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ABSTRACT  

After intense scientific exploration and more than a decade of failed trials, Alzheimer’s 

disease (AD) remains a fatal global epidemic. A traditional research and drug development 

paradigm continues to target heterogeneous late-stage clinically phenotyped patients with 

single “magic bullet” drugs. 

Here, we propose that it is time for a paradigm shift towards the implementation of 

precision medicine (PM) for enhanced risk screening, detection, treatment, and prevention of 

AD. The overarching structure of how PM for AD can be achieved will be provided through 

the convergence of breakthrough technological advances, including big data science, systems 

biology, genomic sequencing, blood-based biomarkers, integrated disease modeling and P4 

medicine. It is hypothesized that deconstructing AD into multiple genetic and biological 

subsets existing within this heterogeneous target population will provide an effective PM 

strategy for treating individual patients with the specific agent(s) that are likely to work best 

based on the specific individual biological makeup.  

The Alzheimer’s Precision Medicine Initiative (APMI) is an international collaboration of 

leading interdisciplinary clinicians and scientists devoted towards the implementation of PM 

in Neurology, Psychiatry and Neuroscience. It is hypothesized that successful realization of 

PM in AD and other neurodegenerative diseases will result in breakthrough therapies, such as 

in oncology, with optimized safety profiles, better responder rates and treatment responses, 

particularly through biomarker guided early preclinical disease stage clinical trials.  

KEY WORDS 

Alzheimer’s disease; precision medicine; precision medicine initiative; Alzheimer 

precision medicine initiative; systems biology; systems medicine; biomarkers; integrative 

disease modeling. 
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INTRODUCTION

The technology industry has entered the field of medicine and boldly aims to eliminate 

disease itself. It may well succeed in a focused global interdisciplinary effort because of a 

convergence of exponentially advancing technologies, including big and deep data science, 

computing, artificial intelligence, sensors, and genomic sequencing. Sequencing of the human 

genome, first completed and published in Nature in 20011 took years for completion at a cost 

of about $3 billion. Today, this is possible in less than a day for about $1,000, with costs 

falling so fast that, by 2022, genome sequencing may be cheaper than a blood test. Now that it 

has been mapped into bits that computers can process, the genome is transforming into an 

information technology. With increasingly large sample sizes and tools such as IBM’s 

artificial intelligence system – Watson – scientists are gaining a better understanding of how 

genes affect health and disease; how food, physical and cognitive exercise, and medicines we 

take affect the complex interplay between our genes and environment.  

We are going to see more medical advances in the next decade than happened in the past 

century. Within the coming years, our genome, epigenome, transcriptome, proteome, 

metabolome, microbiome, interactome, brain network connectome, motor and sensory 

systems, cognition, behavior, lifestyle, and environment will all be mapped, stored, analyzed, 

integrated, and individualized. Precise and prescriptive-medicine systems supported by 

artificial intelligence will help us feel better, be healthier and live longer. 

On January 20 2015, U.S. President Obama outlined the great opportunities for Medicine 

through Precision Medicine (PM) in his State of the Union Address and announced a national 

PM Initiative (PMI) on January 30 (https://www.whitehouse.gov/precision-medicine), flanked 

by the publication of the PMI Cohort Program (PMI-CP) by Francis Collins and Harold 

Varmus in the New England Journal of Medicine on that day2. Since then, the PMI-CP is 

establishing an infrastructure and organization to coordinate and enroll the large national 

research cohort of one million participants in 2016, supported by a $215 million in federal 

support. The PMI-CP targets oncology challenges as a first priority but is also expected to 

expand and transfertilize to other relevant disease areas.  

After more than a decade of failed therapy trials and one of the lowest success rates in drug 

development in medicine, the time has come to launch an international Alzheimer PMI 

(APMI) and link it with the U.S. PMI and other related global initiatives. The establishment 

of a PM paradigm for Alzheimer’s disease (AD), an exponentially growing complex 

polygenic brain disease, requires the incorporation of an array of converging breakthrough 

https://www.whitehouse.gov/precision-medicine
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technological developments and methods. Systems theory allows for the conceptualization of 

novel and original models to elucidate all systems levels (assessed by systems biology [SB] 

and systems neurophysiology) and different data types in space and time of the complex, non-

linear, dynamic, and chronically progressive nature of the genetically, biologically, 

pathologically, and clinically heterogeneous construct of “AD”3,4, a historical term defined by 

the clinical description of first patients and related first brain histopathological observations5. 

For more than 100 years, Alois Alzheimer’s pioneering AD syndrome was the target of 

scientific exploration. A major step forward was the discovery of single gene mutations on 

chromosomes 21, 14, and 1 resulting in an overproduction of the amyloid beta (Aβ) peptide6

and causing a progressive linear mechanistic neurodegenerative disease leading to familial 

early onset (30-60 years) AD dementia (EOAD) in very small subsets of individuals (<5%). 

From this mutation model, transgenic animals and the majority of AD anti-amyloid drug 

development programs were generated7,8. To date, a major barrier towards a next evolutionary 

step to the PM paradigm for AD is the prevailing “implicit” assumption that the cellular, 

molecular pathophysiological mechanisms and the biological endophenotype of EOAD can be 

perceived as the original linear mono-mechanistic amyloid cascade model9 and extrapolated 

to the pathophysiology of the complex polygenic sporadic late-onset AD (LOAD), 

representing the vast majority of all affected AD patients3. To date, the AlzGene database 

demonstrates substantial genetic heterogeneity in LOAD patients, 695 genes with 2,975 

polymorphisms, more than 20 genome-wide associated risk variants have been described 

(available at http://www.alzgene.org/). However, in a number of the known over 200 

autosomal dominant mutations leading to EOAD different biomarker profiles and clinical 

phenotypes were demonstrated, therefore being far fromhomogeneous10,11. Moreover, even in 

EOAD, the accumulation of pathological Aβ peptide and tau protein never occurs without 

disruption of other major pathophysiological systems (e.g. inflammation, oxidative stress, 

metabolic alterations), thus again underlining the genetic and biological complexity of the AD 

construct in general3,4. In order to untangle this complexity through deconstruction of AD into 

multiple genetic and biological subsets, advancing biomedical research provides a variety of 

data from patients’ complex and diverse pathophysiology through innovative, converging 

exploratory biomolecular tools and neuroimaging modalities. The resulting heterogeneous, 

multidimensional big and deep data are in the process of being standardized and integrated via 

computational and data science methods in the form of mechanistic disease models, according 

to the integrative disease modeling (IDM) conception (Figure 1)12.  
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In this perspective, we outline key aspects and issues for transformation and 

implementation of an AD PM paradigm to advance both treatment and prevention strategies 

in AD. Notably, this results into an innovative scientific taxonomy, a differentiated working 

language (Table 1) for reality-based medicine, which identifies evidence from real-life 

scenarios.  

This and the theoretical background presented in our recently published perspective 

“PRECISION MEDICINE - The Golden Gate for Detection, Treatment and Prevention of 

Alzheimer’s Disease”13,14 provides the theory and roadmap for a new scientific movement 

framed by the newly established Alzheimer Precision Medicine Initiative (APMI). APMI and 

its planned cohort program (APMI-CP) is an international network of leading interdisciplinary 

clinicians, scientists and researchers devoted towards the transformation of Neurology and 

Psychiatry through the implementation of PM, a reintegration of neuroscience and its clinical 

specialties into the theoretical framework of medicine. It is hypothesized, like in parts of 

oncology already achieved, that successful and consequent implementation of PM for AD and 

other neurodegenerative diseases along the disease spectrum of brain proteinopathies will 

result in breakthrough single and combination therapies, with optimized safety profiles, better 

responder rates and more convincing treatment responses, particularly in early disease stage 

clinical trials, providing substantial benefits to individuals on the way to or patients suffering 

from this devastating disease.  

