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Abstract

The magnetic ground state of nominally stoichiometric single crystalline NbFe2 is investigated by bulk
magnetisation and muon spin relaxation techniques. Magnetic order clearly emerges below the critical
temperature TN=10.3 K and is dominated by randomly orientated quasi-static moments. The local field
distribution observed by muons can be explained by the phenomenological Gaussian-broadened-Gaussian
Kubo Toyabe relaxation function. The observed short range order could be used to describe a new magnetic
ground state, but a helical spin density wave with an incommensurate amplitude modulation cannot be
ruled out. The sensitivity of µSR to the local magnetic field distribution in the vicinity of the quantum
critical point (QCP) in NbFe2 is clearly demonstrated via comparison with already published work. This
suggests detailed measurements of the muon relaxation as the QCP is approached will reveal further details
of the field distribution and fluctuations in Nb1�yFe2+y.
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1. Introduction

Detailed investigations of the phase diagram
around quantum critical points (QCP) in cor-
related electron systems show rich behaviour
including unconventional superconductivity and
magnetic order. QCPs have been widely studied
in heavy fermion systems [1] and their role in
cuprates [2] and iron pnictide high-Tc [3] super-
conductors is still debated. Novel magnetic phases
can also emerge [4] from a QCP. The Nb1�yFe2+y

intermetallic is a particularly interesting material
in which to investigate QCP behaviour since
it displays a rich-magnetic phase diagram and
quantum criticality in a d-band metal. The
high temperature paramagnetic metal becomes
a weakly ordered ferromagnet at relatively low
temperatures in Nb-rich (y < �0.02) and Fe-rich
(y > 0.01) compounds and the magnetic transition
can be tuned to zero temperature at a doping of
y = �0.015 [5]. Long-range antiferromagnetism
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(AF) or a spin density wave (SDW) have both
been suggested to describe the magnetic ground
state around criticality (�0.02 < y < 0.01) [5–12].
However ferrimagnetism in Fe-rich samples found
by magnetic Compton scattering [13] and the
current failure to detect the magnetic order by
neutron scattering [5, 8] suggests further exper-
iments are required to clarify the nature of the
ground state. The existence of a ferromagnetic
QCP would suggest that either the ferromagnetic
state becomes discontinuous or a modulated SDW
is formed [14].

Early magnetic studies of stoichiometric
NbFe2 [15] suggested a Pauli paramagnet ground
state, but NMR work and magnetic investigations
suggested an AF transition [6, 16] with a transi-
tion temperature, TN ⇠ 10 K. Subsequent work
suggested that the ordering resulted in a SDW [17]
structure and that an applied field can suppress
the ordering [18–20]. The AF or SDW ground state
is characterised by a high magnetic susceptibility,
non-Fermi liquid behaviour and the absence of
magnetic remanence. Recently, significant e↵orts
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have been made in order to further understand
the nature of the apparently ambiguous magnetic
ground state in NbFe2 [5, 7–12]. Furthermore the
possibility of competing and frustrated interactions
can be postulated from the crystal structure since
NbFe2 crystallizes in the C14 hexagonal Laves
phase with the magnetic Fe atoms (6h sites)
forming two planar triangular kagome lattices, sep-
arated by linking Fe (2a sites) atoms in a hexagonal
lattice and Nb atoms occupying interstitial sites,
leading to numerous possible exchange pathways.

Theoretical studies have arrived at contradictory
conclusions. The lowest energy magnetic ground
state varies according to the method chosen in
density functional theory calculations. Asano and
co-workers [21] suggest that an antiferromagnetic
ground state, and a “weak” as well as a “strong”
ferromagnetic state have very similar ground
state energies using the local-spin-density approx-
imation. The more recent study of Subedi and
Singh [22] found magnetic ground states governed
by competing interlayer interactions, one which
supports ferrimagnetism between 6h and 2a Fe
atoms and another with no magnetic moment
on 2a Fe sites and antiferromagnetic order. The
antiferromagnetic interactions within the kagome
lattice were found to be weak, which is supported
by experiments [5], leading to the conjecture
that geometric frustration is not associated with
the quantum criticality. A new ferrimagnetic
arrangement was also discovered in calculations
using the generalised gradient approximation [23].

