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Abstract 

The concept of microglial priming has developed through in vivo studies and is operationally 

defined as an exaggerated microglial production of soluble mediators (NO and cytokines e.g. IL-

1β, TNF-α, IL-6) following a pro-inflammatory activation event (e.g. LPS-treatment). In practice 

microglial priming predisposes the brain to degeneration through the promotion of inflammatory 

mechanisms. In vivo studies of Crry (a major murine cell-surface C3-regulator) KO mice previously 

identified a novel role for C in the induction of the primed microglial phenotype, implicating iC3b 

ligation of microglial CR3. The purpose of this study was to further investigate C-dependent 

microglial priming and its mechanism(s) through study of microglia in isolation in vitro. 

Experiments using purified fluid-phase human iC3b failed to demonstrate any phenotypic effects 

of ligand exposure. Given the results of previous investigations concerning CR3 ligands, combined 

with the results of binding studies and sequence comparisons, it appears likely that, while still 

able to engage the cell-borne CR3, fluid-phase iC3b is incapable of exerting significant effects on 

the microglial phenotype.  

Studies using Zymsoan and C-fixing mAb-sensitised TC plastic as a means to generate ligands to 

investigate the consequences of microglial CR3 engagement by iC3b were confounded by the 

stimulatory effects of the C-activating agents (i.e. zymsoan or mAb) which prevented attempts to 

dissect the effects of the isolated interaction. Nonetheless, specific effects were attributable to 

the C3-derived CR3 ligands generated, which dramatically and significantly reduced the pro-

inflammatory responses evoked by the C-activating agents. 

Investigations using C3-activation fragments immobilised on native (i.e. non-sensitised) TC plastic 

demonstrated phenotypic effects of microglial iC3b-CR3 ligation consistent with the previously 

reported mechanism of C-dependent microglial priming. 

Experiments using cultured Crry KO microglia demonstrated increased sensitivity to autologous C 

activation. Phenotyping experiments, however, failed to show any consequence of Crry 

expression status, even when the intrinsic sensitivity of Crry KO cells to C3 activation and 

deposition was effected, thus mimicking the in vivo scenario (including the potential for iC3b 

ligation of CR3). 

Data gathered from the several systems designed to ligate CR3 of microglial cells with C3-derived 

ligands highlight the broad range of potential cellular responses mediated by CR3 and emphasise 

the importance of context for the consequence of this interaction. In so doing, these data also 



 
  2

 

further evidence that under certain circumstances, iC3b-CR3 binding can induce a primed 

microglial phenotype. 
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1 Introduction 

1.1 The Complement System 

1.1.1 Components 

The C system consists of a complex network of more than thirty interacting partners, comprising 

effector proteins found in the fluid-phase when inactivated, an array of cell membrane bound 

receptors, some of which possess important regulatory activity, along with a number of dedicated 

regulators present both on membranes and in the fluid phase (2, 5, 10-14). The system can be 

subdivided into discrete parts, with three defined activation pathways (antibody, alternative and 

lectin) converging on the key central component, C3, activation of which leads into the terminal 

pathway, concluding with the generation of a protein complex with the ability to form a pore in a 

target membrane (Table 1.1 – 1.3). To accomplish their defined role in the C system, many 

components possess catalytic activity; specifically the activators possess serine protease activity 

while the regulators catalyse Factor I activity and/or the decay of the convertases (10, 15-17). C is 

found in all body fluids, but the composition is best characterised in blood, with levels of 

individual components ranging widely. Unsurprisingly, the central and multifunctional 

component, C3 is most abundant with levels of ~1.2mg mL-1 in human serum, constituting ~1% (by 

mass) of total protein. All told, C components make up ~15% of the total serum globulin fraction 

(2, 5, 15, 16). The C components are mainly produced by hepatocytes but other cell types such as 

monocytes and macrophages, epithelial cells, fibroblasts and dendritic cells also make important 

contributions (18, 19). The expression of the various receptors and regulators is cell type and 

context specific. Examples of well established cell-C receptor/regulator combinations include CR3 

expression by phagocytes and CD59 expression by RBCs (14, 20). Through their various 

characteristic binding and functional (e.g. catalytic) domains the different groups of C 

components interact with triggering stimuli and each other, along with components of other 

biological systems, in multifaceted and complex ways to effect the system’s functions (discussed 

in later sections). 
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Table 1.1: Component proteins of the C pathways [from Morgan, BP; Chapter 36: Complement (2)] 
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Table 1.2: Regulatory proteins of the C pathways [from Morgan, BP; Chapter 36: Complement (2)] 

Table 1.3: Receptors for products of C activation [from Morgan, BP; Chapter 36: Complement (2)] 
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1.1.2 Activation 

Activation of the multi-component C cascade is multifaceted and complex. This has arisen due to 

the diverse array of stimuli which can trigger activation and the many regulators which may 

modulate the process. During the activation process the recognition components of the distinct 

activation pathways engage their cognate molecular entities within the locality, triggering a 

cascade of protein-protein interactions occurring through enzymatic cleavage (along with 

enzymatic activity acquisition), conformational change, covalent association and complex 

formation events. The active fragments and complexes generated in this process interact with 

sequential system targets, receptors and regulators, to exert the effects of C (5, 10-12, 21).  

C comprises three activation pathways (Fig. 1.1). Although the activation pathways of C converge, 

they each have distinct recognition and initiating components, the biochemical interactions of 

which have been studied intensively and are considered fairly well defined (17). The classical 

pathway was by far the earliest recognised (22, 23), followed by the alternative pathway (24-27) 

and finally the lectin pathway (28). Since the classical pathway is largely dependent on antibody 

for activation, it cannot be considered a true innate immune effector response. Indeed, the 

emergence of the classical pathway appears to have been closely if not directly linked to the 

evolution of adaptive immunity (29-33). The alternative and lectin pathways, however, are 

triggered independently of any adaptive immune entity and are therefore true innate immune 

mechanisms. 
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Fig. 1.1: The C system. Figure Illustrating the 3 complement activation pathways and their 

interactions, including convergence and amplification at the level of C3 and formation of the lytic 

complement multi-protein complex, the Membrane Attack Complex (MAC) [from (5)].    
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1.1.2.1 Classical Pathway 

As has been known since the work of Bordet in 1894, the chief trigger of the classical pathway is 

antibody-antigen complex (22, 23). C1, the first component of the classical pathway, is a large 

multi-protein complex of C1q (460kD) and a heterotetrameric complex of C1r2s2 (360kD) which is 

formed in the sequence C1s-C1r-C1r-C1s. C1q itself is formed from three highly homologous 

polypeptide chains derived from three closely linked genes (34). Six copies of each C1q subunit 

are present and one of each combine in alignment to form a total of six trimeric strands, each 

with characteristic C-terminal globular head (~135aa) and N-terminal collagen-like (~80aa) 

regions. The A and B chains within each trimer associate through disulphide bonds formed by 

half-cysteine residues at their N-termini, and the C chain in each trimer associates in the same 

way with the C chain in an adjacent strand, forming a structural unit ABC-CBA. These then 

associate via strong non-covalent interactions through their central fibril-like portions to form the 

hexameric C1q molecule with its characteristic “bunch of tulips” structure (Fig.1.1). C1r and C1s 

associate in a Ca2+ dependent manner to form a pro-enzyme complex (C1r2C1s2) which binds 

between the collagenous central region of the assembled C1q, which acts as a scaffold. C1 fulfils 

the role of immune complex recognition through the six globular heads of C1q and that of first 

enzymatic cleavage events through C1r2C1s2  (13, 35-37). 

C1 is able to complex with antigen-bound IgG and IgM via its globular heads and upon doing so is 

thought to undergo a conformational change in the C1q collagen domain leading to the activation 

of the pro-enzyme complex. The C1r subunits first cleave each other and then their neighbouring 

C1s molecules, which are then able to extend away from the C1q scaffolding to act on C4 and C2. 

C4 is cleaved to C4a which is released and the larger C4b molecule which, similarly to newly 

cleaved/nascent C3b, possesses a metastable binding site containing a thioester. In the same 

manner as C3b, C4b binds to locally available hydroxyl and amino groups and can thus become 

covalently attached to proximal/nearby surfaces. Following its binding to C4b in a metal cation 

dependant manner, C2 can be cleaved by active C1s subunits in adjacent C1 complexes releasing 

the C2b fragment and forming the classical pathway C3 convertase, C4bC2a (2, 15, 38). 

Complexed antibody is the archetypical classical C pathway activator, but it is well known that 

different isotypes (i.e. IgA, IgD, IgE, etc.) and sub-classes (i.e. IgG1, IgG2, etc.) have different 

classical C-activating potential. For example, IgA and IgE are considered non-activating, whereas 

certain IgG subclasses and IgM are classical pathway activators; in humans IgG1 and IgG3 are 

potent activators whereas IgG4 is not. Additionally, the density of complexed antibody is also of 

major significance, with greater density leading to more efficient activation. C1 initiates the 

classical cascade through binding to Fc portions of complexed antibodies via the six globular 

heads of C1q and it is believed that multivalent C1q Fc binding leads to more efficient activation 



 
  9

 

of the C1r2C1s2 pro-enzyme (14, 39-41). Recent studies show that mutations in Fc domains which 

lead to formation of hexameric IgG complexes drastically enhance the efficiency of classical C 

activation (42-44). Indeed, it is known that per mole, IgM is a far more efficient activator because 

of its multiple Fc portions which act as a pre-assembled array for the multiple globular heads of 

C1q to simultaneously engage (14).     

Further to C1, C4 and C2, another component unique to the classical pathway is the Serpin family 

member, C1Inh, which displaces the C1r2C1s2 enzyme complex from the activated C1 complex, 

exposing binding sites for C1q receptors in the N-terminal collagenous domains of immune 

complex-bound C1q. Since C1q is still able to engage its ligands via its globular heads, this process 

leads to acquisition of opsonic functionality (13, 15, 45). In addition to this non-C activating 

(opsonic) function of C1q, another non-classical activity of C1 is C activation through binding to 

non-antibody ligands, such as CRP, SAP and certain microbial ligands (2, 12, 14, 46).         

1.1.2.2 Alternative Pathway 

The AP was originally identified by Pillemer through the observation that C3 and the terminal 

components activated on yeast cell walls without consumption of the classical pathway 

components, in a process that involved the newly identified properdin (named from the Latin 

perdere, to destroy) (24-27). 

The sequence of events in the AP activation cascade is as follows: C3 exists in a dynamic state, the 

majority existing as the native C3 form but a small fraction existing as C3 which has been 

hydrolysed at the intramolecular thioester, known as C3(H2O) (47-49) (sometimes called 

Pangburn’s molecule). Although uncleaved, this C3(H2O) has all the functional activity of C3b, 

being subject to factor I mediated degradation and capable of binding to CR1 (50). Importantly, 

C3(H2O) is able to bind factor B in a metal cation dependant manner and then be cleaved by 

factor D to release Ba and produce a C3(H2O)Bb complex which, although unstable, is able to 

briefly act as a C3 convertase (47-50). Indeed, the instability of this C3(H2O)Bb convertase 

confounded characterisation attempts, until it was found that coordination of the C3-factor B 

components by nickel rather than magnesium (the physiological element) ions produced a far 

more stable convertase (47-49, 51). Metastable C3b produced by the convertases can, with some 

preference based on physicochemistry, become covalently attached to surfaces via its thioester, 

or is hydrolysed in the fluid phase (52). If this C3b is generated in a locality in which there is 

insufficient negative regulation (through the combined actions of C3 binding proteins and factor I) 

then the active C3b is able to persist for long enough to complex with factor B which is then 

subject to cleavage by factor D, forming the amplification C3 convertase of the AP (C3bBb). This 

enzyme is unstable, but its half-life can be extended significantly through stabilisation by 
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properdin. A key feature of this amplification convertase is that it can be formed from C3b 

produced by any of the activating pathways i.e. by the C4bC2a convertases of the classical and 

lectin pathways (not just C3[H2O]Bb), and therefore, represents the actual convergence point 

between the three recognised activation pathways. The concept of the AP being triggered as a 

consequence of conversion of C3 to C3(H2O) and the subsequent sequence of events described 

above, as proposed by Lachmann, Pangburn and Müller-Eberhard, is known as the “tick-over” 

theory (13, 49, 53-55).               

Thus, unlike the other activation pathways, the AP has no true recognition element since (in the 

absence of other activation pathways) its initiation is reliant on a spontaneous, non-specific 

process i.e. hydrolysis of the intramolecular thioester. In this regard it could be said that AP 

functions, not through activation in response to a certain molecular trigger, rather its default 

mode is low grade activation which is allowed to proceed and amplify in the absence of sufficient 

regulation. Therefore, the classical and lectin pathways could be considered true recognition 

pathways, whereas the AP could be considered a pure activation pathway. However, the vast 

majority of the activation products produced by the AP are generated via the amplification loop, 

which is reliant on C3b formation (13). Since C3b is known to have variable affinity for different 

molecular entities, which results in different levels of C3b deposition on various target surfaces 

(and subsequently different rates of AP amplification) (56), it could be argued that C3b acts as the 

recognition molecule of the AP. Indeed, the AP does possess some capacity for recognition of self 

vs. non-self, since it is well known that foreign microbial molecules and particles such as zymosan 

can activate the AP (27). This capacity to activate on “foreign” surfaces is underlined in model 

haemolytic assays by the documented activation of the AP of one species on the erthyrocytes of 

another (13). 

Several groups of AP activators exist: particulate polysaccharides (e.g. inulin, β-glucan/zymosan); 

some cell types (e.g. rabbit erythrocytes, pneumococcal cells); immune complex precipitates (13, 

16, 20, 27, 57, 58). Despite little obvious resemblance in chemical and fine structural detail, the 

particulate nature of these activators is notable. Indeed, soluble inulin (polysaccharide) is 

completely devoid of activating capacity (16, 20). If factor B is the alternative pathway equivalent 

of C2, then C3 is the parallel of C4 and factor D is the partial equivalent of C1. Properdin is 

required for efficient AP activation by stabilising the AP convertases (56, 59), but has no 

homologue in the other pathways, being the only known positive regulator of C activation. Factor 

D Is by far the smallest of the C activation components (25kD) and can thus be excluded from 

serum by gel filtration, while all the other C components are retained, providing a means to 

eliminate AP activity (13, 16, 60, 61). Additionally, since formation of the C1qr2s2 and C3bB 

complexes is physiologically dependant on Ca2+ and Mg2+ ions, respectively, it is possible to 
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selectively inactivate the classical pathway by specific Ca2+ chelation with EGTA or to inhibit all 

activation pathways with EDTA (13, 16).  

1.1.2.3 Lectin Pathway 

Lectins are carbohydrate specific binding proteins and are ubiquitous, being found in plants, 

animals and microbes. The term derives from the Latin, “legere”, meaning to read or select. 

Lectins are found both intra- and extra- cellularly and perform diverse roles in animals, including 

protein folding (e.g. calnexin) and mediating intercellular and cell-matrix interactions (e.g. 

selectins) (62). Through MBL and ficolins, this also extends to activation of C. MBL is an example 

of a collectin, a collagenous lectin with a C-type (Ca dependant) CRD, other examples of which 

include the surfactant proteins SP-A and SP-D which play an important role in pulmonary innate 

immunity. Ficolins (fibrinogen-like collagen-like lectins) possess a collagenous domain and a 

fibrinogen like domain, which displays homology to the C-terminal portions of the fibrinogen β 

and γ chains, in place of a CRD. Their classification as lectins is controversial since the fibrinogen 

(ligand binding domain) is specific for acetyl groups on non-carbohydrates as well as 

carbohydrates, and concerning the latter, the binding isn’t primarily dependent on the sugar ring . 

However, many of their natural ligands have carbohydrate moieties and they have similar higher 

order structures and functional properties to lectins (63). In humans there is a single MBL protein 

arising from a single gene, whereas in mice there are two forms, MBL-A and MBL-C. In humans 

there are three ficolins, H, L and M, whereas mice have two forms, A and B. MBL and ficolins H 

and L are produced in the liver and secreted into the circulation, whereas ficolins L and M are 

housed in secretory granules of neutrophils and macrophages in the lung. MBL polypeptides have 

a structure consisting of an N-terminal cysteine rich sequence, a collagen-like domain, an α-helical 

coiled coil domain and a C-terminal CRD, which is reminiscent of that of C1q, with the CRD 

replacing the globular (head) domain. Ficolin polypeptides also possess a similar structure with 

the fibrinogen-like domain replacing the CRD. Similarly to C1q, the MBL and ficolin polypeptides 

assemble into trimeric subunits via disulphide bonds formed in the N-terminal domain, along with 

hydrophobic interactions. Again, similarly to C1q, these subunits then assemble into higher 

order/multimeric structures, which possess functional activity, through their collagen-like 

stalks/fibrils, forming characteristic “bouquet” like structures reminiscent of the C1q “bunch of 

tulips” structure. However, unlike C1q which forms hexameric structures, the lectins are known to 

form structures containing variable numbers of subunits which are thought to possess different 

functional activities. MBL and the ficolins circulate in complex with serine proteases known as 

MASP1-MASP3, originally identified through their binding to MBL (64), along with non-protease 

molecules derived from the MASP genes, known as sMAP/MAp19 and MAP-1. Upon lectin binding 

conformational changes lead to activation of the MASPs which are then able to cleave C4 and C2 
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in the same manner as the activated C1 complex, thus initiating C activation in a cascade which 

converges with the classical pathway with the formation of the C4bC2a C3 convertase (14, 17, 62, 

65-67). The precise specificities and functions of the MASPs and related proteins are still being 

characterised (17, 62).  

MBL deficiency is relatively common and is associated with a defect in C3-dependent opsonic 

phagocytosis of yeast and several mutations have been identified in exon 1 and the promotor of 

the MBL gene which account for this (11, 68-70). Polymorphisms in the gene coding for ficolin L 

(FCN2) are associated with variable serum levels and ligand binding (62). The variable distribution 

of ficolins and the formation of lectin-protein complexes with enzymatic partners of different 

activities/specificities, along with non-enzymatic partners, illustrate the importance of regulated 

activation in the lectin pathway and is suggestive of distinct biological roles. 

1.1.2.4 C3 

Each of the three distinct C activation pathways converge on the enzymatic cleavage of C3 

(187kD) at the N-terminal α chain to form the small (9kD, 77 amino acid) C3a anaphylatoxin 

fragment and C3b. As a consequence of this cleavage step the major C3b portion of the native C3 

molecule undergoes significant conformational change with important functional consequences. 

Binding sites for other C components, including activators, receptors and regulators are formed, 

and importantly, an intramolecular metastable surface binding/activation site, which includes a 

thioester bond, becomes exposed. If C3b is formed in the vicinity of suitable molecular entities on 

an activating surface (e.g. sugar hydroxyl or amine [polarised] groups on microbial cell walls) it can 

become covalently attached to them via nucleophilic attack on the carbonyl group of the 

thioester, also resulting in the formation of a free sulfhydryl. If metastable C3b does not attach to 

a surface the thioester is subject to fluid phase hydrolysis, stabilising the reactive intermediate. 

Binding studies indicate the metastable active/binding site of C3 encompasses more than just the 

thioester moiety. Kinetic studies demonstrate that within minutes of C activation, millions of C3b 

molecules can be deposited on an activating cell membrane (11, 13-15, 46). 

1.1.2.5 Terminal Pathway 

With the formation of the C3 convertase by any activation pathway comes the production of C3b. 

In addition to the labile thioester-containing active site which permits it to perform its opsonic 

role, C3b has binding sites which permit it to combine with the C3 convertases (C4bC2a and 

C3bBb) shifting the specificity of the enzymes to C5, thus forming the C5 convertases (C4bC2aC3b 

and C3bBbC3b) and initiating the terminal pathway by C5b production through C5 cleavage (52). 

The reaction cascade of the terminal pathway can be summarised as the molecular fusion of the 

terminal components (C5b-C9), with the ability to insert into cell membranes, through alterations 
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in reactant physicochemistry acquired via conformational changes, produced during sequential 

interactions. If the pathway is activated on a membrane, the assembling C5b-9 complex can 

penetrate and is capable of spanning the membrane, forming a lytic pore (diameter: up to ~100 

Å). The terminal is unique amongst the C pathways since after the cleavage of C5 no further 

enzymatic cleavage events take place, all further activation occurring through binding to newly 

exposed sites and subsequent conformational change exposing further potential sites for the next 

protein to bind to (11, 13-15, 46).  

The C5 convertases cleave C5 into the small, potent anaphylatoxin fragment, C5a, and the larger 

C5b. Upon formation of C5b, similarly to the homologous C3b and C4b, significant conformational 

changes occur within the molecule, pre-dominantly in the α chain, with the β chain forming a 

stable ring-like structure. Unlike C3, C4 and other members of the α2M family, C5 lacks the 

prototypical thioester within its TED and thus C5b isn’t able to covalently bind to target surfaces 

in the same way, thereby stabilising its active conformation. Indeed, despite similarities in 

adjacent domains, the final position of the TED in C5b is distinctly different to that in C3b. 

However, the structural changes in C5 do produce a labile-binding site (half-life: 2 mins) for the 

next component (C6), which if not engaged, decays irreversibly to a form incapable of C6 binding. 

The active conformation of the nascent C5b is captured by C6 binding. C6 interfaces 

predominantly in its C-terminal region, which undergoes major rearrangement, in contrast with 

the N-terminal region containing the “core” domain region common to C6-C9, which is highly 

similar to that of free C6. Indeed, the two putative transmembrane segments located in the 

MACPF domain of this core region remain loosely folded on the central β sheet (also in the MACPF 

domain) suggestive of a pre-membrane insertion state, which is consistent with the soluble 

nature of C5b6. Unlike the other terminal components, C7 also shares the C-terminal domains of 

C6 which, similarly to C6, mediate binding of C7 to C5b, which aligns the MACPF domains of C6 

and C7. Formation of the C5b-7 complex also leads to rearrangement of the TMS regions which 

represents a hydrophilic-amphiphillic transition causing separation from the parent C5 convertase 

and permitting the binding of the C5b-7 complex to available surface phospholipids in target 

membranes. Conformational change as a result of C5b-7 formation also generates a C8 binding 

site. The C8β is known to bind to C5b and subsequent alignment of the C8β and C8α MACPF 

domains with those of C7 and C6 relocates C8γ, which is thought to then stabilise the complex. 

Bound C8 anchors the complex into target membranes via its α chain and is now able to recruit 

C9, the association of which results in lytic activity. It is thought that C8γ may block C9 

recruitment before its relocation as a result of C5b-8 formation, thus preventing C9 

polymerisation before C activation. Up to ~15 C9 molecules may be incorporated into the 

complex, in which case it takes on a circular/ring structure which appears identical to poly(C9) 
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under electron microscopy, a complex produced when C9 is incubated with metal ions or subject 

to mild proteolysis (11, 13-15, 46, 71).              

C6 – C9 are related proteins which all share structural domains (72). It is unclear whether the 

acquisition of new domains by the most basic component (C9), deletion of existing domains from 

the most complex component (C6), or a combination of addition and deletion of domains to an 

intermediate component is responsible for their generation (46).  

The existence of the terminal lytic pathway of C has been appreciated since the late 19th century 

and much of the early research on C and immunology as a whole made use of assays which 

depend on its function (16, 20, 22). Indeed, a great deal of study has been conducted on the 

biology of the terminal pathway components. Nonetheless, the fact that the pathological 

consequences of terminal component deficiency are limited to predisposition to Neisserial 

infections suggests that the MAC has limited biological function (73). However, the presence of 

specific regulators to prevent its aberrant activity (11) and the dramatic results of their absence, 

particularly in the case of PNH, illustrate its potency as a destructive agent (73). 

1.1.3 Regulation 

C activation can be considered the default mode of the system as C is constantly activated 

through the tick-over and amplification mechanism of the alternative pathway. Indeed, an 

isotonic 37°C solution of C components will spontaneously activate via the alternative pathway 

until activity decays (13, 56, 59). Given the powerful inflammatory effects of the anaphylatoxins, 

the directly damaging effects of the MAC, and the adhesive, opsonic and signalling capacity of the 

C3/C4 activation fragments, along with roles in other non-immune processes, tight, finely 

controlled C regulation is of paramount importance to avoid pathological consequences to self 

tissues. Furthermore, due to the default nature of activation, a lack of regulation can rapidly lead 

to the exhaustion of C, as exemplified by the effects of CVF (74), rendering the individual 

susceptible to infection and immune complex disease (73). 

Regulation is intrinsic to C activation in that the convertases and the metastable binding sites of 

the activated TED containing components (i.e. C3b and C4b) have relatively short half-lives, 

decaying quite rapidly. This is important in preventing prolonged and off-target activation (75). 

Nonetheless, the presence of C regulatory proteins is essential to prevent the default activation of 

C damaging self and thus, roughly one third of C components possess regulatory activity. C 

regulators are present in the fluid phase and on cell surface. Through mechanisms such as 

alternative splicing and gene duplication, some have both membrane bound and soluble forms 

(e.g. mouse DAF, CR1). Regulators can be dedicated solely to C inhibition (e.g. C4BP, fI) or also 

possess adhesion/receptor activity (e.g. CR1, CR2) for C fragments. The regulatory action of the 
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RCA family members is characterised by the ability to catalyse the factor-I mediated decay of C3b 

and C4b, thus preventing the formation of more convertases, and/or the ability to accelerate the 

dissociation and prevent the formation of the convertases through binding to C3b/C4b and 

inhibiting their interaction with convertase components. Through the actions of the RCA family 

members and a number of other regulator components (e.g. fI, C1Inh, properdin, CD59), C 

activation is controlled at virtually all steps in the cascade, providing robust and fine control of the 

reaction (2, 11) (Fig. 1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.3.1 Fluid-Phase Regulation 

Soluble regulators control activation in the fluid phase and include C4BP, factors I and H, 

properdin and C1Inh. Mouse DAF, which in humans is found solely as a GPI-anchored form, also 

exists as a secreted molecule (76). Through binding and stabilising the alternative pathway 

Fig. 1.2: Regulation of the C activation pathways. Schematic illustrating the 3 complement 

activation pathways, along with the terminal pathway, and their interactions with regulatory 

proteins; Regulators exist both in the fluid-phase (dotted boxes) and on cell surfaces (solid boxes) 

[from (2)].    
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convertases, the oligomeric protein properdin has unique status as the only known positive 

regulator of C activation (77).  

C4BP is a large (570kD) glycoprotein with a plasma concentration of ~200µg mL-1, formed of 

multiple copies of α subunit and a single β subunit derived from the C4bp α and β genes 

(respectively) within the RCA cluster (11, 15). C4BP primarily binds C4b and acts as a cofactor for 

its cleavage by factor I to C4c and C4d, which are believed to be inactive. Through its binding to 

C4b, C4BP also prevents formation of the C4bC2a convertase and accelerates decay of established 

convertases (15). C4BP is thought to be the main inhibitor of the classical and lectin pathways. 

C4BP forms a high affinity complex with vitamin-k dependent protein S (also known as S-protein 

or vitronectin; see below) in the plasma (78).     

Factor I (88kD) is a key serine protease regulator of C which processes C3b and C4b to products 

which can no longer form the convertases (iC3b and iC4b, respectively) (79). Thus factor I has 

regulatory activity in all three activation pathways. Factor I cleaves the α’ chains of C3b and C4b 

to form products with smaller and larger α’ chain fragments held together by intra-chain 

disulphide bonds. Factor I then further cleaves these products (iC3b and iC4b) between the intra α 

chain disulphide bonds to produce the fragments, C3c and C4c, together with the smaller 

fragments, C3d and C4d (which contain the TEDs). If the C3b/C4b precursors were bound to a 

surface prior to the factor I activity, the second cleavage step leaves the smaller C3d/C4d TED-

containing products bound to the surface. In the case of C3 degradation products, factor I 

mediated degradation results in the acquisition of new specificity as C receptor ligands (80). 

Factor I cleavage is dependent on the catalytic activity of a cofactor which is provided by one of 

several other C regulators such as MCP/CD46, C4BP, factor H, CR1, CR2 and Crry. However, only 

the membrane bound C regulators CR1 and Crry (in rodents) are known to catalyse the second 

cleavage event and are therefore essential in the formation of C3d, the ligand for CR2 (11), which 

has important functions in adaptive immunity (as discussed below).      

C1Inh, a serpin family member, inhibits the serine proteases of the classical pathway by displacing 

them from the active C1 complex (15). This process has been proposed to expose binding sites in 

the ligated C1q which enable it to function as an opsonin. Through displacement of the serine 

proteases which act on C4 and C2, C1Inh prevents formation of the C4bC2a convertase and 

thereby shuts down the classical pathway.   

Other, perhaps lesser known soluble regulators include clusterin, otherwise known as 

apolipoprotein J, and S-protein, otherwise known as vitronectin, which have been described as 

‘membrane mimics’. This lipid membrane-like structure is thought to underlie the role of these 

proteins in binding to off-target assembling terminal components which fail to insert into cell 
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membranes. Since it is upon the insertion of C7 into the nascent C5b6 complex that the 

assembling TCC becomes lipophilic, it is at this stage where binding by the soluble regulators is 

initiated resulting in the formation on non-lytic soluble C5b-9. Structural studies illustrate that the 

regulated soluble C5b-9 complex has a butterfly-like structural element formed from clusterin and 

S-protein which is proposed to inhibit membrane binding by blocking TCC hydrophobic residues 

and prevent C9 oligomerisaton by capping the terminal C8/C9, thus inhibiting MAC activity (71). It 

has been demonstrated that removal of clusterin and S-protein by proteolysis or detergents 

restores membrane binding ability (81, 82).  

Some of the soluble C regulators are known to have other functions. For example, S-protein is 

known to have a vitamin-K dependent anti-coagulation role and C1Inh also inhibits serine 

proteases of the kininogen system. This is in fact the main cause of clinical consequences in the 

case of C1Inh deficiency where elevated bradykinin production leads to HAE attacks (83).  

1.1.3.2 Regulation on Surfaces/Membranes 

Host cells are protected from inadvertent C attack by the presence of a number of regulatory 

proteins expressed on the cell surface. These have evolved as integral transmembrane and/or GPI 

anchored proteins. These regulators control C in similar ways to the fluid phase equivalents, albeit 

with some differences in the fine details. Importantly, many of the membrane localised C 

regulators, due to their intrinsic ability to bind C-activation fragments, have roles in immune 

adherence. Furthermore, many of the membrane bound C regulators have some role in cell 

signalling. For example, in addition to possessing decay and cofactor activity, CR1, which is widely 

expressed on myeloid cells, is able to mediate phagocytosis of the particle on which its C ligand is 

bound. CR1 expressed on human erythrocytes mediates the transport of C opsonised immune 

complexes to phagocytes for elimination while also catalysing the cleavage of C3b to iC3b (84). In 

mice Crry, plays a similar role in immune adherence of immune complexes to RBCs (85-87). CR2, 

expressed on B cells, follicular dendritic cells and some T cells, has weak co-factor activity but also 

plays a key role in control of adaptive immune responses (87). Examples of membrane bound C 

regulators include DAF, CR1, CR2, Crry (in rodents), MCP and CD59, with all but the latter being 

formed of variable numbers of SCR domains (11, 84). In humans, the terminal pathway regulator 

CD59 appears to be particularly important in preventing C mediated damage to self by binding C8 

in the C5b-8 complex and blocking C9 incorporation, thereby preventing MAC formation. In PNH a 

defect in GPI anchoring leads to deficiency of CD59, among other proteins, on RBCs and it is CD59 

deficiency in particular which is believed to be responsible for the C mediated intravascular 

haemolysis and thrombosis, and subsequent pathological sequelae, which characterise the 

disease (73). The critical role of CD59 in protection is underlined by the efficacy of the only 

current effective treatment for the disease: eculizumab is a C5 blocking mAb which effectively 
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inhibits the generation of the MAC through the terminal pathway (88-90). Additionally, disorders 

involving primary CD59 deficiency are known to feature neurological impairment (along with 

intravascular haemolysis and thrombosis), highlighting the importance of terminal pathway 

regulation on multiple cell types (91). 