A PRECISION MEDICINE PARADIGM FOR ALZHEIMER’S DISEASE

The adoption of a PM paradigm for generating innovative strategies to treat, prevent and 

cure complex diseases is not a novel concept. For decades, the oncology field was at loss as to 

how to treat patients inevitably dying from advanced late-stage cancer; however, today, 

mortality and cure rates, at least for some forms of cancer, are far beyond initial expectations.  

On the other hand, after over 100 years of accumulating scientific knowledge, there is no 

therapeutic solution for prevention and cure in AD which remains 100% fatal. Available 

treatments, approved for late potentially irreversible clinical disease stages only, offer 

marginal clinical benefits. It is time for a paradigm shift, with the field of oncology providing 

a previously validated model for successful implementation of a PM model that the 

AD/neurodegeneration field can at least partially adopt13.  

The concept of PM aims at tailoring medical treatment to the individual genetic drivers, 

pathophysiological and clinical characteristics of the disease for each single patient15. In other 
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words, it aims at tailoring disease prevention and treatment to the individual’s specific 

biological makeup (customized treatment), which is in sharp contrast to the ongoing “one-

drug-fits-all” approach. Given the highly complex nature of AD, the likelihood of identifying 

a single drug to provide meaningful benefit to every patient is minimal, at best. This is the 

situation in other areas such as oncology and cardiology. A key methodological framework 

required for successfully implementing the PM is the incorporation of the exploratory, 

integrative, and interdisciplinary systems approach of SB, complemented by systems 

neurophysiology3,4.  

SB allows a system level approach to drug discovery − with special reference to drug 

target identification, validation, and screening assay development – that embraces the whole 

complexity of disease pathophysiology. Recent years have witnessed significant success in 

biomarker-guided therapeutic strategies in advanced translational research fields of 

biomedicine – including oncology and cardiovascular medicine. The traditional reductionistic 

categorical nosology of “neurodegenerative diseases” reflects advanced late stages of 

fragmented clinical phenotypes and syndromes with different or overlapping histopathological 

patterns. Although continuous working group efforts to refine categorical diagnostic criteria 

improved the diagnostic reliability and accuracy, particularly after integrating biomarkers as 

part of the criteria16, the validity of current categorical nosological systems for 

neurodegenerative diseases remains limited. A step in the right direction is represented by the 

recent formulation of unbiased agnostic biomarker classification systems for AD and 

neurodegenerative diseases to identify and grade risk in normal elderly people. The goal is to 

identify the full spectrum of the specific biological alterations in elderly individuals at risk 

long before the appearance of first clinical symptoms13. 

We hypothesize that using PM in the fields of Neurology, Psychiatry, and Neuroscience 

will trigger a paradigm shift in the medical practice of brain diseases towards preclinical 

detection and effective early interventions. Prevention strategies can be employed before any 

substantial disease progression has occurred, with a strong focus on individualized care.  

Among the objectives of PM are to introduce new paradigms for early detection, 

classification/differential diagnosis, treatment, and prevention of neurodegenerative diseases 

(better proteinopathies of the brain), based on individual biological differences, as reflected 

by multimodal biological indicators, biomarkers4,17,18. In this regard, evolving evidence of AD 

biomarkers has been obtained during the last 20 years from studies performed in 

neurogenetics/neuroepigenetics19-21, neurochemistry22-24 – the latter having been conducted 
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both on cerebrospinal (CSF)25-27 and blood (plasma/serum)28-32 – as well as in 

structural/functional/metabolic neuroimaging33-35, and neurophysiology36,37. Following the 

oncology model, it is anticipated that innovative biomarker studies, combined with SB, will 

identify specific diagnostic, prognostic, and predictive biomarker signatures in order to tailor 

the therapy to individual patients13. Additionally, biomarker-guided PM removes today’s 

“trial-and-error” strategy to pharmacological interventions, which has significant medical 

consequences for patients and healthcare system38. As stated by the Institute of Medicine 

(IOM) Committee Recommendations for Advancing Appropriate Use of Biomarker Tests 

(companion diagnostics) for Molecularly Targeted Therapies, the ultimately goal of PM is to 

improve both the quality of patient care and clinical outcomes39.  

In summary, the PM conception is in the process of being applied to AD and across a 

rapidly increasing number of other neurodegenerative diseases owing to: (I) the development 

of high-throughput “omic” tools designed for screening biomedical samples and (II) the 

setting-up of large-scale biological datasets. Consequent development, validation, and 

implementation of biomarker-guided interventions built on the SB conceptual framework will 

accelerate the path to PM for AD.   

SYSTEMS THEORY AND SYSTEMS BIOLOGY PARADIGMS  

In order to achieve PM, innovative theoretical concepts and strategies need to be 

embraced. The traditional reductionistic approach in AD research aims to characterize single 

pathophysiological pathways affecting specific components of particular systems in a linear, 

non-dynamic and over-simplified manner. This myopic view has resulted in a limited 

representation of complex pathophysiological processes and their interactions. For instance, 

the prevailing amyloid cascade hypothesis speculates that the Aβ peptide is the cause of AD 

and that, as a result, targeting Aβ should lead to substantial disease modification at advanced 

clinical stages in LOAD. This assumption has been challenged by numerous failures of phase 

III clinical trials aimed at modulating Aβ production40 or increasing clearance from the 

brain41,42. Additionally, as stated previously, in no complex model of LOAD Aβ seems to 

occur in isolation of biological dysfunction related to other systems. An agnostic, hypothesis-

free, unbiased systems theory approach seems better suited to explain the complex and 

heterogeneous origin and time course of the pathophysiological failure underlying different 

forms of AD4. For multifactorial diseases like AD, comprehensive holistic systems-level 

approaches are necessary; this is the case of the SB model, which aims at understanding the 
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genotype-phenotype relationships and the mechanisms at the level of genome/epigenome, 

transcriptome, microRNome, proteome/peptidome, metabolome/lipidome, microbiome, 

lifestyle, and environmental factors participating in complex cellular networks3,4,43. 

Correspondingly, SB is based on: (I) advanced molecular and high-throughput “omics” 

methods disclosing and characterizing biomarkers associated with disease mechanisms and 

(II) computational and integrative network biology tools for assimilating multimodal 

information to comprehensively understand the systems-level dysfunction44. Longitudinal 

investigations using the above mentioned SB-based methodologies can provide a full 

characterization of the complex molecular pathophysiology of both single gene and sporadic 

forms of AD. The working hypothesis is that most if not all AD subforms evolve through 

non-linear dynamic convergence of alterations and/or failures in several “systems”, networks, 

signalling pathways, or pathophysiological processes3. As a result, the specific intervention 

needed for a particular individual would depend on the specific system-level alteration and/or 

dysfunction at a given time point, which may change as a function of time and progression 

with (i.e. the specifically effective treatment for a given patient may vary over time).  

“OMICS”-BASED TECHNOLOGIES FOR BIOMARKER IDENTIFICATION  

PM is biomarker-guided medicine. According to the Food and Drug Administration (FDA) 

& the National Institutes of Health (NIH) Biomarkers, Endpoints, and other Tools (BEST) 

Resource, biomarker categories can be divided into the following categories: (I) 

susceptibility/risk biomarker, (II) diagnostic biomarker, (III) monitoring biomarker, (IV) 

prognostic biomarker, (V) predictive biomarker, (VI) pharmacodynamic/response biomarker, 

and (VII) safety biomarker45. In the AD field, however, such fine grained separation between 

different types of biomarkers is largely absent. For example, it is assumed that amyloid 

positivity is both a diagnostic and predictive biomarker, which may or may not be the case for 

given patients. However, the fine-grained specifications of the exact function of each 

biomarker (or biomarker profile) is required to advance PM in AD45. When combining this 

fine-grained categorization of specific types of biomarkers with the evolution of the “omic” 

technologies currently available under the SB methods, there now exists the foundation for 

building the PM based paradigm for treating and preventing AD across the spectrum of 

disease progression45. In genomics, the development of less expensive and comprehensive 

genome-wide arrays paved the way to the genome-wide association studies (GWAS). 

