voluntary consumption with the analysis of licking microstructure. In addition to the orofacial 

and somatic responses traditionally assessed using the TR test, we also analyzed 

immobility/freezing behavior as an index of conditioned fear (Bouton & Bolles, 1980; 

Dumigan, Lin, Good, & Honey, 2015).  
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3.1 Method 

3.1.1. Subjects 

 Thirty male Wistar rats from the University of Oviedo vivarium (Spain) were used.  

They were approximately 90 days old and with a mean free-feeding weight of 331 g (range, 

220-393 g) at the start of the experiment. Upon arrival, they were housed individually in 

standard (42 × 26 × 20 cm) plastic cages in a colony room maintained on a 12-h light/dark 

cycle (lights on at 08:00 h) and at an ambient temperature of 21º C. All experimental 

manipulations took place during the light phase. Throughout the experiment, rats were 

maintained on a water deprivation-schedule as described below. Food was always available 

in the home cages. All behavioral procedures were conducted in accordance with guidelines 

of the European Council Directive (210/63/UE) and Spanish regulation RD-53/2013 

regarding the care and use of laboratory animals. 

3.1.2. Fluids and apparatus 

The fluids used as US were solutions of lithium chloride (0.15 M LiCl), isotonic 

saline (0.15 M NaCl solution), and hypertonic saline (1.5 M NaCl). LiCl was administered 

intraperitoneally (i.p.) at a volume of 2 ml/kg of body weight whereas hypertonic and isotonic 

NaCl were administered i.p. at a volume of 4ml/kg. The CS was a 0.1% (w/w) saccharin 

solution infused directly into the mouth of the subject through an oral cannula which had 

been implanted prior to the experiment.  

Behavioral procedures took place in a conditioning chamber located in a dark room. 

The chamber was made of clear Plexiglas sides (26 × 23 × 14 cm) with a dark lid, and was 

placed on a table with a clear Plexiglas top. Two 50-Watt white lights on each side of the 

table provided a light illumination. A mirror beneath the chamber on a 45º angle facilitated 

viewing of the ventral surface of the rat during the intraoral infusion. Fluids were 

administered to the rats through an infusion pump (KD Scientific) connected to the implanted 
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cannula. While the rats were infused with the fluids, their orofacial responses were recorded 

using a video camera (Sony Optical 20 X) connected to a computer. The videos were 

manually scored using the Observer XT 9.0 (Noldus Information Technology, Sterling, VA) 

event recording program. All the videos were analyzed by two independent raters. 

3.1.3. Cannulation surgery 

 The rats were surgically implanted with an intraoral cannula using a very similar 

method to that described by Parker (1984, 1995a). Rats were anaesthetized with an i.p. 

injection of ketamine (50 mg/kg) combined with medetomidine clorhidrato (0.15 mg/kg). 

Following surgery, the rats were administered ketoprofen (1.5 mg/kg, s.c.), an anti-

inflammatory drug, and the antibiotic enrofloxacin (0.3 mg/kg, s.c.). In order to implant the 

cannula a thin-walled 15-gauge stainless steel needle was inserted at the back of the neck, 

directly subcutaneously around the ear and brought out behind the first molar inside mouth. A 

length of intramedic polyethylene tubing with an inner diameter of 0.86 mm and an outer 

diameter of 1.27 mm was then run through the needle after which the needle was removed. 

Two square elastic discs were placed over the tubing and drawn to the exposed skin at the 

back of the neck for the purpose of stabilizing the cannula. The tubing was held secure in the 

oral cavity by an O-ring, which was sealed behind the tubing prior to cannulation surgery. 

Following surgery, rats were monitored for three days and had their cannula flushed daily 

with chlorhexidine to prevent infection. For the purpose of fluid infusion, the cannula was 

connected to the infusion pump by slipping the tubing of the cannula inside a second 

polyethylene tubing (inner diameter 1.19 mm; outer diameter 1.70 mm) attached to the 

infusion pump. 

3.1.4. Procedure 

Two rats lost their cannula during the experiment and were removed from it. The 

remaining rats were randomly assigned to three groups: Group Lithium (n=9); Group 
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Hypertonic (n=10); and Group Isotonic (n=9). All rats had recovered from the oral 

cannulation surgery within three days, and then were placed on a water deprivation-schedule, 

comprising 1 h access to water each day, given approximately 2 h after the experimental 

sessions. Throughout the experiment, this water deprivation regime was maintained (unless 

otherwise noted). 

Four days after surgery, rats were given a 1 minute session with water infusion in the 

conditioning chamber in order to habituate them to the apparatus and to the intraoral infusion 

method (infusion rate 1ml/min). The training phase consisted of four days for all rats (see 

Table 1). During each of the four training sessions, rats were placed in the conditioning 

chamber, and they were infused with the saccharin solution for two minutes (1ml/min). 

Immediately after the infusion was completed rats in Group Lithium were injected i.p. with 

LiCl (0.15 M, 2 ml/Kg); rats in Group Isotonic were injected with isotonic NaCl (0.15 M, 4 

ml/Kg); and rats in Group Hypertonic with hypertonic NaCl (1.5 M, 4 ml/kg) before being 

returned to the home cage. The TR test occurred the next day, and was the same as 

conditioning with the exception that no injections were performed. On the next five days 

consumption tests were administered. In each of these sessions, the rats were given 15 

minutes access to a drinking tube containing the saccharin in 8 boxes (similar to those 

described for Experiment 1) that were placed in the same room as the taste reactivity 

chamber. The amounts consumed were measured by weighting the bottles before and after 

consumption test and lick cluster size was analyzed as described previously.  