1.1.4         Functions/Roles 

Reflecting the intricacy of the system, C has multifaceted and complex functions (Table 1.4). This 

is perhaps also unsurprising given the evolutionary ancient nature of C. The C system is classically 

considered a key humoral effector of innate immunity, which functions to protect against 

infection (5). Indeed, analogous functions for the C homologues in members of ancient/distant 

phylogenetic groups such as the sea-urchin (a nervous system-lacking deuterostome invertebrate) 

(33) illustrate that innate protection against infection was an/the original function of C in 

evolution. However, it has long been known that C has important roles in other immune-related 

processes (92-94) and in more recent times it has become clear that C also has key roles in many 

non-immune and/or destructive activities (95, 96). The importance of C in normal physiology is 

illustrated in patients with deficiencies of the activation components who, depending on the exact 

component, are predisposed to bacterial infections and immune complex diseases. Furthermore, 

the dramatic pathophysiological consequences of aberrant C activation in states such as regulator 

deficiency and antibody-mediated autoimmunity illustrate the potency of the system’s activities 

(73, 91, 97, 98).     
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1.1.4.1 Opsonisation of Targets 

C activation on a surface leads to the deposition of C3-activation fragments (C3b, iC3b, C3dg) on 

that surface via the thioester-containing metastable site generated upon C3 cleavage by a 

convertase, and millions of C3-derived molecules can be deposited on a cell-sized target with 

efficient activation (13, 15, 16). Bound C3 fragments “tag” the material to which they are 

anchored as being a phagocytic target for cells bearing the appropriate receptors, and they are 

therefore known as opsonins (16, 99), derived from ancient Greek, meaning “to prepare for 

ingestion”. The cognate receptors for the C3-activation fragments, C3b, iC3b and C3dg are CR1, 

CR3 and CR4, and CR2, respectively (16, 100). Additionally, these receptors also possess some 

affinity for C4b (87), which is deposited onto activating surfaces via the classical and lectin 

pathways (100). With the exception of CR2 which is expressed mainly by B and T cells, these 

receptors are widely expressed by leukocytes and some other cell types (e.g. human CR1 by 

erythrocytes). Additionally, CRIg is expressed by tissue macrophages and binds both C3b and iC3b 

(16, 100). These receptors are integral transmembrane molecules possessing cytoplasmic domains 

which can associate with various intracellular mediators (e.g. kinases and phosphatases) and 

structural components (e.g. the cytoskeleton), and are thus able to function in cell signalling. 

Table 1.4: Physiological functions of the C system [adapted from (5)] 

Host defence against infection 

and waste disposal (immune-

complexes; apoptotic & necrotic 

cells)  

Interface between innate and 

adaptive immunity  
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Although the fine details of the signalling mechanisms are poorly defined, the various C receptors 

mediate phagocytosis of C opsonised material through this process (101, 102). Furthermore, in 

similar fashion to some antibodies, it is thought that C1q and MBL may act as opsonins directly 

without the requirement for downstream C activation and C3/C4-fragment deposition (103-105). 

However, the receptors which mediate such activity remain controversial, with many of the 

original C1q receptors (e.g. cC1qR, gC1qR) now linked chiefly with other functions (36, 106).  

In vivo: the fact that MBL deficiency causes a deficiency in yeast opsonic phagocytosis and 

predisposes to microbial infections illustrates the importance of this pathway in the clearance of 

foreign material (11, 63, 70). C activation and opsonic-fragment deposition occurs on foreign 

(microbial) material as a key part of infection control, but also on endogenous materials such as 

immune complexes and apoptotic cells as a major homeostatic mechanism. Indeed, the rapid 

clearance of immune complexes from the circulation, essential in preventing their pathological 

accumulation, precipitation and deposition in numerous tissues, is accomplished through C 

opsonisation (17, 107). Opsonised immune complexes bind to erythrocyte CR1 and are 

subsequently transported to the liver and spleen, where they are transferred to phagocytes which 

also express C receptors and Fc receptors. Deficiency of classical pathway components or C3 both 

predispose to derangement of immune complex-handling along with susceptibility to microbial 

infections, illustrating the importance of C1q in the recognition of complexed antigen and the 

central role of C3 in C opsonic processes (5, 17, 73, 107-109).  

1.1.4.2 Induction of Inflammation via Anaphylatoxin Production 

Along with the opsonic sub-components and the lytic TCC, C activation results in the production of 

the small (10kD; ~75 aa) hydrophilic α helical anaphylatoxin fragments, which have a potency 

hierarchy of C5a>C3a>C4a (16, 110). A minimum of ~30% sequence identity exists between 

anaphylatoxins within or between species (human, mouse, rat, pig, cow), but there is more 

similarity between the same peptide in different species than the different peptides in the same 

species. Thirteen conserved amino acids exist, six of which are cysteines and form intrachain 

disulphide bonds, thereby stabilising the structure (16). The C-terminal pentapeptide sequence 

(LGLAR) of C3a has been conserved in each species examined to date and it has long been known 

that a synthetic peptide of this sequence is sufficient to illicit C3a activity (13). The anaphylatoxins 

bind to 7 TM-GPCRs present on numerous cell types to produce dramatic but distinct tissue 

effects. Anaphylatoxin signalling results in smooth muscle cell contraction and release of 

histamine from basophils and mast cells to mediate the characteristic activity of increasing 

vascular permeability. C5a is also a potent chemotactic factor which acts to draw neutrophils and 

other leukocytes to site of acute inflammation (13, 100). Limited, compartmentalised 

anaphylatoxin production results in a localised inflammatory response, which contributes to the 
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resolution of the initial trigger. However when robust, acute and disseminated C activation 

occurs, excessive systemic anaphylatoxin activity results in a shock-like reaction, first observed 

experimentally by the French physiologist Francois Magendie in 1837 (20, 111). Anaphylatoxin 

activity is lost upon cleavage of the C-terminal arginine by carboxypeptidase enzymes (N, B), 

resulting in the production of des-arginated forms (e.g. C3a des-arg). Originally believed to be 

biologically inactive, it is now known the des-arginated products can mediate new effects through 

signalling mechanism believed to involve the same receptors used by the intact anayphylatoxins 

(13, 100).  

1.1.4.3 Direct Lysis of Targets via MAC Formation 

The ability to lyse cellular targets was the very first action of C to be recognised (22) and it has 

subsequently been established that this is the consequence of the sequential assembly of the 

C5b-9 components, although the precise molecular mechanism which leads to cell death remains 

unclear. Early theories on the mechanism of MAC mediated cytotoxicity included the suggestion 

that it was an enzyme, based largely on the enzymatic nature of the preceding reaction steps, and 

that it was a detergent (16). However, it has subsequently been demonstrated that the MAC 

forms membrane pores of varying size (112, 113) which are similar to the immune (perforin)-

pores of cytotoxic T-cells and bacterial CDCs (114). it has been known since the 1970s that a MAC 

containing a single C9 is sufficient to lyse erythrocytes, whereas at-least three copies of C9 are 

required for bactericidal activity, illustrating, in-addition to the requirement of C9 for lytic action, 

MAC’s heterogenous composition and relative potency (2, 16, 115, 116). Freeze-fracture electron 

microscopy has convincingly demonstrated that C9 is the only MAC component which penetrates 

beyond the outer leaflet of the lipid bilayer. Prior to C9 insertion, the putative amphiphilic α 

helices of C6-C8 remain parallel with the target membrane surface, but upon the insertion of 

multiple copies of C9, those of the earlier components also insert into the target membrane to 

form the β barrel pore. Cell death is primarily believed to be a consequence of disruption of the 

selective permeability of the membrane, leading to dissipation of cytosolic solutes and cellular 

energy, and in some cases colloid osmotic lysis (117-119). In nucleated eukaryotic cells (which 

actively resist MAC-mediated disruption), calcium influx can cause secondary organelle 

(mitochondrial) dysfunction leading to the induction of cell death pathways (2).  

Despite strong evidence for lytic activity as a consequence of pore formation, it is important to 

note the physicochemical effects of the actual presence of the MAC components in the 

membrane, which are intrinsically disruptive to the lipid bilayer. Indeed, it has been shown that, 

independently of any changes in solutes, the presence of MAC components in membranes has the 

capacity to alter the lipid arrangements and is thereby potentially damaging in isolation. It is 
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conceivable that this disruption constitutes the main effect on cellular targets during early stages 

of MAC assembly (46).   

MAC formation plays an undisputed in vivo role in infection control through the direct destruction 

of pathogens. However, the fact that terminal component deficiency only predisposes to 

Neisserial infections (as mentioned earlier) suggests that this is of limited biological importance 

(73, 120). In actuality it is likely that MAC mediated lysis is somewhat redundant, with cellular 

destructive pathways (e.g. phagocytes, NK- and cytotoxic T- cells) compensating. Although no 

definitive classification can be applied regarding the sensitivity of bacteria to MAC-mediated 

cytotoxicity, it is known that some bacteria are protected from MAC by larger LPS constituents 

and more extensive carbohydrate encapsulation. These characteristics are associated with 

“smooth” (as opposed to “rough”) phenotypes and convey hydrophobic properties on the 

membrane, thus rendering it less amenable to the proper formation of the MAC pore with its 

hydrophobic residue-lined channel (120, 121). Nonetheless, the potent lytic activity of the MAC 

on sensitive cells is clearly illustrated in disorders of aberrant C activation, such as PNH, AIHA and 

aHUS, where MAC formation in autologous erythrocyte membranes leads to destruction of red-

cells and associated pathological sequelae (73, 122).          

1.1.4.4 Modulation/Regulation of Adaptive Immune Responses 

Although evolutionary very old in its own right, having emerged at the time of the jawed 

vertebrates some 500 million years ago (123, 124), C precedes the advent of adaptive immunity 

by at least 1000 million years (29-33). It is therefore unsurprising that C and adaptive immunity 

co-evolved, as amply demonstrated by the intimate relationship between antibody and C in the 

classical pathway, which is key for defence against pathogens and in immune complex clearance. 

However, other links between C and adaptive immunity are less well understood. Nonetheless, it 

has long been known that C has a key role in modulating the B cell antibody response through CR2 

present on B cells, providing a survival and proliferation signal and reducing the threshold for B 

cell activation. It has since been established that many other facets of B cell function, including 

memory processes, are influenced by C3dg-CR2 signalling (46, 92). An appreciation that the C3dg-

CR2 interaction is important in antibody responses to specific antigens came originally from the 

work of Pepys, who in 1974 showed that mice had impaired antibody responses to sheep RBCs 

when depleted of C3 using CVF (93). This concept was then confirmed in humans and other 

species with defined genetic deficiencies of early C components (73, 92, 94). Some of the 

strongest evidence of the role of CR2 in regulating antibody responses comes is the 

demonstration that only one ten-thousandth of the quantity of antigen is required to induce a 

detectable antibody responses when the antigen is coupled to C3dg (125). Additionally, Cr2 -/- 

mice have an impaired antibody response to sheep RBC antigen which is restored by transgenic 
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expression of human CR2 (126). CR2 is known to associate in a tri-molecular complex with CD19 

and TAPA-1/CD81, molecules which mediate cell signalling (127). More recently, the expression of 

CR1 on B cells and CR1 and CR2 on human T cells illustrates a wider role for C in adaptive 

immunity (92). Additional reports for MCP/CD46 having an important role in T cell processes such 

as response to TCR ligation and regulatory T cell activity further support this idea (128, 129). It is 

believed that the qualitative and quantitative nature of the C receptor engagement in 

lymphocytes influences their specific, cognate responses, along with non-specific/antigen-

independent responses, thereby playing an important regulatory role in adaptive immunity. 

Derangement of C membrane protein activity in B and T cells has been implicated in the 

establishment and maintenance of autoimmunity. In addition to the long-established classical 

pathway, these observations place C at the interface of innate and adaptive immunity.       

1.1.4.5 Non-Immune & Emerging Roles 

Beyond the important roles in classical innate and adaptive immune processes described above 

there are additional established and emerging roles for C in other diverse processes ranging from 

cancer (130), metabolism (21, 131), development (95) and reproduction (132-134), expanding 

further the degree of physiological and pathophysiological complexity of the system. Indeed, the 

presence of response elements for signalling molecules intuitively unrelated to immunity in the 

regulatory sequences of key C genes are suggestive of roles beyond conventional immune 

processes (73, 135).    

1.1.5 Human Vs Mouse C 

With the “modern” C system having been established by the time of the divergence of the 

actinopterygii class from the vertebrate lineage some 500 million years ago, as co-members of the 

most recently emerged mammalia class of the vertebrata subphylum of the phylum chordata 

(within the kingdom Animalia), humans and mice have broadly similar C systems, with all of the 

component groups in place (29-33). However, important C-specific differences exist, along with 

differences in many other aspects of human and murine immunity, innate and adaptive, cellular 

and humoral, which are not inconsequential (136); it is therefore essential that the key 

differences in C are understood when using systems involving mouse C during investigations 

geared towards human disease. 

1.1.5.1 Homology 

There are varying degrees of homology between the components of the mouse and human C 

systems, along with examples of species specific components. There is a higher degree of genetic 

homology between the early activation components along with the central C3 molecule (87), 

possibly reflecting the evolutionary pressure to conserve these core cascade components, 
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although some key functional differences do exist (discussed below). Greater genetic and 

structural variation is observed in the C regulators, but the utilisation of similar regulatory 

mechanisms possibly reflects the recombination-prone repetitive nature of the genetic 

sequences, most notably in the case of the RCA gene members, and the apparent limited 

structural requirements for effective function in this role, with binding capacity for just 1 or 2 

factors (C activation fragment & membrane/fI) being the basic pre-requisite (87). Polymorphisms 

exist in certain C regulatory proteins, notably CR1, which are associated with lupus-like disease 

and certain microbial infections and it has been suggested that microbial and genetic stress could 

have driven rapid evolution in C regulator genes (137, 138). Obvious differences in the pathogenic 

environments between species could have also driven the divergence of these key genes in 

humans and mice. 

1.1.5.2 Activity 

One of the main differences between mouse and human C is that mouse C has dramatically 

reduced lytic activity (139). Indeed, mouse serum has reduced lytic activity relative to other 

common laboratory species in assays using antibody sensitised cells and early reports suggested 

that this was due to an absence of classical pathway components. However, it was subsequently 

shown that this is not the case - all of the classical pathway components are present in mouse 

serum (139). The lytic activity of mouse serum is also affected by gender and later studies showed 

that levels of mouse C4 (originally termed Ss antigen and then Slp) are dependent on MHC alleles 

and gender (73, 140, 141), however these variations could not fully account for the low 

haemolytic activity of mouse serum.  It was finally shown that C5 requires a particular amino acid 

sequence of the human C4β chain in order to bind to the C4b subunit of the classical pathway C5 

convertase (C4bC2aC3b) (142, 143). In the mouse C4 harbours mutations in this key segment 

rendering it unable to bind C5 (144), thus all terminal pathway activity in the mouse is attributable 

to the alternative pathway C5 convertase ([C3b]2Bb). Implicit in these findings is the fact that no 

C5a anaphylatoxin is generated directly by the classical pathway in mice, which has implications 

for the mechanisms of inflammation and immune cell activation. The reduced lytic activity of 

female mouse serum is believed to be due mainly to reduced terminal pathway components, 

along with C4 to a lesser extent, and a function of endocrine (sex) steroid hormone signalling (73). 

Naturally, these issues pertaining to the relative activity of mouse C must be appreciated when 

designing experimental assays dependent on it, and when implementing and interpreting mouse 

disease models in which C plays a role. 

1.1.5.3 Regulators and Receptors 

Most of the regulators of the mouse and human C systems are members of the RCA gene family, 

the central inactivating protease enzyme, factor I, being a notable exception. These characteristic 
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genes are composed of variable numbers of short repetitive nucleotide sequences which code for 

functional units known as SCR, CCP or Sushi domains (known henceforth as SCRs) – roughly 60 

amino acid domains with triple-loop structures maintained by disulphide bonds. In humans the 

RCA genes are clustered on the long arm of chromosome 1q32 and six of the genes are located in 

a ~700kb segment (5’- C4BPα, C4BPβ, DAF, CR1, CR2, MCP-3’), with factor H located some 5Mb 5’ 

(11). In the mouse the RCA gene cluster has undergone a deletion and translocation event altering 

the organisation of this gene family. Comparisons between these components in mice and man 

have led to the conclusion that despite significant structural variations, major functional 

homologies exist (87).  

1.1.5.3.1 Crry and Mouse and Human CR1 and CR2 

A key species difference between the molecular organisation of the RCA family is the production 

of both the murine CR1 and CR2 through alternative splicing of a transcript from a single gene, 

designated mCr2 (145, 146), and the presence of an additional smaller (65kD) mouse C3-binding 

protein, originally anticipated to be DAF or MCP (87, 147). This protein, known initially as p65 

(147), was found to be a genetic homologue of human CR1 (148, 149) and is now therefore known 

as Crry.  

1.1.5.3.1.1 The Discovery of Crry 

Following the characterisation of the human system and the identification of receptors and 

regulatory proteins, their mouse homologues were sought – after all, the existence of equivalent 

receptors for fixed-C3 was inferred long before, given the known binding characteristic of C3-

coated bodies to mouse leukocytes and platelets (86, 150). Combined use of chromatographic, 

immunological and genetic screening methods identified important differences and similarities in 

the molecular organisation and functions of the mouse homologues of the human C3/C4 binding 

and regulatory proteins (85, 87, 145, 147-149, 151-154). Initially, studies using mouse C3-binding 

proteins isolated from solublised phagocyte membranes showed that antibodies against human 

CR1 cross-reated with a 65KDa mouse glycoprotein (P65), distinct from mouse CR1 based on size, 

wide-distribution and inability to medate adhesion of cells to C3b coated targets (147). Indeed, 

due to its similar size, this relatively small protein was suspected to be the mouse homologue of 

DAF or MCP (as mentioned above) (87, 147). Later, two genetic homologues of the human Cr1 

were found: 1) a discrete gene; 2) a 6-SCR encoding portion of the mouse Cr1/Cr2 which 

contributes the first 6 SCRs of the mouse CR1 alternative splice-variant (in addition to the 15 SCR 

Cr2 encoded portion) (145, 153). Use of human CR1-derived probes initially identified two genes 

in the mouse, arbitrarily named ‘X’ and ‘Y’ (chromosomes 8 and 1, respectively), which while very 

similar to each other, appeared to encode a different product to human CR1 (149, 154). It was 
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noted that the sequences of the mRNA species derived from the X/Y genes, like CRs 1 and 2, fH 

and C4bp, corresponded to products composed of the 60 amino acid SCR/CCP domains, but were 

shorter than for human CR1 and also were far more widely expressed, indicating a different 

product (148, 149, 154). Through genomic sequence and RNA protection analysis it became 

apparent that the CR-X gene represents a processed pseudogene derived from the CR-Y gene: the 

CR-Y gene was subsequently termed complement receptor 1-related gene Y/Crry, while the CR-X 

gene was termed Crry-ps (154). Molecular cloning and recombinant expression of the Crry gene 

enabled the subsequent identifiaction of P65 as its protein product (155).   

1.1.5.3.1.2 Function 

Given its homology to human CR1 and identity as a C3-binding protein, the function of Crry as a C 

regulator at the C3-level, employing the mechanism of decay-acceleration and/or cofactor 

activity, was suspected (87). The recognition of Crry’s function as an inhibitor of the classical 

(156), and later the alternative (157) activation, but not the terminal, pathways, further indicated 

a C-inhibitory function for Crry at or prior-to the level of C3 in the process of C activation. Further 

studies subsequently confirmed that Crry, indeed possesses both decay-acceleration and fI-

cofactor activity (155). Given the limited expression of mouse CR1 across the body and the testis-

restricted expression of MCP (158), Crry represents the only known ubiquitous mouse membrane 

C regulator with fI-cofactor activity (84). 

1.1.5.3.1.3 Evolution 

Further investigation has subsequently revealed that the human Cr1 gene is actually derived from 

the precursor of the mouse Crry, but appears to have undergone expansions and at least one 

recent duplication. Indeed, the human Cr1 gene has undergone very recent exon shuffling events 

leading to the emergence of common allotypes (87). Additionally, the presence of a pseudogene-

like element and stop codons indicates that the human Cr2 gene has lost its ability to form two 

alternatively spliced transcripts (159) (Fig. 1.3). 
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To summarise the functional differences with the mouse genetic homologues of human CR1 and 

CR2: Crry doesn’t possess receptor or immune adherence functions, but does possess potent 

regulatory activity; mouse CR1 and CR2 have overlapping receptor activities along with immune 

adherence and some regulator activity; human CR1 and CR2 have discrete receptor activities and 

only CR1 plays a role in immune adherence, but both have some regulatory activity. The biological 

functions of these components are in-part achieved through their differential distribution, with 

broad expression of human CR1 including on erythrocytes providing a means for transport of C3b-

bearing immune complexes to C3 receptors on phagocytic cells in tissues (160-162). The system 

for immune complex clearance in mice is markedly different: with no C3 binding protein with 

immune adherence activity present on erythrocytes [which are protected from autologous lysis by 

Crry instead of CR1 (163, 164)], the immune adherence-active mouse CR1 protein present on 

platelets fulfils the requirement to bind and transport opsonised immune complexes (87).  

Crry mCr2 Cr1  Cr2 

Common Ancestor 

Mouse Human 

Ancestoral Cr1/Crry & Cr2 genes 

Crry 

MCR2 

MCR1 

CR2 

CR1 

Fig. 1.3: Origins and organisation of the mouse and human CR1/CR2/Crry gene family. Schematic 

summarising the genetic and protein organisation of the mouse and human CR1/CR2/Crry gene family. 

Lowercase = gene name; Uppercase = protein name (M = Mouse);           = gene;        = SCR domain;         /     

= human Cr1/CR1 homologous sequence;                   = alternatively spliced gene;         = Pseudogene.      



 
  2

8
 

1.1.5.3.1.4 Requirements for Immune-Adherence Activity 

Human CR1 has a structure of many (~30 ) SCRs which means it has the capacity to engage ligands 

at a relatively large distance from the surface of the cell membrane (>1000 Angstroms). It has 

been suggested that this capacity is important in processes involving cellular engagement of C3 

opsonised particles in the fluid phase, particularly immune complex trafficking and maturation of 

adaptive responses (13). The lack of immune adherence and receptor activity of the relatively 

small but widespread, five SCR containing Crry, coupled with the role of the larger CRs in these 

processes in the mouse (156) suggests that this could be the case. Furthermore, the fact that CR1 

is the dominant mouse C3 binding protein with receptor and immune adherence activity, which 

only differs from mouse CR2 by the presence of the six additional human CR1 homologous SCRs at 

the N-terminal, coupled with the known physiological roles of human CR1, indicates that there 

may be some CR1 specific structural features required for efficient handling of C3-bearing 

immune complexes.  

1.1.5.3.2 Other Regulators 

1.1.5.3.2.1 DAF 

The mouse homologs of DAF, CD59 and MCP were identified after the homologues of the human 

CR1 and CR2. The human DAF gene encodes a widely expressed GPI anchored form. It also 

appears to encode a putative secreted transcript but no fluid phase DAF protein has ever been 

identified. Evidence hinting of the existence of a murine counterpart of human DAF was reported 

in 1989 (165). Later (in 1995), two DAF genes were definitively identified in the mouse which 

differ in their C terminal attachment sites: one encodes a GPI anchored form (Daf-GPI) and 

another encodes a protein with a transmembrane domain (Daf-TM) (166). The genes lie adjacent 

to one another in a “head to tail” orientation, Daf-GPI 5’ to Daf-TM. Similar to the human GPI 

anchored DAF, Daf-GPI is widely expressed. However, the expression of the transmembrane form, 

Daf-TM, is limited with preferential expression in certain tissue, notably testis and spleen. Further 

investigation showed that the mouse DAF genes are subject to alternative splicing producing 

novel transcripts, including versions with novel GPI anchoring sequences from Daf-TM and 

versions with sequences suggestive of a secreted protein from Daf-GPI (76). 

1.1.5.3.2.2 CD59 

Human CD59, a regulator outside of the RCA family (167), was identified in the late 1980’s by 

several groups and was found to be encoded by a single gene (91). Homologues were later 

identified in other species including mouse in 1997 (168). It was shown that this gene coded for a 

structural and functional homologue of human CD59 and was widely expressed. It was 

subsequently shown that a second CD59 gene termed mCd59b (the originally identified gene 

being termed mCD59a) existed and that the protein product was also a structural and functional 
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homologue of human CD59 (134). It was also shown that the mCD59b gene is subject to limited 

expression, predominantly in the testis/by germ line cells. The fact that mCd59a expression is 

relatively low in this compartment suggests discrete biological roles of the two gene products, 

despite similar C inhibitory function in vitro. 

1.1.5.3.2.3 MCP 

Human MCP is broadly expressed, although notably not on erythrocytes, with the transcript 

undergoing alternative splicing to generate distinct forms of the protein with different molecular 

masses. The mouse homologue of MCP was identified in 1998 (133, 158). Unlike human MCP, but 

similarly to the rat and as previously shown in the guinea pig, mouse MCP mRNA was found to be 

preferentially expressed in the testis, indicating, in addition to complement regulatory capacity, a 

possible specialised role in fertilisation and/or other reproductive processes for MCP in these 

species. Furthermore, the selective expression of distinct forms of DAF and CD59 in the 

reproductive organs in the mouse (as described above), suggests an important, wider role for C 

and/or the regulators in these processes. The fact that deletion of Crry results in embryonic 

lethality (169) which can be reversed with C3 deficiency (170) or inhibition of maternal C 

strengthens (171) this argument.                  

Other inter-species differences in the C system have been identified, including the binding 

properties of C3 to O-linked carbohydrates and the nature of the C4A, C4B/Slp, C4 gene 

equivalents (172). However, further discussion is beyond the scope of this section. 

1.2 Microglia 

Microglia are the resident innate immune cells within the CNS parenchyma and as the name 

suggests, are the smallest of the four principle CNS cell types (neurones, astrocytes, 

oligodendrocytes and microglia). Their original identification is usually attributed to a notable 

early Spanish neuroscientist, Pio del Rio-Hortega, through use of a novel silver stain technique (3, 

173). A characteristic feature of the CNS is the longevity of its cell types, and microglia are no 

exception, with evidence to suggest that at least some will persist the entire lifetime of the host 

(174, 175). The exact origin of the microglia and the question of whether they are renewed 

entirely from within the CNS or by infiltrating bone marrow-derived myelomonocytic cells  from 

the circulation has been contentious (176). It is now generally accepted that the amoeboid 

microglia which populate the neonatal brain are derived from myeloid precursors which migrate 

from the yolk sac/mesoderm to the developing CNS early during embryonic development and 

occupy all CNS regions, using the vasculature and white matter tracts for guidance (175). They are 

found almost evenly dispersed throughout the mature CNS, with somewhat higher density in the 

white matter, and show little variation (173). It appears likely that some microglia, particularly 
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those generated during responses to CNS insults, are derived from peripheral monocytes (176). In 

the normal mature CNS microglia adopt a ramified (from the Latin, “ramosa” meaning 

“branching” or “forked”) morphology and are said to be in a “resting” state, whereas in the 

perturbed CNS, microglia migrate towards the damage site, proliferate and take on an amoeboid 

morphology in what is said to be an “activated” state: a notable microglial feature included in del 

Rio-Hortega’s original nine postulates (3, 173) (Fig. 1.4). Studies utilising fluorophore-expressing 

microglia and/or in vivo live cell imaging have demonstrated that microglia occupy defined spatial 

territories with limited overlap (thus confirming another of del Rio Hortega’s original postulates) 

and, even in the normal brain, actively scan their local microenvironment through the dynamic 

movement of their extensive processes which are equipped with numerous receptor types (4, 

177-181) (Fig. 1.5).  
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Fig. 1.4: Evolution of microglia during phagocytic activity. A, cell with thick, rough prolongations; 

B, cells with short prolongations and enlarged cell body; C, hypertrophic cell with pseudopodia; D 

and E, amoeboid and pseudopodic forms; F, cell with phagocytosed leukocyte; G, cell with 

numerous phagocytosed erythrocytes; H, fat-granule cell; I, cell in mitotic division. 

[Photomicrographs from del Rio-Hortega, P; Microglia (3)]. 
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1.2.1 Microglial Activation 

The resting microglial state observed in the normal brain is induced by their two-directional 

interaction with neurones, macroglia and other immune cells, in-addition to the ECM, which is 

mediated by a plethora of soluble (e.g. cytokines) and membrane bound (e.g. CD200) factors, 

coupled with cellular receptors. Additionally, the resting phenotype is maintained by virtue of the 

BBB’s exclusion of components from the circulatory system (173). The changes in the microglial 

sensory input which occur upon damage to or infection of the CNS, along with perturbations in 

neuronal activity, initiate and inform the qualitative and quantitative responses which result in 

the change to the activated/amoeboid phenotype. The variable magnitude and diversity of CNS 

damage and derangement seen in different pathologies gives rise to a wide range of potential 

alterations in the microenvironment which regulates the microglial phenotype. This gives rise to a 

spectrum of microglial activation/effector phenotypes which vary in their gene expression profiles 

Fig. 1.5: Resting microglia in the mouse cerebral cortex. Microglia are labelled by EGFP expressed 

from the CX3CR1 promoter. Note the highly ramified appearance of individual microglial cells, as 

well as the ‘tiled’ or non-overlapping processes of microglia in the cortex; Scale bar = 100µm [from 

(4)] 
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and functional activities, and reflect the requirements for the resolution of the distinct activating 

trigger(s) (182, 183). Microglial functional responses include phagocytosis and release of toxic 

effector (e.g. ROS, proteases) and immune active molecules, the latter including cytokines and 

chemokines (etc.) which promote expansion (or resolution) of inflammation. In addition to the 

potential for collateral damage caused directly by the release of toxic effectors and aberrant 

phagocytosis, by signalling to other immune active cells, microglial functional responses can 

initiate, guide and perpetuate expansion of inflammation, which if excessive, can be potently self-

destructive. Thus, along with the possibility of failure to adequately resolve inflammatory triggers 

when not sufficiently intense, perturbed microglial activation responses can be dangerous when 

excessively intense or misdirected, and this is believed to play a role in diverse neurological 

diseases (173). 

1.2.2 Microglial Functions 

The reactive nature and phenotypic diversity of microglia means they participate in numerous 

processes in the mature CNS and (as described above) these have potential to become 

pathophysiological if functional activity is misdirected or not properly gauged. This includes 

defence against infection, although microglia are known to be targets of some intracellular 

pathogens such-as HIV-1, which mainly targets microglia for productive infection in the CNS and 

enters the cell in a CD4 dependent manner, leading to HIV-associated dementia through release 

of neurotoxic immune modulators resulting in neuronal degeneration and death (184, 185). Other 

roles of microglia include containment and repair of CNS injury, both traumatic and non-traumatic 

(e.g. ischaemic), and antigen presentation. During elevated responses as part of infection control 

or following injury, microglia initiate and coordinate the involvement of peripheral immune cells 

through cytokine and chemokine release. By upregulating their antigen presentation capacity and 

permitting the sampling of the CNS by other APCs, along with causing lymphocyte influx, microglia 

thereby activate adaptive immune responses which are key for the resolution of complex immune 

challenges (e.g. established/active infections). However, deranged/aberrant adaptive immune 

responses in the CNS, which is normally relatively insulated from adaptive immunity, is 

particularly hazardous and is thought to contribute to the establishment of autoimmunity (173). 

The above functions all pertain to the roles of microglia in the context of immunity. Through their 

sentinel and phagocytic nature, microglia also mediate the homeostatic clearance of debris and 

aged and/or damaged proteins. Additionally, via their capacity to detect the activity of and 

communicate with neurones and macroglial cell types, microglia also have emerging roles in 

modulating neural activity and plasticity (186, 187).              
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1.2.3 Tools for Microglial Research 

The early studies of microglia relied on histology and special staining procedures, the first of 

which was developed by del Rio-Hortega in the early twentieth century (173). Although of great 

historical importance and utility, revealing the identity and fundamental biology of microglia, such 

methods are laborious and inconsistent (188). Advances which led to the development of IHC, a 

technique for the detection in tissue of specific antigens related to cell type and activation status, 

and in situ hybridisation, for detection of specific RNAs in tissues, provided powerful tools for 

microglial research. A further notable development was the introduction of the facial nerve lesion 

model in the late 1960s which permitted investigation of activated microglia without BBB 

disruption (189). In 1986 a key step forward was made by Giulian and Baker who established 

protocols for the in vitro culture of microglia from the postnatal rodent brain in sufficient volumes 

for investigation of cell features and functional responses (190). Culture protocols involve 

generating a single cell suspension of CNS tissues through enzymatic and/or physical methods, 

and many (including the originals) are based on the differential adhesive properties of neural/CNS 

cells. Refinements to these techniques have included isolation steps based on distinct CNS cell 

densities (i.e. density gradient centrifugation) and antigen expression (i.e. MACS sorting) (191). 

Several cell lines (e.g. BV2, N9) have been developed and used extensively since they provide a 

ready source of large cell numbers, a shortfall of primary cell culture protocols which typically 

take a matter of days to weeks to yield relatively small numbers of cells (192). Unsurprisingly, as a 

result of the extraction process and recognition of the culture environment as foreign/alien, 

extracted cells typically have an activated phenotype, readily illustrated by an amoeboid 

morphology (190) and also apparent in an ion channel distribution akin to that observed in 

activated cells in acute brain slices (173, 193), illustrating the importance of careful interpretation 

of in vitro data. Acute and cultured brain slices have also been employed in microglial research in 

more recent times, particularly concerning electrophysiological properties and responses to 

various agents in different contexts/scenarios (193-196). The development of mice with 

genetically-based cell type specific markers, such as EGFP expressed under the control of the 

fractalkane receptor (CX3CR1) (197) or Iba-1 (198) promoter, combined with the use of advanced 

imaging techniques has recently permitted microglial study in the undisturbed living brain (179-

181). Despite this, more in vivo methodologies are needed for the investigation of microglial 

activities and interactions in the intact CNS.                