However, although initial results were promising, numerous GWAS were disappointing due 
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to inadequate sample size, limitation of arrays for certain genetic variations (genetic markers), 

and/or heterogeneity in phenotype46,47 as well as the focus on finding the gene(s) responsible 

for AD rather than looking for subsets of AD cases. Big collaborations, such as the 

International Genomics of Alzheimer’s Project (IGAP), and advanced genomic imputation 

techniques (in silico) generated highly consistent GWAS results48,49, which replicate and 

provide insights to underlying biological pathways. Notably, the introduction of next 

generation sequencing (NGS)-based methods led to significantly improve the genomic 

analyses. Particularly, unbiased whole-genome sequencing (WGS) and whole-exome 

sequencing (WES) support the identification of many genetic variants, including SNPs, single 

nucleotide variants, small insertions/deletions, and structural and genomic variants50,51. 

Besides genomics, high-throughput screening methods led to substantial AD-related 

discoveries in other “omic” areas, especially proteomics52,53 and metabolomics/lipidomics54-56

that may change over time by contrast to the genome.  

The “omics”-based screening of disease states is supposed to result in improved 

personalized, mechanistically-based interventions (therapeutic and/or preventive) by revealing 

precise patterns of biomarkers and molecular signatures underlying the exact molecular 

pathophysiological mechanisms active in specific disease states and in individual patients57. 

Substantial attempts are ongoing to explicate key pathways functions, signalling network 

organization, and organism-level responses via high-throughput biological data (for instance, 

global gene expression, comprehensive proteomic data)58. 

Notably, applying SB to blood-based “omic” technologies to promote the PM paradigm for 

AD will enable two primary advances for improved patient outcomes13,59: (I) generation and 

validation of enhanced multi-stage neurodiagnostic processes and (II) identification of 

targeted therapeutic intervention strategies for specific patients or subgroups of patients59. As 

with the PM paradigm successfully implemented in oncology, a primary key to success is the 

generation of early detection biomarkers identifying patients before significant pathological 

accumulation. As with other frontline detection strategies, blood-based tools detecting 

patients within primary care settings in the earliest stages of disease progress will foster a 

multi-stage diagnostic process for appropriate referrals to CSF and positron emission 

tomography (PET) biomarker methods. Additionally, once such a multi-stage process is 

established, it would provide support to the global AD clinical trials community. The second 

advancement will be the identification of which specific patients are most likely to benefit 

from precise and definite interventions. Applying SB for the analysis of multi-level blood-
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based “omic” data will facilitate the segregation of patient populations into biologically-based 

subgroups that can be further scrutinized for targeted interventions. Using SB methods to 

create diagnostic biomarkers of specific subsets of AD patients will have a tremendous impact 

on the advancement of the PM paradigm in AD59.  

THE PATH FROM “BIG DATA” TO “SMART DATA” 
SB aims at exploring the enormous complexity of biological systems by (I) outlining the 

components of the system, (II) clarifying their interrelations, and (III) defining their spatio-

temporal dynamics needed for executing their biological functions60. According to the 

Workshop “From Systems Biology to Systems Medicine” – organized by the European 

Commission, Directorate of Health – the application of SB-based strategies to medical 

research/practice is referred to as systems medicine. The objective of systems medicine is to 

integrate a variety of massive biomedical data at all levels of the cellular organization by 

employing global, integrative, and dynamic statistical and computational modeling to 

elucidate the pathophysiological mechanisms, diagnosis, prognosis, and therapy of the disease

(https://ec.europa.eu/research/health/large-scale/pdf/systems-medicine-workshop-report-june-

2010_en.pdf). The era of “omics” sciences – describing complex biological systems in an 

integrative, non-reductionistic (holistic) manner – led to the generation of large-scale and 

heterogeneous biomedical data and allowed entering the area of “big data” in Biology and 

Medicine13. Big data is a comprehensive expression referring to the complexity, challenges, 

and new opportunities presented by the combined analysis of data. These data sources include 

the heterogeneous, complex, disorganized, massive, and multidimensional data (from 

molecular/cellular data, to conventional clinical data, to enormous amounts of imaging, 

demographic, and environmental data) extensively produced by academic institutions, clinics, 

and mobile devices60,61. These datasets, due to their large sizes and complexities, cannot be 

analyzed using the traditional ways of processing the data. Big data usually display: (I) 

significantly enormous amount of data, (II) elevated speed of data production, and (III) 

heterogeneity of data generated by using different modalities. Such features are typically 

found in several large assortments of data62. In this regard, the Obama Administration 

announced the Big Data Research and Development Initiative 

(https://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal) aimed at targeting 

personalized medicine through the Genomic Information System for Integrated Science 

(GenISIS) program to improve health care for Veterans. Of note, in 2012, the U.S. National 

https://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal
https://ec.europa.eu/research/health/large-scale/pdf/systems-medicine-workshop-report-june-2010_en.pdf
https://ec.europa.eu/research/health/large-scale/pdf/systems-medicine-workshop-report-june-2010_en.pdf
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Institutes of Health (NIH) launched the Big Data to Knowledge (BD2K) Initiative 

(https://datascience.nih.gov/bd2k), to support the research of innovative methods to speed up 

the integration of big data into biomedical research63. In order be successful, the PMI must 

utilize innovative methods for collecting/managing big data. This is accomplished by 

remarkable progresses in information technology that provided significant reductions in terms 

of costs of data storage, and substantial increases in analytic capabilities, thus enabling the 

collection and examination of exceptionally large datasets in biomedicine. Particularly, the 

development and implementation of electronic health records (EHRs) allow 

gathering/preserving longitudinal health care records and clinical data at limited costs. EHRs 

represent a key source of clinical data to examine biological and environmental contributions 

to a large number of conditions and health outcomes. Additionally, there has been an 

exponential growth in terms of adoption of personal mobile technologies – including phones, 

apps, wearables, in-home devices – as innovative way to collect health information (mobile 

health or “mHealth”) aimed at collecting clinical relevant information in a more ecological 

environment, and improving patient care and advancing research. Data generated from 

increasingly sophisticated software applications can enrich self-reported data on lifestyle and 

environment, thus providing researchers with a well-defined view into these factors 

previously difficult to capture. 

The holistic paradigm of systems medicine utilizes all assortments of biological 

information – DNA/RNA, protein/peptides, metabolites/lipids, other small molecules, cells, 

tissues, organs, individuals, social networks, and external environmental signals – integrating 

them in such a way that predictive and “actionable” models for health and disease are 

generated60. Presently, unparalleled amounts of heterogeneous data are being gathered with 

content in AD, ranging from genetic/epigenetic and molecular “omic” disciplines to clinical 

phenotypes of patients. The production of such big data is expected to radically renovate the 

development of effective therapies for AD, under the condition that such data are converted 

into “actionable” knowledge64. In the AD domain knowledge is defined as “actionable” when 

it can be utilized to actively support drug discovery & development programs for therapeutic 

interventions, to define potential groups of responders to specific targets, and to validate 

clinical data that can indicate the presence of substantial changes during the advancement of 

the disease65. The integration of large clinical datasets is considered as a potentially powerful 

approach to accelerate medical discovery based on recent results of world-wide studies of 

disease progression and large-scale genomics efforts66. Innovative analytical methods have 

https://datascience.nih.gov/bd2k
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been developed both in the field of bioinformatics67,68 and in pharmacology69. According to 

Geerts and colleagues (2016), the attempts of gathering large-scale data, such as the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) consortium (http://adni.loni.usc.edu/) 

are assumed to yield maximal impact if they are combined with advanced predictive modeling 

approaches where large neurobiological domain expertise is formally integrated. Such an 

approach is referred to as converting big data into “smart data” with the aim of producing 

“actionable” knowledge. This strategy is envisioned to emphasize the link between the 

domain of data-information and that of “actionable” knowledge, i.e. the notion of “smart 

data”64. The creation of “actionable” knowledge is intended to support the development of 

novel paradigms that will be used for therapeutic purposes. In this regard, the Brain Health 

Modeling Initiative (BHMI) has been recently introduced64 with the objective of accelerating 

the development and validation of biomarkers and therapeutic agents by highlighting the role 

of integrative analytic tools and mechanism-based computational methods. These will 

improve the mining of complex big datasets to obtain an increasingly accurate and 

“actionable” understanding of the disease. This initiative is expected to result in the 

development of more successful treatments or an improved efficient screening of patients 

with AD-specific pathophysiology or an enhanced match between biomarkers and therapeutic 

targets64,70. This will fully support the application of the PM paradigm2 involving matching 

patients to a therapy focused on the pathophysiological features of their disease. In summary, 

the “big data” advancements provide a platform upon which the “omics” data can be 

understood from a SB standpoint for the generation of a PM paradigm in AD (Figure 1).  