Based on the procedure followed by Parker (1984, 1995a), and as previously used in 

our lab (Gasalla, Begega, Soto, Dwyer, & López, 2016; Lopez et al., 2010), the aversive 

behaviors scored included the frequency of the responses of gaping (rapid, large-amplitude 

opening of the mandible with retraction of the corners of the mouth), chin rubbing (mouth or 

chin in direct contact with the floor or wall of the chamber and body projected forward) and 
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paw treading (forward and backward movement of the forepaws in synchronous alternation). 

Forelimb flails (rapid horizontal movements of the forelimbs for remove fluid from the fur) 

and head shakes (rapid side-to-side head movements with the mouth open in order to remove 

the fluid out of the mouth) were also scored as aversive responses. These scores were 

summed to provide a total aversive response score. The appetitive responses scored were 

tongue protrusions (extension of the tongue out the mouth), mouth movements (movement of 

the lower mandible without opening the mouth), and paw licks (midline extension of the 

tongue directed to the forepaws). The total number of seconds that the rats displayed the 

responses was used as the appetitive response score. Appetitive and aversive responses were 

scored on different scales (duration vs frequency) because they display very different 

properties: appetitive responses are typically displayed over extended periods of time, while 

aversive responses occur as isolated behaviors (Berridge, 2000). The percentage of time of 

spent immobile over the infusion period (scored as suppression of all the movements in the 

rat with the exception of those required for respiration) was assessed to measure fear. The 

frequency of “passive-dripping” (each occasion on which a drop of fluid was allowed to leak 

out of the mouth to the floor without other orofacial actions) was also scored. Passive 

dripping and immobility were scored independently such that time spent dripping was not 

recorded as immobile. The inter-rater reliability for each behavior scored was highly 

significant (r´s > 0.81). 

3.1.5. Data analysis  

The TR behaviors during training and test were analyzed with 3 (group) × 5 (session) 

mixed ANOVAs. Appetitive, aversive, passive-dripping and immobility data were analyzed 

separately. A 3 (group) × 5 (session) mixed ANOVA was used to examine the consumption 

and lick cluster size data from the final bottle tests. While the main analysis was based on the 

sum of all the aversive responses scored here (that is, including the “mild” conditioned 
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responses such as head shaking and forelimb flails), we also performed supplementary 

analyses based on either gaping alone or on the “stronger” aversive responses (gaping, chin 

rubbing and paw treading combined) reflecting the analysis methods typically reported by 

Parker and colleagues.   

 

3.2. Results  

 Figure 2 shows the data for the training and TR test session with intra oral infusion of 

the CS, as well as the bottle test sessions for voluntary consumption and cluster size. Figure 

2A shows appetitive responses during training and test sessions. Both Group Hypertonic and 

Group Lithium displayed fewer appetitive responses to saccharin than to Group Isotonic. 

ANOVA revealed main effects of session, F(4,100) = 14.04,  p < .001, group, F(2,25) = 

44.75,  p < .001, and a significant session by group interaction, F(8,100) = 17.99,  p < .001. 

An exploration of this effect with pairwise comparisons revealed that groups did not differ in 

the number of appetitive responses displayed to saccharin on the first training session (largest 

t(25) = 0.81, p = .426 between Groups Isotonic and Lithium). But after one session Group 

Isotonic displayed more appetitive responses than Group Hypertonic (lowest t(25) = 3.62, p = 

.001 on session 2), and although Groups Isotonic and Lithium did not differ on the second 

training session (t(25) = 2.04, p = .052) they did from the third training session onwards 

(lowest t(25) = 7.34, p < .001 on session 3). Groups Lithium and Hypertonic showed 

equivalent levels of appetitive responses over all sessions (largest t(25) = 1.53, p = .138 on 

session 2).  

Figure 2B suggests that Group Lithium displayed more aversive responses to the 

saccharin solution than Groups Hypertonic and Isotonic, which did not differ from each 

other. ANOVA revealed main effects of session, F(4,100) = 7.89,  p < .001, group, F(2,25) = 

43.89,  p < .001, and significant session by group interaction, F(8,100) = 5.64,  p < .001. 
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Pairwise comparisons revealed no differences between groups on the first session (largest 

t(25) = 0.75, p = .461 between Group Isotonic and Hypertonic). More importantly, Group 

Lithium displayed higher aversive responses on the remaining sessions than either Group 

Hypertonic (lowest t(25) = 3.85, p = .001 on session 2) or Group Isotonic (lowest t(25) = 

4.24, p < .001 on session 2). Critically, Group Hypertonic and Isotonic showed equivalent 

aversive reactions all over the training and test sessions (largest t(25) = 1.06, p = .298 on 

session 3)1.  