1.2.4 Microglia, C, Development & Dysfunction 

1.2.4.1 Microglia & C in the CNS: a Dichotomy of Function 

As the resident immune cells within the parenchyma, microglia are traditionally known for their  

involvement in the mechanisms of numerous CNS pathologies ranging in nature from infection, 
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traumatic, ischaemic and excitotoxic injury, inflammation (e.g. MS), degeneration (e.g. 

Alzheimer’s), neoplasia and even behavioural disorders (e.g. Schizophrenia, Rett syndrome) (173, 

178, 199). Indeed, some form of microglial activation and effector function appears ubiquitous in 

scenarios of CNS perturbation. However, in addition to participation in pathological events, it has 

become increasingly recognised in more recent times that microglia are involved in non-

pathological CNS events in the normal mature tissue and also in development, with roles in 

surveillance, homeostasis, neuroprotection, repair and wiring of the neural circuitry (177, 178, 

200). This reveals a dichotomy of microglial function with potential for harmful and beneficial 

effects, leading to a realisation that therapeutic modulation of microglial activation will require 

suppression of negative effects while simultaneously preserving or enhancing beneficial effects. 

Furthermore, a similar situation has emerged regarding the role of C in the CNS. Previously, C 

activation in the CNS had been viewed in terms of its known function as an immune effector 

system, owing largely to the lack of other ascribed functions and the immunohistochemical 

detection of C activation products in and around CNS lesion (e.g. amyloid plaques, demyelinated 

lesions). It should also be noted that the methodology of detecting deposited C activation 

products in pathological/damaged tissue precludes the function of other non-immobilised 

products and functions in non-pathological scenarios (e.g. development, normality/health) and 

thus biases towards the view of C as a CNS damage mediator. However, in recent times it has 

become established that all the CNS cells combined produce all the C components and C is found, 

albeit at relatively low levels, in normal CSF (18, 96, 201-207). Since the BBB excludes blood borne 

C under physiological circumstances (18, 207), the discovery of C in the normal CNS led to 

reassessment of the traditional view of C’s role in CNS pathology, previously thought to reside 

solely in protection against neisserial meningitis (which is more common in individuals deficient in 

terminal C components) (96). It has subsequently been established that C activation plays 

physiological roles in development and additionally, some products have beneficial effects in 

terms of neuronal and cognitive integrity in some settings, with roles in neuroprotection and 

regeneration. This has been described as “a renaissance” of C research in neuroscience (207) and 

has led to the recognition of C activation in the CNS as, similarly to that of microglial function, 

another “dual-edged sword”, the beneficial effects of which must be promoted and the negative 

obviated if modulation will ever be a valid therapeutic target. Moreover, through an array 

of/being equipped with C receptors and as a source of C components, microglia play central roles 

in initiating and effecting C-mediated functions in the CNS (173), both beneficial and detrimental. 

Thus understanding the roles of and the links between microglia and C in the CNS during 

development, health and disease will be of great value for both basic and applied/clinical 

neuroscience.          
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1.2.4.2 C as a Therapeutic Target for CNS Disease/Pathology 

Despite these data illustrating the neurogenic, refinement, protective and proliferative effects of 

C on neurones and glial cells (96), there are ample data defining an inflammatory and damaging 

role for C in various pathological CNS settings, including demyelinating and degenerative 

disorders, infection, and  acute neurodegeneration resulting from injury (i.e. ischaemia, 

haemorrhage, trauma, toxicity) (208). Through direct tissue damage via MAC formation, 

opsonisation of cells and matrix components, and the recruitment of cells and immune molecules 

to sites of pathology, C is a potent mediator of neuroinflammation and neurodegeneration. 

Nonetheless, mechanisms of neuroprotection and regeneration are active in similarly diverse 

pathological processes. C is active in the low level turnover of certain neural populations in the 

normal brain and can mediate protective mechanisms, in addition to widespread regenerative 

processes at the cellular and synaptic level. Additionally, the lytic, opsonic and inflammatory 

actions of C activation can have beneficial effects, clearing infections, senescent, dying and 

damaged host cells and debris, and generally creating a favourable environment for healing (96, 

207). However, if the inflammatory trigger is qualitatively and quantitatively sufficient, and the 

underlying genetic and temporal-spatial status of the system is conducive, it seems the balance 

between C’s homeostatic and protective effects can be outstripped by the tendency of this 

protean system for robust activation and pro-inflammatory effects, resulting in secondary damage 

and exacerbation of pathology (207). Given this current knowledge regarding the role of C in CNS 

health and disease, targeted therapeutic modulation of C in the CNS, although clearly challenging, 

appears potentially attractive, offering the exciting possibility to inhibit and reverse degeneration. 

However, owing to C’s inherently dangerous nature, such targeted modulation would require 

highly tuned control and careful monitoring. 

1.2.4.3 Links between C and Microglia 

Microglia interact with other neural and immune cells, in-addition to the ECM and other entities 

from outside the CNS (both foreign and endogenous), through a plethora of soluble (e.g. 

cytokines) and membrane bound (e.g. CD200) factors coupled with cellular receptors in-order to 

affect their functions. Included amongst this multitude are a number of soluble and membrane 

bound C components and products, along with C receptors (173). As discussed above, microglia 

and C participate in diverse processes within the CNS ranging from developmental to 

dysfunctional; in some cases, this is accomplished through cooperation. Perhaps the most notable 

physiological interaction between C and microglia established to date is that involved in the 

mechanism of synaptic pruning in the early postnatal brain, where C1q is deposited on weak 

synapses leading to C activation and opsonisation with C3 activation fragments and subsequent 

phagocytosis by microglia via CR3 (95, 177). Other notable defined interactions between C and 
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microglia include the C5a-mediated neuroprotective mechanisms of microglial glutamate 

transporter-1 up-regulation (which increases the clearance of extracellular glutamate) (209) and 

C3a-mediated increased microglial nerve growth factor expression (210). In-terms of pathological 

C-microglia interactions: Rapid, high-grade C activation which can occur in acute disease settings 

(e.g. ischaemic/haemorrhagic stroke, trauma), where sudden BBB brake-down permits access of C 

from the circulation to the CNS parenchyma (211, 212), can lead to excessive C-mediated 

microglial phagocytosis of tissue components and release of proinflammatory (e.g. cytokines) and 

damaging molecules (e.g. reactive oxygen and nitrogen species, proteases) which outweighs the 

beneficial effects of C-microglial activation, becoming pathological; A similar situation applies in 

chronic disease settings, but it is the slow, low-grade C activation, which results from the failure 

to adequately resolve the activation trigger (e.g. Alzheimer’s disease, MS), which can result in 

ongoing C-mediated microglial phagocytosis of tissue components and release of 

proinflammatory and damaging molecules which, again, outweighs the beneficial effects of C-

microglial activation in terms of clearing the environment of aberrant contents, restoring 

homeostasis and supporting neuroprotection and neurogenesis. It is almost certain that other 

links between C and microglia which are (of course) relevant for health and disease in the CNS will 

be established. For example, given that microglia are known to secrete factors which regulate the 

proliferation, migration and differentiation of neural progenitor cells (213), and C3a-C3aR 

signalling has been shown to impact on these same parameters in neural progenitors (96, 207), it 

is tempting to speculate that the C3a may prove to be among those (if not the sole) microglial 

molecules which are responsible for this activity. A further link between C and microglia was 

recently established in the pathological realm and is particularly relevant for CNS diseases 

involving microglial activation, especially those in-which triggering events (e.g. infections, injuries) 

can precipitate disease symptoms and progression (e.g. Alzheimer’s, MS, aging): this link derives 

from studies of the microglial phenotype in Crry KO mice, a system of chronic C activation, and 

relates to the phenomenon of microglial priming (1), which is discussed below.          

1.2.5 Microglial Priming 

Microglial priming is the concept that previous exposures can sensitise microglia to subsequent 

challenges such that their inflammatory response becomes exaggerated or they respond to what 

is normally a sub-threshold challenge. Owing to the longevity which makes microglia susceptible 

to inflammatory exposures over time, coupled with the sensitivity of the CNS to disruptions and 

its poor capacity for regeneration, the increased neuroinflammation associated with priming of 

microglia is particularly problematic/dangerous. Some evidence from infectious models illustrates 

that priming, like typical modes of microglial response, is potentially an adaptive response which 

has beneficial effects (214). However, as evidenced by animal models of neurodegeneration, 
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normal human aging, along with patients suffering from head injuries and dementia, the 

exaggerated neuroinflammation associated with microglial priming can have deleterious impacts 

on CNS health and disease, leading to cognitive decline, exaggerated sickness-behaviour and 

depression, along with physical degeneration of the neural network (1, 214-220). Currently, since 

there is no clear-cut molecular distinguisher to identify primed microglia; the concept of 

microglial priming remains operationally defined, although available evidence illustrates that 

underlying differences in morphology, gene expression and cell number are important. Microglial 

priming was first described in the last decade in mice with pre-clinical ME7 prion disease, a model 

of neurodegeneration featuring chronic microglial activation without inflammatory effector 

release, where it was shown that systemic inflammation induced by intraperitoneal LPS 

administration led to exaggeration of sickness behaviour (temperature and activity responses), 

microglial production of IL-1β and neuronal apoptosis (217). The term ‘primed’, to describe hyper-

reactive microglia, was coined by the same group a few years later, in further studies using the 

ME7 model of prion disease (221). Priming has since been recognised in diverse scenarios 

including deficiency of specific neuroimmune inhibitory molecules which are ligands for microglial 

receptors i.e. CD200 and CX3CR1 (215), acute and chronic psychosocial stress (where 

catecholamine, glucocorticoid and IL-1β signalling has been implicated) (219), aging (216, 218), 

traumatic CNS injury, chronic systemic inflammation and neurodegeneration (214). Similar to the 

molecular signature of priming, the molecular mechanism(s) which induces priming remains 

unclear, yet this is essential if microglial priming, an important driver of neuroinflammation, is to 

be successfully targeted therapeutically.              

1.2.5.1 Complement & Microglial Priming 

A recent study into the in vivo consequences of Crry deficiency revealed a novel microglial 

phenotype in naïve Crry KO animals involving global hypercellularity and morphological changes 

(thickening of processes, enlargement of soma). Critically, inducing robust microglial activation by 

modelling systemic infection with peripheral LPS administration led to a dramatically enhanced 

pro-inflammatory response thus fulfilling the criteria of priming. Additionally, Crry KOs also 

experienced accelerated and exacerbated EAE, further illustrating the relevance of microglial 

priming for CNS degeneration. The microglial phenotype in naïve Crry/C3 and Crry/fB double KOs 

didn’t differ to that observed in WT mice, illustrating the dependence of the Crry KO phenotype 

on C activation, specifically via the alternative pathway. Furthermore, systemic/peripheral 

administration of sCR1 reversed the microglial phenotype observed in naïve animals during the 

pre-clinical/symptomatic stages of EAE, but failed to do so in the absence of BBB disruption, 

indicating that the Crry KO primed microglial phenotype is dependent on intrathecal C 

activation/C activation within the CNS. Similarly to Crry/C3 and Crry/fB double KOs, a normal 
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microglial phenotype was observed in factor H KO mice, another system of uncontrolled C 

activation: in the mouse, factor H is the non-essential cofactor for the factor I-mediated cleavage 

of C3b to iC3b and C3f, whereas Crry is the essential cofactor for processing of iC3b to C3dg and 

C3c; factor H KOs therefore have elevated C3b in their system whereas Crry KOs have elevated 

iC3b. The fact that the primed microglial phenotype was only observed in Crry KOs with an 

otherwise intact C system (and not factor H KOs) therefore indicates that it is dependent on the 

generation of the iC3b cleaved product of activated C3. Further suggestive of the key role for iC3b 

in the priming mechanism, deposited cleaved products of C3, which (as described) in the Crry KO 

mouse are primarily the iC3b fragment, were shown to co-localise with CD11b, a key microglial 

marker and part of the cognate receptor for iC3b (CR3), in the Crry KO CNS (1). Based on these 

data, a model of C3-dependent microglial priming was developed in-which local deposition of 

iC3b leads to ligation of microglial CR3, thereby inducing a primed phenotype and resulting in 

hyper-responsiveness to subsequent pro-inflammatory triggers (Fig. 1.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6: Model of C-dependent microglial priming [as proposed by Ramaglia et al., 2012 (1); figure 

adapted from (1)] 
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1.3 Aims & Hypotheses  

Microglia participate in diverse processes throughout the course of their host’s lifetime, ranging 

from (physiological) pre- and post- natal development, homeostasis, neuroplasticity, 

neuroprotection, neurotrophism to (pathological) neuroinflammation and neurodegeneration 

(222). However, having long been known as innate immune cells which rapidly respond to all 

manner of CNS insults and due to the relatively recent appreciation of their activity in undisturbed 

tissue, microglia have traditionally been appreciated as cells involved in pathology which have the 

potential to mediate damage (213). Within the pathological realm of microglial function, the 

concept of microglial priming has been established within the last decade and is widely applicable 

to scenarios of CNS injury where it provides a mechanistic explanation of clinical, experimental 

and anecdotal observations (223). The report of Ramaglia et al. which identified and defined a C 

dependent mechanism of microglial priming and demonstrated its relevance for inflammatory 

and degenerative CNS disease was a seminal publication which for the first time identified a 

molecular mechanism of priming, a mechanism which could be applicable to a variety of clinical 

and experimental settings (1). However, (perhaps unsurprisingly) a number of questions still 

remain/these findings raise further questions regarding the nature of C-mediated microglial 

priming, specifically relating to the ability of C to prime genetically un-manipulated cells and the 

maintenance of the primed state of Crry KO cells in the absence of chronic C activation.        

Dementia has a serious impact on quality of life and represents a major cause of age-related 

mortality, with Alzheimer’s disease (the most common form of dementia) estimated to reach 

>100 million cases by 2050 (224). As a mechanism which promotes neuroinflammation, a 

recognised component in the pathogenesis of dementia (225, 226), coupled with early and 

chronic microglial activation during neurodegeneration (173, 214, 227) and the known 

exaggerated detrimental effects of inflammatory triggers on Alzheimer’s/dementia patients (217, 

228, 229), microglial priming is of clear relevance for the establishent and progression of 

dementia. Given the influence of peripheral inflammation (which can be modified by lifestyle and 

pharmacologically) on microglial priming and activation (1, 214, 216-218, 220, 230), priming may 

therefore represent a valuable new therapeutic target for strategies to prevent and/or treat 

dementia and thereby promote healthy aging. 

Set against a background of unanswered questions pertaining to C and microglial priming, as a 

phenomenon which impacts on these cells’ contribution to health and disease, this thesis 

provides an account of investigations into specific mechanisms of C-induced microglial priming 

based on the findings of and model proposed by Ramaglia et al. (1). 



 
  4

1
 

The issues and questions raised by the study of Ramaglia et al., which was an exclusively in vivo 

investigation, call for in vitro investigations where the properties and responses of normal and 

genetically manipulated microglial cells can be studied in isolation from other cell types and 

uncontrolled C exposure. 

The hypotheses to be tested are that: 

1. ligation of microglial CR3 by iC3b on naïve cells will result in a primed phenotype  

2. in the absence of chronic C activation (in vitro) the primed microglial phenotype 

observed in Crry KO cells in vivo will be lost, but will be restored (through the 

mechanism of the 1st hypothesis) by exposure to C activation which results from their 

intrinsic sensitivity   

The key aims of this study are to develop (and characterise) in vitro: 

 a system for the extended culture of pure populations of primary adult (murine) microglia 

in a resting state with retained responsiveness to activation stimuli and C factors 

 a microglial activation regime and readouts which permit the assessment of 

activation/phenotypic status 

 strategies (and appropriate controls) to ligate/cross-link/engage microglial CR3 with iC3b 

 a method to exploit the intrinsic sensitivity of Crry KO microglia to C activation  
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2 Materials & Methods 

2.1 Cell Culture 

All cell cultures were maintained at 37°C in a humidified atmosphere with 5% CO2. All plastic-ware 

and solutions/reagents were sterile TC grade. Plastic-ware was from from Greiner or Nunc; all 

media and reagents were from Life Technologies (Gibo & Invitrogen), apart from (rm)M-CSF (R&D 

Systems) and DMSO (Fisher Scientific). Unless specified, all solutions were pre-heated to 37°C 

before use.  

Solution Formulation 

Plain Medium 1 x DMEM, 4.5g L-1 D-glucose, 2mM L-glutamine 

Serum free medium 
Plain medium + 50U mL-1 penicillin G, 50µg mL-1 streptomycin 

sulphate, 1mM sodium pyruvate 

BV2 Growth medium  Serum free medium + 10% (v/v) heat inactivated FBS 

1° Culture medium Serum free medium + 15% (v/v) heat inactivated FBS 

1° Growth medium 1° Culture Medium + 10ngml-1 rmM-CSF 

Freezing medium 60% (v/v) serum free medium, 30% (v/v) FBS and 10% (v/v) DMSO 

Table 2.1: Formulae of cell culture media 

2.1.1 BV2 Microglial Cell Line  

2.1.1.1 Maintenance 

The BV2 murine microglial cell line was kindly provided by Dr. David Copland, School of Clinical 

Sciences, University of Bristol. The BV2 line was selected for its isogenicity to the C57Bl/6 mouse 

strain which was used for primary cell culture (231). BV2 cells were maintained in BV2 growth 

medium (Table 2.1) in 25cM2 TC flasks. In-order to minimise genetic drift of cells between 

experiments, cells were maintained in culture for no more than ~2.5 months/20 passages before 

being discarded and another culture initiated from original frozen stocks. 

2.1.1.2 Sub-Culture 

Cells were cultured until they were ~75% confluent, at which point they were passaged. The 

culture medium was discarded and the monolayer rinsed in 5ml sterile PBS, then incubated with 

5mL 0.05% trypsin, 0.53mM EDTA (Gibco). When the monolayer was fully detached as evident 

from microscopy, 8mL BV2 growth medium was added and the total 13mL volume transferred to 

a 15mL centrifuge tube, which was then centrifuged at 300xg for 4 minutes at RT. The 

supernatant was discarded and the cell pellet resuspended in 1mL BV2 growth medium. Cell 

numbers were determined using a haemocytometer and 2.5 x 105 cells in 10ml BV2 growth 

medium were added to each 25cM2 TC flask; the growth rate of BV2 cells necessitated biweekly 

passaging. 
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2.1.1.3 Reanimation from Liquid N2 Storage 

BV2 cell aliquots were removed from the liquid N2 dewar and transported on dry ice to the TC 

room. Aliquots were rapidly thawed in a 37°C water bath, then cells were washed by transfer to 

BV2 growth medium (20mL) and pelleted by centrifugation at 300xg for 4 minutes at RT. Cells 

were then resuspended in BV2 growth medium, counted and seeded at 5 x 104 ml-1 in 25cM2 TC 

flasks. 

2.1.1.4 Preparation of Frozen Stocks  

BV2 cells were grown to ~85% confluence in a 175cM2 TC flask. The spent medium was discarded 

and the monolayer washed with sterile PBS followed by trypsin-EDTA solution until fully detached 

(as above [2.1.1.2]). The cell suspension was diluted in BV2 growth medium and centrifuged at 

300xg for 4 minutes at RT. The cell pellet was then resuspended in the appropriate volume of 

freezing medium (Table 2.1) to yield a cell density of ~106 ml-1 and 1ml aliquots were transferred 

to cryo-vials. Vials were then placed in an isopropanol-containing freezer box which was stored 

overnight in a -80°C freezer to effect slow cooling (~1°C min-1). Vials were then transferred to 

vapour phase liquid N2 for long term storage. 

2.1.2 Primary Microglia   

2.1.2.1 Initial Culture 

2.1.2.1.1 Tissue Acquisition 

Primary adult murine microglia were cultured according to the protocol of Yip et al. ’09 with 

minor modifications (232). All animal procedures were performed in accordance with UK Home 

Office legislation under the ASPA act 1986. Mice (genotypes as indicated) of ages 8-12 weeks, 

housed in a conventional/non-barrier environment were used for all experiments. Animals were 

sacrificed by exposure to a rising concentration of CO2 and quickly exsanguinated by cardiac 

puncture. The thorax was promptly opened and the inferior vena cava severed. The animal was 

then perfused via the left ventricle with 40ml of ice cold autoclaved, 0.22µM filtered PBS in 20ml 

syringes with 25 gauge needles (sterile; BD) at a flow rate of ~6ml min-1 to remove all blood cells 

from CNS blood vessels. The skull was exposed and a sagittal incision made along the crest. A cut 

was then made around the skull cap and the brain exposed and rinsed with ~5ml of ice cold plain 

medium (Table 2.1). The whole brain was removed from the top of the brain stem before removal 

of any extraneous membranous tissue and transfer to 20ml of plain medium on ice for transport. 

The dissected tissue was then transferred to a class 2 TC hood for the remainder of the 

procedure. 
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2.1.2.1.2 Tissue Processing 

The brain tissue was finely minced in a small volume (2-3mL) of plain medium using a sterile 23 

gauge scalpel and transferred to a 15ml tube. Sterile papain solution (Sigma-Aldrich; 4 ml of 2mg 

ml-1 in plain medium, 0.22µM filtered) was added and incubated at 37°C for 30 minutes with 

agitation. The tissue was then allowed to settle for 5 minutes and the papain solution removed 

and replaced with 2mL of 1° culture medium at 37°C (Table 2.1). The tissue was then triturated by 

passage through a 1mL pipette-tip, allowed to settle for 2 minutes and the supernatant collected. 

The remaining tissue pellet was resuspended in another 2ml 1° culture medium at 37°C and the 

process repeated twice such that a total volume of 6ml supernatant/suspension was recovered. 

This suspension was then centrifuged at 300xg for 5 minutes at RT and the supernatant discarded. 

The pelleted material was then resuspended in 1ml 1° growth medium (Table 2.1) at 37°C and 

passed through a sterile 70µM nylon-mesh cell-strainer (Fisher Scientific). The cell strainer was 

then rinsed with another 1mL of warm 1° growth medium and the total recovered volume gently 

mixed. The suspension was then seeded into multi-well TC plates at 50µL per cM2 and then 4 x the 

suspension volume of 1° growth medium added to the well and mixed gently by rocking/swirling. 

Cells were allowed to adhere for a minimum of 2hr [max. 24hr, as per Yip et al., (232)] and then, 

following gentle agitation to resuspend non-adherent debris and cells/material, the medium was 

removed from each well and was replaced with 1° culture medium. Following further gentle 

agitation, this was then finally replaced with 0.5mL 1° growth medium per cm2 TC surface. Media 

was replaced biweekly. 

2.1.2.2 MACS Purification 

Where indicated, cells were further purified by MACS® technology based on CD11b immuno-

reactivity according to the manufacturer’s (Miltenyi Biotec) instructions. Near confluent cultures 

were rinsed with sterile PBS and incubated with 10mM warm, sterile EDTA (Fisher Scientific) in 

PBS for 5 minutes. The cell-suspension in EDTA/PBS was diluted by addition of 1.5x the volume of 

1° growth medium and the remaining adherent cells were lifted by gentle pipetting. Cell 

suspensions were then pooled and centrifuged at 300xg for 4 minutes at RT. Cells were then 

washed by resuspension in ~5mL of ice-cold MACS buffer (PBS, 2mM EDTA, 10% FBS [0.22µM 

filtered]) and then pelleted again by centrifugation at 300xg for 4 minutes at 4°C. The supernatant 

was discarded, the cell pellet resuspended in 90µL ice-cold MACS buffer and 10µL CD11b 

(microglia) MicroBeads, human and mouse (Miltenyi Biotec), added and mixed thoroughly by 

gentle pipetting. The mixture was then incubated for 15 minutes at 4°C with occasional agitation 

and then washed twice in ice-cold MACS buffer by centrifugation (4°C). The microbead labelled 

cell pellet was then resuspended in 0.5ml of ice-cold MACS buffer and transferred into a pre-
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equilibrated (0.5mL MACS buffer) MACS column (MS; Miltenyi Biotec) within the magnetic field of 

a mini-/octo-MACS magnet (Miltenyi Biotec). The column was then washed thrice within the 

magnetic field with 0.5mL ice-cold MACS buffer and the run-through (unlabelled cells/material) 

collected. The column was then removed from the magnetic field and placed onto a 15ml 

centrifuge tube, at which point another 0.5ml ice-cold MACS buffer was added and the labelled 

cells flushed out by rapid depression of the column plunger. The collected cell fractions were 

washed with warm 1° growth medium, pelleted by centrifugation at RT, resuspended in warm 1° 

growth medium at 5x104 ml-1 and seeded onto multiwell TC plates before being incubated. 

Medium was replaced biweekly. 

2.1.2.3 Expression of Microglial Markers 

To confirm the identity of the isolated primary cells as microglia, the expression of a range of 

microglial markers was assessed by flow cytometry (CD11b, CD45, CD200R, C5aR, F4/80 antigen 

and Crry; as per Section 2.3.1) and Rt-qPCR (Iba-1, Crry; as per Section 2.3.4), in-addition to 

comparative assessment of gross morphology by phase-contrast microscopy. 

2.2 Cell Treatments/Exposures 

2.2.1 LPS 

Lyophilised LPS (from E. coli 0111:B4; Sigma-Aldrich) was reconstituted at 1mg ml-1 in plain 

medium then diluted 1:5 in plain medium to a 200µg ml-1 stock solution. To achieve final 

concentrations of ≥1µg ml-1, stock solution was diluted by direct addition to the TC medium. 

Where concentrations <1µg ml-1 were required, stock solution was diluted 1:10 in plain medium 

for each 10-fold/log10 reduction in concentration from 1µg ml-1 prior to addition to TC medium. 

2.2.2 Fluid-phase iC3b 

Human iC3b (fluid-phase) was purchased from Complement Technology, Inc.: catalogue number 

A115; 250µl per vial; 1mg ml-1 solution in PBS (10 mM sodium phosphate, 145 mM NaCl, pH 7.2).  

2.2.2.1 Characterisation 

2.2.2.1.1 SDS-PAGE 

SDS-PAGE was performed using the Mini PROTEAN II system (Bio-Rad). SDS-buffered acyrlamide 

gel mixtures were prepared as indicated in Tables 2.2 A & B. The 10% APS (Sigma-Aldrich) solution 

(which catalyses acrylamide polymerisation and thus setting of the gel) was added immediately 

prior to pouring of the gel mixtures into the assembled gel-casting moulds. The volume of the 

resolving gel mixture (sufficient to fill roughly three-quarters of the cast) was poured first; this 

was then submerged to a level of 3-5mM inside the casting mould with butanol to seal the 

resolving gel-mixture from the atmosphere in-order to assist setting/polymerisation. After 30 
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minutes to 1 hour (upon setting of the resolving gel) the layer of butanol was removed and the 

complete (i.e. + 10% APS) stacking gel mixture was poured into the mould. A Teflon comb (which 

forms multiple wells in the gel and seals the mixture to assist polymerisation) was inserted into 

the top of the mould (now full) being careful not to introduce air into the mixture. Once set (after 

~1hr) the cast containing the gel was clamped into the running tank and SDS running buffer (Table 

2.2B) was filled to the appropriate levels to cover the anode and cathode. The gel was left to 

equilibrate in the SDS running buffer for at-least 5 minutes prior to the loading of protein. iC3b 

samples for electrophoresis were prepared by diluting 3µL/3µg (1mg mL-1) of the iC3b preparation 

in 9µL loading buffer (Table 2.2B), mixing thoroughly and heating to 90°C for 5-10 minutes; 10µL 

(containing 2.5µg iC3b) of this protein/loading-buffer mixture was then transferred to the 

relevant well of the equilibrated gel alongside 5µL of pre-stained broad-range protein standards 

(New England Biolabs). The electrophoresis apparatus was fully assembled then connected to a 

Model 500/200 power supply (Bio-Rad) and a potential difference (~100V, 70mA) applied until the 

dye front reached 0.5 cm from the far-edge of the gel (~1hr). 

Following electrophoresis, polyacrylamide gels were stained with Coomassie blue stain (Table 

2.2B) for the detection and visualisation of separated proteins. Gels were rinsed in dH2O to 

remove surface running buffer and bathed in coomassie stain for 3 hours on a rocker. Coomassie 

blue stain was removed, the gel rinsed (in dH2O), then bathed in de-stain buffer (Table 2.2B) and 

incubated for an hour on a rocker. The destain solution was removed and replaced with fresh 

destain; this process was repeated until protein bands appeared blue with a sharp-contrast 

against a clear background. Coomassie stained gels were then scanned.      
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A 

Component Stacking Gel (3.5%) Resolving Gel (10%) 

SDS stacking gel buffer 1.2mL N/A 

SDS resolving gel buffer N/A 3.75mL 

Acrylamide/Bis (37.5:1) 440µL 3.75mL 

dH2O 3.25mL 7.25mL 

TEMED 5µL 15µL 

10% APS (in dH2O) 50µL 150µL 

 

B 

Solution Formulation 

SDS stacking gel buffer 0.5 M Tris, 0.4% (w/v) SDS, pH6.8 

SDS resolving gel buffer 1.5 M Tris, 0.4% (w/v) SDS, pH8.8 

Loading buffer (reducing) 0.1 M Tris, 10% (v/v) glycerol, 2% (w/v) SDS, 

0.01% (w/v) bromophenol blue, 0.71M 2-

Mercaptoethanol , pH 6.8 

SDS running buffer 25 mM Tris, 191 mM glycine, 1% (w/v) SDS 

Coomassie blue staining buffer 0.2% (w/v) coomassie blue R250 in 45% (v/v) 

methanol, 8% (v/v) glacial acetic acid in dH2O 

De-staining buffer 40% (v/v) methanol, 10% (v/v) glacial acetic 

acid in dH2O 

Table 2.2: Formulae of gels (A) and complex solutions (B) utilised for SDS-PAGE and sample visualisation 

2.2.2.1.2 Immuno-Reactivity 

2.2.2.1.2.1 Plate Coating 

Each of the wells in rows 1-3 of a 96 well ELISA plate (Nunc MaxiSorp™; Sigma-Aldrich) were 

incubated with 100µL of 2.5, 5 and 10 µg mL-1 (respectively) iC3b in PBS, while those in row 4 

were incubated with 100µL of 10µg mL-1 purified human C1Inh (Cinryze®; Viropharma) in PBS, for 

1hr at 37°C.     

2.2.2.1.2.2 Blocking, Probing and Detection 

After 3 washes with 0.05% tween in PBS, the protein coated plate was blocked by incubation for 

1hr at 37°C with 1% BSA (Fisher Scientific) in PBS. Following decantation of the blocking buffer: all 

of the protein-coated wells in column 4 of the 96-well plate were incubated with 2µg mL-1 of rat 

IgG1 isotype control mAb (clone R3-34, BD); all of the protein-coated wells in column 5 and 6 

were incubated with 2.5 and 5 µg mL-1 (respectively) mouse anti-human C1Inh mAb (in-house); all 

of the protein-coated wells in columns 7-12 were incubated with doubling dilutions of rat anti-
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human iC3b mAb (clone 9 [rat IgG1]; in-house) ranging from 8-0.25 µg mL-1; all 

remaining/antibody-untreated wells were incubated with 100µL 1% BSA in PBS. After 1hr at 37°C, 

each of the incubated wells was washed 3-times with 0.05% tween in PBS. Each of the protein 

coated wells in column 1 were incubated with 100µL 1% BSA in PBS, while those in columns 2, 5 

and 6 were incubated with HRP-conjugated donkey anti-mouse polyclonal Ab (1:2000; Jackson 

Immuno Research), while those in 3, 4 and 7-12 were incubated with HRP-conjugated donkey ant-

rat polyclonal Ab (1:2000; Jackson Immuno Research). All antibody incubations were in 100µL 1% 

BSA in PBS. After 1hr at 37°C, each of the incubated wells were again washed 3-times prior to the 

addition of 100µL HRP substrate solution (SIGMAFAST OPD [Sigma-Aldrich; prepared as per 

manufacturer’s instructions]) per well, and incubation for ~10 minutes at RT in the dark (without 

sealing of the plate). The peroxidase reaction was then terminated by the addition of 100µL 10% 

H2SO4 (in dH2O) per well and gentle mixing/swirling. Absorbance was then measured at 492nM 

using a FLUOstar OPTIMA plate reader (BMG Labtech). 

2.2.2.2 Fluorescent iC3b 

2.2.2.2.1 Fluorescein Conjugation 

Human iC3b was fluorescein conjugated via N-hydroxysuccinimide-linkage using the Fluorescein 

Antibody Labelling Kit (Thermo Scientific) according to the manufacturer’s instructions. Briefly, 2 

vials of iC3b were mixed together to yield 0.5ml at 1mg ml-1, which was then added to a 

fluorescein – N-Hydroxysuccinimide reaction vessel and incubated in the dark at RT for 1hr to 

fluorescein-label the protein. The remaining free dye was then removed from the sample by 

mixing with- and centrifugation (1000xg, ~40 seconds) through- the supplied purification resin, 

which had been pre-packed and separated from storage solution by centrifugation (1000xg, ~40 

seconds) into the dye removal column. Residual, non-covalently associated/bound dye was 

removed from the sample by extensive dialysis against PBS at 4°C.    