THE PATH TO INTEGRATIVE DISEASE MODELING AND P4 MEDICINE 

INCLUDING ONTOLOGY AND TAXONOMY ISSUES 

Neurodegenerative diseases or protein misfolding disorders/proteinopathies of the brain 

leading to neurodegeneration, present a large continuous spectrum of phenotypical subtypes 

and substantial complexity in terms of genetics, pathophysiology and molecular and 

topographical progression patterns. This is partly due to the high complexity of the 

evolutionary driven human brain organization, lack of direct access to brain tissue in living 

patients, and large heterogeneity and overlapping clinical signs, symptoms and syndromes. As 

a result, biomedical research in the field of neurodegenerative diseases including AD is 

presently focused on indirectly obtaining data from the brains of patients using a variety of 

clinical, molecular neurophysiological and neuroimaging assessments and technologies. 

http://adni.loni.usc.edu/
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However, a major challenge is that these data are vast, heterogeneous, and scattered. Thus, a 

multidimensional data space has been created over time that needs standardization, 

management, integration, and analysis. Computational approaches have been recently 

developed to facilitate these processes and present the integrated data in the form of 

mechanistic disease models, i.e. IDM. The IDM methodology aims at linking molecular, 

neurophysiological and neuroimaging data across multiple physiological levels to clinical 

readouts and phenotypic observations in such a way that further analytical actions, including 

mode-of-action simulation and outcome prediction, can be performed on integrative models.

The first and the most important step towards integrative modeling of the multidimensional 

data space of neurodegenerative diseases is represented by the standardization and 

representation of the knowledge domain of brain diseases. 

Ontologies provide a secure and stable tool to achieve this goal. An ontology is a formal 

naming and definition of the types, properties, and interrelationships of the entities that really 

or fundamentally exist for a particular domain of discourse. It is thus a practical application of 

philosophical ontology, with a taxonomy. The ontology compartmentalizes the variables 

needed for some set of computations and establishes the relationships between them. The 

fields of artificial intelligence, the Semantic Web, systems engineering, software engineering, 

biomedical informatics, library science, enterprise bookmarking, and information architecture 

all create ontologies to limit complexity and to organize information. The ontology can then 

be applied to problem solving. The most well-known ontology in the biomedical community 

is Gene Ontology (GO) (http://geneontology.org/), which organizes expert knowledge about 

genes, their function, cellular location, and biological processes71. However, GO is devoid of 

disease concept, meaning that gene function and processes have been annotated for 

physiological conditions. Recently, several attempts have been undertaken to formalize the 

knowledge domain of neurodegenerative diseases for the use in integrative disease models. 

Notably, Malhotra and colleagues (2014) pioneered the development of the AD Ontology72

and Younesi and colleagues (2015) published the first ontology draft for Parkinson’s 

Disease73. Other ontologies have been consequently created74,75. Interestingly, Iyappan and 

colleagues (2016) defined a pathway terminology system representing a comprehensive set of 

signalling pathways and biological events to mine the knowledge domain of AD and visualize 

the perturbed pathways on top of their corresponding anatomical locations in human brain76. 

Using these domain-specific ontologies and vocabularies, it is possible to annotate and 
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harmonize both quantitative (e.g. expression metadata) and qualitative (e.g. textual) data. 

Such curated datasets provide the substrate for data integration. 

After standardization and annotation of scattered datasets, these quality datasets should be 

properly managed and handled within specific computational platforms so that they can 

become amenable to modeling and further analysis. One such platform is the AETIONOMY 

knowledgebase, an IMI-funded resource aiming at gathering, organizing, and managing 

knowledge and data on neurodegenerative diseases with focus on AD and Parkinson’s disease 

(available at http://www.aetionomy.eu/en/vision.html). The AETIONOMY platform is based 

on the tranSMART architecture, a knowledge management platform assisting researchers to 

generate data-driven hypotheses (available at http://transmartfoundation.org/). 

The integration of curated datasets within data management platforms requires robust 

modeling methods. Although many algorithms have been introduced to integrate quantitative 

and qualitative data and visualize them in the form of correlational and causal networks, these 

networks are usually not multidimensional and model one or two types of relations between a 

few numbers of biological entities. For instance, the AlzPathway map provides a collection of 

signalling pathways and biological events taught to be involved in the AD pathogenesis77. 

However, these maps lack of other data dimensions such as SNPs, epigenetic regulators, and 

clinical outcomes; moreover, they are not amenable to computational reasoning and dynamic 

simulation. In this regard, Biological Expression Language (BEL) is a modeling language 

addressing these caveats to a large extent. The principles underlying this modeling approach 

include standard representation of triples and their relationships (i.e. subject-relation-object) 

with clear directions for the relations as cause and effect (available at http://openbel.org/). 

Probably, the most important utilization of IDM is prediction of outcome. BEL models 

have been successfully applied to predicting AD pathophysiological mechanisms and 

biomarker identification tasks78. For instance, they can be subjected to reasoning algorithms 

such as Network Perturbation Analysis to predict the network behaviour under disease 

conditions using transcriptomic data79. 

Having said that, disease-specific integrative computational models play a crucial role in 

the IDM paradigm and constitute foundations for “actionable” P4 medicine measures in the 

area of AD and other neurodegenerative diseases (Figure 1). Accordingly, the integrative 

disease models are expected to support decision making for (I) early diagnosis of brain 

disease progression with mechanistic biomarkers (predictive), (II) stratification of individuals 

at high risk of developing neurodegenerative diseases based on mechanistic comorbidities 

http://openbel.org/
http://transmartfoundation.org/
http://www.aetionomy.eu/en/vision.html
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(preventive), (III) tailoring treatment to the right patient population (personalized), and (IV) 

optimizing “actionable” plans for the benefit of patients based on patient-centric information 

in EHRs and patients’ feedback in social media12. 

DATA SCIENCE AND INTEGRATIVE DISEASE MODELING: FROM 

CONCEPTS TO METHODS TO CLINICAL APPLICATION  

“Data science”, a new scientific field at the interface between mathematics, statistics, and 

computer science, had already a deep impact on many aspects of human activities, thanks to 

the automatic prediction of individual behaviour from personal data. Back up by advances in 

artificial intelligence and machine learning, this field is likely to play a pivotal role in the 

emergence of PM.

Large multimodal observational studies are acquired within clinical research with the aim 

to better understand the pathophysiology of diseases and identify potential therapeutic targets. 

In most cases though, such datasets serve to validate a specific set of hypotheses, with the 

common belief that data have a short time lapse before their value expires. The potential value 

of retrospective use of these data with hypothesis-free approaches is currently underestimated. 

However, they represent a huge potential to design effective systems to automatically position 

each patient into a disease progression scale, predict symptoms onset, find pathological sub-

types, monitor disease progression, and predict treatment efficacy for each patient.  