Figure 2C shows immobility (indicative of fear). Groups did not differ on the first 

training session, and Group Hypertonic showed increased fear responses compared to Group 

Isotonic and Lithium over the remaining sessions. ANOVA revealed main effects of session, 

F(4,100) = 13.57,  p < .001, group, F(2,25) = 28.86,  p < .001, and a significant session by 

group interaction, F(8,100) = 6.47,  p < .001. Pairwise comparisons revealed no differences 

between groups on the first session (largest t(25) = 1.28, p = .213 for the difference between 

Groups Hypertonic and Lithium). Group Hypertonic displayed higher immobility responses 

on the remaining sessions than either of Groups Isotonic (lowest t(25) = 2.50, p = .019 on 

session 2) and Lithium (lowest t(25) = 3.19, p = .004 on session 2). Groups Lithium and 

Isotonic did not themselves differ on immobility responses over training and test (largest 

t(25) = 1.49, p = .149 on session 4). Figure 2D shows passive dripping. As expected, groups 

did not differ on the first training session, while Group Hypertonic subsequently showed 

increased passive dripping compared to Groups Isotonic and Lithium, and the later showed 

more passive dripping responses than Group Isotonic. ANOVA revealed main effects of 

                                                           

1 The same analysis carried out using either gaping alone, or gaping, chin rubbing, and paw 

treading combined as strongly aversive responses revealed the same results. That is, Lithium 

Group displayed more aversive responses to the saccharin solution than Group Isotonic and 

Hypertonic, which did not themselves differ. 
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session, F(4,100) = 28.11,  p < .001, group, F(2,25) = 54.81,  p < .001, and a significant 

session by group interaction, F(8,100) = 10.82,  p < .001. Pairwise comparisons revealed no 

differences between groups on the first session (largest t(25) = .79, p = .433 for the difference 

between Groups Hypertonic and Isotonic). Group Hypertonic displayed more passive 

dripping on the remaining sessions than either of Groups Isotonic (lowest t(25) = 3.98, p = 

.001 on session 2) and Lithium (lowest t(25) = 2.94, p = .007 on session 2). Groups Lithium 

and Isotonic did not themselves differ on the second training session (t(25) = 1.14, p = .320), 

but they did from third session  onwards (lowest t(25) = 3.48, p = .002 on session 3). 

Moreover, an analysis of the correlation between passive dripping and immobility responses 

in groups Hypertonic and Lithium revealed strong positive correlation, r(17) = .93, p < .001, 

[95% CI = .82, .97]. This may be consistent with passive dripping and immobility both 

reflecting conditioned fear, or with passive dripping being a secondary consequence of both 

fear and rejection of consumption. 

Turning to the bottle consumption tests, Figure 2E shows saccharin intake. Group 

Isotonic initially had greater saccharin intake than both the Hypertonic and Lithium groups, 

with this difference decreasing over extinction testing. ANOVA revealed main effects of 

session, F(4,100) = 59.47,  p < .001, group, F(2,25) = 9.63,  p = .001, and a significant 

session by group interaction, F(8,100) = 8.82,  p < .001. Pairwise comparisons revealed that 

Group Isotonic consumed more saccharin than Group Lithium on sessions 1-4 (lowest t(15) = 

2.52, p = .018 for test 4), however, by the end of the extinction there were no differences 

between these two groups (t(25) = 0.71, p = .482 on test 5). Group Isotonic also consumed 

more than Group Hypertonic on sessions 1-2 (lowest t(25) = 2.82, p = .009 for test 2), but 

they had equivalent consumption on sessions 3-5 (highest t(25) = 1.4, p = .173 for test 3). 

Also, Group Hypertonic consumed more saccharin than Group Lithium on sessions 1-2 
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(lowest t(25) = 2.46, p = .021 for session 2) but they did not differ on sessions 3-5 (highest 

t(25) = 1.29, p = .207 for test 3).  

Figure 2F shows that lick cluster size was higher for Group Isotonic than for Group 

Lithium, and this difference decreasing over extinction testing. ANOVA revealed main 

effects of session, F(4,100) = 9.78,  p < .001, and a significant session by group interaction, 

F(8,100) = 4.5,  p < .001, but there was no main effect of group, F(2,25) = 1.49,  p = .244. 

Pairwise comparisons revealed that lick cluster size was larger for Group Isotonic than Group 

Lithium on session 1 (t(25) = 4.06, p < .001), but not on sessions 2-5 (largest t(25) = 1.68, p = 

.106 on test 2). There were no significant differences in lick cluster size between Groups 

Hypertonic and Isotonic on any test session (largest t(25) = 1.79, p = .085 on test 2).  

In summary, pairing saccharin with either LiCl or hypertonic NaCl resulted in 

equivalent reductions in appetitive TR responses to saccharin infusion. Despite the equivalent 

effect on appetitive responses, Group Hypertonic did not display an increase in aversive TR 

responses and only group LiCl displayed more aversive responses compared to the isotonic 

control group. In addition, Group Hypertonic showed higher fear responses to saccharin 

infusion in terms of immobility than Group Lithium, and also displayed more “passive” 

dripping (which may be effectively an avoidance of the fluid, as rats do not swallow the 

solution, but let it dribble out of the mouth). Group Lithium showed intermediate levels of 

passive-dripping and immobility. While Groups Lithium and Hypertonic showed a decrease 

in voluntary consumption of the CS, this was larger in Group Lithium. Although lick cluster 

size was reduced for Group Lithium, there were no differences in lick cluster size between 

the Isotonic and Hypertonic Groups. 