The Stoner enhancement factor, 1/(1�N(EF )I),
determined by experiment to be > 100 [8, 10],
is associated with an unusually large exchange
interaction, I. In this scenario any tiny increase
in the density of states at the Fermi level N(EF ),
by doping should drive the magnetic ground state
towards a ferromagnetic instability. Accordingly,
calculations using the Korringa-Kohn-Rostoker
electronic-structure method to study how chemical
disorder a↵ects the magnetic properties [24] using
Moriya’s theory of weak magnetism [25] suggest
an unconventional band critical point as the most
likely cause for a QCP, which is accessible by
disorder due to alloying. Unlike the rigid-band
approximation used in previous work, N(EF )
increases in both the Fe and Nb rich alloys, thereby
satisfying the Stoner criterion on both sides of the
phase diagram.

Although an extensive amount of bulk magnetic,
thermodynamic, transport and theoretical work
has been performed, no definitive ground state has
been unambiguously identified. Direct evidence of
a modulated SDW has recently been reported using
muon spin relaxation (µSR) [12]. Clear evidence
of long range order in the doped samples was ob-
served, the muon signal relaxed with an oscillatory
behaviour which is a strong indication of static and
ordered bulk magnetism. However the nature of
the relaxation in the stoichiometric material is not
as clear as the signal relaxes without any oscilla-
tory behaviour making interpretation di�cult. For
NbFe2, µSR is, in principle, able to di↵erentiate
between commensurate (AF) and incommensurate
(SDW) magnetic order and weak ferromagnetism.
Although correlation lengths are di�cult to obtain
directly from µSR, a phenomenological way to
study short-range spin correlations in frustrated
and/or magnetically disordered systems and spin
glasses in the slow magnetic fluctuation regime has
been proposed [26–31].

In this paper we present detailed µSR measure-
ments of single crystalline stoichiometric NbFe2,
supported by d.c. and a.c. bulk magnetisation
measurements to investigate the magnetic ground
state. Using both zero field and longitudinal field
µSR measurements we show that in our sample
of stoichiometric NbFe2 the observed magnetic
order is static and short range, we describe the
sensitivity of the ground state to stoichiometry.
Comparison of our data to that already in the
literature [12] suggests that muons are sensitive to
the field distribution and fluctuations as the QCP
is approached.

2. Bulk magnetisation

Magnetic data were taken in a commercial Physi-
cal Properties Measurement System (Quantum De-
sign PPMS). All experimental data were taken with
the magnetic field applied along the c�axis of the
crystal. Initial magnetisation measurements as a
function of temperature for both field-cooled and
zero-field-cooled protocols show an obvious mag-
netic transition as shown in Fig. 1a.

Curie-Weiss (CW) like behaviour is observed
down to the transition temperature, TN = 10.3 K,
indicated by a peak along with a bifurcation of the
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Figure 1: AC and DC magnetisation: (a) Temperature
dependence of the field-cooled (black squares), zero field-
cooled (green circles) susceptibility and inverse susceptibil-
ity (red triangles) showing a transition at TN = 10.3 K. The
inverse susceptibility displays approximately linear Curie-
Weiss like behaviour, as is commonly observed in weak itin-
erant magnets [32]. (b) Magnetic isotherms (black squares)
and susceptibility dM

dH
(red circles) at 2 K, indicating a criti-

cal field of Bc ⇠ 0.7 T. (c) Temperature-dependent a.c. sus-
ceptibility, no frequency-dependent behaviour is observed.
Data are distorted by eddy currents above 1000 Hz.

field-cooled and zero-field-cooled magnetisation.
This transition temperature is in good agreement
with previously reported TN values for stoichio-
metric samples of NbFe2. Below TN an “S” shaped
magnetic field dependence exhibits a turning point
at the critical field Bc necessary to suppress the
observed order, (Fig. 1b). The derivative dM

dH
displays a critical field or maximum at Bc ⇠ 0.7
T, which is interpreted as a metamagnetic tran-
sition field, and is slightly higher than previously
reported [5, 8, 16, 19].