Nevertheless, this potential can only be exploited by the development of specific 

methodologies. In this regard, neurodegenerative diseases, spanning dynamically over 

decades in the life of individuals, represent great theoretical and computational challenges. 

The idea is to design an artificial intelligence system that will synthetize the changes observed 

in the data into one or several integrative digital models of disease progression that, in turn, 

will be used to estimate the current and future state of a certain patient given its past 

observations. Designing such systems requires: (I) building long-term disease progression 

models from collecting short-term observation data, where each patient is examined a 

different number of times, at different time-points; (II) integrating in the model various 

categories of structured data: clinical measurements, biological (blood/CSF) markers, 

structural/functional/metabolic imaging data, and potentially molecular data; (III) temporally 

co-registering the disease trajectories of every patient, which may start at a different age with 

a different pace and pathophysiological pattern; (IV) accounting for inter-individual 

variability in terms of spatio-temporal patterns of disease progression, since each individual 
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shows different anatomical/physiological/functional characteristics and these features will 

change in each patient in a different way; (V) turning descriptive scenarios of disease 

progression into predictive systems.  

The integration of spatio-temporal measurements into a digital model of disease 

progression is often based on the idea of regressing measurements against an estimated time 

to disease onset80,81. However, the goal of automatic diagnosis/staging/prognosis systems is 

estimating such a time to disease onset, which cannot be then a pre-requisite. This difficulty 

led to pragmatic solutions to temporally re-align disease trajectories, especially for set of 

unstructured measurements without spatial organization like whole images82-85. Another 

challenge is not only describing the scenario of events occurring during the disease course, 

but also the variability of such a scenario among different individuals. Mixed-effects models 

seem to be a piece of choice to account for both population and individual effects86, and, 

therefore, pave the way to digital models that may be personalized to individual cases. 

Such mixed-effect models may be used together with the combination of spatial 

normalization and temporal alignment, with re-synchronisation of the individual timeline 

using the concept of “time warps”87,88 or permutation of discrete events89. These ideas led to 

predictive staging systems, where patients are given an estimated stage of disease 

progression89,90.  

The question of how to disentangle variations in measurements and in pace of changes 

from longitudinal observations still remains open. However, recent theoretical developments 

for estimating the statistical distribution of individual trajectories are promising91,92. A 

practical example of what can be done within this framework is illustrated in Figure 2

representing Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog) scores 

of 248 individuals pooled into 4 categories of cognitive functions (i.e. memory, concentration, 

language, and praxis).  

CONCLUDING REMARKS  

The field of medicine is at a tipping point, a transformational stage, with emerging 

paradigm shifts in how we conceptualize medical science and research. Clearly one, if not the 

major breakthrough objective is set out to accomplish PM, facilitated by converging advances 

in theory and technology, such as SB, genomic sequencing, exploratory high-throughput 

analyses, the emergence of blood-based biomarkers, data and computational science, 

integrated disease modeling, EHRs, smart technologies and P4 medicine. Towards this end, 



18 

the PMI-CP (https://www.whitehouse.gov/precision-medicine and 

https://www.nih.gov/precision-medicine-initiative-cohort-program) – launched in January 

2015 by the U.S. President Obama – is noteworthy. Under this program, over a million U.S. 

citizens are expected to provide their genetic data, biological samples and behavioral data, 

which will be extensively characterized and subsequently linked to EHRs. High-density data 

that will be generated through the application of SB will be invaluable to dissect the 

molecular underpinnings of different common complex diseases, which will lead to the 

development of safe and effective individually-tailored biomarker-guided therapies.  

The fields of Neurology, Psychiatry and Neuroscience have yet to follow these giant 

footsteps and reintegrate into Medicine embracing PM as primary target of concerted efforts. 

The field AD and other neurodegenerative diseases (or brain protein misfolding 

disorders/proteinopathies with neurodegenerative pathology) has a larger economic impact 

than cancer, yet surprisingly an equivalent and appropriate level of funding has by far never 

been granted to the global epidemic of AD93. Learning from the advances in oncology, there 

is no choice than to accelerate the acceptance and implementation of the PM paradigm for 

improved health outcomes, which will have a significant impact on worldwide economic 

outcomes. After more than a decade of clinical trial failures the acceptance of a PM paradigm 

for AD research and drug development is gaining momentum and this is why the time is right 

(in the worst of times with exponentially rising investments into R&D and equally decreasing 

rates of a success in therapy developments) for us to initiate and establish a global initiative, 

the APMI consortium (Figure 1). Consequently, PM in the field of AD and 

neurodegeneration should target genetic risk and the molecular stages of disease, meaning at 

the earliest preclinical asymptomatic stage94, when the disease is potentially reversible, 

tailored to delay, stop – and possibly prevent – the progression to clinical signs and 

symptoms. Both citizens (active participants and no longer study “patients”) and policy-

makers need to become more actively engaged with caregivers, basic scientists, and clinical 

researchers in a common effort to internationalize, centralize and revolutionize the current 

approach to clinical and translational neurological and psychiatric research. Inevitably, this 

requires a radical theoretical and cultural shift from traditional concepts, based on the 

treatment of late stage diseases guided by heterogeneous clinical phenotypes treated by 

hypothesized “one-size fits all - magic bullet therapies”, to the patient centered PM-based 

approach, focused on early screening for risk and detection of biology, with customized 

targeted and biomarker-guided therapies to achieve effective and safe prevention and therapy 

https://www.nih.gov/precision-medicine-initiative-cohort-program
https://www.whitehouse.gov/precision-medicine
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grounded on the biological characteristics of the individual patient. The vision and objective 

of the APMI is to facilitate a paradigm shift and transformation of research towards PM 

through international interdisciplinary networking and collaboration. 

SOURCE OF FUNDING 
HH and JCC are supported by the AXA Research Fund, the Fondation Université Pierre et 

Marie Curie and the Fondation pour la Recherche sur Alzheimer, Paris, France. The research 
leading to these results has received funding from the program “Investissements d’avenir” 
ANR-10-IAIHU-06 (HH, JCC).  

SEO is supported by the National Institute on Aging of the National Institutes of Health 
under Award Numbers R01AG051848 and R56AG054073. The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the 
National Institutes of Health.  

CONFLICT OF INTEREST 
HH declares no competing financial interests related to the present article. He serves as 

Senior Associate Editor for the journal Alzheimer’s & Dementia®; he has been a scientific 
consultant and/ or speaker and/or attended scientific advisory boards of Axovant, Anavex, Eli 
Lilly and company, GE Healthcare, Cytox, Jung Diagnostics, Roche, Biogen Idec, Takeda-
Zinfandel, Oryzon Genomics; and receives research support from the Association for 
Alzheimer Research (Paris), Pierre and Marie Curie University (Paris), Pfizer & Avid (paid to 
institution); and has patents as co-inventor, but received no royalties: A patent in vitro 
multiparameter determination method for the Diagnosis and early diagnosis of 
neurodegenerative disorders. Patent number: 8916388 Issued. A patent in vitro procedure for 
diagnosis and early diagnosis of neurodegenerative diseases. Patent number: 8298784 Issued. 
A patent Neurodegenerative Markers for Psychiatric Conditions. Publication number: 
20120196300 Issued. A patent IN VITRO MULTIPARAMETER DETERMINATION 
METHOD FOR THE DIAGNOSIS AND EARLY DIAGNOSIS OF 
NEURODEGENERATIVE DISORDERS. Publication number: 20100062463 Issued. A 
patent IN VITRO METHOD FOR THE DIAGNOSIS AND EARLY DIAGNOSIS OF 
NEURODEGENERATIVE DISORDERS. Publication number: 20100035286 Issued. A 
patent In vitro Procedure for Diagnosis and Early Diagnosis of Neurodegenerative Diseases. 
Publication number: 20090263822 Issued. A patent in vitro method for the diagnosis of 
neurodegenerative diseases. Patent number: 7547553 Issued. A patent CSF Diagnostic in 
Vitro Method for Diagnosis of Dementias and Neuroinflammatory Diseases. Publication 
number: 20080206797 Issued. A patent in vitro Method For the Diagnosis of 
Neurodegenerative Diseases. Publication number: 20080199966 Issued. A patent 
Neurodegenerative Markers for Psychiatric Conditions. Publication number: 20080131921 
Issued. SEO has the following patents pending related to precision medicine: 
PCT/US2011/036496 and PCT/US2014/067562 (additional patent filed). He has served on an 
advisory board for and received honoraria from Roche and has equity in Cx Precision 
Medicine, Inc. VEP reports personal fees from Cytox Ltd. JCC declares no competing 
financial interests related to the present article. He has been scientific consultant for BMS, 
Zambon, Pfizer, Abbvie, Ipsen, Clevexel, Amarantus, and received research grants from the 
Michael J Fox Foundation, French Ministry of Health, French Ministry of Research. He owns 
stock options from B&A Therapeutics. BD reports personal fees from Eli Lilly. SL has 
received lecture honoraria from Roche. EY, SD, KR, and KB reports no conflicts of interest.  