 

4. Experiment 3 
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 Experiment 2 showed a dissociation between the effects of hypertonic NaCl induced 

pain and LiCl induced nausea. Despite equivalent effects on appetitive TR responses, LiCl 

increased aversive TR responses, while hypertonic NaCl did not; but hypertonic NaCl 

produced higher levels of immobility (fear) responses than did LiCl. However, both USs 

were administered at relatively low dose levels and voluntary consumption was more affected 

by LiCl than hypertonic NaCl. Therefore, Experiment 3 replicated the general methods of 

Experiment 2, but increased the dose levels of both hypertonic NaCl (1.5M at 10ml/kg) and 

LiCl (0.15M at 10ml/kg) to produce stronger overall conditioning effects.   

 

4.1 Method 

4.1.1. Subjects, fluids, and apparatus 

 Twenty-seven male Lister Hooded rats, weighing from 456 to 540 g (mean 490 g) at 

the start of the experiment were used. Rats were supplied by Harlan, UK and all procedures 

reported here where conducted in accordance with the Animals Scientific Procedures Act 

(1986) requirements for animal experimentation in the UK. Except otherwise stated, 

deprivation conditions, apparatus, and other procedural details were the same as in 

Experiment 2. Each subject was implanted with an oral cannula using the procedure 

described in Experiment 2. The flavor used during the experiment was a 1% (w/w) saline 

solution. The rats were injected with either 10 ml/kg of 0.15 M LiCl, 10 ml/kg of 1.5 M NaCl 

or isotonic saline (10 ml/kg). Subjects were randomly assigned to three groups (9 rats per 

group): Group Lithium, Group Hypertonic and Group Isotonic.  

4.1.2. Procedure 

 The training phase was similar to that of Experiment 2 (see Table 1). In each of 4 

daily sessions, the rats were placed in the conditioning chamber for 2 min while their 

orofacial responses were video-recorded during intraoral infusion of the CS solution. 
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Immediately afterwards, the subjects were injected i.p. with LiCl (Group Lithium), 

hypertonic NaCl (Group Hypertonic) or isotonic saline (Group Isotonic). The day following 

the final conditioning session consisted of a non-reinforced TR test. Rats were placed in the 

conditioning chamber and infused with the CS solution for two minutes while their orofacial 

responses were recorded. The next 4 sessions constituted voluntary consumption tests. Rats 

had daily access to a bottle containing the CS solution for 15 minutes. Consumption and the 

lick cluster size were analyzed as in Experiment 2.  

 

4.2. Results  

Figure 3 shows the data for the training sessions and TR test (appetitive, aversive, 

immobility, and passive-dripping) as well from the bottle tests (consumption and lick cluster 

size). Figure 3A shows appetitive TR responses: Groups Hypertonic and Lithium displayed 

an equivalent decrease in appetitive responses to the infusion of the CS across training and 

test compared to Group Isotonic. ANOVA revealed main effects of session, F(4,96) = 35.40,  

p < .001, group, F(2,24) = 180.13,  p < .001, and a significant session by group interaction, 

F(8,96) = 12.76,  p < .001. Pairwise comparison revealed no differences between groups on 

session 1 (largest t(24) = 1.29, p = .629 for the difference between Group Isotonic against 

Group Lithium). Group Isotonic displayed higher appetitive responses on the remaining 

training and test sessions than either of Groups Hypertonic (lowest t(24) = 11.32, p < .001, on 

session 2) and Lithium (lowest t(24) = 9.21, p < .001, on session 2). Groups Hypertonic and 

Lithium did not themselves differ on any session (largest t(24) = 2.11, p = .136 on session 2).  

Figure 3B shows aversive TR responses: Group Lithium displayed more aversive 

responses to the CS across training and test than Groups Hypertonic and Isotonic (which did 

not differ). ANOVA revealed main effects of session, F(4,96) = 4.04,  p = .004, group, 

F(2,24) = 70.96,  p < .001, and a significant session by group interaction, F(8,96) = 4.21,  p < 
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.001. Although there was a significant difference between Groups Lithium and Isotonic on 

session 1 (t(24) = 2.69, p = .039) there were no significant differences between Groups 

Hypertonic and Lithium (t(24) = 1.73, p = .291) or Groups Hypertonic and Group Isotonic 

(t(24) = 0.96, p = 0.999). More importantly, Group Lithium displayed more aversive TR 

responses on the remaining training and test sessions than either of Groups Hypertonic 

(lowest t(24) = 4.14, p < .001 for session 2) and Isotonic (lowest t(24) = 4.26, p < .001 for 

session 2). Moreover, Groups Hypertonic and Isotonic did not themselves differ on any 

session (largest t(24) = 1.08, p = .864 for the test session) 2.  