2.2.2.2.2 Confirmation of Labelling & Retained Capacity for Antibody Binding 

To confirm the successful fluorescein labelling of the iC3b protein and demonstrate the 

preservation of its ability to bind specific antibody, a concentration gradient of the reaction 

product was incubated against a concentration gradient of human iC3b specific rat monoclonal 

antibody (clone 9; in-house) which had been immobilised on an ELISA microtitre plate, and 

specific fluorescence detected. FITC conjugated donkey anti-rat polyclonal Ab (as a detection 

reagent; Jackson Immuno Research) and rat IgG1 isotype control mAb (as an immobilised target; 

clone R3-34, BD) served as positive and negative control, respectively.  
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2.2.2.2.2.1 Plate Coating 

200µL of 10µg ml-1 Clone 9 anti-iC3b in PBS was added to each well in column 6 of a 96 well 

microtitre plate (Greiner); 100µL PBS was added to each well in columns 1-5. A serial doubling-

dilution series was then made across the plate from columns 6-2 by consecutive transfer and 

mixing of 100µL of the well from the previous columns contents; 100µL was then removed from 

each well in column 2. This resulted in a concentration gradient across the plate in 100µL volume 

with concentrations of 0, 0.625, 1.25, 2.5, 5 & 10, µg ml-1 in each well of columns 1-6, 

respectively. Each well of columns 7-9 was filled with 100µL of Clone 9 in PBS, at concentrations 

of 0.625, 1.25 & 2.5, µg ml-1 respectively.  Each well of columns 10-12 was filled with 100µL of a 

rat IgG1 isotype control mAb (clone R3-34, BD) in PBS, at concentrations of 0.1, 1 & 10, µg ml-1 

respectively. The plate was then sealed with a plastic film and incubated at 37°C for 1hr.   

2.2.2.2.2.2 Blocking, Probing and Detection 

After 3 washes with 0.05% tween in PBS, the Ab coated plate was blocked by incubation for 1hr at 

37°C with 1% BSA in PBS. In a new 96-well microtitre plate; 220µL of a 5% solution of the reaction 

product in 1% BSA (PBS) was added to wells 1-6 & 10-12 of row A, while 220µL of a 5% solution of 

FITC-labelled anti-rat Ab in 1% BSA was added to wells 7-9. 110µL of 1% BSA was added to all the 

remaining wells. A serial doubling-dilution series was then made down the plate from rows A-G by 

consecutive transfer and mixing of 110µL of the well from the previous rows contents. This 

resulted in a gradient of fluorescently labelled proteins down the plate with concentrations of 5, 

2.5, 1.25, 0.63, 0.31, 0.16, 0.08 & 0 % in each well of rows A-H, respectively, with iC3b-fluorescein 

in columns 1-6 & 10-12, and FITC-labelled anti-rat Ab in columns 7-9. Following decantation of the 

blocking medium, 100µL of the contents of each well was transferred directly to the 

corresponding well of the Ab coated plate and incubated in the dark at RT for 1hr. The plate was 

then washed thrice in PBS 0.05% tween and the fluorescence measured in each well at excitation 

485nm and emission 520nm using a FLUOstar OPTIMA plate reader. 

2.2.2.2.3 Cell Binding Assays 

Cells were harvested as per Section 2.3.1.1 with the exception of the use of CR3-binding buffer 

(Hanks’ balanced salt solution [Sigma-Aldrich] supplemented with 1% BSA [0.22µM filtered]) in 

place of FACS buffer. 106 BV2 cells were re-suspended in appropriate volumes of CR3-binding 

buffer such that addition of the appropriate volume of the iC3b-fluorescein preparation into the 

respective cell sample resulted in 100µL final-volumes with concentrations of iC3b-fluorescein 

ranging from 0-10%. Where indicated, harvested cells were first treated with 1µg of CR3-blocking  

mAb [clone 5C6 (8); Bio-Rad] for 30 minutes (4°C) prior to incubation with iC3b-fluorescein. 

Samples were incubated with iC3b-fluorescein for 1hr (4°C) then washed twice by the addition of 
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0.5mL ice-cold CR3-binding buffer followed by centrifugation at 300xg, 3 minutes at 4°C and re-

suspension in 0.5mL ice-cold CR3-binding buffer. Cell samples were then centrifuged again at 

300xg, 3 minutes (4°C) and re-suspended in 200µL CR3-binding buffer then immediately assessed 

for green-fluorescence signal by flow cytometric analysis (as per Section 2.3.1).       

2.2.2.3 Cell Treatment/Exposure 

2.5x105 MACS sorted primary microglia cultured in 24-well plates were left untreated or incubated 

with 1µg/mL iC3b overnight before treatment with or without 100µg/mL LPS for 48 hours. 

Unlabelled iC3b 200µg ml-1 stock solution in plain medium was diluted by direct addition to the TC 

medium. 

2.2.3 Zymosan 

Alexa Fluor-488 labelled zymosan (Thermo Fisher Scientific) was reconstituted at 20mg ml-1 in 

2mM sodium azide in PBS. Unlabelled zymosan was reconstituted at 1mg ml-1 in sterile PBS. 

Suspended zymosan was washed prior to use by addition of ≥10x volume of PBS followed by 

centrifugation at 1500xg for 15-20 minutes and discarding of the supernatant. 

2.2.3.1 Zymosan Opsonisation 

2.2.3.1.1 Serum Incubation  

Where indicated, zymosan was opsonised with NHS, or WT or C3 KO mouse serum by incubation 

(1mg zymosan per mL serum) for 1 hr at 37°C. Following incubation particles were washed twice 

by the addition of ≥5-10x volume PBS 1% BSA at 4°C followed by vortexing, centrifugation at 

1500xg for 15-20 minutes at 4°C and discarding of the supernatant. The physical appearance and 

uniformity of the resuspended particles was assessed by bright-field and fluorescence microscopy 

using a Nikon eclipse 80i fluorescence microscope system equipped with a Nikon DXM 1200F 

Digital Camera and ACT-1 Version 2 software. Post-acquisition image analysis and processing was 

performed using ImageJ software (NIH). 

2.2.3.1.2 Confirmation of Activated C3-fragment Deposition 

Zymosan is a well-known C activating agent (27, 233). C3-activation fragment deposition on the 

surface of zymosan particles (unlabelled) as part of the opsonising process was assessed by flow 

cytometry:  

Zymosan was incubated with neat NHS or WT mouse serum for different lengths of time ranging 

from 0 minutes to 1hr to provide a time-course of particle opsonisation. In-addition to NHS- and 

WT mouse serum- opsonised and non-opsonised zymosan, samples incubated with isotype 

control Abs, along with particles incubated with serum containing EDTA (10mM; to inhibit C 
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activation) and C3 KO serum served as negative controls to confirm the specificity of 

staining/validity of signal. 

Particles were washed twice by the addition of 0.5mL PBS 1% BSA at 4°C followed by vortexing, 

centrifugation at 1500xg for 15-20 minutes at 4°C and discarding of the supernatant. Samples 

were then incubated (as appropriate) with anti-human iC3b/C3dg/C3g mAb (clone 9; Table 2.3) or 

anti-mouse C3b/iC3b/C3c mAb (clone 2/11; Table 2.3) for ~30 minutes at 4°C, washed twice, then 

incubated with Alexa Fluor-488 conjugated anti-rat Ab (Table 2.3) in 0.25mL PBS 1% BSA for ~ 30 

minutes at 4°C, washed twice, then analysed by flow cytometry in a volume of 200µL PBS 1% BSA 

(as per section 2.3.1).       

2.2.3.2 Phagocytosis Assays 

Phagocytosis assays were performed using alexa-fluor 488 labelled zymosan, with uptake 

measured by flow cytometry or fluorescence microscopy where indicated. 

2.2.3.2.1 Primary Vs. BV2 Cells 

Non-opsonised or serum-opsonised zymosan particles were resuspended in growth medium at 

105µL-1. 10µL/106 serum-opsonised or non-opsonised zymosan particles were added directly to 

5x104 BV2 or MACS purified primary cells cultured in 0.5mL growth medium in 24-well plates and 

incubated for ~1hr (37°C, 5% CO2, humidified atmosphere). Untreated cells or cells treated with 

non-opsonised or serum-opsonised zymosan were then harvested and stained for surface CD11b 

and viability and analysed by flow cytometry as per Section 2.3.1.    

2.2.3.2.2 High : Low Dose 

Non-opsonised or serum-opsonised zymosan particles were resuspended in BV2 growth medium 

at 104µL-1. 5x104 or 1.5x105 opsonised or non-opsonised particles were added directly to 5x104 

BV2 cells cultured in 0.5mL growth medium in 24-well plates and incubated for ~1hr (37°C, 5% 

CO2, humidified atmosphere). Cells were cultured on glass coverslips and zymosan uptake was 

assessed by fluorescence microscopy after DAPI staining of nuclei as per Section 2.3.2.         

2.2.3.2.3 The Role of CR3 

Non-opsonised or NHS-, WT or C3 KO mouse serum- opsonised zymosan particles (where 

appropriate) were resuspended in BV2 growth medium at 105µL-1. 2.5x105 non-opsonised or NHS-, 

WT or C3 KO mouse serum- opsonised particles were added directly to 5x104 BV2 cells cultured in 

0.5mL growth medium in 24-well plates and incubated for ~1hr (37°C, 5% CO2, humidified 

atmosphere). Where indicated, CR3 was blocked prior to zymosan treatment by addition of 2µg 

anti-CR3 mAb [which blocks both the iC3b (8) and β-glucan (234) binding sites] (clone 5C6; Bio-
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Rad) to the culture medium, gentle mixing and incubation for ~15 minutes (37°C, 5% CO2, 

humidified atmosphere). Untreated cells or cells treated with non-opsonised or NHS-, WT or C3 

KO mouse serum-opsonised zymosan, with or without exposure to CR3-blocking Ab, were then 

harvested and stained for surface CD11b and viability, then analysed by flow cytometry as per 

Section 2.3.1.       

2.2.3.3 Microglial Activation Assays 

BV2 cells were seeded at 5x104 in 0.5mL BV2 growth medium per well in a 24-well plate and 

cultured overnight. Where indicated 2.5x106 unlabelled non-opsonised zymosan particles, or 

particles opsonised with WT or C3 KO mouse serum, were added directly to the well and mixed by 

gentle swirling. Following incubation for ~4hrs (37°C, 5% CO2, humidified atmosphere), cells were 

exposed to LPS at 1µg mL-1 where indicated as per Section 2.2.1 and cultured for 48hrs. As 

indicated, supernatants were assayed for nitrite/nitric oxide, TNF-α and IL-6 as per Section 2.3.3, 

and cells were assayed for surface CD11b, C5aR, CD200R and viability by flow cytometry as per 

Section 2.3.1 and changes in expression of mRNAs encoding TNF-α, IL-1β and IL-6 by Rt-qPCR as 

per Section 2.3.4.       

2.2.4 Immobilised C3 Activation Fragments 

2.2.4.1 System Development 

2.2.4.1.1 Assay to Determine Specificity of (Immobilised) rMOG : anti-rMOG Binding 

2.2.4.1.1.1 Protein Immobilisation 

Each of the wells in columns 1-5 of a 96 well ELISA plate were incubated with rMOG (2.5µg mL-1; 

in-house) while those in columns 7-11 were incubated with purified human C1Inh (10µg mL-1) and 

those in columns 6 and 12 with PBS alone. All incubations were in 100µL PBS. 

2.2.4.1.1.2 Blocking, Probing and Detection 

After 3 washes with 0.05% tween in PBS, the plate was blocked by incubation for 1hr at 37°C with 

1% BSA in PBS. Following decantation of the blocking buffer: the wells in rows 8-2 in columns 1-4 

and 7-10 were incubated (1hr, 37°C) with a concentration gradient (prepared by serial-doubling 

dilution) of mAb (in 100µL 1% BSA/PBS) ranging from 40-0.63µg mL-1 (respectively), with Y10, Z4, 

Z12 (all in-house) and anti-C1Inh in columns 1-4 and 7-10 (respectively). All remaining wells were 

incubated with 1% BSA in PBS alone. The plate was then washed 3-times with 0.05% tween in PBS 

before incubation (1hr, 37°C) of each well with HRP-conjugated donkey anti-mouse polyclonal Ab 

(1:2000 in 100µL 1% BSA in PBS). The plate was then washed again 3-times with 0.05% tween in 

PBS prior to the addition of 100µL HRP substrate solution (SIGMAFAST OPD [prepared as per 

manufacturer’s instructions]) per well, and incubation for ~10 minutes at RT in the dark (without 
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sealing of the plate). The peroxidase reaction was then terminated by the addition of 100µL 10% 

H2SO4 (in dH2O) per well and gentle mixing/swirling. Absorbance was then measured at 492nM 

using a FLUOstar OPTIMA plate reader. 

2.2.4.1.2 Complement Activation 

2.2.4.1.2.1 Coating of TC Plate with C3-Activation Fragments 

Plastic TC plates were pre-coated in rMOG or Z4 anti-rMOG mouse monoclonal Ab by incubation 

with rMOG at 2.5µg mL-1 or Z4 at 10µg mL-1 in sterile PBS, 100µL per 0.5cM2 TC surface, for 1hr at 

37°C, or incubated with PBS alone. Wells were then washed thrice with sterile PBS (250µL per 

0.5cM2 TC surface) and non-specific binding sites were blocked by incubation with 1% BSA in PBS, 

200µL per 0.5cM2 TC surface, for 1hr at 37°C. Blocking solution was then removed, replaced 

where indicated with doubling dilutions (50-0.78%) of WT or C3 KO mouse serum in HBSS or HBSS 

alone (100µL per 0.5cM2 TC surface), and the plate incubated for 1hr, 37°C. Where indicated, WT 

serum was pre-treated with 10mM EDTA. In some experiments, rMOG coated wells were 

incubated with anti-rMOG mAbs, Z4 and Y10 (100µL per 0.5cM2 TC surface at 10µg mL-1 in 1% BSA 

in PBS, 1hr, 37°C), and washed 3 more times (as above), prior to serum incubation. Following the 

final (serum) incubation step, wells were again washed thrice more as above, before a final wash 

with BV2 growth/1° culture medium (250µL per 0.5cM2 TC surface; as required). All solutions 

except for BV2 growth medium were 0.22µM filtered prior to use and the procedure was 

performed entirely within a class II TC hood.     

2.2.4.1.2.2 Confirmation of Active C3 Deposition 

Confirmation of fixed C3-activation fragment (i.e. C3b/iC3b/C3dg) immobilisation on the TC 

surface was achieved via ELISA. Following coating of TC plate with C3-activation fragments, as 

above, wells were incubated with rat-anti mouse active C3 mAb (clone 2/11; Hycult Biotech) or rat 

IgG1 isotype-control mAb (clone R3-34, BD) at 0.2µg mL-1 in 1% BSA in PBS, 100µL per 0.5cM2 TC 

surface, for 1hr at 37°C. Wells were then washed thrice with PBS (250µL per 0.5cM2 TC surface) 

before the addition of 1:4000 dilution of HRP-conjugated anti-rat polyclonal Ab (Jackson Immuno 

Research) in 1% BSA in PBS, 100µL per 0.5cM2 TC surface, for 1hr at 37°C. Wells were then 

washed thrice with PBS and incubated with HRP substrate solution (SIGMAFAST OPD [prepared as 

per manufacturer’s instructions]), 100µL per 0.5cM2 TC surface, and incubated for ~10 minutes at 

RT in the dark (without replacement of the lid). The peroxidase reaction was then terminated by 

the addition of 100µL per 0.5cM2 TC surface 10% H2SO4 (in dH2O) and gentle mixing/swirling. In 

the case of 96 well plates, absorbance was then measured at 492nM using a FLUOstar OPTIMA 

plate reader. In the case of plates of other sizes, the reaction endpoint was captured/imaged 

using a digital camera. 1% BSA (PBS) solution was 0.22µM filtered prior to use. 
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2.2.4.2 Cell Treatment/Exposure 

Following coating of the relevant/specified surfaces of a TC plate as described above (Section 

2.2.4.1.2), BV2 or primary microglial cells were seeded at 2.5x104 in 0.25mL BV2/1° growth 

medium per cM2 TC surface and cultured overnight. Cells were then exposed to LPS at 100ng mL-1 

(as per Section 2.2.1) or an equal volume (2.5µL) of vehicle (plain medium) and cultured for 48hr-

72hrs as indicated. Supernatants were then collected and assayed for nitrite/nitric oxide, TNF-α 

and IL-6 (as per Section 2.3.3), and cells harvested and assayed for surface CD11b, C5aR, CD200R 

and viability by flow cytometry (as per Section 2.3.1). 

2.2.5 Serum/Complement Deposition & Killing Assay 

Where indicated, BV2 cells or MACS purified primary Crry +/+ & Crry -/- microglia, seeded at 5x104 

or 2.5x105 per well in 24-well plates were used for experiments. Media volumes were adjusted, 

where necessary (i.e. for primary cells) to 0.5mL. To achieve the desired serum concentrations, 

the appropriate volume of medium was removed and replaced with NHS or HI NHS, or WT or C3 

KO mouse serum, which had been allowed to equilibrate at RT prior to use. Where indicated, NHS 

was pre-treated with OmCI (in-house) at 10µg mL-1 at RT for 15 minutes to block the terminal C 

pathway by inhibiting C5 activation (and thus MAC-formation). After gentle mixing by swirling, 

cells were incubated with serum for 1hr (37°C, 5% CO2, humidified atmosphere) then harvested 

and assessed for active C3 fragment deposition, MAC formation and viability by flow cytometry as 

per Section 2.3.1.         

2.3 Assays 

2.3.1 Flow Cytometry 

2.3.1.1  Cell Harvest 

To minimise degradation of target cell surface epitopes, cells were harvested from the TC surface 

without the use of protease (e.g. trypsin) solutions, and following harvest, cells were kept cold at 

all times prior to analysis to preserve their architecture and viability, and to minimise 

antibody/ligand shedding or engulfment. Medium was removed and cells rinsed in warm, sterile 

PBS, then incubated with warm, sterile PBS EDTA (5mM for BV2s, 10mM for primary cells) to 

detach the cells from the culture surface. After most cells had released, 1.5x volume of warm 

medium was added (BV2 growth or 1° culture medium, as appropriate) and residual adherent 

cells lifted by gentle pipetting.  Cell suspensions were then collected into sterile centrifuge tubes 

(Corning B.V. Life Sciences) and placed on ice. Samples were spun at 300xg for 3 minutes at 4°C to 

pellet the cells, which were then washed by resuspension in 1-2mL ice-cold FACS buffer (1% BSA, 

2mM EDTA in PBS [0.22µM filtered]) and centrifugation at 300xg for 3 minutes at 4°C. Cell 
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samples were then resuspended in an appropriate volume (as determined by cell density and the 

number of separate samples required for staining) of ice-cold FACS buffer and aliquoted into 

100µL samples in separate FACS tubes (Fisher Scientific or BD) on ice for staining.  

2.3.1.2  Sample Labelling 

Samples were stained by the addition of antibodies of the type and at the concentration(s) 

indicated in Table 2.3 for ~30 minutes on ice  with occasional agitation/shaking. Samples were 

then washed twice by the addition of 0.5mL ice-cold FACS buffer followed by centrifugation at 

300xg, 3 minutes at 4°C and resuspension in 0.5mL ice-cold FACS buffer. Where a non-conjugated 

primary antibody had been employed, an additional staining step was performed at this point 

using species IgG-specific, fluorophore-conjugated secondary antibodies of the type and at the 

concentration(s) indicated in Table 2.3, followed by an additional washing step. In-order to assess 

viability for nucleated cellular samples, following centrifugation during the final wash step, the 

supernatant was discarded by inversion and cells resuspended in the small (~50µL) residual 

volume in the tube; Cells were then stained with an intercalating membrane-impermeant 

fluorescent dye (either PI or 7-AAD, [as determined by fluorophores used during antibody 

labelling] at 2.5µg/mL). Sample volumes were then increased by the addition of 100-300µL ice-

cold FACS buffer and then analysed by flow cytometry. Where fluorophore-conjugated antibodies 

alone were used in an assay, or where assay design required the use of a test antibody type raised 

in mouse with a cellular sample of murine origin, to minimise the issue of non-specific binding an 

additional Fc blocking step was performed; prior to the addition of primary/test antibodies, cells 

were incubated with monoclonal rat anti-mouse Fc receptor blocking antibody (Table 2.3) for 5-10 

minutes. Where rat Fc blocking mAb was employed in indirect staining assays, secondary antibody 

which had been cross adsorbed against rat serum proteins was used.    

2.3.1.3  Fluorescence Analysis 

In all cases, samples were analysed on a BD FACSCanto II flow cytometry instrument using BD 

FACSDiva version 8 software for acquisition. Post-acquisition analysis was performed using FlowJo 

version 10.0.7 software (Treestar, Inc./FlowJo, LLC).  
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Target* Clone Conjugate Host Isotype Supplier Working 

Concentration 

CD11b M1/70 PE Rat IgG2b eBioscience 0.5-1µg mL-1 

CD11b M1/70 PE-Cy7 Rat IgG2b BioLegend 1µg mL-1 

CD11b 5C6 N/A Rat IgG2b Bio-Rad 5-10µg mL-1 

CD45 30-F11 PerCp-

Cy5.5 

Rat IgG2b eBioscience 2µg mL-1 

βIII-Tubulin TUJ1 APC Mouse IgG2a R&D 

Systems 

1:50 

CD200R OX-110 PE Rat IgG2a BioLegend 2µg mL-1 

F4/80 Cl:A3-1 N/A Rat IgG2b Bio-Rad 10µg mL-1 

Crry 1F2 N/A Rat IgG2a Becton 

Dickinson 

5µg mL-1 

C5aR 20/70 APC Rat IgG2b BioLegend 2µg mL-1 

CD59 MEL-2 N/A Rat IgG2a N/A        (In-

house) 

5µg mL-1 

C3b/iC3b/C3c 2/11 N/A Rat IgG1 Hycult 

Biotech 

1µg mL-1 

Human 

iC3b/C3dg/C3g 

mAb 9; 

YB2/90-5-20 

N/A Rat IgG1 N/A 

(In-house) 

9µg mL-1 

Human 

TCC/MAC 

aE11 N/A Mouse IgG2a Hycult 

Biotech 

1µg mL-1 

N/A (Isotype 

Control) 

eB149/10H5 PE Rat IgG2b eBioscience 0.5-1µg mL-1 

(to match test) 

N/A (Isotype 

Control) 

RTK4530 PE-Cy7 Rat IgG2b BioLegend 1µg mL-1 

(to match test) 

N/A (Isotype 

Control) 

RTK4530 N/A Rat IgG2b BioLegend 5-10µg mL-1 

(to match test) 

N/A (Isotype 

Control) 

eB149/10H5 PerCp-

Cy5.5 

Rat IgG2b eBioscience 2µg mL-1  

(to match test) 

N/A (Isotype 

Control) 

20102 APC Mouse IgG2a R&D 

Systems 

1:50  

(to match test) 

N/A (Isotype 

Control) 

RTK2758 PE Rat IgG2a BioLegend 2µg mL-1
  

(to match test) 

N/A (Isotype 

Control) 

RTK2758 N/A Rat IgG2a BioLegend 5µg mL-1  

(to match test) 

N/A (Isotype 

Control) 

RTK4530 APC Rat IgG2b BioLegend 2µg mL-1 

(to match test) 

N/A (Isotype 

Control) 

R3-34 N/A Rat IgG1 Becton 

Dickinson 

1-9µg mL-1 

(to match test) 

Rat IgG Polyclonal 

(Secondary) 

AF-488 Goat IgG 

(Polyclonal) 

Life 

Technologies 
~5µg mL-1  

 

Rat IgG Polyclonal 

(Secondary) 

PE Donkey IgG 

(Polyclonal) 

Jackson 

Laboratories 

1:200 
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Mouse IgG 

(X-absorbed 

against rat) 

Polyclonal 

(Secondary) 

FITC Donkey IgG F(ab)2 

(Polyclonal) 

Jackson 

Laboratories 

1:200 

CD16/32 

(Fc Block) 

2.4G2 N/A Rat IgG2b Becton 

Dickinson 

2.5-5µg mL-1 

Table 2.3: Antibodies used in flow cytometry; * all test primary antibodies reactive against mouse 

antigens unless otherwise stated; Test, isotype control, secondary and miscellaneous. 

 

 

2.3.2 ICC      

13mM glass coverslips (Fisher Scientific) where autoclaved, then immersed in 70% ethanol and 

rinsed thrice in plain medium in a class 2 TC hood, before being placed into the wells of a 24-well 

plate. Cells were seeded onto the glass surface in 0.5mL medium at 105 cells ml-1; cells were 

cultured and stimulated as indicated.  

2.3.2.1  Staining 

Medium was removed from the wells and cells rinsed with warm, sterile PBS, which was then 

replaced with cold 4% PFA in PBS. Cells were incubated in the fixative for 15 minutes at 4°C then 

rinsed thrice in PBS at RT. In the case of staining for internal GFAP protein, cells were then 

permeablised by incubation in 100% ethanol at 4°C then washed thrice in PBS at RT.  Cells were 

then incubated in blocking solution (0.22µM filtered 10% goat serum [Gibco], 1% BSA in PBS) for 1 

hour at RT, rinsed thrice with PBS at RT, then stained with primary antibodies of the type and at 

the concentration(s) indicated in Table 2.4 by inversion of the coverslip onto ~100uL blocking 

solution containing the relevant antibodies in a new 24 well plate and incubation for 1 hour at RT. 

Coverslips were then returned to their original ‘face-up’ positon (with cells on the upper surface) 

in a 24 well plate and washed thrice with PBS at RT. Fluorophore labelled secondary antibody in 

0.3mL blocking solution, of the type and at the concentration(s) indicated in Table 2.4, was then 

added to the relevant wells and incubated for 1hr at RT in the dark. Staining solution was then 

removed and coverslips rinsed thrice with PBS at room temperature. Coverslips were then 

mounted onto standard 1” x 3” glass microscope slides using Vectashield mounting medium for 

fluorescence containing DAPI (Vector Laboratories). 
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Target Clone Conjugate Host Isotype Supplier Working 

Concentration 

CD11b 5C6 N/A Rat IgG2b Bio-Rad 20µg mL-1 

GFAP GA5 AF488 Mouse IgG1 eBioscience 10µg mL-1 

N/A (Isotype 

Control) 

RTK4530 N/A Rat IgG2b BioLegend 20µg mL-1 

(to match test) 

N/A (Isotype 

Control) 

P3.6.2.8.1 AF488 Mouse IgG1 eBioscience 10µg mL-1 

(to match test) 

Rat IgG Polyclonal 

(Secondary) 

AF555 Goat IgG 

(Polyclonal) 

Life 

Technologies 

10µg mL-1 

 

Table 2.4: Antibodies used in ICC; Test, isotype control and secondary 

2.3.2.2  Imaging and Analysis 

Imaging was performed using a Nikon eclipse 80i fluorescence microscope system equipped with 

a Nikon DXM 1200F Digital Camera and ACT-1 Version 2 software. Post-acquisition image analysis 

and processing was performed using ImageJ software (NIH).  

2.3.3 TC Supernatant Analysis 

2.3.3.1  Sample Preparation 

Supernatant from individual samples was collected into separate sterile centrifuge tubes. Dead 

and dying cells, along with debris, were removed by centrifugation at 350xg for 5 minutes (RT). 

Ninety percent of the sample volume was then transferred to a sterile bijoux tube (Fisher 

Scientific), with care taken not to disturb any pelleted material from the bottom of the centrifuge 

tube. Samples were assayed immediately.    

2.3.3.2  Assays 

2.3.3.2.1 Griess Assay 

Nitrite was assayed as an indirect measure of NO production using the Griess Reagent System 

(Promega) according to the manufacturer’s instructions. Briefly: A high standard of 100µM 

sodium nitrite was prepared by 1:1000 dilution of the 0.1M stock solution in growth medium (BV2 

of 1° where relevant). High standard (100µl) was added to triplicate wells in row A of a 96-well 

microtitre plate and a doubling-dilution series was made down the plate from rows A-G to create 

a nitrite gradient with concentrations of 100, 50, 25, 12.5, 6.25, 3.13, 1.56 and 0 µM in each well 

of rows A-H, respectively, with 50µL volume in each well. Sample (50µL) was dispended into test 

wells; 50µL of the sulphanilamide solution was then added to standards and samples, mixed 

gently and incubated in the dark at RT for 5-10mins. This was followed by 50µL of the N-1-

napthylethylenediamine dihydrochloride solution, which was also mixed gently and incubated in 

the dark at RT for 5-10 minutes before the absorbance was measured at 544nM using a FLUOstar 
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OPTIMA plate reader. Sulphanilamide and N-1-napthylethylenediamine dihydrochloride solutions 

were equilibrated at RT before use.                  

2.3.3.2.2 ELISAs: IL-6 & TNF-α 

IL-6 and TNF-α ELISAs (R&D Systems) were performed according to the manufacturer’s 

instructions. Capture antibodies were reconstituted in 0.5mL sterile, 0.22µM filtered PBS. 

Detection antibodies and standards were reconstituted in 0.22µM filtered 1% BSA in sterile PBS, 

1mL & 0.5mL respectively. ELISA plates were coated overnight at RT with 50µL of capture 

antibody diluted 1:120 in plain PBS per well. Wells were then washed thrice with 250µL 0.1% 

tween in PBS and subsequently blocked by incubation with 125µL per well, 1% BSA in PBS 

(0.22µM filtered) for at least 1hr at RT. Blocking solution was then thoroughly decanted before 

addition of 50µL per well standards or samples. A high standard was prepared, 2µg mL-1 for TNF-α, 

1µg mL-1 for IL-6, by dilution of the stock solution in TC medium (BV2 or 1° where applicable) to a 

final volume of 1mL, and 6 doubling dilutions performed with 0.5mL standard into 0.5mL TC 

medium. Along with the inclusion of a TC medium only sample, this generated an 8-point 

standard curve for each analyte (2000-0 & 1000-0 pg mL-1, TNF-α & IL-6 respectively). Samples 

and standards were incubated at RT for 2hr before being decanted and wells washed thrice in 

250µL PBS 0.1% tween. Biotinylated-detection antibody diluted 1:60 in 1% BSA in PBS (50µL per 

well; 0.22µM filtered) was added and incubated for 2hr at RT. Wells were washed thrice as above 

then incubated with 50µL of HRP-conjugated streptavidin (1:40 in PBS 1% BSA, 0.22µM filtered) 

for 20 mins at RT in the dark. Wells were washed again before addition of 50µL per well HRP 

substrate solution (SIGMAFAST OPD [prepared as per manufacturer’s instructions]) then 

incubated for various times at RT in the dark. The peroxidase reaction was terminated by the 

addition of 50µL per well 10% H2SO4 (in dH2O) and gentle mixing/swirling. The absorbance was 

then measured at 492nM using a FLUOstar OPTIMA plate reader. 

Apart from during the HRP reaction, the plate was sealed with an adhesive film during each 

incubation step. Samples and standards were assayed in triplicate. 

2.3.3.3  Analysis/Quantification 

Regression analysis of standards and interpolation of unknowns/test samples was performed 

using GraphPad Prism (version 5.02; GraphPad Software Inc.). 

2.3.4 Rt-qPCR         

All steps in the Rt-qPCR process were performed within a class II biosafety cabinet with all 

surfaces thoroughly cleansed with ethanol. Filter-equipped pipette tips (Starlab) were used 

throughout and all plastic ware (Starlab) was certified RNase/DNase and pyrogen/endotoxin free.   
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2.3.4.1  RNA 

2.3.4.1.1 Extraction 

RNA was extracted from cells in culture using the GenElute™ Mammalian Total RNA Miniprep Kit 

(Sigma-Aldrich) according to the manufacturer’s instruction. Unless otherwise stated all steps 

were performed at RT. Ten microlitres of 2-mercaptoethanol was added per mL of lysis buffer to 

facilitate RNase inactivation. Prior to lysis, cell samples were harvested and pelleted: TC medium 

was replaced with an equal volume of sterile 0.22µM filtered PBS, which was then replaced with 

half the volume of 10mM sterile EDTA in PBS, with the subsequent addition of twice the EDTA 

volume of culture medium; TC surfaces were then rinsed in the EDTA/medium solution to remove 

remaining adherent cells before transfer of the solution to sterile centrifuge tubes and 

centrifugation at 300xg for 3mins at RT. The supernatant was aspirated entirely from the pellet 

before addition of 250µL lysis buffer and immediate thorough vortex &/or pipetting to disrupt 

cells. The lysed sample was then added to a blue filtration column in a 2mL collection tube and 

spun in a microcentrifuge at full speed (13,000rpm) for 1min to remove cellular debris and to 

shear contaminating DNA. An equal volume (250µL) of 70% ethanol prepared from molecular 

grade water (Sigma-Aldrich) and absolute ethanol (Sigma-Aldrich) was then added to the sample 

and thoroughly mixed by vortex &/or pipetting. The sample was then transferred to a nucleic acid 

binding column inside a 2mL collection tube and RNA bound to the silica membrane by 

centrifugation at 13,000rpm for 15 seconds. The flow-through was discarded and 0.5mL Wash 

Solution 1 (guanidine thiocyanate-containing) added to the column which was again spun at 

13,000rpm for 15 seconds. The binding column was then transferred to a new 2mL collection tube 

and 0.5mL Wash Solution 2 (ethanol-containing) added before centrifugation at 13,00rpm for 15 

seconds. The flow through was then discarded and another 0.5mL Wash Solution 2 added before 

centrifugation at 13,000rpm for 2 minutes (longer spin to dry column membrane). The column 

was then transferred to a final 2mL collection tube before the addition of 50µL of the Elution 

Solution and centrifugation at 13,000rpm for 1 minute. Eluted RNA was immediately transferred 

on to ice and the binding column discarded. Where necessary RNA was stored at -80°C and kept 

on ice at all times during use and when thawing. Assessment of RNA concentration and purity was 

made by spectrophotometric analysis according to Section 2.3.4.1.3 below. 