20 

REFERENCES  

1 Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human 
genome. Nature 2001;409:860-921

2 Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med
2015;372:793-5 

3 Lista S, Khachaturian ZS, Rujescu D, Garaci F, Dubois B, Hampel H. Application of 
Systems Theory in Longitudinal Studies on the Origin and Progression of Alzheimer's 
Disease. Methods Mol Biol 2016;1303:49-67 

4 Hampel H, Lista S, Khachaturian ZS. Development of biomarkers to chart all 
Alzheimer's disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers 
Dement 2012;8:312-36 

5 Alzheimer A. Über einen eigenartigen schweren. Erkrankungsprozeß der Hirnrinde. 
Neurologisches Centralblatt 1906;23:1129-36   

6 Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid 
A4 protein resembles a cell-surface receptor. Nature 1987;325:733-6  

 
7 Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic 

mice overexpressing V717F beta-amyloid precursor protein. Nature 1995;373:523-7 
 
8 Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates 

Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173-7 
 
9 Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science

1992;256:184-5 
 
10 Van der Flier WM. Clinical heterogeneity in familial Alzheimer's disease. Lancet 

Neurol 2016. doi: 10.1016/S1474-4422(16)30275-7 

11 Portelius E, Andreasson U, Ringman JM, et al. Distinct cerebrospinal fluid amyloid 
beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's 
disease. Mol Neurodegener 2010;5:2

12 Younesi E, Hofmann-Apitius M. From integrative disease modeling to predictive, 
preventive, personalized and participatory (P4) medicine. EPMA J 2013;4:23

13 Hampel H, O’Bryant SE, Castrillo JI, et al. PRECISION MEDICINE - The Golden 
Gate for Detection, Treatment and Prevention of Alzheimer’s Disease. J Prev Alz Dis 2016. 
doi: 10.14283/jpad.2016.112 

14 Khachaturian ZS, Khachaturian AS. The Paradox of Research on Dementia-
Alzheimer’s Disease. J Prev Alz Dis 2016. doi: 10.14283/jpad.2016.117 

15 National Research Council (US) Committee on a Framework for Developing a New 
Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for 



21 

Biomedical Research and a New Taxonomy of Disease. Washington (DC): National 
Academies Press (US), 2011 

16 Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for 
Alzheimer's disease: the IWG-2 criteria. Lancet Neurol 2014;13:614-29.

17 Hampel H, Lista S, Teipel SJ, et al. Perspective on future role of biological markers in 
clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. 
Biochem Pharmacol 2014;88:426-49

18 Hampel H, Lista S. Use of biomarkers and imaging to assess pathophysiology, 
mechanisms of action and target engagement. J Nutr Health Aging 2013;17:54-63 

19 Hampel H, Lista S. Alzheimer disease: from inherited to sporadic AD-crossing the 
biomarker bridge. Nat Rev Neurol 2012;8:598-600 

20 Zetzsche T, Rujescu D, Hardy J, Hampel H. Advances and perspectives from genetic 
research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn
2010; 10:667-690 

21 Lista S, Garaci FG, Toschi N, Hampel H. Imaging epigenetics in Alzheimer's disease. 
Curr Pharm Des 2013;19:6393-415 

22 Lista S, O’Bryant SE, Blennow K, et al. Biomarkers in sporadic and familial 
Alzheimer’s Disease. J Alzheimers Dis 2015;47:291-317. 

23 Rosen C, Hansson O, Blennow K, Zetterberg H. Fluid biomarkers in Alzheimer’s 
disease - current concepts. Mol Neurodegener 2013;8:20.  

24 Blennow K, Zetterberg H, Fagan AM. Fluid biomarkers in Alzheimer disease. Cold 
Spring Harb Perspect Med 2012;2:a006221. 

25 Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma 
biomarkers in Alzheimer disease. Nat Rev Neurol 2010;6:131-44.  

26 Hampel H, Shen Y, Walsh DM, et al. Biological markers of amyloid beta-related 
mechanisms in Alzheimer’s disease. Exp Neurol 2010;223:334-46. 

27 Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ. Total 
and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol
2010;45:30-40.  

28 O’Bryant SE, Lista S, Rissman RA, et al. Comparing biological markers of Alzheimer’s 
disease across blood fraction and platforms: Comparing apples to oranges. Alzheimers 
Dement (Amst) 2016;3:27-34. 

29 O’Bryant SE, Gupta V, Henriksen K, et al. Guidelines for the standardization of 
preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. 
Alzheimers Dement 2015;11:549-60. 



22 

30 Henriksen K, O’Bryant SE, Hampel H, et al. The future of blood-based biomarkers for
Alzheimer’s disease. Alzheimers Dement 2014;10:115-31. 

31 Snyder HM, Carrillo MC, Grodstein F, et al. Developing novel blood-based biomarkers 
for Alzheimer’s disease. Alzheimers Dement 2014;10:109-14.  

32 Gupta VB, Sundaram R, Martins RN. Multiplex biomarkers in blood. Alzheimers Res 
Ther 2013;5:31.  

33 Teipel SJ, Grothe M, Lista S, Toschi N, Garaci FG, Hampel H. Relevance of magnetic 
resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North 
Am 2013;97:399-424.  

34 Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging markers for 
the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci
2011;34:430-42.  

35 Lista S, Garaci FG, Ewers M, et al. CSF Abeta1-42 combined with neuroimaging 
biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers 
Dement 2014;10:381-92.  

36 Poil SS, de Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-
Hansen K. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI 
stage. Front Aging Neurosci 2013;5:58.  

37 Stam CJ. Use of magnetoencephalography (MEG) to study functional brain networks in 
neurodegenerative disorders. J Neurol Sci 2010;289:128-34.  

38 Jørgensen JT. Companion diagnostics: the key to personalized medicine. Foreword. 
Expert Rev Mol Diagn 2015;15:153-6.  

39 Lyman GH, Moses HL. Biomarker Tests for Molecularly Targeted Therapies--The Key 
to Unlocking Precision Medicine. N Engl J Med 2016;375:4-6.  