Figure 3C shows the immobility data: While both of Groups Lithium and Hypertonic 

displayed more immobility (fear) than Group Isotonic across training and test, this effect was 

larger for Group Hypertonic. ANOVA revealed main effects of session, F(4,96) = 44.60, p < 

.001, group, F(2,24) = 98.11, p < .001, and a significant session by group interaction, F(8,96) 

= 19.88,  p < .001. There were no differences between groups on session 1 (largest t(24) = 

1.14, p = .794 for the difference between Groups Hypertonic and Lithium). Group Hypertonic 

were more immobile on the remaining sessions than either of Groups Lithium (lowest t(24) = 

3.78, p = .003 for session 2) and Isotonic (lowest t(24) = 5.37, p < .001 for session 2). Groups 

Lithium and Isotonic did not differ on session 2 (largest t(24) = 1.70, p = .306) but they did 

differ on the remaining sessions (lowest t(24) = 4.48, p = .001 for session 3).  

Figure 3D shows passive dripping: As with immobility Group Hypertonic showed 

increased passive dripping compared to Groups Isotonic and Lithium, and Group Lithium 

displayed more passive dripping responses than Group Isotonic. ANOVA revealed main 

                                                           

2 Analyses based on gaping alone, or on the combination of strongly aversive responses of 

gaping, chin rubbing and paw treading revealed the same general pattern of effects: No 

differences between groups on the first training session, but subsequently Group Lithium 

showed more aversive responses to saccharin than either of Groups Hypertonic and Isotonic, 

which did not differ from each other.  
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effects of session, F(4,96) = 60.17,  p < .001, group, F(2,24) = 108.77,  p < .001, and a 

significant session by group interaction, F(8,96) = 26.67,  p < .001. There were no differences 

between groups on session 1 (largest t(24) = 1.47, p = .458 for the difference between Group 

Lithium and Group Hypertonic). Group Hypertonic displayed more passive dripping on the 

remaining sessions than Group Isotonic (lowest t(24) = 3.94, p = .002 for session 2). 

Although Groups Hypertonic and Lithium did not differ on session 2 (largest t(24) = 2.28, p 

= .095), they did differ from session 3 onwards (lowest t(24) = 7.34, p < .001 for session 3). 

Groups Lithium and Isotonic did not differ on session 2 (largest t(24) = 1.66, p = .327 for the 

second session) but Group Lithium showed more passive dripping than Group Isotonic for 

the remaining sessions (lowest t(24) = 4.46, p < .001 for session 3). There was a strong 

positive correlation between passive dripping and immobility in Groups Hypertonic and 

Lithium, r(16) = .71, p = .001, [95% CI = .36, .88]. 

Figure 3E shows consumption and Figure 3F shows the mean lick cluster size from 

the bottle tests. Groups Hypertonic and Lithium consumed less of the CS compared to Group 

Isotonic, and these differences remained throughout testing. ANOVA revealed main effects 

of session, F(3,72) = 44.04,  p < .001, group, F(2,24) = 24.47,  p < .001, and a significant 

session and group interaction, F(6,72) = 6.44,  p < .001. Group Isotonic consumed more 

saline solution over all sessions than either of Groups Hypertonic (lowest t(24) = 2.89, p = 

.024 on test 4) and Lithium (lowest t(24) = 2.74, p = .034 on test 4).  Importantly, Groups 

Hypertonic and Lithium did not differ in consumption on any session (largest t(24) = 1.51, p 

= .446 for session 1). Lick cluster size was initially higher for Group Isotonic than for Groups 

Hypertonic and Lithium, however, no differences remained by the end of testing. ANOVA 

revealed main effects of session, F(3,72) = 34.76,  p < .001, group, F(2,24) = 10.65,  p < 

.001, and a significant session by group interaction, F(6,72) = 3.33,  p = .006. Lick cluster 

size was larger for Group Isotonic than either of Groups Hypertonic (smallest t(24) = 3.49, p 



INTERNAL PAIN &  NAUSEA 25 
 

= .006 on test 2) and Lithium (smallest t(24) = 3.70, p = .003 on test 2) for the first two 

sessions. There were no differences on the third and fourth test sessions between Group 

Isotonic and either Group Hypertonic (largest t(24) = 2.52, p = .055 on test 4) and Group 

Lithium (largest t(24) = 2.49, p = .061 on test 3). Unlike in Experiment 2, Groups Hypertonic 

and Lithium did not differ on any session (largest t(24) = 1.39, p = .529 on test 3). 

In summary, pairing a CS solution with LiCl resulted in an increase in aversive TR 

responses to the CS, but pairing the same CS with hypertonic NaCl did not. In contrast, 

pairing the CS with hypertonic NaCl resulted in higher levels of fear (as indicated by 

immobility) than did pairing with LiCl. Notably, these divergent effects of LiCl and 

hypertonic NaCl occurred despite the two USs having equivalent effects on appetitive TR 

responses, voluntary consumption of the CS, and lick cluster size.  