The magnetisation below 100 K may be de-
scribed in the local magnetic moment context with
a CW behaviour. However, NbFe2 is an itinerant
paramagnet and the reason for the apparent
CW behaviour is the temperature dependence
of the spin-fluctuation amplitude [32]. In this
scenario, the fact that the frustration parameter,
f = |✓

CW

|
T
N

[33], is low may not be a reason to
dismiss the geometrically frustrated Kagome lattice
role in the magnetic ground state. However there
is no frequency shift of the transition temperature
in the susceptibility peak expected in a spin-glass
system as shown in Fig. 1c. Above 1000 Hz the
data are distorted by eddy currents induced in
the metallic compound by the alternating field.
No absorption is detected in the imaginary part
�

00
(!) (not shown). In our sample the magnetic

transition is closer to a ferromagnetic instability
than in previous work.

3. µSR, A local magnetic probe

µSR was chosen to investigate the nature of the
magnetic ground state as it probes the local mo-
ment and fluctuations around the implanted muon
site. The µSR technique occupies a broad time win-
dow, 10�9-10�5s, with which to observe spin fluctu-
ations. In a µSR experiment, 100% spin polarised
muons are implanted in the sample and then decay
with a half-life of ⌧µ = 2.2 µs. The muon polari-
sation, P (t), is obtained from the asymmetry A(t)
in the positron counts as measured in backward (B)
and forward (F) detectors with respect to the initial
muon polarization: A(t) = a0P (t) = F�↵B

F+↵B , where
a0 is the initial asymmetry associated with a fully
polarised muon ensemble, and ↵ is an experimental
parameter determined by the e�ciency ratio of the
F and B detectors and the position of the sample
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with respect to those detectors. Any frequency (�i)
of oscillations can be expressed by �i = �µ|Bi|/2⇡,
where Bi is the average magnitude of the local field
at the ith muon site and �µ is the muon gyromag-
netic ratio. Any oscillatory signal observed in zero
field µSR is direct evidence of long range magnetic
order for a metallic system. If no oscillations are
present the relaxation is a consequence of fluctua-
tions and/or a distribution of local magnetic fields.

Figure 2: Long times muon relaxation: (a) Zero field
µSR data as a function of temperature above TN fitted with
1 and 2 muon sites. (b) Normalised long time muon spectra
above and below TN fitted to a GbG form as described in
the text. The 1/3 tail level is shown by the red line.

The Dolly muon spectrometer at the continuous
muon source at the Paul Scherrer Institute (PSI),
Switzerland was used to study the magnetic ground
state due to its high frequency resolution (and
hence its ability to probe higher internal magnetic
fields). The precise value of a0 is dependent on the
muon spectrometer. In the event that the muons
find a stationary interstitial site in the sample
(no hopping), then any relaxation in the observed
P (t) is a consequence of fluctuations around that

muon site from nuclear or electronic spins. In
the paramagnetic “motionally narrowed” regime,
the muon relaxation in zero-field is dominated by
nuclear spins which are static compared with the
muon decay lifetime. As any magnetic transition
is approached, and electronic spin-fluctuations
slow down, electronic moments will dominate
the relaxation because of the larger associated
magnetic fields at the muon site.

On application of a transverse field in the para-
magnetic phase above TN , the muon polarization
will oscillate around the applied field and the initial
asymmetry, a0, and the ↵ parameter for the spe-
cific experiment can be experimentally obtained.
For this experiment a0 = 0.25. The non-relaxing
background contribution to the muon asymmetry
was measured in the zero field configuration and
was found to be constant with temperature with
a value of aAg = 0.02. Therefore the contribution
from the sample, as, can be calculated from
A(t = 0) = as + aAg = 0.25.

The sample was aligned with the muon polar-
isation along the c�axis. Firstly, zero field relax-
ation in the paramagnetic phase is discussed, where
electron spins fluctuate faster than the muon time
scale and the relaxation is dominated by weak and
randomly oriented static nuclear moments. The
local field at the muon sites at each coordinate i,
Bi

loc, is distributed according to an isotropic Gaus-
sian field distribution, with a standard deviation
(�G) and muons relax with a lineshape given by
the well known Gaussian Kubo-Toyabe function
(GKT) [34, 35]:

PG(�G, t) =
h1
3
+

2

3
(1��2

Gt
2) exp(��2

Gt
2

2
)
i
(1)