40 Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of 
Alzheimer’s disease. N Engl J Med 2013;369:341-50 

41 Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-
moderate Alzheimer’s disease. N Engl J Med 2014;370:322-33 

42 Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-
moderate Alzheimer’s disease. N Engl J Med 2014;370:311-21 

43 Noorbakhsh F, Overall CM, Power C. Deciphering complex mechanisms in 
neurodegenerative diseases: the advent of systems biology. Trends Neurosci 2009;32:88-100 

44 Castrillo JI, Oliver SG. Alzheimer’s as a Systems-Level Disease Involving the  
Interplay of Multiple Cellular Networks. Methods Mol Biol 2016;1303:3-48 



23 

45 FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) 
Resource. Silver Spring (MD): Food and Drug Administration (US), Bethesda (MD), National 
Institutes of Health (US), 2016- 

46 Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet
2010;11:241-6 

47 Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on 
genomics. J Genet Genomics 2011;38:95-109  

48 Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals 
identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013;45:1452-8 

 
49 Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological 

insights from 108 schizophrenia-associated genetic loci. Nature 2014;511:421-7 

50 Daly AK. Pharmacogenetics and human genetic polymorphisms. Biochem J
2010;429:435-49 

51 Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J 
Med 2013;368:117-27

52 Brinkmalm A, Portelius E, Öhrfelt A, et al. Explorative and targeted neuroproteomics in 
Alzheimer's disease. Biochim Biophys Acta 2015;854:769-78

53 Veenstra TD. Neuroproteomic tools for battling Alzheimer’s disease. Proteomics 2016. 
doi: 10.1002/pmic.201600211. 

54 Proitsi P, Kim M,  Association of blood lipids with Alzheimer’s disease: A 
comprehensive lipidomics analysis. Alzheimers Dement 2016. doi: 10.1016/j.jalz.2016.08.003  

55 Trushina E, Mielke MM. Recent advances in the application of metabolomics to 
Alzheimer’s Disease. Biochim Biophys Acta 2014;1842:1232-9.  

56 Czech C, Berndt P, Busch K, et al. Metabolite profiling of Alzheimer’s disease 
cerebrospinal fluid. PLoS One 2012;7:e31501. 

57 Weston AD, Hood L. Systems biology, proteomics, and the future of health care: 
toward predictive, preventative, and personalized medicine. J Proteome Res 2004;3:179-96 

58 Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol
2004;22:1253-9 

59 O’Bryant SE, Mielke MM, Rissman RA, et al. Blood based biomarkers in Alzheimer’s 
disease: Current state of the science and a novel collaborative paradigm for advancing 
discovery to clinic. Alzheimers Dement 2016. In press

60 Hood L, Flores M. A personal view on systems medicine and the emergence of 
proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol
2012;29:613-24 



24 

61 Gligorijević V, Malod-Dognin N, Pržulj N. Integrative methods for analysing big data 
in precision medicine. Proteomics 2016;16:741-58 

62 Beyer MA, Laney D. The Importance of ‘Big Data’: A Definition. Stamford, CT: 
Gartner, 2012 

63 Margolis R, Derr L, Dunn M, et al. The National Institutes of Health’s Big Data to 
Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc
2014;21:957-8 

 
64 Geerts H, Dacks PA, Devanarayan V, et al. Big data to smart data in Alzheimer’s 

disease: The brain health modeling initiative to foster actionable knowledge. Alzheimers 
Dement 2016;12:1014-21

65 Haas M, Stephenson D, Romero K, Gordon MF, Zach N, Geerts H; Brain Health 
Modeling Initiative (BHMI). Big data to smart data in Alzheimer’s disease: Real-world 
examples of advanced modeling and simulation. Alzheimers Dement 2016;12:1022-30 

66 Saykin AJ, Shen L, Yao X, et al. Genetic studies of quantitative MCI and AD 
phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement 2015;11:792-
814

67 Choi IY, Kim TM, Kim MS, Mun SK, Chung YJ. Perspectives on clinical informatics: 
integrating large-scale clinical, genomic, and health information for clinical care. Genomics 
Inform 2013;11:186-90 

68 Bai JP, Abernethy DR. Systems pharmacology to predict drug toxicity: integration 
across levels of biological organization. Annu Rev Pharmacol Toxicol 2013;53:451-73 

69 Maudsley S,Martin B, Janssens J, et al. Informatic deconvolution of biased GPCR 
signaling mechanisms from in vivo pharmacological experimentation. Methods 2016;92:51-
63 

70 Peck RW. The right dose for every patient: a key step for precision medicine.  Nat Rev 
Drug Discov 2016;15:145-6 

71 Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of 
biology, The Gene Ontology Consortium. Nat Genet 2000;25:25-9 

72 Malhotra A, Younesi E, Gündel M, Müller B, Heneka MT, Hofmann-Apitius M. ADO: 
A disease ontology representing the domain knowledge specific to Alzheimer's disease. 
Alzheimers Dement. 2014;10:238-46  

73 Younesi E, Malhotra A, Gündel M, et al. PDON: Parkinson's disease ontology for 
representation and modeling of the Parkinson's disease knowledge domain. Theor Biol Med 
Model 2015;12:20



25 

74 Sahoo SS, Lhatoo SD, Gupta DK, et al. Epilepsy and seizure ontology: towards an 
epilepsy informatics infrastructure for clinical research and patient care. J Am Med Inform 
Assoc 2014;21:82-9 

75 Malhotra A, Gündel M, Rajput AM, et al. Knowledge retrieval from PubMed abstracts 
and electronic medical records with the Multiple Sclerosis Ontology. PLoS One
2015;10:e0116718

76 Iyappan A, Gündel M, Shahid M, et al. Towards a Pathway Inventory of the Human 
Brain for Modeling Disease Mechanisms Underlying Neurodegeneration. J Alzheimers Dis
2016;52:1343-60 

77 Mizuno S, Iijima R, Ogishima S, et al. AlzPathway: a comprehensive map of signaling 
pathways of Alzheimer’s disease. BMC Syst Biol 2012;6:52 

78 Kodamullil AT, Younesi E, Naz M, Bagewadi S, Hofmann-Apitius M. Computable 
cause-and-effect models of healthy and Alzheimer’s disease states and their mechanistic 
differential analysis. Alzheimers Dement 2015;11:1329-39 

79 Martin F, Sewer A, Talikka M, Xiang Y, Hoeng J, Peitsch MC. Quantification of  
biological network perturbations for mechanistic insight and diagnostics using two-layer 
causal models. BMC Bioinformatics 2014;15:238 

80 Benzinger TL, Blazey T, Jack CR Jr, et al. Regional variability of imaging biomarkers 
in autosomal dominant Alzheimer's disease. Proc Natl Acad Sci USA 2013;110:E4502-9 

81 Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC; Alzheimer’s 
Disease Neuroimaging Initiative. Early role of vascular dysregulation on late-onset 
Alzheimer's disease based on multifactorial data-driven analysis. Nat Commun 2016;7:11934  

82 Donohue MC, Jacqmin-Gadda H, Le Goff M, et al. Estimating long-term multivariate 
progression from short-term data. Alzheimers Dement 2014;10:S400-10

83 Samtani MN, Raghavan N, Shi Y, et al. Disease progression model in subjects with 
mild cognitive impairment from the Alzheimer's disease neuroimaging initiative: CSF 
biomarkers predict population subtypes. Br J Clin Pharmacol 2013;75:146-61

84 Delor I, Charoin JE, Gieschke R, Retout S, Jacqmin P. Modeling Alzheimer's Disease 
Progression Using Disease Onset Time and Disease Trajectory Concepts Applied to CDR-
SOB Scores From ADNI. CPT Pharmacometrics Syst Pharmacol 2013;2:e78 

85 Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H; Alzheimer's Disease 
Neuroimaging Initiative. BrainAGE in Mild Cognitive Impaired Patients: Predicting the 
Conversion to Alzheimer's Disease. PLoS One 2013;8:e67346 

86 Lavielle M. Mixed Effects Models for the Population Approach: Models, Tasks, 
Methods and Tools. Series: Chapman & Hall/CRC Biostatistics Series, Boca Raton (FL): 
CRC Press, Taylor & Francis Group (US), 2015 



26 

87 Durrleman S, Pennec X, Trouvé A, Gerig G, Ayache N. Spatiotemporal atlas estimation 
for developmental delay detection in longitudinal datasets. Med Image Comput Comput Assist 
Interv 2009;12:297-304 