 

5. Discussion 

The three experiments reported here examined the nature of the learning acquired 

when pain (produced by injection of hypertonic saline) or nausea (produced by injection of 

LiCl) are associated with a novel taste. Using the analysis of the lick cluster size, we found 

(Experiment 1) that a single pairing of saccharin solution with hypertonic NaCl injection 

resulted in both decreased consumption and lick cluster size, demonstrating for the first time 

that hypertonic NaCl can support learning as rapidly as LiCl. However, as soon as 

consumption had recovered to a minimal degree there was no remaining influence on lick 

cluster size. Experiments 2 and 3 represent the first examination of the effects of pairing a 

flavor CS with the US of internal pain produced by the injection of hypertonic NaCl using the 

TR test (they are also the first direct within-experiment comparisons of the effects of LiCl-

induced nausea with internal pain produced by hypertonic NaCl in taste aversion 

conditioning). There was a clear dissociation between the effects of LiCl and hypertonic 
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NaCl in terms of conditioned aversive TR responses to the CS flavor: LiCl produced an 

increase while there was no difference between groups receiving hypertonic NaCl and 

controls receiving isotonic saline. There was also a clear, and opposite, dissociation in 

immobility (reflecting conditioned fear) to the CS: hypertonic NaCl produced a larger effect 

than LiCl. In addition, hypertonic NaCl produced larger effects on passive dripping than did 

LiCl. Critically, there were generally equivalent effects of both USs on appetitive taste TR 

responses to the CS. Although the effects of LiCl on voluntary consumption of the CS and on 

lick cluster size were larger than for hypertonic NaCl in Experiment 2, the effects were 

equivalent in Experiment 3 when higher US doses were examined. 

The pattern of results across these experiments does not appear to be attributable to 

low levels of conditioning overall with internal pain produced by hypertonic NaCl injection: 

they occurred at both low (Experiment 2) and high (Experiment 3) doses of the relevant USs; 

there were effects in opposite directions for different measures – higher levels of aversive TR 

responses following LiCl compared to hypertonic NaCl, but higher levels of fear following 

hypertonic NaCl compared to LiCl; and they occurred in the context of equivalent effects on 

other measures (i.e. appetitive TR responses in Experiments 2 and 3, plus consumption and 

lick cluster size in Experiment 3). While these results are novel, they are not entirely 

unprecedented: cross experiment comparisons of the effects of pairing a CS flavor with LiCl, 

footshock, or lactose consumption (leading to lower gastrointestinal discomfort/pain) suggest 

that while all suppress voluntary consumption of the CS, only LiCl results in an increase in 

aversive TR responses (Pelchat et al., 1983; Simbayi, Boakes, & Burton, 1986). Therefore, 

there is clear evidence for selective conditioning: emetic treatments produce greater 

conditioned aversive hedonic responses than do pain-based non-emetic treatments, while pain 

produces larger effects on conditioned fear than do emetic treatments. In addition, there are 

many reports that pairing flavors with drugs of abuse results in marked decreases in 
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consumption and appetitive TR responses, but these treatments do not result in the same 

marked increase in aversive TR responses as seen with LiCl (Parker, 1995a; Parker, 2014). 

Returning to the accounts of taste aversion learning outlined in the introduction, one 

feature of the analysis presented by Reilly and colleagues (Lin et al., 2014, 2016) is the 

suggestion that previously observed differences in the conditioned responses elicited by 

different USs might be quantitative, rather than qualitative. For example, internal pain or 

drugs of abuse might produce only a mild CTA (reflected in a reduction in appetitive TR 

responses and decreased lick cluster size, without an increase in aversive TR responses), 

while LiCl might produce a strong CTA (reflected in the fact that it is able increase aversive 

TR responses as well as decreasing appetitive TR responses). One possible implication of this 

analysis is that internal pain produced by hypertonic saline injection is generally lower in 

effectiveness/strength as a US in comparison to LiCl. But, as noted above, a general 

difference in US strength between LiCl and hypertonic NaCl cannot explain the current 

results. Obviously, we have direct evidence here only for the effects of internal pain as an 

example of a non-nausea negative US. So the degree to which the divergence from LiCl of 

other USs (in particular different drugs of abuse) might be explained in terms of a general 

difference in US strength remains to be determined. 

However, an additional aspect of Reilly and colleagues analysis (Lin et al., 2014, 

2016) is the suggestion that CTA can be conceived of as a general toxin avoidance 

mechanism and that the effects of pain or drugs of abuse might reflect “false positives” for 

this system. This idea was originally presented as a means of addressing the paradox that 

some drugs of abuse can support both CTA and conditioned preferences (especially for 

places/contexts). This false positive idea may also provide an explanation for the selective 

conditioning effects of different USs. If nausea-producing toxic compounds are the true target 

of the taste aversion system, then non-nausea events might (as false positives) only partially 
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recruit the mechanisms involved in conditioned taste aversion: in particular, they may not 

fully recruit whatever processes are involved in producing changes in hedonic reactions 

(while potentially fully recruiting processes involved in suppressing voluntary consumption). 

That is, differences in the ways that true and false positives for the toxin avoidance system 

are processed might explain the lower effects of hypertonic NaCl than LiCl on aversive 

hedonic responses despite the evidence of equivalent effects on other response measures. 

Obviously, this development of the false positive idea does not directly explain the fact that 

internal pain produced by hypertonic NaCl elicits larger effects than LiCl in terms of fear-

related immobility, so some other process would need to be invoked to explain the difference 

in acquisition of fear responses between different USs (by analogy, one might suggest that 

nausea is a “false positive” for a danger avoidance mechanism).  