�G is sometimes described as the local internal field
because in an isotropic crystal |��!Bloc| =

p
2�G. In

the paramagnetic phase, the analysis of the mea-
sured muon relaxation should include the possibil-
ity of numerous interstitial muon stopping sites so
that the field distribution below the ordering tem-
perature can be understood. An extensive study
of the interstitial muon sites in the paramagnetic
phase of NbFe2 was performed in the work of
Crook [20]. The muon relaxation was described
by the distribution of the Nb and Fe ions around
the implanted muons, which are distinguishable be-
cause of their di↵erent nuclear moments. Around
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the muon site the local environment can be de-
scribed by the elements surrounding it, three possi-
ble (Nb-Fe) nearest neighbour coordinations of 4-0,
3-1 and 2-2 are possible. Simulations of the nu-
clear field distribution due to Gaussian distributed
atomic moments for each of these site coordinations
result in the following �G values: 0.199, 0.39 and
0.48 µs�1 respectively. In the work of Crook, a sin-
gle GKT relaxation with a field width of 0.284 µs�1

was associated with a single muon stopping site at
the 4-0 position [20].

Figure 3: Normalised short times muon relaxation:

(a) Short time muon spectra above and below TN fitted to
a GbG form as described in the text. (b) Decoupling of the
internal local field is shown by the application of a longitu-
idinal field. The associated fits are described in the text.

In this study, we also find that we can fit the
data with one muon site in the paramagnetic
regime as shown in Fig. 2a. It is important to note
that the site allocation is more di�cult to perform
at PSI in this sample as the time scale only extends
to 10 µs�1. The average nuclear field we found is
�G/�µ = 0.29 mT or �G = 0.253 µs�1. This is

close to the value found in the previous work. The
di↵erence between the measured and the calculated
values can be be explained and simulated [20] by
site mixing (anti-site disorder) which would also
have an e↵ect on the local field distribution in the
ordered regime.

The magnetic phase was analysed with zero
field µSR above and below TN . The Gaussian
relaxation from the nuclear contribution dominates
above TN but below the transition the relaxation
is modified by the magnetic order with a fast
muon depolarisation as shown Fig. 2b. Several
scenarios for order can be distinguished by the
nature of the relaxation below TN . Specifically
if oscillations were observed this would signify
long range order and may signify a modulated
SDW [34]. However we see no oscillations in
P (t), in agreement with recent work [12]. In
the absence of oscillations, µSR can distinguish
two possible cases [35]. In the fast fluctuation or
motional narrowing limit, an exponential decay
characterises the muon depolarisation [36], and
the relaxation rate contains information about
both magnetic fluctuations and field-distribution
widths. In the other case, when fluctuations are
slow, the magnetic field at the muon sites can be
considered quasi-static. These scenarios can be
distinguished by the application of a longitudinal
field (along the direction of the muon polarization).
The absence of oscillations and a relaxing tail
at ⇠ 1/3 of the muon polarisation observed in
Figs. 2b and 3a below 5 K suggest slow spin
fluctuations of randomly orientated quasi-static
fields, with a relaxation lineshape reminiscent of
a Kubo-Toyabe (KT) function given by Eq. 1. In
the “static” approximation, the long time muon
asymmetry is independent of time and equal to the
1/3 term in Eq. 1. This is known at the “1/3 tail”
region. However the presence of slow fluctuations
can further depolarise the “1/3 tail” region. KT
functions in magnetically ordered single-crystalline
samples are often used to fit the muon relaxation
in disordered and/or frustrated magnetic phases
with slow spin dynamics. In such cases, relaxation
is dominated by randomly orientated magnetic
fields at the muon sites.