2.3.4.1.2 DNase Treatment 

Extracted RNA was treated/processed with the TURBO DNA-free™ Kit (Ambion) according to the 

manufacturer’s instructions to remove trace DNA contamination, and subsequently remove the 

DNase enzyme along with divalent cations which can catalyse thermo-dependent RNA 

degradation. Reactions were conducted in 500µL micro-centrifuge tubes to maximise RNA 

recovery efficiency post-treatment with the DNase Inactivation Reagent.  
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Where necessary, RNA samples were diluted to ≤200ng µl-1 (based on spectrophotometric 

analysis) using cold ultrapure/PCR grade water. TURBO DNase buffer (5µL of 10x stock) was mixed 

with 45µL RNA before addition and mixing of 1µL TURBO DNase and incubation at 37°C for 20-

30mins. Resuspended DNase Inactivation Reagent (5µL) was then added to the sample and 

incubated for 5 minutes at RT with frequent agitation to maintain the reagent in suspension &/or 

dispersion. Samples were then centrifuged at 10,000xg for 1.5mins at 4°C to pellet the DNase 

Inactivation Reagent; the RNA-harbouring supernatant was then transferred to a fresh 0.2mL or 

0.5mL collection tube and placed on ice, with great care taken not to reintroduce the DNase 

Inactivation Reagent by disturbing the pellet. Assessment of DNase treated RNA preparations was 

made by spectrophotometric and electrophoretic analysis according to Sections 2.3.4.1.3 and 

2.3.4.3 (respectively). 

2.3.4.1.3 Spectrophotometric Analysis of RNA Preparations 

Quantitative and qualitative assessment of RNA preparations was carried-out by 

spectrophotometric analysis using a NanoDrop spectrophotometer (Thermo Fisher Scientific); 2µL 

RNA samples were diluted 1:10 with Tris EDTA buffer (10mM Tris, 1mM EDTA, pH8). The machine 

was initialised with dH2O and blanked with TE buffer. Individual samples were then analysed and 

absorbance values at 230nM, 260nM and 280nM noted. RNA concentration was then calculated 

using the Beer-Lambert Law according to the equation below. Nucleic acid purity was assessed by 

measuring non-specific absorbance at 280nM (protein) and 230nM (organics). The A260/280 and 

A260/A230 ratios were calculated with 2.0 +/- 0.2 being deemed satisfactory. 

                            
    

          
                                       

Given that RNA has a 1cm pathlength standard coefficient of 40µg mL-1: 

                                                              

(Where A260 = Absorbance at 260nM) 

2.3.4.2  Assessment of mRNA Expression 

2.3.4.2.1 Reverse Transcription 

First strand cDNA synthesis was performed using the TaqMan Reverse Transcription Reagents 

(Applied Biosystems). Rt reactions were performed with 1µg RNA per 50µL volume (the stated 

capacity for conversion of RNA to cDNA using the recommended master mix formulation 

[https://tools.thermofisher.com/content/sfs/manuals/MAN0009791_TaqMan_RT_Reagents_Kit_

UG.pdf]). Rt components were thawed on ice, mixed by inversion or vortex then briefly 
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centrifuged at low speed to draw liquid to the tube bottom. Common/non sample-specific master 

mixes were prepared according to the recommended formulation, with 1x Rt Buffer, 1.75mM 

MgCl2, 500µM of each dNTP, 1U µL-1 RNase inhibitor, 2.5U µL-1 MultiScribe Reverse Transcriptase 

and 2.5µM oligo d(T)16 or random hexamers (Table 2.5A). The master mix was vortexed and 

centrifuged at low speed prior to enzyme and inhibitor addition, then mixed by inversion and 

centrifuged at low speed post-addition. The master mix and components were kept on ice during 

and following preparation. 0.57x the final reaction volume of the common master mix was added 

to a PCR tube on ice and RNA was added at a rate of 1µg RNA per 50µL final reaction volume 

(volume dependent on RNA sample concentration). The total volume was then made up to the 

appropriate, pre-determined final reaction volume with cold PCR/molecular grade H2O (Table 

2.5A) before gentle mixing by inversion and low speed centifugation. Reaction mixtures were 

placed in a DNA Engine Dyad PCR thermal-cycler (MJ Research) and Rt performed using the 

recommended parameters as indicated in Table 2.5B. Rt reactions lacking template RNA or 

reverse transcriptase were included as negative controls.  

A 

Reactant Volume Per 50µL Reaction Final Concentration 

10 x Rt buffer 5 µL 1 x 

25mM MgCl2 3.5µL 1.75mM 

10mM dNTP mixture (2.5mM 

each dATP, dCTP, dGTP, dTTP) 

10µL 2mM (0.5mM each dATP, 

dCTP, dGTP, dTTP) 

RNase Inhibitor (20U µL-1) 2.5µL 1U µL-1 

RTase (Multiscribe; 50U µL-1) 2.5µL 2.5U µL-1 

Primers: 50µM oligo d(T)16 or 

50µM random hexamers 

2.5µL 2.5µM 

Template RNA Volume dependent on RNA 

sample concentration - 1µg 

20ng µL-1 (1µg 50µL-1) 

Molecular/PCR- grade H2O To 50µL (dependent on RNA 

sample concentration) 

N/A 

 

B 

Step Temperature (°C) Duration (mins) 

1 25 10 

2 37 30 

3 95 5 

4 4 ∞ 

Table 2.5: Formulation (A) and thermocycling conditions (B) for Rt reactions  
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2.3.4.2.2 qPCR 

Relative gene expression was determined by qPCR. Reactions were carried-out in 20µL volumes 

containing 10µL 2x SYBR Green JumpStart Taq Ready Mix (Sigma-Aldrich), 0.4µL of each (i.e. 

forward & reverse) 10µM gene-specific primer (biomers.net GmbH) and 9.2µL relevant cDNA 

diluted 1 in 5.75 in PCR/molecular grade H2O (equivalent to cDNA Rt product of 32ng RNA). Gene 

specific master mixes (i.e. SYBR Green JumpStart Taq ReadyMix & primers) were prepared prior to 

the preparation of individual reactions. At least 10% surplus volumes of gene-specific master 

mixes were prepared. 10.8µL gene-specific master mix was added to each of the relevant wells of 

a 48-well qPCR plate (Bio-Rad) followed by 9.2µL of the relevant diluted cDNA and the wells 

sealed using qPCR-grade/optical flat 8-cap strips (Bio-Rad). Reactants were mixed by combined 

plate inversion and shaking before the plate was centrifuged briefly at low-speed and then placed 

in the stage of a MJ Mini cycler (MJ Research) equipped-with a MiniOpticon Real-Time PCR 

Detection System (Bio-Rad) controlled by PC using Opticon Monitor 3.1 software (Bio-Rad). 

Thermal cycling and real-time detection was then performed using the recommended parameters 

as indicated in Table 2.6. Primer sequences for mouse target genes (Table 2.7) were taken from 

published research and validated using the Primer BLAST programme (NCBI). Primers sequences 

were submitted to biomers.net for synthesis. As negative controls and to determine the relative 

magnitude of any contribution of contaminant/false template from the possible sources, qPCRs 

were performed in which no template was added (i.e. master mix, primers and water only), or the 

products from Rt reactions in which either no reverse transcriptase/enzyme or RNA was included 

were used as templates. To validate the PCRs, products were run on 2% agarose gels as per 

Section 2.3.4.3. qPCR reactions were performed in duplicate or triplicate.    

Step Temperature (°C) Duration (mins) 

1 94 5 

2 94 0.25 

3 60 1 

4 Fluorescence read N/A 

5 Return to ‘Step 2’ 40x  N/A 

6 Melt-Curve from 70-90°C  0.3°C every 0.25m + 

fluorescence read 

7 4 ∞ 

Table 2.6: qPCR thermal-cycling and fluorescence detection conditions 

Relative gene expression was calculated using the ΔΔCt method, with β-Actin used as the 

housekeeping/reference gene, according to the following equation: 
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Ct was defined as the cycle number at which fluorescence crossed a threshold level, chosen as the 

point at which the PCR expansion was exponential/linear in all samples. The Ct values for β-actin 

(housekeeping/reference gene) and the target gene were determined and referred to as the 

Ct[HKG] and Ct[target], respectively; ΔCt was calculated for each target gene of each sample by 

subtracting mean Ct[HKG] from mean Ct[target]. ΔΔCt for each target gene of each test sample 

was calculated by subtracting the ΔCt of the relevant gene in test sample from the ΔCt of the 

relevant gene in the control/baseline sample. Relative gene expression was not calculated/results 

were rejected if the difference in replicate Ct ≥1. 

Target 

mRNA/cDNA 

Forward/Reverse Sequence 

(5’- 3’) 

Length 
(oligonucleotide 

bases) 

Iba-1 Forward GTCCTTGAAGCGAATGCTGG 20 

Reverse CATTCTCAAGATGGCAGATC 20 

Crry Forward CCCATCACAGCTTCCTTCTG 20 

Reverse CTTCAGCACTCGTCCAGGTT 20 

GFAP Forward TCCTGGAACAGCAAAACAAG 20 

Reverse CAGCCTCAGGTTGGTTTCAT 20 

Β-Actin Forward ACGGCCAGGTCATCACTATTG 21 

Reverse AGTTTCATGGATGCCACAGGAT 22 

C3 Forward AAGCATCAACACACCCAACA 20 

Reverse CTTGAGCTCCATTCGTGACA 20 

iNOS Forward TTCCAGAATCCCTGGACAAG 20 

Reverse GGTCAAACTCTTGGGGTTCA 20 

COX-2 Forward CCACTTCAAGGGAGTCTGGA 20 

Reverse GAGAAGGCTTCCCAGCTTTT 20 

IL-1β Forward GCACACCCACCCTGCA 16 

Reverse ACCGCTTTTCCATCTTCTTCTT 22 

IL-6 Forward TCCAGAAACCGCTATGAAGTTC 22 

Reverse CACCAGCATCAGTCCCAAGA 20 

TNF-α Forward CTCCAGGCGGTGCCTATG 18 

Reverse GGGCCATAGAACTGATGAGAGG 22 

TGF-β Forward CGTGGAAATCAACGGGATCA 20 

Reverse GGCCATGAGGAGCAGGAA 18 

CD40 Forward GCCATCGTGGAGGTACTGTT 20 

Reverse CTGCGATGGTGTCTTTGCCT 20 

CD80 Forward GGCAAGGCAGCAATACCTTA 20 

Reverse CTCTTTGTGCTGCTGATTCG 20 

CD86 Forward TCTCCACGGAAACAGCATCT 20 

Reverse CTTACGGAAGCACCCATGAT 20 

Table 2.7: Primers used in qPCR 
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2.3.4.3  Agarose Gel Electrophoresis    

RNA preparations and PCR products were electrophoresed on 1.2% and 2% (w/v) agarose gels, 

respectively. Molecular grade agarose powder (Life Technologies) was weighed out and 

suspended in TAE buffer in a conical flask and dissolved by heating at full power in an 800W 

microwave and swirling of the flask for 30 second intervals, until no trace of powder was visible. 

Cold water was run over the surface of the flask to cool the molten agarose before 0.5µg mL-1 

ethidium bromide (Sigma-Aldrich) was added and mixed in by gentle swirling. Agarose was then 

poured into a gel casting tray fitted with a well-forming comb with teeth of ~30µL volume and 

allowed to set for a minimum of 30 minutes before submersion in an electrophoresis tank filled 

with TAE buffer. RNA (1µg) or 25µL DNA samples mixed 1:1 with nucleic acid loading dye (New 

England Biolabs) were transferred to the relevant agarose gel wells. An appropriate quantity of 

pre-formulated DNA ladder/molecular weight marker (100bp fragments; New England Biolabs) 

was added to at least 1 well in each gel. Samples were electrophoresed at ~100V until the dye 

front had migrated to the opposite end of the gel. Gels/samples were then imaged under UV light 

using a GelDoc system equipped with a digital camera (Bio-Rad) operated by Labworks or UVP 

software.              

2.4 Serum Preparation for use as a C Source 

All plastic ware and needles utilised for serum preparation were sterile and all fluid-transfers were 

performed in a class II bio-safety cabinet after the initial bleed. 

2.4.1 Mouse 

Mice of specified genotype (housed in a conventional/non-barrier environment) were sacrificed 

by exposure to a rising concentration of CO2 or anaesthetised with isofluorane (5% knockdown 

[chamber], 3% maintenance [ventilator]; Fisher Scientific) and quickly exsanguinated by cardiac 

puncture using 1mL syringes and 25 gauge needles. Blood was transferred to 0.6mL or 1.5mL 

microcentrifuge tubes and placed upright at RT for ~5 minutes before being placed on ice for a 

minimum of 30 minutes. Clotted blood was then fractionated by centrifugation at ~9,500xg at 4°C 

for 45 minutes – 1 hour and the serum transferred to a fresh tube and placed on ice (with care 

taken not to contact the lower fractions with the pipette tip). Sera were pooled, mixed and 

0.22µM filtered, then aliquoted into 0.3-0.4mL volumes before storage at -80°C. 

Excess stock colony members were used for serum preparation and thus were of varying age and 

sex. All animal procedures were performed in accordance with UK Home Office legislation under 

the ASPA act (1986).   



 
  6

6
 

2.4.2 Human 

Blood was collected from a healthy consenting volunteer (male, 27yrs) by venepuncture and 

transferred immediately to autoclaved glass tubes (~25mL volume). Whole blood was left to clot 

at RT for 30 minutes before transfer on to ice for a further 30 minutes. Clotted blood was 

fractionated by centrifugation at 3000xg for 30 minutes at 4°C and the serum transferred to a 

fresh tube and placed on ice (with care taken not to contact the lower fractions with the pipette 

tip during transfer). Serum was 0.22µM filtered and aliquoted into 1mL volumes before storage at 

-80°C. 

2.5 Statistics 

All statistical data analysis was performed using GraphPad Prism (Version 5) software. Student’s t-

test was performed when comparing 2 unpaired groups. One-way ANOVA was utilised when 

studying more than 2 unpaired groups. When comparing 2 unpaired groups within a data set 

comprising 3 or more groups, One-Way ANOVA was performed, with post-hoc t-test(s) with 

Bonferroni correction subsequently performed contingent on a significant (P<0.05) main effect of 

the subject variable (as determined by the AVOVA result). Two-way ANOVAs were performed 

when assessing more than 2 groups with 2 independent variables and results of Bonferroni post-

tests are indicated. Again, post-hoc testing was performed contingent on a significant (P<0.05) 

main effect of the subject variable, as determined by the AVOVA result. The statistical results 

displayed on figures/graphs throughout are the output of post-hoc analyses. Mean and standard 

deviation/error are stated throughout the results sections as indiacted. The relevant statistical 

analysis is indicated throughout in appropriate figure legends.  
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3 Isolation of Primary Adult Murine Microglia 

3.1 Introduction 

The establishment of methods to culture both microgial cell lines and primary isolated microglia in 

vitro together with suitable assays for phenotyping and the detection of responses to various C-

derived (and other) stimuli were critical to fulfilling the aims of the thesis and form the basis of 

this chapter. Additionally, prompted by the evidence generated during in vivo studies using 

transgenic animals (1), the in vitro consequences of total deficiency in a specific rodent microglial 

membrane C regulator (i.e. Crry) is a key subject of this investigation. Thus, the capability to 

culture microglia isolated from adult murine CNS tissue was a key requirement, since the 

phenomenon of microglial priming is most relevant in scenarios of aging and degeneration (178, 

223, 235, 236). This is of particular importance since microglia in adult animals have morphology 

distinct from those seen in neonates (amoeboid vs ramified) and are therefore likely to be 

functionally different (173, 178, 237). This is underlined by the inability of microglia cultured from 

adult animals, unlike neonatal, to readily survive and proliferate in vitro (232, 237-239). The 

establishment of microglial culture systems as described in this chapter thus permitted the 

further aims of the thesis to be addressed, namely: 1) to investigate the ability of naïve WT 

microglia to be primed in vitro by exposure to C activation products, specifically CR3 ligands (i.e. 

iC3b); 2) to investigate the in vitro phenotype of Crry KO microglia, cells previously shown to be 

primed in vivo. Furthermore the use of a validated and well characterised (178, 192, 240, 241) 

microglial cell line (BV2) as comparator provided an alternative and reliable source of microglial 

cells to explore techniques and assays for modification of microglial phenotype and responses to 

stimulation.  

3.1.1 Microglial Culture Systems 

3.1.1.1 Primary 

Microglial cultures were first described long ago by Costero in 1930 (178). However, their 

widespread use as a resource for the study of microglial biology emerged almost half a century 

later, after the 1986 publication by Giulian and Baker (190) describing a technique for the 

isolation and expansion of high-purity primary microglia from the neonatal rodent brain in 

sufficient numbers to perform phenotypic and functional assessments. Giulian and Baker’s 

principle “warm-shake method” is still widely employed today, although numerous derivations 

and modifications have taken place, with various sources of CNS tissues from different species 

(mouse or rat in the vast majority of cases), different enzyme cocktails and tissue dissociation and 

homogenisation techniques, cell adhesion-interference techniques, along with myelin removal 

techniques and immunomagnetic separation steps (191, 232, 238, 239, 242-244). A notable 



 
  6

8
 

feature of Giulian and Baker’s culture system  (190) and others which employ neonatal tissue 

(192), is that the isolated microglia display an amoeboid morphology which gradually transitions 

to ramified. This process can be accelerated using retinoic acid or DMSO and mirrors the 

transition observed in vivo from microglia present in developing embryos and neonates to that 

seen in the mature CNS.  

The vast majority of early protocols for the culture of pure microglial populations were based on 

the use of perinatal rodent (rat or mouse) CNS tissue and of the few protocols designed to isolate 

adult microglia, some have been used for immediate ex vivo analysis of microglia post-isolation 

(235, 239, 244). Notably, despite displaying a quiescent phenotype consistent with that observed 

in vivo in the normal mature brain, cultured adult microglia typically do not proliferate or survive 

for extended periods, exhibit unusual phenotypic features (e.g. non-adherence) or are of low 

purity (191, 192, 232, 238, 239, 242-244). Culture of pure, adult, phenotypically and responsively 

normal microglia over extended periods in sufficient numbers for experimental investigation 

therefore constitutes a significant but essential challenge for further progress in understanding 

the biology of these cells in the various neuropathologies.  

One approach to overcoming this problem has been to use M-CSF (238), a mitogen which 

stimulates myeloid cell proliferation and differentiation of precursors. In this case Ponomarev et 

al. developed a culture system which supported adult microglial cell proliferation and 

maintenance in the resting state with retained responsiveness to stimulation. Indeed, the 

importance of CSF receptor signalling for the maintenance of the microglial compartment has 

been demonstrated in the brain (245). Thus, although it adds significant cost, the addition of M-

CSF to the culture medium offers a potential means to circumvent the difficulties associated with 

adult microglial culture over extended periods.  

3.1.1.2 Cell Lines 

Despite their close physiological resemblance to microglia in situ, there are major drawbacks 

associated with the use of primary cell culture approaches, namely: 1) the relatively low cell 

numbers (both from low initial yield and proliferation rate); 2) extensive preparations times and 

lengthy protocols; 3) the latent period during initial expansion; 4) high cost in terms of time, 

reagents and experimental animal usage (192). The issue of low cell numbers is particularly 

pertinent in the case of human microglial research, where suitable donor tissue is not readily 

available (for obvious reasons). In order to bypass these drawbacks, clonal microglial cell lines 

have been developed which are highly homogenous and exhibit rapid proliferation with standard 

cell culture media formulations and protocols, yet retain key properties of in vivo and in vitro 

primary microglia (e.g. morphology, immunophenotype, function, electrophysiology), and thus 
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represent valuable tools for microglial research (192). Like immortalised lines of other cell types, 

microglial lines have been generated in several species (including human and rodent). These cell 

lines were derived from initial primary cultures and were immortalised either spontaneously (e.g. 

HAPI, EOC, C8-B4) or through manipulation (e.g. HMO6, BV2, N9 [retroviral transformation]) 

(192). Examples of human microglial cell lines include HMO6, CHME3/5 and SV40, while examples 

of rodent equivalents include BV2, C8-B4, HAPI, EOC and N9 (192). Despite their value as an 

experimental tool and widespread use, by definition cell lines are transformed and are thus not 

subject to the normal regulation of progression through the cell cycle and therefore display 

proliferative properties dramatically different to those of non-transformed cells. Additionally,  

other aspects of their biology often becomes altered, such as immunophenotype, adhesion, 

morphology and functional responses (e.g. phagocytosis, migration), further distancing them from 

their origins and diminishing their value as a research tool. Nonetheless, microglial cell lines have 

been highly valuable tools for neuroscience (including neuro-immunological) research and will 

continue to be so for the foreseeable future. 

3.1.1.3 Issues Associated with Microglial Culture in Isolation 

Microglial isolation and culture systems have been essential in elucidating the molecular signals 

and responses, along with “macro-responses” (e.g. phagocytosis, migration, proliferation), which 

govern the microglial lifecycle.  The majority of the published in vitro data concerning microglial 

biology comes from studies which employ purified primary cell culture systems, or homogenous 

cultures of microglial cell lines. However, despite the value and utility of such approaches, there is 

an increasing appreciation of the importance of basal microglial interactions with factors on or 

secreted by other neighbouring cell types (e.g. CD200; TGF-β). (173, 177, 246-249). Cultured 

microglia may deviate markedly from their natural phenotype because of the absence of other 

interacting cell types. While it is difficult to envisage a system where a pure culture of microglial 

cells will ever behave exactly as their in vivo counterparts we might hope to see the significant 

improvements in the degree to which the behaviour of these in vitro models approach the in vivo 

scenario. As has been touched upon previously, supplementation of the culture system with 

various purified and synthetic factors which reflect the natural microglial environment, may allow 

a more normal microglial phenotype to be established whilst maintaining purity, thus permitting 

the optimised study of microglia-specific responses. As proof of concept, it has been 

demonstrated that supplementation of the culture medium with soluble CX3CL1/fractalkine (a 

ligand for microglial CX3CR1; ubiquitously expressed by neurones) results in N9 microglial cells 

adopting a more ramified morphology and reduces the up-regulation of proinflammatory gene 

expression induced by LPS treatment (249). These findings are consistent with a shift towards the 

quiescent state observed in vivo in the mature CNS. Additionally, it has been shown that culturing 
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primary microglial cells in the presence of M-CSF and TGF-β resulted in a shift in their molecular 

profile towards a unique signature observed only in acutely isolated/ex vivo adult cells (although 

such an effect was absent in cell lines [BV2 and N9]) (183). These studies provide conceptual 

validation and highlight the potential of such an approach to the optimisation of microglial culture 

methodologies. Nonetheless, further research is required in-order to define the individual and 

combined effects of physiological factors which maintain in vivo microglia in their resting state.  

3.1.2 Microglial Phenotyping, Stimulation and Response Detection 

The earliest method of distinguishing microglial phenotype was through morphology and this 

remains a useful if limited determinant (173, 188). With their development, the full ranges of 

cellular and molecular techniques have been applied to the study of microglial phenotypes in vitro 

and in vivo. Thus, global approaches to microglial phenotyping have been employed in the form of 

large-scale transcriptome and protein analyses using microarray technology and quantitative 

mass spectrometry (tandem mass tagging/TMT) (183, 235, 250). Studies exploring microglial 

responses to various agents have been carried out in vitro and in vivo. Such agents include typical 

activators of innate immune cells such as PAMPs (e.g. LPS, poly[I:C]), DAMPs (e.g. AGEs, β-

amyloid), microbes and cytokines.  Factors specific to scenarios of CNS perturbation have also 

been investigated such as those promoting apoptotic neurones or neuronal fragments/blebs, 

myelin, amyloid-β and mutant Huntingtin. As the archetypical PAMP which is used almost 

ubiquitously in studies of immune cell activation, LPS is the most common agent utilised in studies 

concerned with microglial responses. 

3.1.3 Chapter Aims 

The principle aim of the work set out in this chapter was to establish a system for the extended 

culture of pure populations of primary adult (murine) microglia in a resting state with retained 

responsiveness to activation stimuli and C factors, along with the development of a regime for 

their activation and readouts to permit the assessment of their phenotypic status. Additional aims 

of this chapter were to characterise the identity of isolated primary cells and compare them to a 

microglial cell line, both to confirm their identity and to assess the differences between primary 

microglia and cell lines, and compare the properties of microglia maintained in isolation with 

those maintained in mixed CNS cell cultures. 
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3.2 Results 

3.2.1 Establishment of Ongoing Pure Cultures of Primary Adult Murine Microglia  

Initial mixed CNS cell cultures were established from the tissues of young adult mice and then 

purified to homogeneity by MACS sorting (as described in Section 2.1.2). According to the 

protocol of Ponomarev et al. (238), the medium was supplemented throughout the culture 

process with 10ng mL-1 rmM-CSF (R&D Systems) to support the survival of adult murine microglia 

and their maintenance in a resting/quiescent state, along with their expansion. Initial mixed CNS 

cell cultures were seeded at a density which afforded individual cells discrete spatial territories; 

cells proliferated and reached confluence over the course of a week to ten days. As described in 

Sections 2.3.1 and 2.3.2 (respectively), FACS and fluorescent ICC analysis were utilised to assay 

the purity of cell cultures using cell type-specific markers. Quantitative FACS analysis 

demonstrated that 63.1% of cells in initial mixed CNS cell cultures were positive for the microglial 

surface markers, CD11b and CD45 (Fig.3.1 A ii), while 14.2% stained for the intracellular neuronal 

marker, βIII-tubulin (Fig.3.1 B ii). The remaining 22.7% of cells in initial mixed cultures were 

unidentified but likely represented other CNS cell types (e.g. astrocytes and oligodendrocytes). 

Following MACS sorting based on surface CD11b immunoreactivity the vast majority (~95%) of 

cells in the positive fraction were CD11b and CD45+ (Fig.3.1 A iV), while βIII-tubulin+ cells were 

virtually undetectable (1.3%; Fig.3.1 B iV). Conversely, only a small minority (3.8%) of cells in the 

negative fraction were CD11b and CD45+ (Fig.3.1 A iii), while the βIII-tubulin+ compartment was 

enriched roughly two-fold (14.2% Vs 30.7%) compared to baseline levels (Fig.3.1 B iii). The 

staining profile of purified cells closely resembled that observed for the BV2 murine microglial cell 

line (Fig.3.1 i). 
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The results of ICC analysis of initial mixed cultures and post-separation fractions closely mirrored 

those of the FACS analysis (Fig.3.2A), and phase contrast microscopy of positive and negative 

fractions maintained in culture post-separation illustrated a clear difference in morphology 

(Fig.3.2B).  

 

 

Fig.3.1: Successful purification of primary cells from adult mouse CNS tissue (i). Initial CNS cell cultures 

were established from the brain homogenate of a ~3 month old WT mouse and selected for CD11b+ cells by 

MACS purification after eachieving confluence. Cells were stained with fluorphore-conjugated anti- CD11b, 

CD45 and βIII-Tubulin antibodies prior-to, or following, MACS purification, and analysed by flow cytometry. 

BV2 cells served as a positive control for microglial staining. (A) CD11b/CD45; (B) CD11b/βIII-Tubulin; (i) BV2 

cells; (ii) primary pre-MACS purification; (iii) primary negative fraction; (iV) primary positive fraction.  
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Fig.3.2: Successful purification of primary cells from adult mouse CNS tissue (ii). Initial CNS cell cultures 

were established from the brain homogenate of a ~3 month old WT mouse and selected for CD11b+ cells 

by MACS purification after eachieving confluence. Cells were: (A) fluorescently immunostained for CD11b 

(red; indirectly) and GFAP (green; directly) prior-to (i) or following MACS purification (ii & iii [- & + 

fractions, respectively]) and analysed by fluorecene microscopy (counterstained with DAPI [blue]; cells 

were seeded onto glass coverslips); (B) imaged by phase contrast microscopy (i & ii [- & + fractions, 

respectively]). Scale bars (A & B) = 100µM.     
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Phase contrast microscopy illustrated that purified primary cells generally adopted a ramified 

morphology, consistent with a resting/quiescent phenotype, and continued to survive in the 

culture environment. Although growth was very slow, the purified cell cultures, in-which initial 

seeding density yielded cells with non-overlapping territorial domains (Fig.3.3 Ai), gradually 

reached confluence over the course of ~3 weeks (Fig.3.3 Aii-iV). FACS analysis of purified primary 

cells for surface CD11b expression and viability demonstrated that established cultures were 

highly pure (~99% CD11b+) and the vast majority of cells (~95%) were viable (Fig.3.3 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3.3: Continued survival and expansion of purified primary cells. (A) Primary microglia were cultured for 

1, 2, 3 and 4 weeks post-immunomagnetic separation and imaged by phase contrast microscopy (i-iV, 

respectively). Scale bar (i - iV) = 200µM; (B) Primary cells were cultured for 3 weeks post-immunomagnetic 

separation and stained with anti-CD11b PE-Cy7 (microglial marker; Y-axis) and PI (dead cell marker (X-axis) 

before analysis by flow cytometry. 
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3.2.1.1 Assessment of Identity 

To confirm their responsiveness to an activator and identity as microglia, and to investigate the 

differences between primary adult and immortalised microglia as in vitro models, purified primary 

cells and BV2 cells were subjected to phenotyping assays along with LPS exposure.  

3.2.1.1.1 Morphology 

Morphological examination by phase-contrast microscopy revealed a distinct difference between 

primary microglia and the cell line: although both cell types were adherent, primary cells generally 

adopted a ramified/branching morphology with a proportionally smaller cell body (Fig.3.4A) and 

BV2 cells generally had an amoeboid circular form (Fig.3.4B). This morphological difference is well 

documented and reflects the activated status of the immortalised cells and their progression 

through the cell cycle (241, 251, 252), which is particularly rapid when compared to adult primary 

cells. Only a small minority of BV2 cells adopted a ramified morphology associated with resting 

cells, while in the case of primary cells, only a minority adopted a rounded morphology, 

associated with progression through the cell cycle. The time to achieve a similar expansion of cell 

numbers (~2.5-fold Vs baseline) was much greater for primary compared with BV2 cells (2 weeks 

Vs 36 hours for primary Vs BV2 cells, respectively; Fig.3.4 Aii & Bii). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4: Distinct morphologies and proliferation rates of primary and BV2 cells. Representative 

phase-contrast images of purified primary cells after 1 or 3 weeks in culture post-

immunomagnetic separation (A i & ii, respectively), or BV2 cells after 12 or 48 hours in culture 

post-passage (B i & ii, respectively). Scale bars (A & B) = 200µM. 

ii A 

i 

ii B 

i 



 
  7

6
 

3.2.1.1.2 Immunophenotype 

As described above, FACS analysis of primary microglia and BV2 cells showed very similar patterns 

of staining for both of the microglial markers CD11b and CD45. This analysis was further extended 

to directly assess the relative expression of a panel of microglial markers on purified primary 

microglia and BV2 cells. Markers analysed (as per Section 2.3.1) were CD11b, CD45, CD200R, 

F4/80 antigen, Crry, C5aR and CD59a. Specific staining for each marker was detected on both cell 

types and is summarised in Figures 3.5-3.11 and Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.6: Flow cytometric analysis of surface CD45 expression by primary and BV2 cells. MACS + 

primary and BV2 cells were left unstained or incubated with fluorescently conjugated anti-mouse 

CD45 (30-F11) Ab or an appropriate isotype control and analysed by flow cytometry. (A) MFIs (+/- SDs; 

N ≥ 3); (B) Representative histograms of fluorescence quantified in (A) for BV2 (i) and primary cells (ii). 
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Fig.3.5: Flow cytometric analysis of surface CD11b expression by primary and BV2 cells. MACS + 

primary and BV2 cells were left unstained or incubated with fluorescently conjugated anti-mouse 

CD11b (M1/70) Ab or an appropriate isotype control and analysed by flow cytometry. (A) MFIs (+/- SDs; 

N ≥ 3); (B) Representative histograms of fluorescence quantified in (A) for BV2 (i) and primary cells (ii). 
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Fig.3.7: Flow cytometric analysis of surface CD200R expression by primary and BV2 cells. MACS 

+ primary and BV2 cells were left unstained or incubated with fluorescently conjugated anti-mouse 

CD200R (OX-110) Ab or an appropriate isotype control and analysed by flow cytometry. (A) MFIs (+/- 

SDs; N ≥ 3); (B) Representative histograms of fluorescence quantified in (A) for BV2 (i) and primary 

cells (ii). 
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Fig.3.8: Flow cytometric analysis of surface F4/80 expression by primary and BV2 cells. MACS + 

primary and BV2 cells were left unstained or incubated with unlabelled rat anti-mouse F4/80 antigen 

Ab (Cl:A3-1) or an appropriate isotype control, followed by a fluorescently-labelled anti-rat secondary 

Ab. (A) MFIs (+/- SDs; N ≥ 3); (B) Representative histograms of fluorescence quantified in (A) for BV2 (i) 

and primary cells (ii). 
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Fig.3.9: Flow cytometric analysis of surface Crry expression by primary and BV2 cells. MACS + 

primary and BV2 cells were left unstained or incubated with unlabelled rat anti-mouse Crry Ab (1F2) or 

an appropriate isotype control, followed by a fluorescently-labelled anti-rat secondary Ab. (A) MFIs 

(+/- SDs; N ≥ 3); (B) Representative histograms of fluorescence quantified in (A) for BV2 (i) and primary 

cells (ii). 
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With the exception of F4/80 antigen, primary microglial cells expressed higher levels of all surface 

markers than BV2 cells. In the case of CD11b/CR3, this could be of particular consequence, since 

investigation of the specific functional effects of microglial CR3 ligation by iC3b is a key aim of this 

study; these findings would suggest that primary cells would be better suited to highlighting the 

consequences of this interaction.  