Turning to the analysis by Parker (2003, 2014), the general idea that there are US-

selective conditioning processes, where nausea-inducing events support “true” CTA 

(indicated by conditioned aversive TR responses) while non-nausea negative events support a 

fear-based process of taste avoidance learning (TAL – indicated by the suppression of 

consumption without aversive TR responses), is broadly consistent with the pattern of results 

observed here. It should be noted that the presence of fear-based TAL is (as the preceding 

sentence implies) normally inferred indirectly from the absence of aversive TR responses, 

rather than a direct assessment of fear responses. One exception to this “rule” is the 

observation that CS flavors previously paired with amphetamine potentiate acoustic startle 

responses, while CSs paired with LiCl attenuate them (Rana & Parker, 2007) – providing 

direct evidence that pairing a flavor with at least one non-nausea US provides it with fear-

relevant properties. Interestingly, pre-treating with the anti-emetic ondansetron both reduces 

the display of aversive TR responses to a LiCl-paired CS (Limebeer & Parker, 2000) and 

allows LiCl-paired CSs to potentiate acoustic startle (Rana & Parker, 2007), despite having 
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no effect on voluntary consumption of the CS. This suggests that LiCl can (at least when its 

unconditioned or conditioned effects on nausea are suppressed) support the acquisition of 

fear-relevant behaviors. The current data add to this positive demonstration of conditioned 

fear with non-nausea USs through the increase in fear-related immobility following exposure 

to a CS paired with hypertonic NaCl (as well as showing lower levels of this response in LiCl 

paired cues).  

While the current results are broadly consistent with Parker’s suggestion that there are 

US-specific selective conditioning mechanisms, it should be noted that (as emphasised by Lin 

et al., 2014, 2016) both LiCl and hypertonic NaCl produced equivalent reductions in 

appetitive TR responses and lick cluster size. To the extent that reductions in these responses 

reflect a reduction in the hedonic value or palatability of the CS solution, then these results 

are inconsistent with the idea that TAL should not influence the hedonic evaluation of the CS. 

That is, evidence that hypertonic NaCl (or other non-emetic treatments) can induce 

conditioned negative hedonic responses might suggest that the difference between CTA and 

TAL is a difference of degree, rather than a difference of kind. Therefore, it is important to 

consider what might produce a change in appetitive TR responses and lick cluster size.  

As outlined in the introduction, appetitive and aversive TR responses have been 

characterized as lying on either a single dimension (from highly positive with large numbers 

of appetitive responses to highly aversive with large numbers of aversive responses – with an 

intermediate point with low numbers of either appetitive or aversive responses) or on two 

separate dimensions (where aversive responses are indicative of disgust and appetitive 

responses are indicative of positive hedonic value – with these being at least partially 

independent of each other) (for an additional discussion of these issues see, Berridge, 2000; 

Berridge & Grill, 1983, 1984; Breslin, Grill, & Spector, 1992). The fact that hypertonic NaCl 

can reduce appetitive TR responses and lick cluster size to the same degree as LiCl, but only 
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LiCl increases aversive TR responses, has rather different implications in light of these two 

interpretations of the TR response measures: It may reflect either at lower level of reduction 

in overall hedonic response produced by hypertonic NaCl than LiCl, or it might indicate 

equivalent reductions in positive hedonic value for both USs with a dissociation in their 

effects on conditioned disgust. Moreover, response suppression secondary to immobility or 

avoidance of the solution might also contribute to the reduction in appetitive responses and 

lick cluster size. Thus, while there is clear evidence of US-specific selective conditioning 

effects, the question of whether this reflects qualitative differences of kind (e.g., Parker, 

2003, 2014), or quantitative differences of degree (e.g., Lin et al., 2014, 2016), depends 

greatly on the way in which TR responses are interpreted.  

While the current data does not directly discriminate between these different ideas, it 

does constrain the range of possible interpretations. A distributional analysis of appetitive and 

aversive TR responses across the development of LiCl-based CTA suggests that aversive TR 

responses such as gaping begin to emerge at low levels well before appetitive TR responses 

such as tongue protrusions or mouth movements stop being displayed entirely (Breslin et al., 

1992). In Experiments 2 and 3, hypertonic NaCl reduced appetitive responses to floor levels 

without increasing aversive responses beyond those seen with the isotonic control. The 

absence of either aversive or appetitive TR responses by the end of training with hypertonic 

NaCl appears to be most consistent with either an external suppression of appetitive 

responses or a division between appetitive and aversive response classes. In order to further 

separate these possibilities, one direction for future research might be to use pharmacological 

means (e.g. anxiolytic drugs) to attenuate fear. Although there is evidence that common 

anxiolytics can produce a direct enhancement of taste palatability (e.g. Berridge & Treit, 

1986; Parker, 1995b, for taste reactivity; Higgs & Cooper, 1997; Cooper & Higgs, 2005, for 

licking microstructure), larger effects of anxiolytic treatment on responses to pain over 
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nausea paired cues would suggest that there had been a suppression of responding through 

fear to pain-paired stimuli. 