Densely packed magnetic moments can generate
a Gaussian field distribution at muon sites whilst
systems with dilute magnetic impurities such as
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canonical spin glass may produce a Lorentzian field
distribution. Both cases present a distinctive dip
in the muon asymmetry and a “1/3 tail”. How-
ever, neither can fit the muon spectra we measure
for NbFe2, ruling out these simple interpretations
for the magnetic ground state. Moreover a limited
number (3) of combined KT representing di↵erent
possible muon sites or 2 simple exponentials cannot
model the data. We have therefore utilised a phe-
nomenological Gaussian-broadened GKT function
(GbG), introduced by Noakes et al [26]., to explain
several dense magnetic systems, to fit our data. In
this model, the single isotropic Gaussian field distri-
bution DG(Bi

loc,�G) assumed in the GKT function
of Eq. 1, is replaced by a distribution of Gaussian
distributions DGBG of width ⇢ centred on �0 and
with a standard deviation Rb�0. This lineshape
is sometimes used to describe systems with static
dense magnetic moments, but correlated only over
a short range, with examples of its use being found
in the quantum spin-ice Yb2Ti2O7 [37] and the 5d
hyperkagome lattice Nd4Ir3O8 [29]. The GbG field
distribution is:

DGbG(B
i
loc) =

Z 1

�1
DG(B

i
loc,�G)⇢(�G,�0, Rb)d�G

(2)
where

⇢(�G,�0, Rb) =
1p
2⇡

1

Rb�0
exp

"
� (�G ��0)2

2(Rb�0)2

#

(3)
The resultant muon depolarisation is the analytical
solution of the integral Fourier transform of Eq. 2:
Although the integral runs only over positive �G

values, it was extended to �1 to simplify to the
following solution [35]:

PGbG(�0, Rb, t) =
1

3
exp(�2

3
⌫t) +

2

3

 
1

1 +R2
b�

2
0t

2

! 3
2

 
1� �2

0t
2

1 +R2
b�

2
0t

2

!
exp

"
� �2

0t
2

2(1 +R2
b�

2
0t

2)

#
(4)

In the slow fluctuation limit, the magnetic fluc-
tuation rate ⌫ depolarises the “1/3 tail” at long
relaxation times. The muon depolarisation (Eq. 4)
describes an e↵ective local field �2

eff = �2
0+R2

b�
2
0

and evolves from a Gaussian KT when Rb = 0
(displaying a distinctive dip in the data) towards
a monotonic relaxation when Rb ' 1. The
data in Figs. 2b and 3a were best fit to the

GbG function using the Musrfit software [38]
between 1.8 K and TN with a maximum e↵ec-
tive local field at 2 K (�eff

�
µ

= 0.014 T) and Rb ' 1.

The distribution of internal fields ⇢(�G) (Eq. 3.)
is plotted as a function of �G for various di↵erent
temperatures in Fig. 4a. The mathematical approx-
imation in Eq. 4 entails ⇢(�G) 6= 0 for �G < 0 if
Rb ' 1. As �G is an absolute value the equation is
redefined:

⇢(�G) ⌘
(

⇢(�G) + ⇢(��G) �G > 0

0 �G < 0

The randomly-orientated internal fields are
evenly distributed from 0 to the fitted e↵ective
local field �eff (shown by the arrow in Fig. 4a).
The inset shows �eff measuring with the transi-
tion temperature and a guide to the eye.

The quasi-static nature of the internal fields
may be confirmed by longitudinal field (LF) µSR.
In order to analyse and to test the distribution of
fields described previously we discretised the DGBG

and fitted the data to a sum of single gaussian
distributions, DG(�G), according to the weighting
obtained from Fig. 4a. 17 Gaussian distributions
give a good fit for the ZF-µSR and were used to fit
the longitudinal field data shown in Fig. 3b.

The LF muon asymmetry spectra repolarised
when fields are applied, as expected from quasi-
static internal fields. The e↵ective local field at the
muon sites can be estimated from the maximum
field where slight wiggles can still be observed,
�
µ

Bmax

ext

�
eff

⇠ 5� 10 [34, 35]. In our case, Bmax
ext = 0.1

T gives a �
eff

�
µ

⇠ 0.01 � 0.02 T, in the same order

as values obtained from the ZF µSR measurement.
The scaling method from Rauch et al [12]., may
be used to estimate the local magnetisation. The
local magnetisation is calculated assuming it scales
to the e↵ective internal fields in the same way
as the bulk magnetisation of the ferromagnetic
doped samples scales to the muon oscillation
frequency (⌦B in that work). We obtain a local
magnetisation of M ⇡ 0.0075µB/Fe.