88 Durrleman S, Pennec X, Trouvé A, Braga J, Gerig G, Ayache N. Toward a 
comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape 
data. Int J Comput Vis 2013;103:22-59 

89 Fonteijn HM, Modat M, Clarkson MJ, et al. An event-based model for disease 
progression and its application in familial Alzheimer's disease and Huntington's disease. 
Neuroimage 2012;60:1880-9 

 
90 Jedynak BM, Lang A, Liu B, et al. A computational neurodegenerative disease 

progression score: method and results with the Alzheimer's disease Neuroimaging Initiative 
cohort. Neuroimage 2012;63:1478-86

91 Schiratti JB, Allassonniere S, Colliot O, Durrleman S. Learning spatiotemporal 
trajectories from manifold-valued longitudinal data. Presented at the Advances in Neural 
Information Processing Systems 28 (NIPS 2015), 2015: 2404-12 

92 Schiratti JB, Allassonniere S, Routier A, Colliot O, Durrleman S. A mixed-effects 
model with time reparametrization for longitudinal univariate manifold-valued data. Presented 
at the 24th International Conference, IPMI 2015 - Information Processing in Medical 
Imaging, Sabhal Mòr Ostaig, Isle of Skye, UK, Jun 2015:564-75  

93 Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary costs of 
dementia in the United States. N Engl J Med 2013;368:1326-34 

94 Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: Definition,
natural history, and diagnostic criteria. Alzheimers Dement 2016;12:292-323 



27 

FIGURE CAPTIONS 

Figure 1. Translational bench to bedside data flow within the conceptual framework of the 

Alzheimer Precision Medicine Initiative (APMI). 

The IDM Data Sciences lifecycle takes advantage of both data- and knowledge-driven 

approaches so that quantitative (biomolecular, neuroimaging, neurophysiological and clinical 

data) and qualitative (literature data) are first represented in a harmonized, standardized 

format to be prepared for proper management within an integrative computational 

infrastructure. Once these heterogeneous datasets and scales are leveraged, the next step is to 

integrate them using modeling algorithms that allow for further analysis such as predictive 

operations (reasoning, simulation, and visualization). The output should be an “actionable” 

model that predicts the trajectory of individual patient-centric detection or treatment within 

the P4M implementation.  

Abbreviations: APMI cohort or APMI-CP, Alzheimer Precision Medicine Initiative cohort 

or cohort program; IDM, Integrative Disease Modeling; P4M, P4 (Predictive, Preventive, 

Personalized, and Participatory) medicine.  

Figure 2. Digital model of cognitive decline in AD, built from the ADAS-Cog scores 

(pooled into 4 categories of cognitive functions) observed repeatedly in 248 subjects with an 

average of 5 follow-up visits, who progressed from prodromal stage MCI to AD dementia 

during the observation period (data derived from the ADNI). The model consists of an 

average disease progression model showing the typical scenario of cognitive decline from 

prodromal symptomatic (MCI) to syndromal symptomatic (dementia) stages of AD (panel a), 

and a set of parameters showing the variability of this scenario in terms of age at disease onset 

(panel b), pace of cognitive decline (panel c), temporal ordering and relative delay between 

declines of different cognitive functions (panels d e and e) within the studied population. 
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Abbreviations: AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s Disease Assessment 

Scale-cognitive subscale; ADNI, Alzheimer's Disease Neuroimaging Initiative; MCI, mild 

cognitive impairment.  
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Table 1: Evolving lexicon and terminology of Precision Medicine 

Concept Abbreviation Definition

Big Data A repository of large amounts of data sets generated by 
data mining tools. Big Data includes information obtained 
through systems theory- and, knowledge-based approaches 
and clinical records 

Biomarkers BMs A defined characteristic that is measured as an indicator of 
normal biological processes, pathogenic process, or response 
to an exposure or intervention, including therapeutic 
interventions. Molecular, histologic, radiographic, or 
physiological characteristics are types of biomarkers. A 
biomarker is not an assessment of how an individual feels, 
functions or survives. Categories of biomarkers include: 
susceptibility/risk biomarker, diagnostic biomarker, 
monitoring biomarker, prognostic biomarker, predictive 
biomarker, pharmacodynamics/response biomarker and safety 
biomarker45

Data Science Interdisciplinary field about processes and systems to 
extract knowledge from data in different forms, either 
structured or unstructured, which is a continuation of some of 
the data analysis fields including statistics, artificial 
intelligence, machine learning, data mining, and predictive 
analytics

Electronic Health Records EHRs Systematized gathering of population electronically-stored 
health information and clinical data in a digital format. These 
registries can be shared across different health care settings 
through network systems. EHRs eliminate the need to track 
down a patient’s previous paper medical records and assist in 
ensuring that data are accurate and legible

Genomic Medicine Discipline utilizing personal genomic information for 
diagnostic characterization and the development of 
therapeutic plans 

Integrative Disease 
Modeling

IDM Multidisciplinary approach to standardize, manage, 
integrate, and interpret multiple sources of structured and 
unstructured quantitative and qualitative data across 
biological scales using computational models that 
assist decision making for translation of patient-specific 
molecular mechanisms into tailored clinical applications

Mobile Health mHealth Smart personal mobile devices (phones, wearables, in-
home devices and Apps) collecting health information aimed 
at improving patient care

Omic Disciplines High-throughput screening tools aimed at fully collecting, 
characterizing and quantifying pools of biological molecules 
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(DNA sequences, transcripts, proteins, metabolites/lipids) that 
translate into the structure, function, and dynamics of an 
organism and/or organisms

Ontology Formal naming and designation of the types, properties, 
and interactions of the entities that really or fundamentally 
exist for a specific domain of discourse

P4 (Predictive, Preventive, 
Personalized, and 
Participatory) Medicine

P4M Translational medicine component of the Precision 
Medicine paradigm. It is a clinical practice model aimed at 
applying knowledge, tools, and strategies of systems 
medicine. It involves generation, mining, and integration of 
enormous amounts of data on individual patients to produce 
predictive and “actionable” models of wellness and disease

Personalized Medicine Component of P4 Medicine aiming at tailoring treatment 
for individual patients in contrast with “one-size fits-all” or 
traditional “magic bullet” drug approach

Precision Medicine PM Translational science paradigm related to both health and 
disease. PM is a biomarker-guided medicine on systems-
levels taking into account methodological advancements and 
discoveries of the comprehensive pathophysiological profiles 
of complex polygenic, multi-factorial neurodegenerative 
diseases (proteinopathies of the brain). It aims at optimizing 
the effectiveness of disease prevention and therapy, by 
considering (customized) an individual’s specific biological 
makeup (e.g. genetic, biochemical, phenotypic, lifestyle, and 
psychosocial characteristics) for targeted interventions 
through P4M implementation 

Systems Biology SB Evolving hypothesis-free, exploratory, holistic (non-
reductionistic), global, integrative, and interdisciplinary 
paradigm using advances in multimodal high-throughput 
technological platforms that enable the examination of 
networks of biological pathways where elevated amounts of 
structurally and functionally different molecules are 
simultaneously explored over time at a system level (i.e., at 
the level of cells, group of cells, tissues, organs, apparatuses, 
or even whole organisms)

Systems Medicine Holistic paradigm applying systems biology-based 
strategies to medical research. It aims at integrating a variety 
of considerable biomedical data at all levels of the cellular 
organization (by employing global, integrative, and 
statistical/mathematical/computational modelling) to explicate 
the pathophysiological mechanisms, prognosis, diagnosis, and 
treatment of diseases

Systems Theory ST Translational research theory of the Precision Medicine 
paradigm. It is an interdisciplinary conceptual framework 
allowing for the conceptualization of novel/original models to 
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extract and explicate all systems levels and different 
spatiotemporal data types of complex polygenic diseases

Taxonomy Scientific classification into groups based on shared 
characteristics and natural relationships. Taxonomy adds a 
relation dimension between individual items and is defined as 
a way to group similar items together 