Putting the debate over the conceptual analysis of CTA to one side, our results also 

raise important considerations for the application of TR test and the analysis of the licking 

behavior. Firstly, the fact that in Experiment 1 conditioned reductions in lick cluster size were 

only seen when consumption was below 1ml is a reminder that very low levels of voluntary 

consumption necessarily limit the possible range of lick cluster sizes – making it potentially 

ambiguous as to whether low lick cluster size in such situations is a direct reflection of the 

hedonic value of the solution or the result of suppression of responding (or both). Similarly, 

the fact that appetitive TR responses are associated with an ingestive sequence of behaviors 

raises the possibility that they too might be susceptible to response suppression secondary to 

avoidance of the solution. Secondly, the tight correlation between immobility and passive 

dripping raises the possibility that dripping might not be a neutral response, but may reflect 

fear-based avoidance of the solution in some circumstances. Finally, the fact that conditioned 

reductions in lick cluster size extinguished before conditioned reduction in consumption 

implies that changes in consumption cannot be entirely due to changes in hedonic value. In 

this light, the current results are consistent with previous studies examining the extinction of 

changes in the palatability after taste aversion learning (Baird et al., 2005; Cantora, López, 

Aguado, & Rana, 2006; Davis, 1989; Dwyer, 2009; Dwyer et al., 2013) which report faster 

extinction for either lick cluster size or aversive TR responses than the avoidance of a 

previously conditioned flavor. The fact that extinction of lick cluster size changes is faster 

than the extinction of consumption reduction with both LiCl and hypertonic NaCl raises the 

possibility that, in extinction at least, there is a dissociation between the mechanisms 

underpinning changes in solution palatability and consumption. 
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In conclusion, while pairing a taste with either LiCl-induced nausea or internal pain 

produced by hypertonic NaCl results in the reduction in voluntary consumption of that taste 

(as well as reductions in appetitive TR responses and lick cluster size), these two negative 

events have clearly dissociable effects on other responses: only pairing with LiCl results in 

the production of conditioned aversive TR responses to the taste, while pairing with 

hypertonic NaCl results in the taste eliciting higher levels of immobility reflecting fear than 

does pairing the taste with LiCl. The different effects of nausea and internal pain cannot be 

attributed to general differences in the overall effectiveness of LiCl and hypertonic NaCl in 

supporting learning, but instead indicate US-specific selective conditioning effects. Whether 

this selective conditioning reflects differences of degree or of kind between the learning 

mechanisms engaged by emetic and non-emetic treatments in taste aversion remains to be 

fully determined. Regardless, associating a taste with internal pain may reduce the liking for 

that taste but, unlike pairing it with nausea, it does not make the taste actively disgusting, 

even when consumption is completely suppressed.  
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Table 1 

Table 1. Design of Experiments 1, 2, and 3 

Experiment 1 Train Test 

Hypertonic Saccharin � 10ml/kg 
1.5M NaCl 

Water � Ø 

6 ×  Saccharin 
Control Saccharin � Ø Water � 10ml/kg 1.5M 

NaCl 

Experiment 2  Train Test 

  IO Bottle 

Lithium 4 × Saccharin (IO) � 2 ml/kg 0.15M LiCl 

Saccharin 
5 ×  

Saccharin 
Hypertonic 4 × Saccharin (IO) � 4 ml/kg 1.5M NaCl 

Isotonic 4 × Saccharin (IO) � 4 ml/kg 0.15M NaCl 

Experiment 3  Train Test 

  IO Bottle 

Lithium 4 × Saline solution (IO) � 10 ml/kg 0.15M LiCl 

Saline 
solution 

4 ×  
Saline 

solution 
Hypertonic 4 × Saline solution (IO) � 10 ml/kg 1.5M NaCl 

Isotonic 4 × Saline solution (IO) � 10 ml/kg 0.15M NaCl 

Note. In Experiment 1, the order of the saccharin and water delivery was counterbalanced, such that 
half of the rats in each group received the saccharin first and the other half received the water first. 
IO: Intraoral infusions. Bottle represents voluntary consumption with both intake and licking 
microstructure recorded. LiCl and NaCl injections were administered intraperitoneally. CS: saccharin 
(0.1%) and saline solution (NaCl 1%).  
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Figure Legends 

Figure 1. Experiment 1 data over training and test sessions for Groups Hypertonic and 

Control. Mean saccharin intake (Panel A) and mean lick cluster size (Panel B). Error bars 

represent the standard error of mean (SEM). 

 

Figure 2. Experiment 2 data for Groups Lithium, Hypertonic, and Isotonic. Panels A-D 

reflect the data from the intraoral conditioning and test sessions: Panel A, mean duration of 

appetitive taste reactivity (TR) responses; Panel B, mean number of aversive TR responses; 

Panel C, mean time spent immobile as a percentage of the total time tested; Panel D, mean 

number of passive dripping events. Panels E and F reflect the data from voluntary 

consumption tests: Panel E, mean saccharin intake; Panel F, mean lick cluster size. Error bars 

represent the standard error of mean (SEM). 

 

Figure 3. Experiment 3 data for Groups Lithium, Hypertonic, and Isotonic. Panels A-D 

reflect the data from the intraoral conditioning and test sessions: Panel A, mean duration of 

appetitive taste reactivity (TR) responses; Panel B, mean number of aversive TR responses; 

Panel C, mean time spent immobile as a percentage of the total time tested; Panel D, mean 

number of passive dripping events. Panels E and F reflect the data from voluntary 

consumption tests: Panel E, mean saline intake; Panel F, mean lick cluster size. Error bars 

represent the standard error of mean (SEM). 
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Figure 1 
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Figure 2 
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  Figure 3 
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