As the key regulator implicated in the C3-dependent mechanism of microglial priming reported by 

Ramaglia et al. (1), the phenotypic consequences of microglial Crry deficiency are a major focus of 

this study. Thus, the demonstration of Crry expression by FACS analysis on the surface of cultured 

primary and BV2 microglial cells (Fig.3.9; Table 3.1) is central to the work in this thesis. Higher 

expression of surface Crry by primary microglia is also significant, since this indicates that primary 

microglia will more readily illustrate the functional consequence of Crry deficiency and it is with 

primary cells cultured from CNS tissue from WT and Crry KO mice that the functional 

consequences of this deficiency in microglia are intended to be investigated.       

Fig.3.10: Flow cytometric analysis of surface C5aR expression by primary and BV2 cells. MACS + 

primary and BV2 cells were left unstained or incubated with fluorescently conjugated anti-mouse 

C5aR Ab (20/70) or an appropriate isotype control and analysed by flow cytometry. (A) MFIs (+/- SDs; 

N ≥ 3); (B) Representative histograms of fluorescence quantified in (A) for BV2 (i) and primary cells (ii). 
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Fig.3.11: Flow cytometric analysis of surface CD59 expression by primary and BV2 cells. MACS + 

primary and BV2 cells were left unstained or incubated with unlabelled rat anti-mouse CD59 Ab (MEL-

2) or an appropriate isotype control, followed by a fluorescently-labelled anti-rat secondary Ab. (A) 

MFIs (+/- SDs; N ≥ 3); (B) Representative histograms of fluorescence quantified in (A) for BV2 (i) and 

primary cells (ii). 
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As illustrated in Figures 3.1 and 3.2, CD11b+ cells were negative for markers of other CNS cell 

types i.e. β-III tubulin (neuronal) and GFAP (astrocytic), whereas cells which were CD11b- were 

positive for those same markers of other CNS cell types. 

 

 

 

 

 

 

 

 

 

Primary Cells 

Marker Autofluorescence 

(MFI) 

Background 

(MFI) 

Test 

(MFI) 

Signal – 

Background 

Signal: 

Background 

CD11b 81.6 +/- 0.90  88.9 +/- 2.69 9045 +/- 31.75 8956.1  101.7 

CD45 41.6 +/- 0.50 69.8 +/- 1.62 1814 +/- 59.80 1744.2 25.9 

CD200R 230 +/- 15.63 259 +/- 7.10 1425 +/- 40.38 1166 5.5 

F4/80 198 +/- 15.10 439 +/- 17.52 2299 +/- 150.0 1860 5.2 

Crry 98.7 +/- 18.16 345 +/- 25.50 1310 +/- 34.78 965 3.8 

C5aR 12.8 +/- 0.26 20.5 +/- 0.13 616 +/- 17.01 595.5 30.1 

CD59 85.3 +/- 8.65 358.5 +/- 26.01 1142 +/- 186.4 783.5 3.2 

BV2 Cells 

Marker Autofluorescence 

(MFI)  

Background 

(MFI) 

Test 

(MFI) 

Signal – 

Background 

Signal: 

Background 

CD11b 52.5 +/- 0.31 59.8 +/- 4.50   1935 +/- 31.53   1875.2 32.3 

CD45 17.2 +/- 1.47 45.4 +/- 0.72 886 +/- 7.50   840.6 19.5 

CD200R 121 +/- 5.51 151.7 +/- 5.10 626 +/- 7.77 474.3 4.1 

F4/80 61.7 +/- 5.10 127 +/- 4.73 2098 +/- 98.00 1971 16.5 

Crry 74.3 +/- 7.51 88.1 +/- 6.51 605 +/- 20.21 516.9 6.8 

C5aR 51 +/- 3.00 138 +/- 7.51 371 +/- 17.52 233 2.7 

CD59 74.3 +/- 3.57 88.1 +/- 9.07 169 +/- 7.55 80.9 1.9 

Table 3.1: Flow cytometric analysis of microglial marker expression by primary and BV2 cells. 

MFIs (+/- SDs) of primary and BV2 cells due to autofluorescence (Autofluorescence) or staining 

with a fluorophore-labelled (direct or indirect) antibody against the indicated marker/target 

(Test), or an appropriate isotype control (Background) (N ≥ 3). Signal – Background = Test MFI – 

Background MFI; Signal : Background = Test MFI/Background MFI. 
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3.2.1.1.3 Microglial mRNA/Transcript Expression  

Purified primary microglia and BV2 cells were also assayed by Rt-PCR (as per Section 2.3.4) for 

expression of the transcripts for the microglial markers Iba-1 and Crry, along with β-actin and the 

astrocytic marker GFAP as positive and negative controls (respectively). Visualisation of PCR 

products following agarose gel electrophoresis revealed that both cell types were positive for the 

expression of the microglial marker Iba-1 and Crry transcripts, along with β-actin, but were 

negative for GFAP (Fig.3.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.1.4 Zymosan Phagocytosis 

As microglia are professional phagocytes (253, 254), purified primary and BV2 cells were also 

assayed for phagocytosis of both non-opsonised and serum-opsonised zymosan particles. Both 

cell types were exposed to equal amounts of non-opsonised or opsonised alexa-fluor 488 

conjugated zymosan and assayed for the frequency of uptake by FACS analysis (as described in 

Sections 2.2.3.2.1 and 2.3.1 respectively). As expected, in the case of both cell types, serum 

opsonisation significantly increased the proportion of cells which were positive for ingested 

fluorescent zymosan (24.7% primary and 32.5% BV2, P<0.001*** for both). However, the level of 

ingestion of both non-opsonised and opsonised fluorescent zymosan was significantly higher for  

Crry     (ii) Iba-1    (i)  GFAP  (iV) β-Actin  (iii) 

1 2 3 1 2 3 1 2 3 1 2 3 

Fig.3.12: Rt-PCR analysis of microglial transcript expression by primary and 

BV2 cells. Agarose gels imaged under UV light following electrophoresis of 

Rt-PCR products from reactions for Iba-1 (i), Crry (ii), β-actin (iii) and GFAP 

(iV) transcripts with RNA from primary (2) or BV2 (3) cells, or a 100bp 

molecular weight marker (1).      
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primary compared with BV2 cells (non-opsonised: 61.95% primary vs. 16.65% BV2, P<0.001***; 

opsonised: 86.6% primary vs. 49.1% BV2, P<0.001***) (Fig.3.13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fluorescence microscopy of BV2 cells exposed to different amounts of alexafluor-488 conjugated 

zymosan particles (as per Sections 2.2.3.2.2 and 2.3.2 respectively) also demonstrated 

significantly increased uptake in an opsonisation- and dose- dependent manner (Fig.3.14).    

 

 

 

 

Fig.3.13: Increased zymosan phagocytosis by primary microglia Vs BV2 cells – flow cytometry. 106 

serum-opsonised or non-opsonised alexa-fluor 488-labelled zymosan particles were added directly to 

5x104 BV2 or MACS purified primary cells cultured in 0.5mL growth medium in 24-well plates and 

incubated for ~1hr (37°C, 5% CO2, humidified atmosphere). Untreated cells or cells treated with non-

opsonised or serum-opsonised zymosan were then harvested and stained (4°C, 30 mins) for surface 

CD11b (M1/70; 1µg/mL) and viability (7-AAD; 2.5µg/mL) and analysed by flow cytometry (A). One-Way 

ANOVA with post-hoc t-tests was performed: ***P<0.001; (B) Representative histograms of untreated 

BV2 cells (black), or those treated with alexa-fluor 488 conjugated zymosan (green).  
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3.2.1.1.5 LPS Responses 

Purified primary and BV2 cells were exposed to LPS over a range of concentrations and times (as 

described in Section 2.2.1) and assessed for responses.  

3.2.1.1.5.1 Secreted Effectors 

Both cell types were assayed for the release of secreted effectors by ELISA for mouse IL-6 and 

TNF-α and Griess assay for nitrite (in accordance with Section 2.3.3).  
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Fig.3.14: Opsonisation- and dose- dependent increases in zymosan phagocytosis by BV2 cells – 

fluorescence microscopy. Non-opsonised or serum-opsonised zymosan particles were resuspended 

in BV2 growth medium at 104µL-1. 5x104 or 1.5x105 opsonised or non-opsonised particles were 

added directly to 5x104 BV2 cells cultured in 0.5mL growth medium in 24-well plates and incubated 

for ~1hr (37°C, 5% CO2, humidified atmosphere). Cells were cultured on glass coverslips and 

zymosan uptake was assessed by fluorescence microscopy after DAPI staining of nuclei (A). Bars = 

means +/- SD. One-Way ANOVA with post-hoc t-testing was performed: **P<0.01, ***P<0.001; (B) 

Representative fluorescence micrographs of alexa-fluor 488 conjugated zymosan exposed (i) or 

untreated (ii) BV2 cells (DAPI nuclear counterstain [blue]). Scale bar (i & ii) = 50µM. 
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3.2.1.1.5.1.1 Griess Assay 

3.2.1.1.5.1.1.1 Dose Response 

As demonstrated in Figure 3.15A, after 48 hours exposure to LPS, both cell types had a similar NO 

response LPS as determined by Griess assay. NO production increased with LPS concentration 

across similar ranges (max. nitrite concentration = 5.72µM and 4.40 µM for BV2 and primary cells, 

respectively; basal nitrite concentration = 0.46µM and 1.44µM for BV2 and primary cells, 

respectively). For BV2 cells NO production continued to increase even at the maximum LPS doses 

whereas the response of primary cells plateaued at LPS concentrations of 1000ng/ml(Fig.3.15 Ai & 

Aii).The basal NO production of untreated primary cells was greater than that of untreated BV2 

cells (1.44 µM vs 0.46µM for primary and BV2 cells  respectively). However, the maximal response 

of primary cells was lower than that of BV2 cell (max nitrite concentration - nitrite concentration 

untreated cells = 2.97 vs 5.27 µM for primary and BV2 cells, respectively). Furthermore, while 

significant increases in nitrite concentrations above basal levels were detectable at LPS doses of 

10ng/mL for BV2 cells (BV2 [nitrite] 10ng/mL – [nitrite] untreated = 0.73µM; P = 0.048*; Fig.3.15 

Aii), detectable increases in nitrite levels produced by primary cells only emerged at 10-fold 

greater LPS doses (100ng/mL) and significant increases did not appear until doses of 1000ng/ml 

were used (Fig.3.15 Ai). However, as evidenced below, this may reflect the expansion of the BV2 

cell line (which is dramatically more rapid than that of primary cells) during the course of the 

experiment, which invariably means that by the selected endpoint cell numbers are no longer in 

balance.  

3.2.1.1.5.1.1.2 Time Course 

To examine the effect of LPS on NO production over time a longitudinal experiment was carried 

out on both cells types using a mid-range dose of 1µg/mL LPS. Nitrite concentration increased 

over time in both primary and BV2 cells (Fig.3.15B i & ii, respectively). This is to be expected given 

that while NO itself is unstable, its product, nitrite (NO2-; the Griess assay analyte), is stable and 

accumulates in the media. The fact that nitrite concentrations were continuing to increase even at 

the latest time points, indicates that induction of NO production was still ongoing in both cell 

types after 48 hours. Nitrite concentration did not increase significantly in untreated or BSA-

treated (negative control) primary cells over time (Fig.3.15B i). However, in the case of control 

BV2 cells there was a modest increase in the level of nitrite in control cells over time (Fig.3.15B ii), 

(mean nitrite concentration at 72hr – mean nitrite concentration at 0hr = 3.45 and 0.65 µM for 

untreated BV2 and primary cells, respectively; Fig.3.15B). Since the BV2 cell line proliferates at a 

much faster rate than primary cells and the basal nitrite level remains stable in primary cells, it is 

likely that the production of NO by untreated BV2 cells over time is a result of increasing cell 

numbers, with increased cellular stress at increased confluence probably playing a role. Indeed, 



 
  8

4
 

the fact that the increase in nitrite is far greater for both control and LPS-treated BV2 cells 

between the final time points (i.e. 48 and 72 hours) than any other equivalent period (nitrite 

concentration 72-48hr =  12.25 and 3.15 µM, 48-24hr = 1.75 and 0.1 µM, 24-0hr = 2.2 and 0 µM, 

for LPS and BSA treated BV2, respectively), indicates that their exponential proliferation is 

probably responsible for the increased production of NO by untreated BV2 cells (Fig.3.15B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.15: Nitric oxide production by primary and BV2 cells in response to LPS – dose and time 

responses. 2.5x105 primary microglia or BV2 cells cultured in 0.5mL growth medium in 24-well 

plates were treated with LPS concentrations ranging from 0-10,000ng/mL (deepening red) for 48 

hours (A [data points represent individual replicates]) or 1µg/mL LPS for time periods ranging from 

0-72 hours (B [bars = means +/- SD]) and supernatant nitrite levels determined by Griess assay. 

One-Way ANOVA with post-hoc t-testing was performed: X P>0.05, *P<0.05, **P<0.01. 
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3.2.1.1.5.1.2 TNF-α and IL-6 ELISAs  

Primary microglia and BV2 cells were stimulated with LPS for 24h at concentrations ranging from 

0-10µg/mL. Supernatants were then assayed by ELISA for IL-6 and TNF-α. Cytokine production 

increased with LPS concentration in both cell types, although the scale of increase and the point 

at which responses became significant, along with the basal level of production, differed for the 

two cell types and analytes.  

The LPS-induced increases in cytokine production by BV2 cells were relatively modest, being in 

the order of hundreds of picograms per millilitre (BV max. TNF-α and IL-6 increase = 331.1 and 

98.5 pg/mL, respectively). In contrast, the increases in cytokine production by primary microglia in 

response to LPS were several orders of magnitude greater (Tables 3.2 & 3.3; Fig.3.16).  

An LPS concentration of 1ng/mL resulted in a small but significant (P = 0.0001) cytokine induction 

from primary cells (198.0pg/mL and 544.9pg/mL for TNF-α and IL-6, respectively) while BV2 cells 

showed little cytokine production at this dose. LPS doses of 10ng/mL and above resulted in a 

much greater induction of IL-6 and TNF-α in primary microglia whereas responses in BV2 

remained low (Tables 3.2 & 3.3; Fig.3.16). 
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TNF-α Concentration (pg/mL) 

 LPS Concentration (ng/mL) 

Cell Type 0 1 10 100 1000 10,000 

BV2 321.4 357.0 425.0 578.8 561.0 652.5 

Primary 0 198.0 2620.8 3385.5 5760.1 6582.0 

IL-6 Concentration (pg/mL) 

 LPS Concentration (ng/mL) 

Cell Type 0 1 10 100 1000 10,000 

BV2 7.5 23.0 60.2 88.4 100.5 106.0 

Primary 89.6 634.5 18669.8 27097.1 28957.7 31342.1 

Table 3.2: Microglial cytokine levels in response to different LPS concentrations (i). 2.5x105 

primary microglia or BV2 cells cultured in 0.5mL growth medium in 24-well plates were treated 

with LPS concentrations ranging from 0-10,000ng/mL for 24 hours and supernatant TNF-α and IL-

6 concentrations were measured by ELISA (N ≥ 3). 

 

 

TNF-α 

 

Cell Type 

TNF-α increase 

1ng/mL LPS 

(A) 

TNF-α increase 

10ng/mL LPS 

(B) 

TNF-α increase 

10µg/mL LPS 

(C) 

 

B/A 

 

C/A 

BV2 35.6 103.6 331.1 2.9 9.3 

Primary 198.0 2620.8 6582.0 13.2 33.3 

IL-6 

 

Cell Type 

IL-6 increase 

1ng/mL LPS 

(A) 

IL-6 increase 

10ng/mL LPS 

(B) 

IL-6 increase 

10µg/mL LPS 

(C) 

 

B/A 

 

C/A 

BV2 15.5 52.7 98.5 3.4 6.35 

Primary 544.9 18580.2 31252.5 34.1 57.4 

Table 3.3: Microglial cytokine increases in response to different LPS concentrations (ii). Increase 

(pg/mL; from baseline) in mean TNF-α and IL-6 concentrations for primary and BV2 cells (Table 

3.2) following 24 hours exposure to LPS concentrations of 1(A), 10(B) and 10,000(C) ng/mL LPS.  
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B i ii 

A i ii 

Fig.3.16: Dose-dependent cytokine production by primary and BV2 cells in response to LPS – 

TNF-α and IL-6 responses. 2.5x105 primary microglia (i) or BV2 cells (ii) cultured in 0.5mL growth 

medium in 24-well plates were treated with LPS concentrations ranging from 0-10,000ng/mL for 

24 hours and supernatant TNF-α (A) and IL-6 (B) concentrations were measured by ELISA. Data 

points represent individual replicates. Bars = means +/- SDs. One-Way ANOVA with post-hoc t-

testing was performed: *P<0.05, **P<0.001, ***P<0.0001.   

*** 

*** 
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*** 
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3.2.1.1.5.2 Surface Marker Expression 

3.2.1.1.5.2.1 Flow Cytometric Analysis 

Purified primary microglia and BV2 cells were assayed for changes in surface CD11b and C5aR by 

FACS (as per Section 2.3.1) after exposure to LPS at different concentrations and time-points 

(Fig.3.17 A & B). Exposure to 1µg/mL LPS caused increases in surface CD11b expression on both 

primary and BV2 cells, with these changes becoming significant at 12 hours (CD11b MFI at 12hrs = 

108.0% and 113.7% Vs baseline, P = 0.008 and 0.008 for BV2 and primary, respectively; CD11b 

MFI at 6hrs = 101.7% and 105.0% Vs baseline, P = 0.315 and 0.165 for BV2 and primary, 

respectively) and continuing to increase over the next 36 – 60 hours. The relative increase in 

surface CD11b was consistently greater for primary microglia, ~2-fold higher than on BV2 cells at 

each time-point (Table 3.4; Fig.3.17A). Stimulation of primary microglia and BV2 cells with 

different concentrations of LPS for 48 hours also resulted in increases in surface CD11b and C5aR 

(Table 3.5; Fig.3.17B). In the case of BV2 cells surface CD11b and C5aR levels continued to 

increase steadily with LPS concentration across the range tested (0-10µg/mL). However, the 

surface CD11b and C5aR levels on primary cells increased dramatically between LPS doses of 1-

10ng/mL and then plateaued and decreased slightly at higher LPS concentrations. These effects 

closely resembled those observed in the cytokine responses of primary and BV2 cells following 

stimulation with different concentrations of LPS (Tables 3.2 & 3.3; Fig.3.16). Also mirroring the 

changes in cytokine production, the increases in surface CD11b and C5aR were greater for 

primary cells, particularly at the later (≥24hr) time-points and higher (≥10 ng/mL) LPS 

concentrations. The scale of the relative changes in surface CD11b and C5aR were comparable 

between cell types (max increase in CD11b and C5aR MFI ~1.5- and ~2- fold Vs. baseline for BV2 

and primary cells, respectively). Histograms depicting CD11b and C5aR staining of untreated and 

LPS stimulated primary cells illustrate the clear separation between populations stained with 

fluorophore-conjugated anti-CD11b and anti-C5aR antibodies, with very low background staining 

with appropriate isotype control antibodies (Fig.3.17C), thus demonstrating specificity of staining 

and an increase in these surface markers with LPS stimulation. 
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CD11b MFI % Vs Baseline 

 LPS Exposure (Hrs) 

Cell Type 0 2 4 6 12 24 48 72 

BV2 100.0 96.0 100.0 101.7 108.0 114.0 158.7 150.7 

Primary 100.0 96.7 100.0 105.0 113.7 136.3 202.3 222.7 

Table 3.4: Microglial surface CD11b expression in response to LPS - time-Course. Percent Vs 

baseline of CD11b MFI (as determined by FACS analysis; N = 3) for BV2 and primary cells following 

exposure of 2.5x105 cells to LPS (1µg/mL) for time-points ranging from 0-72 hours. 

 

 

CD11b MFI % Vs Baseline 

 LPS Concentration (ng/mL) 

Cell Type 0 0.1 1 10 100 1000 10,000 

BV2 100.0 101.8 113.3 127.9 136.9 155.5 150.0 

Primary 100.0 107.3 115.9 198.1 174.7 172.7 172.8 

C5aR MFI % Vs Baseline 

 LPS Concentration (ng/mL) 

Cell Type 0 0.1 1 10 100 1000 10,000 

BV2 100.0 102.0 116.5 121.5 137.5 144.0 153.0 

Primary 100.0 96.8 122.2 208.1 220.8 197.5 176.6 

Table 3.5: Microglial surface CD11b and C5aR expression in response to LPS – dose-response. 

Percent Vs baseline of CD11b and C5aR MFI (as determined by FACS analysis; N = 3) for BV2 and 

primary cells following exposure (48hr) of 2.5x105 cells to LPS concentrations ranging from 0-

10,000ng/mL. 
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Fig.3.17: Flow cytometric analysis of change in primary and BV2 cell surface markers in 

response to LPS – dose and time responses. 2.5x105 primary microglia or BV2 cells cultured in 

0.5mL growth medium in 24-well plates were treated with 1µg/mL LPS for time periods ranging 

from 0-72 hours (A) or LPS concentrations ranging from 0-10,000ng/mL for 48 hours (B) and 

surface CD11b (A & Bi) and C5aR (Bii) measured by flow cytometry. Values are expressed as MFI 

% vs baseline; N ≥ 3; bars = means (+/- SDs); One-Way ANOVA with Bonferroni post-testing was 

performed: **P<0.01 (results of post-tests shown on graph [see Methods 2.5]). ANOVA: Primary – 

P<0.001, F = 782.2; BV2 – P<0.001, F = 222.3 (C) Representative histograms of primary cells 

stained with fluorophore conjugated anti-CD11b (i) or C5aR (ii) antibodies, or appropriate isotype 

controls, after treatment with or without 10ng/mL LPS for 48 hours. 
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3.2.1.1.5.2.2 ICC Analysis 

Purified primary cells were assayed for changes in surface CD11b expression by fluorescent ICC 

(as per Section 2.3.2) in response to stimulation with 1µg/mL LPS for different time periods 

ranging from 4 to 72 hours. In alignment with the results of FACS analysis detailed above, 

increased CD11b was detected by ICC in response to LPS exposure (Fig.3.18). The profile of the 

response over time was similar to that observed through FACS analysis (Table 3.4; Fig.3.17A): 

increased expression was apparent within a few hours post-LPS treatment and reached a 

maximum around 48 hours (Fig.3.18A). However, in contrast to FACS analysis, ICC showed a 

significant decrease in the CD11b signal at 72 hours relative to 48 hours post-LPS treatment 

(CD11b MFI Vs. baseline 72hr – CD11b MFI Vs baseline 48hr ICC = -25.5%, P = 0.009; CD11b MFI 

Vs. baseline 72hr – CD11b MFI Vs baseline 48hr FACS (primary) = 20.4%, P = 0.007). Furthermore, 

the scale of the changes in CD11b levels detected by ICC was significantly reduced, with a 

maximum increase of less than half that detected by FACS analysis (max. MFI % increase Vs 

baseline = 47.0% and 122.7% for ICC and FACS, respectively; P = 0.001). BV2 cells were not 

assayed by ICC since a large proportion of cells were lost from glass coverslips during processing. 

Although broadly similar, the discrepancy between the results of FACS and ICC quantitative assays 

of surface CD11b expression is perhaps not surprising given the limitations of microscopy-based 

techniques for quantitative assessment relative to FACS. Indeed, while ICC/microscopy is ideally 

suited to-, and of great utility in-, assessing the spatial location along with physical and molecular 

nature of cellular markers, it is not ideally suited to their quantitative assessment (255), while the 

inverse is true of conventional FACS analysis (256). Therefore, the FACS based assays of surface 

markers described previously (Section 3.2.1.1.2) shall be used for further quantitative 

assessments, whereas microscopy shall be used for any further studies of the parameters 

mentioned above.  
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3.2.1.1.5.3 Immune-Related Transcript Expression 

BV2 cells were stimulated with 1µg/mL LPS for 24hrs followed by RNA extraction and Rt-qPCR to 

assay changes in the transcript/mRNA levels of microglial activation markers, cytokines, 

inflammatory enzymes and complement components (as described in Section 2.3.4). 

To confirm integrity and correct molecular weight, RNA preparations and PCR products from LPS 

stimulated and control BV2 cells were separated by agarose gel electrophoresis and visualised 

under UV. Imaging revealed RNA preparations of consistent and expected appearance: lanes 

showed two sharp bands with molecular weights corresponding to the 28S (~5Kb) and 18S (~2Kb) 

rRNAs in a ratio of roughly 2:1 (respectively); a faint smear was present between the bands, 

representing other mRNA species (Fig.3.19). 

Fig.3.18: Analysis of primary cell surface CD11b expression by immunocytochemistry – 

response to LPS over time. 2.5x105 primary microglia cultured on glass coverslips in 0.5mL 

growth medium in 24-well plates were treated with 1µg/mL LPS for time periods ranging from 0-

72 hours and surface CD11b measured by indirect ICC (clone 5C6) (A). N = 3; One-Way ANOVA 

with post-hoc t-testing was performed: **P<0.01; (B) Representative fluoromicrographs of 

primary cells stained with rat anti-mouse CD11b (5C6) followed by anti-rat alexa-fluor 555 after 

1µg/mL LPS treatment for 0 (i) and 48 (ii) hours. Scale bar (i & ii) = 100µM. 
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Spectrophotometric analysis was used to determine RNA concentration and assess purity of 

preparations; 260/280 ratios were consistently of the order of 2.0 indicating suitable purity of 

RNA preparations. Electrophoretic analyses of PCR products confirmed the generation of a single 

molecular weight product per reaction indicating the specificity of qPCR. Each PCR product was of 

the expected molecular weight as defined by the source publications of primer sequences and/or 

primer BLAST analysis (Fig.3.20). 
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Fig.3.19: Confirmation of RNA integrity. RNA was extracted from 2.5x105 untreated BV2 cells 

cultured in 0.5mL growth medium in 24-well plates or cells treated with 1µg/mL LPS for 24 hours, 

using the geneElute mammalian total RNA extraction kit (Sigma-Aldrich) and 1µg subjected to 

agarose gel electrophoresis (1.2% w/v gel) and imaged under UV light (2 & 3, untreated & LPS, 

respectively). A molecular weight marker was also included (1; dsDNA).     

Fig.3.20: Confirmation of PCR specificity. BV2 cell RNA was subjected to RT using the TaqMan RT 

reagents (Applied Biosystems) and then 32ng RNA equivalent of cDNA was used in qPCR as a template 

along with gene specific primers (as indicated) in 20µL reactions using SYBR green Jump-Start Taq-

ready mix (Sigma-Aldrich). 12.5µL of the PCR product mixed 1:1 with DNA loading dye was then 

subject to electrophoresis on a 2% (w/v) agarose gel and imaged under UV light. A 100bp-ladder 

molecular weight marker was also included (1). 
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With the exception of COX2 and CD86 (57.3% and 8% below baseline, respectively), all of the 

transcripts assayed increased in relative frequency in response to LPS. The scale of increases in 

transcript frequencies was broad, ranging from a few percent (e.g. iNOS = 6.5% above baseline) to 

several-fold (e.g. IL-6, Iba-1 and C3 = 396.8%, 553.8% and 469.5% above baseline, respectively) 

(Fig.3.21; Table 3.6). Notably, the relative changes detected in the frequency of transcripts for 

pro-inflammatory cytokines TNF-α and IL-6 in response to LPS treatment in BV2 cells closely 

mirrored the data obtained for the secreted molecules as determined by ELISA (Table 3.2; 

Fig.3.16ii). An approximately 4-fold increase in the frequency of IL-6 transcripts was detected 

compared with a ~2-fold increase for TNF-α (IL-6 and TNF-α transcript frequency = 396.8% and 

86.0% above baseline, respectively), while a ~12-fold greater level of IL-6 protein was detected in 

the BV2 supernatant after 24 hours in response to 1µg/mL LPS, compared with a ~2-fold greater 

level of TNF-α. These results also reflect those obtained by ELISA analyses for TNF-α and IL-6 on 

supernatant from primary microglia, where a greater increase in the levels of IL-6 from LPS 

stimulated cells was detected compared with those of TNF-α (e.g. [IL-6] and [TNF] 24hr LPS 

1µg/mL = 28.9µg/mL and 5.8µg/mL above baseline, respectively; Table 3.2, Fig.3.16i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.21: Induction of transcripts following microglial LPS treatment. RNA was extracted from 2.5x105 

untreated BV2 cells cultured in 0.5mL growth medium in 24-well plates or cells treated with 1µg/mL 

LPS for 24 hours and subjected to RT using the TaqMan RT reagents (Applied Biosystems). 32ng RNA 

equivalent of cDNA was then used in qPCR as a template along with gene specific primers (as 

indicated) in 20µL reactions using SYBR green Jump-Start Taq-ready mix (Sigma-Aldrich). Difference in 

the relative transcript expression was determined by the ΔΔCt method (β-Actin served as the reference 

gene). Mean increase (+/- SD) of LPS treated Vs baseline; N = 4.   
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BV2 mRNA Mean % Increase in Response to LPS Treatment 

Gene 

C3 Crry iNOS COX-2 IL-1β IL-6 TNF-α TGF-β Iba-1 CD40 CD80 CD86 

469.5 68.5 6.5 -57.3 93.8 396.8 86.0 31.3 553.8 61.3 1.0 -8.0 

Table 3.6: BV2 transcriptional responses to LPS exposure. Mean percentage increase (Vs 

baseline/untreated cells) in BV2 cell transcripts (as indicated) following treatment with 1µg/mL LPS 

for 24 hours, as determined by Rt-qPCR (N = 4).   

 

3.2.1.1.5.4 Morphological Change 

Purified primary microglia were subjected to LPS exposure (0.1–10,000ng/mL) for 24 hours and 

assessed for changes in morphology by phase-contrast microscopy. High magnification imaging of 

unstimulated cells and those treated with the highest LPS dose clearly demonstrated the dramatic 

effect of LPS exposure on cell morphology (Fig.3.22). LPS treatment resulted in a dose-dependent 

shift in cell morphology from a ramified form with a relatively small cell body to an amoeboid 

form with a relatively large cell body, with the transition occurring between doses of 1 and 

100ng/mL and becoming global by 1000ng/mL (Fig.3.23). A distinct morphological change was 

also apparent in images from the fluorescent ICC CD11b expression analysis in response to LPS 

treatment described above (Fig.3.18B). BV2 cells were not assayed for morphological changes in 

response to LPS exposure since preliminary experiments showed an absence of any detectable 

alterations (unsurprising given the properties of activated microglia which they display (241)); the 

rapidly proliferating BV2 cells continue to proliferate and maintain a rounded morphology even at 

the highest LPS doses (data not shown). 