The magnetic relaxation rate ⌫ increases slightly
when the temperature approaches TN but remains
in the slow fluctuation limit: ⌫ < �eff . When the
longitudinal field is applied as can be seen in Fig.
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Figure 4: Muon parameters: (a) Distribution of the
local internal fields as a function of temperature from 0 to
�eff . The inset shows the temperature dependence of e↵ec-
tive local fields below TN , the line is a guide to the eye. (b)
Fluctuations as a function of temperature (black squares)
and field at 2 K (red circles).

4b the relaxation rate is lower than 0.2 µs�1 at
2 K at all fields. The nature of the magnetically
ordered phase for our sample of NbFe2 does not
uniquely describe a simple spin density wave, as
no oscillations are seen in the muon spectra in
agreement with previous work [12]. In an incom-
mensurate SDW phase, muons could depolarise
according to a Bessel function, behaviour which
cannot describe the measured relaxation. However
the quasi-static nature of randomly orientated
internal fields were confirmed by our experiments.

In ZF-µSR, two relaxation processes are ob-
served: a fast depolarisation due to the randomly-
orientated static fields; and a slowly depolarising
1/3 tail region, corresponding to slow fluctuations

of the local fields. In LF-µSR, muon decoupling is
observed by applying magnetic fields as expected
from quasi-static fields. The homogenous distribu-
tion of internal fields �eff is described by the GBG
relaxation in the ZF data and by an equivalent
sum of Gaussian relaxations for the LF data.
This behaviour could be induced by short-range
correlations. The correlation length has previously
been associated to the Rb parameter [31] where
values close to 1 make the correlation length
short enough to be ‘seen’ as randomly-orientated
magnetic moments by the muons. In our case the
value of Rb is always around 1. In a helical SDW
phase the moment orientation rotates from one
unit cell to another and the muons will be a↵ected
by a broad distribution of fields as we observe for
incommensurate order and apparent randomness
could emerge at the muon sites. The subtle change
of muon relaxation between our work and that of
Rauch et al [12]., for at and just o↵ stoichiometry
as the QCP is approached suggests the importance
of site mixing and that muon relaxation can be
used to study the local magnetic environment in
detail as the material is tuned towards the QCP.
Importantly the data presented in this paper and
previous [12] work suggest that application of
longitudinal fields may reveal changes in the field
distribution and fluctuation rates as the QCP is
approached.

4. Conclusions

The SDW magnetic phase reported around criti-
cality was studied in stoichiometric NbFe2 by bulk
magnetic techniques and the local probe µSR. The
transition temperature found by all the techniques
is consistent with the Neel temperature reported
at stoichiometry [5, 8, 10, 11]. However our sample
has a higher critical field, in the magnetically
ordered phase.

A long range magnitude modulated SDW order
cannot be confirmed by µSR, however the static na-
ture of the magnetic field is clearly observed below
the transition. Although fluctuations at 2 K remain
in the slow fluctuation regime. The µSR data
were fitted with a phenomenological GbG Kubo-
Toyabe function. The muon relaxation is due to
randomly-orientated static fields with magnitudes
homogeneously distributed from 0 to an e↵ective
field, �eff , equivalent to M ⇠ 0.0075µB/Fe.
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Similar results by Rauch et al.[12] are explained
as a magnitude modulated SDW with a large
correlation length but the absence of oscillations
and the distribution of the randomly-orientated
quasi-static fields suggest a magnetic phase con-
trolled by short-range correlations and only a SDW
with a helical and incommensurate amplitude
modulation may explain our results.

The sensitivity of µSR to the distribution of
local magnetic fields in the vicinity of the QCP is
clearly demonstrated and further investigation in
the weak AFM region could shed some light on
the magnetic ground state and fluctuations as the
QCP is approached.
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tion, Relaxation and Resonance: Applications to Con-

densed Matter (Oxford University Press, Oxford, 2011).
[36] M. J. Graf, S. M. Disseler, C. Dhital, T. Hogan, M. Bo-

jko, A. Amato, H. Luetkens, C. Baines, D. Margineda,
S. R. Giblin, et al., Journal of Physics: Conference Se-
ries 551, 012020 (2014).

[37] J. A. Hodges, P. Bonville, A. Forget, A. Yaouanc,

8



P. Dalmas De Réotier, G. André, R. M, K. K, C. Ritter,
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