 

 

 

 

 

 

 

 

 

Untreated 10ug/ml LPS 

Fig.3.22: Morphological change of primary microglia in response to LPS (i). Representative 

phase-contrast images at high magnification of untreated primary cells (i) or primary cells 

following 24 hours stimulation with 10µg/mL LPS (ii). Scale bar (i & ii) = 50µM. 

i ii 



 
  9

6
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i ii 

iii iV 

V Vi 

Vii                        

Fig.3.23: Morphological change of primary microglia in response to LPS (ii). Representative 

phase-contrast images of untreated primary cells (i) or primary cells following stimulation for 24 

hours with LPS concentrations starting at 0.1ng/mL and increasing by a factor of Log
10

 up to a 

maximum of 10µg/mL (ii-Vii, respectively); Scale bar (i-Vii) = 100µM. 
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3.2.2 Mixed Vs Pure Microglial Cultures: Surface CD11b LPS Response 

In-order to assess the influence of neuronal-microglial surface interactions in modulating 

microglial responses, the surface expression of CD11b was assayed by flow cytometry (Section 

2.3.1). This was carried out at baseline and following stimulation with LPS for 48 hours at 

concentrations between 0.1ng/mL and 10µg/mL (Section 2.2.1). Both MACS purified primary 

microglia and primary microglia maintained in mixed CNS cultures were used. This assay was 

chosen because, unlike those which measure the bulk release of effector molecules (e.g. ELISA), it 

permits the characterisation of microglial specific responses in a mixed culture system. As shown 

in Figure 3.1, microglia constituted the majority (~65%) of cells in these mixed CNS cultures, while 

a significant proportion (~15%), were neurones. Since neurones have a dramatically larger volume 

than microglia, and neurones occupy more than half the CNS space (257), extensive neuronal-

microglial surface interactions can be expected. Little difference was observed in baseline 

expression of CD11b on microglia in isolation and mixed culture, but the pattern of expression in 

response to LPS was different in that the increase in CD11b on primary microglia maintained in 

mixed CNS cultures was ~2-fold greater than that observed on isolated primary microglia at all LPS 

concentrations tested (Fig.3.24). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.24: Flow cytometric analysis of change in microglial surface CD11b in response to 

increasing LPS concentration - pure Vs mixed CNS culture. 2.5x105 MACS sorted primary 

microglia (purified) or mixed CNS cells derived from whole brain homogenate (mixed) in 0.5mL 

growth media in 24-well plates were treated with LPS concentrations ranging from 0-

10,000ng/mL for 48 hours and surface CD11b assayed by flow cytometry (clone M1/70). MFI (+/- 

SDs); N ≥ 3. 
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3.3 Discussion 

3.3.1 Primary Adult Murine Microglia: Culture, Phenotyping and Activation  

The principle aims of the work set out in this chapter were to: 1) establish a system for the culture 

of pure adult murine microglial populations that supported their proliferation and maintenance of 

a quiescent state; 2) develop assays to characterise cell phenotype and the response to a known 

activator i.e. LPS; 3) compare primary microglia with a well-described microglial cell line (BV2).  

These aims were necessary prerequisites to the overarching aims of this thesis relating to the 

mechanisms of C-mediated microglial priming.  

The culture of pure, adult, phenotypically and responsively normal primary microglia over 

extended periods in sufficient numbers for experimental investigation constitutes a significant 

challenge. In order to achieve this aim, features of two published adult microglial culture 

protocols (232, 238) were incorporated into a procedure which also included an 

immunomagnetic/MACS sorting step. The microglial cultures generated through these 

modifications of the established procedures were shown by multiple techniques to be of high 

purity and consisted of cells with a ramified/branching morphology, consistent with that observed 

in resting microglia in vivo (173, 178). These cultured cells were able to survive and gradually 

proliferate. Cultured primary cells were phenotyped by various assays alongside the widely 

employed BV2 murine microglial cell line in-order to confirm their identity as microglia and 

establish similarities and differences with the cell line. Immuno-phenotypic studies demonstrated 

the presence of numerous microglial cell surface markers on the purified microglia and 

conversely, an absence of other CNS cell type markers; transcriptome profiling demonstrated the 

expression of microglial transcripts and an absence of astrocytic transcripts in purified primary 

cells. Functional studies confirmed that purified primary microglia were phagocytic. Functional 

responses were also tested by exposing purified primary microglia to LPS, a known myeloid cell 

activator, at various concentrations and time-points. The data showed dose and time-dependent 

release of pro-inflammatory effectors (cytokines and NO) together with shifts in the surface 

expression of multiple activation markers (e.g. CD11b; in-line with previous reports). 

Morphological studies illustrated an LPS dependent dose-dependent shift of purified primary cells 

towards an activated, amoeboid form.  

A definitive identification of primary microglia to the exclusion of all other cell types, particularly 

myelomonocytic cells from the periphery, is challenging (173, 183). Nonetheless, the combined 

morphological, immunophenotypic, transcriptional and functional data, coupled with the 

inclusion of steps in the culture protocol designed to eliminate cells of non-parenchymal origin, 

strongly suggests that the purified primary cells are microglia. The combined data illustrate that 
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both the primary microglia and BV2 cells retain responsiveness to an innate immune cell activator 

(i.e. LPS). Additionally, a range of cell phenotyping assays have been developed during the course 

of the investigations delineated in this chapter. These developments are critical for the 

attainment of the study’s further aims which involve the elaboration and detection of microglial 

responses in cells genetically deficient in specific complement regulatory membrane proteins (i.e. 

Crry) coupled with an exploration of the effects of C activation products on microglia. The culture 

systems, activation regimens and phenotyping assays described here will now be taken forward 

into studies regarding the phenotypic consequences of iC3b ligation of CR3 for naïve microglia 

and the in vitro phenotype of Crry -/- microglia.               

3.3.2 Primary Microglia vs BV2 Cells 

An inherent aim of the work set out in this chapter was to characterise isolated primary microglia 

and compare them to a microglial cell line. This comparison would serve as a positive control in 

phenotyping assays designed to validate the identity of cultured primary microglia. BV2 cells are a 

widely used murine microglial cell line known to express all common microglial markers (e.g. 

CD11b, F4/80, CD45, etc.) and functional responses (e.g. phagocytosis, cytokine release, 

chemotaxis, etc.) (192, 240, 241, 258). Additionally, this comparison would serve to define the 

similarities and differences between the BV2 cell line and primary murine adult microglia, both as 

an item of general significance to studies involving the use of cell lines as surrogates for primary 

microglia, and in-order to establish the suitability of, and appropriate conditions for, the use of 

BV2 cells in priming experiments. 

In all cases investigated, both cell types expressed the markers and functional responses of 

interest and expected of microglia. However, in some cases, the levels of expression and 

functional responses were distinctly different between cells types. Several protein markers 

differed between primary microglia and BV2 in terms of endogenous expression and their relative 

change in response to LPS treatment (e.g. CD11b). Phagocytosis activity was much higher in 

primary microglia relative to BV2 cells, while the release of cytokines in response to LPS 

stimulation was dramatically greater. In line with previous reports concerning the use/suitability 

of microglial cell lines (192, 240, 241, 258) these combined data indicate that while BV2 cells 

express all of the key microglial markers, they differ from primary microglia in the extent to which 

they express these markers. Indeed, this cell line could be considered as possessing a “minimal” 

microglial phenotype. As others have previously suggested, it seems likely that this effect is a 

consequence of the transformed nature of the cell line which almost invariably means that 

compared to primary cells they prioritise progression through the cell cycle over expression of 

cellular phenotype. 
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As described previously, a notable feature of the response of primary microglia to LPS exposure 

was a dramatic increase in the release of pro-inflammatory cytokines. This effect was mirrored by 

changes in the levels of surface markers (i.e. CD11b and C5aR,) which increased sharply at LPS 

doses between 1-10ng/mL but then plateaued at higher concentrations, suggesting that in 

primary microglia a response threshold is reached at this concentration range. However, these 

threshold effects were not observed in BV2 cells, where changes in surface antigen expression 

and release of inflammatory effector molecules occurred gradually with LPS concentration across 

the ranges tested. These observations reveal another distinction between primary microglia and 

BV2 cells consistent with the premise of the cell line having microglial features/properties which 

are present but altered. Indeed, recent global gene expression profiling approaches describe a 

unique microglial signature from which microglial cell lines deviate further than cultured primary 

microglia (183).  

Overall, the retention of all commonly investigated phenotypic features and responses of 

microglial cells by BV2 cells means that they provide a useful substitute for primary cells in most 

settings. Furthermore, the intrinsic rapid proliferative properties of the retrovirus-immortalised 

BV2 cell line means that it provides a readily available source of microglial cells for 

experimentation; in contrast, extraction of primary microglia from murine tissue gives relatively 

low yield and the resultant pure cultures have low proliferation rates (192).  Availability and ease 

of culture are the main benefits of the use of microglial cell lines, and the reason behind their 

original development (192). However, a general reduction in the expression of many microglial 

phenotypic features and responses, likely a consequence of their rapid proliferation, clearly 

reduces the suitability of BV2 cells as direct substitutes for primary microglia. This is particularly 

pertinent in the case of this study given that iC3b engagement of CD11b/CR3 is a major focus, and 

CD11b/CR3 expression was low on BV2 cells relative to primary microglia. For this reason, I 

concluded that the only meaningful use of BV2 cells in further experiments intended to address 

the larger aims of the study would be in preliminary experiments designed to optimise 

experimental conditions and/or in scenarios where large cell numbers were required or at times 

when primary cells were unavailable. 

3.3.3 Microglial Cultures: Pure Vs Mixed 

The final aim of the work described in this chapter was to compare the properties of microglia 

maintained in isolation with those maintained in mixed CNS cell cultures. As discussed previously, 

several inhibitory interactions between surface molecules expressed by neurones and microglial 

receptors have been identified in recent times (e.g. CD200-CD200R, fractalkine-CX3CR1) (173, 

246, 249). The significance of the absence of these interactions in isolated microglia culture 

systems has been identified as an issue. In-order to address this issue, the expression and relative 
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change in a cell type-specific, microglial surface activation marker (CD11b) in response to LPS 

stimulation across a range of concentrations was assayed on microglia maintained in isolation, or 

in mixed cell CNS cultures in which neurones constituted a significant proportion of the total cell 

population. This approach permitted the specific investigation of microglial responses, even in a 

mixed population. Assays to measure the bulk release of secreted effector molecules (e.g. 

cytokines) such as ELISAs cannot distinguish the source of analytes in mixed cultures - microglial 

or non-microglial origin; hence, the release of cytokines was not investigated in mixed cultures. 

There was little difference in the baseline CD11b expression level between microglia maintained 

in isolation or in mixed culture with neurones, and the CD11b response to LPS followed a similar 

time course; However, the magnitude of CD11b expression changes induced by LPS treatment 

were increased two-fold in microglia maintained in mixed CNS cultures compared with isolated 

microglia. These observations indicate that the presence of neurones alongside microglia has 

important implications for microglial responses and lends strength to the argument that inhibitory 

surface interactions between neurones and microglia modify microglial activation. This, of-course, 

has important implications for studies which involve the use of purified culture systems for the 

investigation of microglial biology. However, this issue is not the main focus of this study and it 

should be emphasised that only a limited investigation, in which just a single parameter was 

measured at one time-point. Although additional experimentation to further substantiate the 

observations and the explanatory model described here was considered beyond the scope of this 

study, this might have included strategies to interfere with neuronal-microglial surface molecule 

interaction and distinguish effects mediated by surface interaction from those mediated by 

secreted molecules (e.g. barrier culture systems, antagonists, etc). 
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4  iC3b Engagement of Microglial CR3: Phenotypic Consequences 

4.1 Introduction 

Having established and validated systems for the culture of primary adult murine microglia which 

are phenotypically normal and responsive alongside a widely utilised murine microglial cell line, 

these tools were then utilised to further investigate the C3 fragment-dependent mechanism of 

microglial priming described by Ramaglia et al. (2012) in Crry KO mice in vivo (1). This chapter thus 

describes a series of experiments exploring the phenotypic impact of microglial CR3 ligation by its 

ligand iC3b. 

4.1.1 CR3 Discovery and Structure 

4.1.1.1 Complement Receptors for Fixed C3: CRs 1, 2, 3 and 4 

Since some of the earliest studies concerning the nature of cellular and humoral immunity it has 

been recognised that factors in serum act as opsonins, promoting the engulfment of microbes by 

white blood cells; furthermore, it was appreciated that that antibody and C were likely involved in 

the process (16, 20, 259). However, it wasn’t until the latter part of the 20th century that the 

existence of distinct C receptors and the mechanistic details of C-mediated immune-adherence 

and (opsono) phagocytosis were properly delineated. 

Along with reactions such as agglutination and conglutination, immune haemolysis was among 

the earliest immunological phenomena described and known to involve antibody and C (20, 259). 

Its utility as a sensitive and reliable indicator of the activity of these two humoral factors provided 

an invaluable early clinical and research tool for the diagnosis of disease and immunological 

investigations (22, 260, 261). Studies of immune haemolysis using antibody sensitised 

erythrocytes and isolated C components had identified the reaction sequence and requirement 

for all known C components by the latter part of the 20th century (16) and this was used in the 

study of C reaction kinetics and the development/formulation of “the One-Hit Theory” of 

immune-haemolysis by Mayer during the 1950s (262-268). However, the C haemolytic reaction is 

not dependent on the engagement of effector (as opposed to target i.e. erythrocyte) cells in any 

way and therefore does not involve the participation of C receptors. Nelson’s 1953 description of 

the phenomenon of immune-adhesion, defined as the adhesion of particles (microbes) sensitized 

with their individually specific antibody and C to erythrocytes, illustrated the existence of a 

cellular receptor for particle-bound/fixed C for the first time (269). Additionally, evidenced by the 

fact that immune-adhesion led to enhanced phagocytosis of the target particle, Nelson postulated 

that immune-adhesion had a role in the elimination of C opsonised material and thereby host-

defence against microbial infection; the demonstration of immune-adhesion in monkeys/in vivo 

within a few years supported this concept (270). The importance of immune-adherence in the 
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clearance of C opsonised material was subsequently validated and underlies the mechanism of 

immune-complex clearance via the reticuloendothelial system (16). During the 1960s, 

understanding of the molecular organisation of C was still incomplete. However, by 1963 it had 

been discovered that the classical third component of C actually consisted of more than one 

factor which reacted in sequence in immune-haemolysis, and that immune-adhesion was 

dependent on the sequential reaction of the particle with antibody, followed by C1, C4, C2 and 

C3c (now known as C3), and that the other factors from the classical third component were not 

necessary for this interaction (271). Thus, the ligand of a receptor on the surface of erythrocytes 

for particle-fixed C was identified as activated C3. By the late 1960s it had been shown that in 

addition to C3, the classical third component also consisted of C5-C9 and that while all of these 

components are required for immune-haemolysis (272), only the sequential reaction of C1, C4, C2 

and C3 with antibody sensitised particle is required for both immune -adherence and –

phagocytosis (273). It was also shown at this time that in addition to phagocytes and erythrocytes, 

lymphocytes express receptors for fixed C3 and furthermore, that these receptors posses distinct 

characteristics relating to the requirement for divalent cations (274). Thus it was known that at 

least 2 different C receptors exist on different cell types and that these receptors recognise 

activated C3.  

However, during this period of rapid advancement and divergence in C research, C3, which had 

been discovered and isolated just a few years previously (275), was still being characterised; this is 

perhaps unsurprising given the numerous molecules, both C and non-C, with which C3 interacts 

and the many enzymatic cleavage steps and subsequent conformational changes to which it is 

subjected during activation and regulation. With the discovery and functional characterisation of 

the classical pathway C3 convertase (38), including the liberation of a small C3 fragment with 

anaphylatoxin activity (C3a), along with the discovery and functional characterisation of the C3-

inactivator, also known as “conglutininogen-activating factor (KAF)”, and the effects of tryptic and 

serum protease digestion of C3 (276), in addition to antigenic mapping of C3 during activation 

(277, 278), it became apparent that C3 undergoes marked conformational change during 

activation and is split into at least 4 distinct products, native C3 being cleaved into C3a and C3b, 

and C3b being further cleaved into C3c and C3d. Based on the use of indicator particles (typically 

erythrocytes) coated with defined C3 fragments along with defined fluid phase C fragments 

and/or other antagonists, it was shown that erythrocytes, PMNLs, mononuclear phagocytes and a 

subset of lymphocytes posses a receptor for C3b, while B cells and developing neutrophils and 

monocytes express a receptor for C3d (279). The receptors for C3b and C3d, which both remain 

fixed to the target particle via the thioester located within the C3d region, were therefore termed 

CR1 and CR2, respectively (280, 281). However, following the discovery of β1H globulin (factor H) 
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and its functional characterisation as a key cofactor for C3b cleavage by factor I, it became 

apparent that, due to inaccuracy in the comprehension of C3 processing under specific conditions, 

the results of previous experiments concerning the identity of C receptors on different cell types 

had been misinterpreted: Previous experiments which had sought to identify C3d specific 

receptors typically reacted purified factor I/C3b-inactivator with sensitised erythrocytes coated 

with C1-C3b to generate the C3d ligand; With the completion of C3 breakdown characterisation 

and the discovery of the existence of iC3b as a fragment intermediate between C3b and C3d, with 

identical or very similar molecular weight to C3b and no overt fragmentation, it was subsequently 

appreciated that in this system, significant amounts of iC3b were present on indicator particles, 

thought previously to harbour only C3d (280, 282, 283). Thus, it was ultimately deduced that 

receptors exist for the C3b, C3d and iC3b fragments of C3, termed CR1, CR2 and CR3 

(respectively), and that monocytes and neutrophils, previously thought to bind C3d and therefore 

express a receptor akin to B cell CR2, are actually specific for iC3b and therefore express CR3 (not 

CR2).  

Shortly after the identification of CR3 based on the functional property of iC3b binding (283), CR3 

was identified as the target of the rat M1/70 monoclonal antibody (284) which had previously 

been characterised as a mouse macrophage differentiation antigen designated Mac-1 (285). The 

product of the M1/70 clone was subsequently shown to give the same reactivity with human cells 

and tissues (286). Later, two additional mouse clones, OKM10 and Mo1, known to target surface 

antigens on human myeloid cells, were also shown to block CR3-mediated function and to react 

with antigens with very similar structure to Mac-1 (287, 288).  

At around the same time as its identification as CR3, Mac-1 was also identified as a structural 

homolog of lymphocyte function-associated antigen-1 (LFA-1), a surface antigen known to be 

involved in T-cell cytotoxicity through adhesive interactions (289). Both LFA-1 and Mac-1 

molecules were shown to have very similar structures, with non-covalently associated 

heterodimeric αβ subunits, with α chains of 175 and 165kD, respectively, and both with β chains 

of 95kD. Tyrosine mapping of protease digested antigens revealed considerable difference 

between α subunits but very similar or identical β subunits (290). This finding of a common β 

subunit and distinct α subunits was subsequently supported by studies using LFA-1/Mac-1 cross 

reactive and non-cross reactive mAbs (287). Unsurprisingly, interactions which govern unique 

ligand-specificities were mapped to the divergent α chains (291). The use of LFA-1/Mac-1 cross 

reactive antibodies against the 95kD β subunit also revealed the existence of another leukocyte 

membrane protein which shared the common β subunit: the newly identified molecule had an α 

subunit of 150kD and was therefore designated p150.95. The identification of p150.95 thus 

defined a family of leukocyte differentiation antigens comprised of 3 members with distinct α and 
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common β subunits; the α subunits of LFA-1, Mac-1 and p150.95 were designated αL, αM and αX, 

respectively (287). Despite its known relationship to molecules involved in cell adhesive 

interactions (LFA-1 and Mac-1) the precise function of p150.95 was initially unknown. However, 

the discovery of the molecular identity of B-cell CR2 as distinct to another (non CR3) neutrophil 

receptor for factor I-cleaved C3b, illustrated the existence of CR4 (292). Suggestive of receptor 

activity, antibody blockade of p150.95 was shown to inhibit C-mediated erythrocyte rosetting to 

leukocytes and cytotoxic T cell-target adhesion independently of CR1 and CR3 (293). Studies into 

the molecular interactions of solubilised p150.95 identified it as an iC3b binding protein, but initial 

attempts to demonstrate iC3b receptor activity of leukocyte surface p150.95 failed. However, 

subsequent appreciation of the different p150.95 expression levels in different cell types and 

conditions accounted for these findings and led to the demonstration of iC3b as a ligand for 

p150.95 in the intact leukocyte membrane, thus defining it as the previously described but 

unidentified CR4 (293). 

At around the same time as the discovery of p150.95 using antibodies against the β polypeptide 

shared with LFA-1 and Mac-1 (287), patients were described who suffered from frequent severe 

bacterial infections and who’s leukocytes were deficient in the antigens precipitated by antibodies 

against the α and β chains of LFA-1 and Mac-1 (294). This rare (1:106) condition, termed 

“leukocyte adhesion deficiency” (LAD), emphasised the biological importance and clinical 

relevance of cellular adhesive interactions mediated by adhesion molecules including C receptors 

in effective immune responses and focused attention on the study of the LFA-1/Mac1/p150.95 

family (294-297).  

4.1.1.2 CR3 and CR4 as β2/CD11:CD18 Integrins 

Earlier work on their biosynthesis and assembly had indicated that the α and β subunits of the 

LFA-1/Mac1/p150.95 family are derived from separate precursors (287). Somatic cell hybrid 

experiments using leukocytes from a LAD patient had previously mapped the genes encoding the 

α and shared β subunits of LFA-1 to chromosomes 16 and 21, respectively (298), and following the 

cloning of the β subunit cDNA its origin from a single gene was subsequently confirmed (299). By 

the following year, cDNAs for each of the LFA-1, Mac-1 and p150.95 α subunits had been cloned 

and the chromosomal locations of their genes were mapped to a cluster on the short arm of 

chromosome 16, between bands p11-p13.1, indicating that they had indeed arisen by gene 

duplication events (300). The gene encoding the common β subunit was also mapped to band q22 

of chromosome 21. In 1987, following the cloning of its cDNA, sequence analysis of the common β 

chain also revealed that the LFA-1/Mac-1/p150.95 complexes are part of a supergene family  

 



 
  1

0
6 

known as the integrins, with the LFA-1/Mac-1/p150.95 family designated by the β subunit, which 

was termed β2 (299) (Fig.4.1). Also in 1987, the publication of the report of the 3rd international 

workshop on human leukocyte differentiation antigens, the 1st of which (in 1982) initiated the 

convention of naming cell surface antigens using a “cluster of differentiation” (CD) designation 

based on patterns of overlapping monoclonal antibody reactivity (301), saw the earlier CD11 and 

CDw18 clusters revised and CD11 subdivided – the LFA-1, Mac-1 and p150.95 α subunits known as 

αL, αM and αX were termed CD11a, CD11b and CD11c (respectively), while the common 95kD β2 

subunit was affirmed as CD18 (302). 

p177.95/p165.95/p150.95  =  LFA-1/Mac-1/p150.95  = LFA-1/CR3/CR4  =

  αLβ2/αMβ2/αXβ2  =  CD11a:CD18/CD11b:CD18/CD11c:CD18  =  

 β2 integrins  =  
CD11

/CD18 integrins  =  leukocyte integrins 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure of the leukocyte/β2 (CD11/CD18) integrins is illustrated in Fig.4.2. 

 

 

Fig. 4.1: The 24 integrin heterodimers in humans. Non-covalent pairing between the α and β 

subunits is specific. The integrin α subunits containing I-domains are in green. From (6). 
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In July 1986, a report by Tamkun et al. described and named the fibronectin receptor of chicken 

embryonic fibroblasts as “integrin”, an integral membrane glycoprotein which 

integrates/interfaces between the extracellular and intracellular environments through contacts 

with the cytoskeleton and signalling molecules within the cell, and ligand binding capacity outside 

the cell (303). Shortly after, in early 1987, separate reports on the nature of molecules with 

similar structures and ligand binding properties characterised the smaller subunits of the 

leukocyte LFA-1/Mac-1/p150.95 family members (299) and the platelet/endothelial GP IIIa-IIb 

A i 

B 

ii 

MIDAS motifs: 

coordinate 

Mg2+/Mn2+ binding 

and thereby 

influence tertiary 

structures of key 

regions 

Ligand Binding 

Ca2+ binding 

Ca2+ binding 

Cysteine-rich 

repeating motifs 

Fig. 4.2: Structure of the Leukocyte/β2 (CD11/CD18) Integrins. (A) Schematics of the linear domain 

organisation (i) and juxtapositions (ii) of the leukocyte integrin α and β subunits. Each subunit is a 

type I membrane protein. Each has a large extracellular region, a trans-membrane (TM) domain and a 

cytoplasmic tail (CT). In the case of αMβ2/CR3, at-least 2 distinct binding sites exist in the α-subunit: a 

cation-independent lectin-like site with specificity for β-glucan and other carbohydrate-based ligands, 

which is located in the extracellular residues C-terminal to the I-domain; a highly degenerate cation-

dependent site centred around the MIDAS, where ligands engage discrete but overlapping regions, 

with some specificity for RGD containing peptides/proteins (e.g. iC3b, fibrinogen, fibronectin), but 

which also binds some non-protein ligands (e.g. heparin, uncoated polystyrene). (B) Sequences of the 

leukocyte integrin cytoplasmic tails. The highly conserved GFFKR motif (involved in subunit assembly 

and ligand-binding regulation) in the leukocyte integrin α tails and the two conserved NxxY/F (ligand-

binding regulation) motifs in the integrin β2 tail are highlighted. Differences in the primary structures 

and glycosylation profiles of the α-subunits account for their distinct molecular weights. Adapted 

from (6) and (9).  
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complex (304) and discovered high levels (45-47%) of homology between their primary structures, 

including complete conservation of 56 cysteine residues and their arrangement into four tandem 

cysteine-rich domains, thus defining the integrins as a supergene family, with chicken integrin 

(β1), the LFA-1/Mac-1/p150.95 proteins (β2) and the GP IIa-IIIb (β3) complex as the founding 

members (305). Shortly afterwards, it was discovered that the 5 very late antigens (VLAs) are β1 

integrins and that the vitronectin receptor is also a β3 integrin (305). Since that time the number 

of known α and β subunits has expanded considerably to at least 18 α- and 8 β- forms (6, 306).    

Expressed by all nucleated cells, integrins are an extremely widely distributed, almost ubiquitous, 

family of genetically and structurally related heterodimeric (α1β1) transmembrane adhesion 

molecules and receptors (307). Structural diversity is achieved through the combination of at least 

18 α- and 8 β- subunits which associate non-covalently. The specific combination of α and β 

subunits, which pair-off in a cell type-specific manner, identifies the integrin species and confers 

its unique ligand-binding properties (308). Archetypical α subunits associate with just a single type 

of β subunit and therefore integrin subgroups are designated by their β subunit (i.e. β1, β2, β3, 

etc.) (308). Through contacts with numerous and diverse ligands, characteristically featuring cell-

cell and cell-ECM interactions, integrins participate in a wide range of processes, including the 

infiltration of leukocytes into inflamed tissue (296). Additionally, through intracellular contacts 

with cytoplasmic components (e.g. the cytoskeleton, kinases, etc.), integrins convey signals 

regarding the mechanical and chemical properties of the cell’s external environment and 

modulate responses such as phagocytosis, the release of reactive species (e.g. superoxide/O2-, 

H2O2, hydroxyl free-radical) during respiratory burst, cytokines and other secreted effectors (e.g. 

growth factors, proteases, etc.), along with motility/chemotaxis (309).  

4.1.2 The Many Ligands of CR3 

A unique feature of CR3 is the number and diversity, both structural and functional, of ligands 

with which it interacts. Indeed, CR3 is the integrin family member with the greatest number of 

known ligands; more than 30 molecules have been reported to bind CR3 (310-312) (Table. 4.1). 

CR3 ligands include host cell, microbial cell and extracellular matrix structures, both protein and 

non-protein (310). The characterisation of iC3b as the receptor’s prototypical ligand led to its 

‘Complement Receptor’ (‘CR3’) designation (313). Given its multiplicity of infection-, 

inflammation- and pathology- related ligands, along with the identification of a common 

recognition motif in its ligands (296, 314), CR3 is considered a PRR in addition to being an integrin. 

The ability of CR3 to recognise so many different ligands, along with its signalling capacity 

mediated by links with the intracellular environment (310, 311), gives rise to increased complexity 

of function. Studies using integrin chimeras have implicated a region (Lys[245]-Arg[261]) of the 

CD11b/αM I-domain in the uniquely borad ligand binding promiscuity of CR3 (310).  
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4.1.3 Cell Signaling of Ligated β2/CD11:CD18 Integrins 

With their numerous ligands (Table 4.1) and expression on many distinct cell types (e.g. 

phagocytes, lymphocytes, erythrocytes), the precise signalling consequences of leukocyte (β2) 

integrin ligation is complex and context-specific (6, 309). In a generalised model of intracellular 

events which mediate the broad range of β2-integrin mediated leukocyte functions, ligation 

results in conformational changes which result in recruitment of members of the SFK family of 

protein kinase to the cytoplasmic tails of the αβ2 chain heterodimers. Recruited SFKs such as HCK, 

FGR and LCK autophosphorylate upon clustering of ligated αβ2 heterodimers resulting in their 

activation and phosphorylation of ITAM motifs of adaptor proteins such as DAP12. Other protein 

kinases such as the Syk family member ZAP70 then bind the phosphorylated ITAMs via SH2 

domains and are then available for phosphorylation by SFKs (315, 316). The activated protein 

kinases then initiate a sequence of downstream signalling events which culminate in the divergent 

resposes of the leukocyte β2 integrins (309). Although disparate signalling pathways are 

employed in a context-specific manner, common end-points include the cytoskeleton (key for 

adhesion-dependent responses) and transcriptional regulators such as the ERK/MAPK pathway 

and AP1 (6, 309) (Fig. 4.3). The precise binding-site is key to signalling induced by ligation. For 

example, CR3/αMβ2 phagocytosis of I-domain bound ligands is Rho-dependent whereas that of 

non I-domain bound ligands employs Rac/Cdc42 (317, 318). Vav1/3 (GEFs of RhoGTPases) has also 

been shown to be important in CR3/αMβ2-mediated phagocytosis (319, 320). While the β2 

cytoplasimic tail plays an important role in recruitment of signalling molecules to the αβ2 

heterodimers (Fig.4.3), that of the α chain also has a key role in determining the signalling fate of 

β2-integrin ligation. Owing to their varying lengths and sequences (Fig 4.2B), the recruitment of 

signalling mediators to the liagted complex is thought to vary for the different αβ2/CD11:CD18 

heterodimer forms (6). For example: Apoptosis was delayed in K562 cells expressing CR3/αMβ2 

that was ligand-bound, but the effect was attenuated by replacing the αM tail with the αL tail 

Table 4.1: β2/CD11:CD18 Integrins, their expression and ligands [adapted from (6)].                                                                                                            

ICAM-1, ICAM-2, ICAM-3, ICAM-4, ICAM-5 and JAM-1.  

  
iC3b, fibrinogen, ICAM-1, ICAM-2, ICAM-4, JAM-3, 

Factor X, heparin, neutrophil inhibitory factor, 

MBP, high-molecular-mass kininogen, microbial 

saccharides e.g. LPS, plasminogen, fibronectin, 

laminin, collagen II and VI, collagen I, tissue growth 

factor, RAGE, cysteine-rich 61, connective 

denatured proteins, uPAR and more...  

  Shares many ligands with αMβ2, including iC3b, 

fibrinogen, ICAM-1, ICAM-4, LPS, collagen I, 

heparin, denatured proteins. αXβ2 is also a 

receptor for osteopontin. 
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(321); Selective recruitment of the SFK Hck to CR3/αMβ2 in CHO cell transfectants was abrogated 

when the αM tail was replaced with that of αL or αX (322); Cross-linking of CR3/αMβ2, but not 

αLβ2, on monocytes triggers SFK-dependent phosphorylation and activation of PKCδ (323). The 

β2-integrins also interact with other receptor signalling systems to determine the downsteam 

functional conseqneces of receptor-ligation. For example, CR3/αMβ2 dampens TLR-induced 

inflammatory response in macrophages by promoting degradation of TLR effectors MyD88 and 

TRIF (324).  
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Fig. 4.3: Signal transduction pathways of the β2 integrins. The β2 integrins modulate gene transcription 

and cytoskelatal organisation. Clustering of the β2 integrins induces SFK activation, leading to ERK1/2 

signalling or PKC signalling that can regulate gene transcription. In neutrophils, it has been shown that 

clustering of the β2 integrins induces ERK1/2 signalling and PKB activation, which delay the onset of 

spontaneous apoptosis. β2 integrin-induced SFK activation also regulates actin reorganization via the 

Syk/Vav1/3 pathway. Other proteins that are reported to directly associate with the integrin β2 tail are 

RACK1, α-actinin, cytohesin 1, radixin, 14-3-3ζ and Syk. Cytohesin 1 and 14-3-3ζ can regulate actin 

reorganization via the RhoGTPases Rac, Cdc42 and Rho. The cytoplasmic tails of the β2 integrins are 

phosphorylated at specific Ser and Thr residues by PKCs. For many of these phosphorylation sites, their 

functions remain to be determined. The best characterized to date is Thr758 of the β2 tail. 

Phosphorylation of β2 Thr758 leads to high-affinity binding with 14-3-3ζ but not filamin A. This phospho-

switch may be one of the mechanisms that regulate the activation status of the β2 integrins. When 

integrin αLβ2 is engaged by ligand, JAB-1 dissociates from the β2 tail, translocates into the nucleus and 

regulates AP-1 transcriptional responses. Red circle indicates that the protein interacts directly with the 

integrin β2 tail. Adapted from (6). 
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4.1.4 CR3 Functions 

4.1.4.1 Phagocytosis and NK Cell Killing 

As described above, the ability of CR3 to bind and mediate the uptake of iC3b-bearing particles 

defined it as a phagocytic receptor for C-opsonised material. In vitro studies into the mechanism 

of CR3 phagocytosis revealed that while iC3b opsonised erythrocytes are bound avidly (via CR3) 

by peripheral myeloid cells (neutrophils and monocytes), activation of a robust phagocytic 

response requires further stimulation of the cell, such as treatment with PMA (325) or adhesion 

to a protein coated substratum (326); this multi-hit mechanism of functional regulation mediated 

by signalling inputs from other cellular sensory systems is characteristic of integrins. Subsequent 

investigation into the secretory consequences of CR3 activation by iC3b demonstrated that 

ligation, even under conditions that readily promote phagocytosis, failed to stimulate a 

respiratory burst (327, 328) or release of eicosanoids (329). In sharp contrast, phagocytosis of 

zymosan (313, 330) or antibody-coated particles (328) was shown to be constitutive and 

accompanied by a marked respiratory burst and eicosanoid production. These findings suggest 

that phagocytosis triggered by iC3b ligation of CR3 is a non-/anti- inflammatory clearance 

mechanism as opposed to a means of inducing or sustaining a pro-inflammatory response (312, 

327-329).  

CR3 possesses two distinct binding sites: an adhesion-promoting site for fixed iC3b and a lectin-

like site which triggers phagocytosis and release of effector molecules. Studies using a soluble 

form of β-glucan isolated from zymosan illustrated that ligation of the neutrophil CR3 lectin site 

results in receptor activation and the avid phagocytosis of iC3b opsonised erythrocytes, which, in 

the absence of glucan-mediated receptor-activation, adhere to neutrophils but are not engulfed. 

Similarly, ligation of the lectin site of NK cell CR3 resulted in engulfment and lysis of iC3b 

opsonised erythrocyte and tumour cell targets which otherwise adhere but are not destroyed 

(234, 331). These data indicate that while multi-valent ligation of the CR3 α-subunit lectin-like site 

is sufficient to induce cytotoxic responses directly, ligation of the CR3 iC3b binding site alone is 

sufficient for adhesion but not cytotoxicity; induction of cytotoxic responses to iC3b-bound 

ligands requires further stimulus/activation, mediated by signals from within the cell or ligation of 

the lectin-site by carbohydrates (soluble or membrane-associated). This modality has important in 

vivo implications, since microbes expressing polysaccharides which ligate the CR3 lectin site and 

which activate C will be killed directly by leukocytes, whereas other host-derived targets which 

activate C but do not express CR3-ligating polysaccharides (e.g. neoplastic cells) will become 

bound but will not be destroyed (234, 313, 331). Indeed these observations lend credence to the 

use of soluble β-glucans as anti-cancer agents (332). Furthermore, the importance of ligand 



 
  1

1
3 

valency to the functional response indicates that receptor clustering/aggregation influences the 

signals transduced into the cell by CR3. 

4.1.4.2 Adhesion 

Early biochemical and immunological studies of CR3 revealed its structural homology with LFA-1, 

known to have function in T-cell adhesion dependent activities (cytotoxicity and B-cell support), 

along with the previously unidentified p150.95/CR4 (287). Moreover, cell adhesion studies 

involving the use of blocking antibodies against each α and the common β subunit of the LFA-

1/CR3/CR4 family, along with the identification and characterisation of LAD syndrome, illustrated 

the role of CR3 in endothelial interactions and diapedesis of neutrophils and monocytes (296, 

333). Other leukocyte functions mediated by CR3 include homotypic aggregation of neutrophils, 

along with monocyte and neutrophil chemotaxis and other general adhesive activities such as 

attachment to in vitro culture substrata (i.e. coated and uncoated plastic and glass) (296, 312).  

A notable finding concerning the function of CR3 was the observation that when adherent to in 

vitro culture surfaces coated with proteins (e.g. serum, fibronectin, vitronectin, laminin) or 

endothelial cell monolayers, but not when in suspension, neutrophils (but not monocytes) 

respond to treatment with a variety of physiological soluble stimuli (e.g. cytokines, growth 

factors, chemokines) with a high-level respiratory burst. Moreover, this effect is absent in 

neutrophils from LAD syndrome patients and is blocked in normal cells by anti-CR3 antibodies 

(334-336). These findings identified a potentially important physiological mechanism involving 

CR3 whereby adherence of PMN converts their responsiveness. It has been postulated that upon 

adhesion to the underlying vasculature or extravasation and adhesion within the ECM at an 

inflammatory site, this mechanism may render PMN sensitive to stimulation from resident 

macrophages and infiltrating lymphocytes, thereby directing the immune-response (334-336). 

These data also provide clear evidence of CR3 transducing extracellular signals that influence the 

effector functions of discrete surface receptors (i.e. outside-in signalling) and indicate a shared 

signalling pathway(s) which influences the neutrophil oxidase/respiratory burst activity.  

Overall, the consequences of CR3 ligation are heavily context-dependent, with the binding site(s) 

engaged, valency of ligands, presence of other ligands (both CR3 and non-CR3), adhesive 

substrates and cell type, all influencing the functional outcome of CR3 binding. The rapid 

identification of numerous structurally and functionally diverse ligands, leading to a recognition of 

the importance of allosterism and bidirectional, “outside-in” (the more conventional) and “inside-

out” signalling as regulatory mechanisms has underscored the comprehension of CR3 function 

(and that of integrins generally).    
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4.1.4.3 Microglial CR3 functions 

In the periphery, CR3 is expressed primarily by phagocytic leukocytes, but also by NK cells and 

subsets of lymphocytes (CD5+ B cells and CD8+ T cells) (337). In the normal CNS parenchyma, only 

microglia express β2 integrins, although they are also expressed by infiltrating leukocytes during 

BBB disruption and by perivascular macrophages (338, 339). Microglial CR3 expression is 

constitutive and increases with cell activation (173, 340), indicative of an important role in cell 

function. Despite the known roles of CR3 in modulating aspects of inflammation in the periphery 

and the importance of microglia in CNS homeostasis, focus on microglial CR3 has been somewhat 

limited. Studies using an anti CR3 monoclonal antibody (Ox-42) which binds an epitope near the 

iC3b binding site of rat CR3 revealed roles in microglial proliferation and apoptosis in vivo (341) 

and nitric oxide production in vitro (342). C is involved in the phagocytic clearance of various 

particles in the CNS by microglia, including apoptotic cells, degraded/damaged myelin and β-

amyloid deposits (207, 343); available data indicates that similarly to that mediated by CR3 in the 

periphery, C-mediated phagocytosis by microglial CR3 is non-/anti-inflammatory (173, 207, 339, 

343, 344). However, in contrast to these observations, pro-inflammatory and damaging effects 

are also associated with microglial CR3 (345). CD11b deficient microglia fail to respond with 

morphological changes when activated in vitro and in vivo (346, 347), or a respiratory burst when 

treated with 1-methyl-4-phenyl-pyridium iodide in an animal PD model (347), LPS (346) or mutant 

α-synuclein protein (348). Further, fibrinogen (a CR3 ligand) is associated with microglial 

activation, ROS production and axonal damage during BBB disruption (349). Like peripheral 

phagocytes, microglial treatment with unopsonised zymosan, which engages CR3 via the lectin-

like site, leads to pro-inflammatory phagocytosis (173, 350). 

A recent study into the consequences of microglial CR3 ligation by iC3b demonstrated a C-

dependent primed microglial phenotype which was associated with exacerbated inflammatory 

CNS disease (EAE) in Crry KO mice; co-localisation of iC3b and microglial CR3 indicated that the 

phenotype was a consequence of iC3b ligation of microglial CR3 (1). In contrast to other studies 

exploring the function of microglial CR3, this finding concerning the impact of microglial CR3 

ligation by iC3b originates from a system of chronic C activation and iC3b generation in the 

mouse, a feature which could be crucial to the observed effect. 

4.1.5 Chapter Aims 

The aim of this chapter is to further characterise microglial CR3, specifically the consequences of 

its engagement by different ligands and the capacity for iC3b-ligation to prime microglia for an 

enhanced pro-inflammatory response to activating stimuli. In vitro strategies were developed to 

engage CR3 of both primary and immortalised microglia with iC3b; the consequences of this 
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interaction were then assessed, both at baseline and for the response to a subsequent pro-

inflammatory stimulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  1

1
6 

4.2 Results 

4.2.1 Fluid-Phase iC3b 

Treatment of cells with (particle-) free iC3b (i.e. in the fluid-phase) was investigated as it 

represents the ‘cleanest’ possible system for assessing the consequences of its ligation of CR3, 

free from the interference of additional receptor systems engaged by iC3b-complexed 

particles/surfaces. Given the technical challenges associated with the de novo production of fluid-

phase iC3b it was decided that purified preparations available from a reliable commercial source 

(Complement Technologies Inc. [CompTech], Texas, USA) would be utilised for studies of its 

effects on in vitro microglial phenotypes. 

4.2.1.1 Assessment of Commercial iC3b Identity  

4.2.1.1.1 Chain Structure and Integrity: SDS-PAGE 

In order to first validate the structure and integrity of the iC3b in commercial preparations, iC3b 

protein was analysed by SDS-PAGE under reducing conditions. Separation and comparison to 

molecular weight standards revealed the known 3 chain (70kD β, 43kD α’1 and 65kD α’2) structure 

of iC3b (7) with all protein chains localised to sharp bands (i.e. minimal degradation) (Fig. 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.4: Confirmation of iC3b Chain Structure. (A) Schematic 

depicting the chain structure of iC3b (adapted from (7)); (B) 

Protein-stained gel imaged following SDS-PAGE of molecular 

weight standards (i) or commercial human iC3b (2.5µg) 

under reducing conditions (ii).      
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4.2.1.1.2 Immuno-Reactivity 

In order to further validate the identity of the commercial iC3b protein and confirm its capacity to 

interact with a known binding partner, a concentration gradient of iC3b protein (unlabelled) was 

immobilised on the surface of a polystyrene 96-well plate and detected using a concentration 

gradient of rat monoclonal antibody (clone 9; Hycult Biotech, ND) against human C3g epitope-

harbouring C(3) activation fragments (i.e. iC3b, C3dg and C3g), followed sequentially by an HRP-

conjugated goat anti-rat polyclonal antibody and chromogenic peroxidise substrate (OPD). 

Detection with this iC3b-specific antibody returned readily detectable signal which correlated 

with the known concentrations of both immobilised iC3b and anti-iC3b mAb (Fig.4.5). 

Furthermore, detection using a non-specific antibody of the same isotype (rat IgG1) as a negative 

control returned no detectable signal above background and no signal above background was 

detectable when the test antibody was incubated with immobilised C1Inh (a non-target protein) 

(Fig.4.5). Immobilised C1Inh was readily detectable with a C1Inh specific antibody; the C1Inh 

specific antibody returned no signal above background when incubated with immobilised iC3b 

(Fig.4.5). The specificity of the response was thus confirmed. These data therefore provided 

immunological evidence confirming the identity of the iC3b protein in the commercial 

preparation, along with its capacity to interact with a known binding partner. 

 

 

 

 

 

 

 

 

 

 

 Fig.4.5: Specific immuno-detection of immobilised human iC3b: confirmation of 

identity and ligand binding capacity. Mean (+/- SD) absorbance values (at 492nM; Y-

axis) following immobilisation of purified iC3b (2.5, 5 or 10 -µg/mL) or C1Inh (10µg/mL) 

in 96-well plates and indirect immuno-detection with rat anti-human iC3b mAb (0.25-

8µg/mL), anti–human C1Inh mAb (2.5µg/mL) or IgG1 isotype control mAb (2µg/mL) 

followed by anti-rat HRP and colourimetric detection (OPD). N = 3; Two-Way ANOVA 

with Bonferroni post-testing was performed: *P<0.05.     

* 
* 
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4.2.1.2 Assessment of Human iC3b-Mouse Microglial CR3 Interaction 

A prerequisite to these investigations was that they were to be performed using murine microglial 

cells; however, the only commercially available iC3b was human (generated by the reaction of C3 

purified from human serum with factors I and H). Given the species mismatch between the 

commercially available iC3b and the target cells, questions concerning the capacity of human 

fluid-phase iC3b to efficiently ligate CR3 on mouse microglia were thus an obvious issue. 

Moreover, demonstration of ligand-receptor binding would be necessary prior to any further 

study of the downstream phenotypic consequences resulting from this interaction.  

4.2.1.2.1 Fluorescent iC3b  

In order to address the above issue, iC3b was labelled with fluorescein via N-hydroxysuccinimide-

linkage (according to Section 2.2.2.2.1) to generate a fluorescent probe which could then be 

utilised in binding assays. Earlier studies utilising FITC-labelled soluble molecules to detect ligand 

binding of cell membrane-associated CR3 validate this experimental approach (337).      

4.2.1.2.1.1 Detection of Fluid Phase iC3b-Fluorescein Binding to Immobilised Specific mAb 

To confirm successful fluorescent labelling of the iC3b protein and establish its utility as a probe 

to detect specific binding interactions, the ability of fluorescein-labelled, fluid-phase human iC3b 

to interact with immobilised clone 9/anti-iC3b mAb (along with the ability to detect this 

interaction), was assessed (as per Section 2.2.2.2.2). A concentration gradient of Clone 9/anti-iC3b 

mAb was coated to the surface of a 96-well polystyrene plate and was subsequently incubated 

with a concentration gradient of iC3b-fluorescein. Following washing, fluorescent signal was 

detected in a fluorescence plate reader. Despite relatively high background, specific signal was 

readily detectable and correlated with the concentrations of both iC3b-fluorescein and the clone 

9 mAb coat (Fig.4.6 Ai). Furthermore, no specific signal was detectable, regardless of 

concentrations, when iC3b-fluorescein was incubated in wells pre-coated in a non-specific isotype 

control antibody (Fig.4.6 Bi). Additionally, different concentrations of FITC-labelled anti-rat 

antibody incubated over a concentration gradient of immobilised clone 9 mAb (Rat IgG1) served 

as a positive control; Signal was readily detectable and was dependent on the concentrations of 

both immobilised target and soluble probe (clone 9 mAb and anti-rat igG-FITC, respectively) 

(Fig.4.6 Ci). Furthermore, assessment of fluorescence prior to washing to remove unbound probe 

illustrated that in all cases signal related entirely to the concentration of fluorescent probe added 

to the individual well and was completely unrelated to the type or concentration of the antibody 

coat (Fig.4.6 A-C ii). These data combined illustrate the validity of the test and clearly demonstrate 

that all signal detected above background post-wash was indeed a consequence of specific 

binding. It was therefore established that fluorescently labelled iC3b is capable of specific binding 

from the fluid-phase with a known binding-partner and that the fluorescent signal could be 
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detected, thus validating iC3b-fluorescein as a fluorescent probe for the assessment of iC3b-

binding partner interactions. 
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Fig.4.6: Specific fluorescence/immuno-detection of fluid-phase iC3b-Fluorescein by immobilised rat 

anti-human iC3b mAb: confirmation of fluorescent-labelling and ligand binding capacity from fluid-

phase. Fluorescence intensities following immobilisation of rat IgG1 anti-iC3b mAb (clone 9; A and C) 

or rat IgG1 isotype control mAb (B) (0-10µg/mL) in 96-well plates and incubation with iC3b-Fluorescein 

(A and B; 0-5% in PBS) or anti-rat IgG-FITC (C; 0-50µg/mL in PBS), both before and after (ii and i, 

respectively) washing away of unbound probe. Data points represent individual replicates. 
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4.2.1.2.1.2 Human iC3b-fluorescein - Mouse Microglial CR3 Binding 

To assess the ability of human iC3b to ligate CR3 of mouse microglia, BV2 cells were incubated 

with increasing concentrations of iC3b-fluorescein with or without the prior addition of an anti-

CD11b/CR3 mAb (the same clone [5C6] as used in previous flow cytometry experiments and 

known to specifically bind CR3 on BV2 cells [see Section 3.2.1.1.2]) which is reported to inhibit 

iC3b binding (8). Flow cytometric analysis revealed a dose dependent increase in (green) 

fluorescence following treatment with iC3b-fluorescein. At the highest concentration of iC3b-

fluorescein, CD11b/CR3 blocking antibody pre-treatment showed a significant inhibitory effect on 

binding (~60%, P<0.01**) (Fig.4.7). Overall, these data are consistent with specific binding of 

human fluid-phase iC3b to mouse microglial CR3. However, fluorescence was relatively weak and 

CD11b/CR3 antibody blockade failed to completely ablate signal. 
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Fig.4.7: Assessment of iC3b-Fluorescein binding to BV2 cell CR3. 106 BV2 cells were re-suspended 

in appropriate volumes of HBSS 1%BSA such that addition of the appropriate volume of the iC3b-

fluorescein preparation into the respective cell sample resulted in 100µL final-volumes with 

concentrations of iC3b-fluorescein ranging from 0-10%. Where indicated, harvested cells were first 

treated with 1µg of CR3-blocking  mAb [clone 5C6 (8); Bio-Rad] for 30 minutes (4°C) prior to 

incubation with iC3b-fluorescein. Samples were incubated with iC3b-fluorescein for 1hr (4°C) 

before iC3b-fluorescein binding was assessed by flow cytometry. N = 3, Two-Way ANOVA with 

Bonferroni post-testing was performed: **P<0.001; (B) Representative histograms of BV2 cells 

following incubation with (filled histograms) or without (unfilled histograms) iC3b-Fluorescein 

(10%) following treatment with (dashed lines) or without (solid lines) anti-CD11b/CR3 blocking 

antibody (aCR3).      
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In-light of the results described above, further evidence of the compatibility of human iC3b with 

mouse CR3 was sought.  

4.2.1.2.2 Sequence Comparison  

Sequence analysis and comparison of human and mouse C3 protein and mRNA/transcript 

sequences was performed. This revealed a high degree of homology between human and mouse 

C3 protein (77% identity) and gene transcript (79% identity) sequences, including retention of all 

major domains (e.g. TED, CUB), suggestive of inter-species compatibility (Fig.4.8). 
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4.2.1.2.3 CR3-Mediated Mouse Microglial Phagocytosis of NHS-Opsonised Zymosan    

Zymosan is a well characterised activator of C, the subsequent C-opsonisation of-which facilitates 

its phagocytic uptake by immune cells via membrane receptors specific for fixed C3-activation 

fragments (344). Given these features and having previously developed robust assays to detect 

and quantify zymosan phagocytosis by both primary and BV2 mouse microglial cells (Section 

3.2.1.1.4), the ability of mouse microglia to phagocytose zymosan opsonised with NHS, specifically 

via CR3, was explored in-order to establish if human C3-derived ligands are able to engage mouse 

microglial CR3 per se. 

4.2.1.2.3.1 Detection of C3-Activation Fragment Deposition on NHS-Opsonised Zymosan 

Particles 

As a prerequisite to assays addressing the ability of human C3-derived ligands deposited on 

zymosan during serum-opsonisation to engage mouse microglial CR3, it was necessary to 

demonstrate the deposition of C3-activation fragments on zymosan particles following incubation 

with human serum. Unlabelled zymosan particles were incubated with NHS for 0-60 minutes, with 

or without the prior addition of 10mM EDTA to the serum, and the deposition of C3-activation 

fragments assayed by flow cytometry using a rat monoclonal antibody against mouse 

Fig.4.8: Comparison of human and mouse C3 bioinformatic data. (A & C) Results of BLAST (NCBI, 

NIH; http://blast.ncbi.nlm.nih.gov/Blast.cgi) analyses of human and mouse C3 protein amino acid 

and mRNA nucleotide sequences (respectively); (B) Conserved domains found in human (i) and 

mouse (ii) C3 proteins (annotations in NCBI Conserved Domain Database; 

http://www.ncbi.nlm.nih.gov/cdd). 
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iC3b/C3dg/C3g (clone 9; in-house), or an appropriate isotype control (rat IgG1), followed by a 

fluorophore-labelled anti-rat IgG antibody. Incubation of zymosan particles with NHS resulted in a 

very rapid acquisition of significant C3-fragment positivity in the assay (2.5min [earliest time-point 

tested], P<0.01**), reaching a maximum within ~10 minutes (Fig.4.9A); even after 2.5 minutes 

100% of particles were positive for deposited C3-activation fragments (Fig.4.9B). Prior treatment 

of WT serum with EDTA ablated any signal for deposited C3-activation fragments, even after a 1hr 

incubation period (Fig.4.9). Isotype control primary antibody (i.e. non-specific rat IgG1 mAb) failed 

to return signal above background, regardless of opsonisation status (Fig.4.9). Together, these 

data clearly demonstrate the specific detection of C3-activation fragments deposited on zymosan 

particles when incubated with NHS. 
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Fig.4.9: Charting C3-activation fragment deposition during NHS-opsonisation of zymosan 

particles. (A) Zymosan particles (unlabelled) were incubated with NHS for 0-60 minutes at 1mg 

mL-1, or NHS + 10mM EDTA for 60 mins, before sequential staining with anti-human 

iC3b/C3dg/C3g mAb (Clone 9, in-house) or appropriate isotype control (rat IgG1, clone R3-34, 

BD) and AF488-labelled anti-rat Ab (Life Technologies) followed by flow cytometric analysis. 

Data points represent individual replicates. Bars = MFIs +/- SDs. One-Way ANOVA with post-hoc 

t-testing was performed: **P<0.01; (B) Representative histograms from (A).    
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4.2.1.2.3.2 Assay of CR3-Mediated Mouse Microglial Phagocytosis of NHS-Opsonised 

Zymosan Particles 

`Untreated fluorescently-labelled (AF488) zymosan particles, or particles incubated with NHS 

were used in conjunction with an anti-CR3/CD11b mAb which blocks both the iC3b (8) and β-

glucan (234) binding sites (clone 5C6 [BioRad], known to specifically bind CR3 on BV2 cells [see 

Section 3.2.1.1.2]) to assay the specific contribution of CR3 to C-mediated phagocytosis of NHS-

opsonised zymosan by BV2 cells (as per Section 2.2.3.2.3). As was expected, untreated cells were 

universally negative for green fluorescence and opsonisation of particles with NHS resulted in a 

significant (P<0.01**) ~3-fold increase in zymosan uptake (versus non-opsonised) (Fig.4.10). Pre-

treatment of cells with CR3/CD11b blocking mAb prior to the addition of NHS-opsonised particles 

resulted in a significant reduction in opsonic phagocytosis to ~2.2-fold (versus non-opsonic) 

(P<0.01**; Fig.4.10). Pre-treatment of non-opsonised zymosan-exposed cells with CR3/CD11b 

blocking mAb significantly reduced the level of uptake to ~0.8-fold baseline (P<0.05*; Fig.4.10). In 

contrast, pre-treatment of both NHS-opsonised and non-opsonised zymosan-exposed cells with 

isotype control mAb (clone RTK4530, BioLegend) had no impact on uptake, illustrating the 

specificity of the effect resulting from CR3/CD11b mAb-blockade (Fig.4.10). Given that the scale of 

the impact of CR3/CD11b blockade on the uptake of NHS-opsonised particles is much greater than 

on that of non-opsonised particles (~4-fold; Fig.4.10), these data combined illustrate that mouse 

microglial CR3 has a role in opsonic phagocytosis of NHS-opsonised zymosan and must therefore 

be able to engage human C3-derived ligands (albeit immobilised forms).     

 

 

 

 

 

 

 

 

 

 

Fig.4.10: Assessment of CR3-mediated mouse microglial phagocytosis of NHS-opsonised and 

non-opsonised zymosan particles. 2.5x105 non-opsonised or NHS-opsonised particles were added 

directly to 5x104 BV2 cells cultured in 0.5mL growth medium in 24-well plates and incubated for 

~1hr (37°C, 5% CO2, humidified atmosphere). Where indicated, cells were treated with 2µg CR3-

blocking Ab (Clone 5C6) or appropriate isotytpe control for ~15 minutes prior to zymosan 

treatment. Cells were then harvested and fluorescently stained (4°C, 30 mins) for surface CD11b 

(M1/70; 1µg/mL) and viability (7-AAD; 2.5µg/mL), before analysis by flow cytometry. Bars = 

means (+/- SDs); Data points represent individual replicates; One-Way ANOVA with post-hoc t-

testing was performed: *P<0.05, **P<0.01. 
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4.2.1.3 Effect of iC3b Treatment on Cell Phenotype 

Microglia were treated overnight with iC3b (unlabelled) or left untreated and then activated with 

LPS or left un-stimulated, before assessment of surface expression of CD11b and C5aR by FACS 

and NO release by Griess assay. 

An iC3b concentration of 1µg mL-1 was selected for these experiments based on published studies 

of CR3-ligand interactions which demonstrate specific CR3 binding and blockade of C receptor 

function by fluid-phase iC3b at this concentration (283, 351). Based on the results described in 

Chapter 3 and previous reports concerning the time-scale of changes in microglial surface markers 

(173), an LPS dose of 10ng/mL and a time point of 48 hours were also selected. Primary microglia 

were used throughout. 

4.2.1.3.1 Surface Markers and Secreted Effector Molecules 

Similar to the results described in Chapter 3, LPS treatment resulted in a significant (~1.5-fold) 

increase in baseline surface expression of both CD11b and C5aR (CD11b: P<0.05*, MFI = 1.43 x 

baseline; C5aR: P<0.001***, MFI = 1.48 x baseline) (Fig.4.11A), and robust induction of NO release 

(P<0.001***, supernatant [nitrite] = 15.5 x baseline) (Fig.4.11B). iC3b treatment alone had no 

effect on the basal expression of surface CD11b and C5aR and did not trigger NO release 

(Fig.4.11). Pre-treatment with iC3b did however modestly enhance the LPS dependent increase in 

both surface markers (CD11b MFI: iC3b + LPS = 1.57 x baseline Vs LPS alone = 1.43 x baseline; 

C5aR MFI: iC3b + LPS = 1.56 x baseline Vs LPS alone = 1.48 x baseline), although this did not 

achieve significance (P = 0.32 and 0.17 for CD11b and C5aR, respectively) (Fig.4.11A). Pre-

treatment with iC3b had no effect on NO release in response to LPS (Fig.4.11B). 
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Fig.4.11: Effects of fluid-phase iC3b on basal and LPS-activated microglial phenotype – surface 

markers and NO production. 2.5x105 MACS sorted primary microglia cultured in 24-well plates 

were left untreated or incubated with 1µg/mL iC3b overnight before treatment with or without 

100µg/mL LPS for 48 hours. Cells were then assayed for (A) surface CD11b (i) and C5aR (ii) by flow 

cytometry and (B) nitric oxide production by Griess assay of supernatants. Data points represent 

individual replicates; bars = means +/- SDs; Two-Way ANOVA with post-hoc t-testing was 

performed: *P<0.05, ***P<0.001, X P>0.05. Individual variables: +/- LPS – P<0.0001, F = 66.04; +/- 

iC3b – P = 0.3015, F = 1.22.   
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4.2.2 Zymosan 

In view of the issue of species mismatch between iC3b in the commercial fluid-phase preparation 

(human) and the test cells (mouse), along with the inability to definitively demonstrate specific 

CR3-mediated ligand-target/cell binding, other approaches to engage microglial CR3 with iC3b 

were adopted. Having already demonstrated the significant role of CR3 in C-mediated 

phagocytosis of the well-characterised C-activator, zymosan (344), following opsonisation with 

NHS (as part of investigations into the ability of human C3-activation products to ligate cell-borne 

mouse CR3; Section 4.2.1.2.3), this strategy was again employed using mouse serum (in-place of 

NHS). This approach circumvents the issue of species mismatch and, owing to the local availability 

of C3 KO mice, benefits from the capacity to use C3-deficient serum as a negative control.    

4.2.2.1 The Role of CR3 in Microglial Zymosan Phagocytosis 

As a prerequisite to assays addressing the effect of CR3 engagement by zymosan-borne iC3b on 

cell phenotype, it was necessary to demonstrate the deposition of mouse C3-activation fragments 

on zymosan particles following incubation with mouse serum and to test the specific 

contributions of both CR3 and C3 to microglial zymosan phagocytosis. 

4.2.2.1.1 Detection of Mouse C3-Activation Fragment Deposition on Zymosan Particles 

Unlabelled zymosan particles were incubated with neat WT or C3 KO mouse serum for 0-60 

minutes, with or without the prior addition of 10mM EDTA to the serum, and the deposition of 

C3-activation fragments assayed by flow cytometry using a rat monoclonal antibody (clone 2/11; 

Hycult Biotech, ND) against mouse C3b/iC3b/C3c, or an appropriate isotype control (rat IgG1), 

followed by a fluorophore-labelled anti-rat IgG antibody. Similarly to results with NHS (Section 

4.2.1.2.3.1), incubation of zymosan particles with neat wild-type serum resulted in a very rapid 

acquisition of significant C3-fragment positivity in the assay (2.5min [earliest time-point tested], 

P<0.01**), reaching a maximum within ~10 minutes (Fig.4.12A). Incubation with C3 KO serum for 

any length of time failed to return any signal above very low background fluorescence (Fig.4.12), 

prior treatment of WT serum with EDTA ablated any signal for deposited C3-activation fragments, 

even after a 1hr incubation period (Fig.4.12), and isotype control primary antibody (i.e. non-

specific rat IgG1 mAb) failed to return signal above background, regardless of opsonisation status 

(Fig.4.12). Together, these data clearly demonstrate the specific detection of murine C3-activation 

fragments (iC3b and C3b) deposited on zymosan particles when incubated with WT mouse serum. 
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4.2.2.1.2 Assay of the Contribution of iC3b-CR3 Binding to Microglial Phagocytosis 

Untreated fluorescently-labelled (AF488) zymosan particles, or particles incubated with WT or C3 

KO mouse serum were used in conjunction with an anti-CR3 mAb which blocks both the iC3b (8) 

and β-glucan (234) binding sites (clone 5C6, BioRad UK) to assay the specific contribution of CR3 

and C3 to both non-opsonic and opsonic phagocytosis of zymosan by BV2 cells (as per Section 

2.2.3.2.3). Untreated cells were universally negative for green fluorescence (Fig.4.13). 

Opsonisation of particles with WT serum resulted in a significant ~2.3-fold increase (P<0.01**) in 

zymosan uptake (versus non-opsonised) (Fig.4.13). Pre-treatment of cells with CR3 blocking Ab 

prior to the addition of WT serum-opsonised particles resulted in a significant reduction in 

opsonic phagocytosis to ~1.7 x baseline/non-opsonised (P<0.01**; Fig.4.13); this difference 

(resulting from blockade of both the iC3b and β-glucan binding-sites of CR3) represents the total 

contribution of CR3 to both opsonic (C/iC3b binding site-mediated) and non-opsonic (β-glucan 

binding site mediated) phagocytosis of WT serum opsonised zymosan (~25%). Pre-treatment of 

non-opsonised zymosan-exposed cells with CR3 blocking Ab significantly reduced the level of 

uptake to ~0.85-fold baseline (P<0.05*; Fig.4.13); this reduction represents the contribution of the 

Fig.4.12: Charting C3-activation fragment deposition during mouse serum-opsonisation of 

zymosan particles. (A) Zymosan particles (unlabelled) were incubated with WT or C3 KO mouse 

serum for 0-60 minutes at 1mg mL-1, or WT serum + 10mM EDTA for 60 mins, before sequential 

staining (4°C, 30 mins) with anti-mouse C3b/iC3b/C3c mAb (clone 2/11) or appropriate isotype 

control and AF488-labelled anti-rat Ab, followed by flow cytometric analysis. Data points 

represent individual replicates; bars = means +/- SDs; One-Way ANOVA with post-hoc t-testing 

was performed:  **P<0.01. 
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CR3 β-glucan binding site to particle uptake. Opsonisation of particles with C3 KO serum (which 

precludes phagocytosis via the iC3b-binding site of CR3) resulted in a ~1.85-fold increase in 

particle uptake (versus non-opsonised); pre-treatment of cells with CR3-blocking Ab significantly 

reduced this level to ~1.7-fold baseline (P<0.05*) – the same as that of cells treated with CR3-

blocking Ab prior to the addition of WT serum opsonised particles (Fig.4.13).  

To summarise, these data combined demonstrate the specific detection of C3 (mouse)-activation 

fragment deposition on zymosan particles following incubation with WT mouse serum and define 

the specific contributions of both CR3 and C3 to opsonic (and non-opsonic) zymosan phagocytosis 

by BV2 cells: A large proportion (~35-40%) of opsonic uptake of serum-opsonised zymosan by BV2 

cells is mediated by fixed-C3, although other serum factors (e.g. Abs) and membrane receptors 

(e.g. FcγR) make an important contribution to the process; all C3-mediated microglial zymosan 

uptake proceeds via CR3; a minor proportion (10-15%) of non-opsonic zymosan phagocytosis is 

mediated by another CR3 binding site (i.e. lectin-like). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.13: Assessment of the specific contributions of CR3 and C3 to opsonic and non-opsonic 

microglial zymosan phagocytosis. 2.5x105 non-opsonised or WT or C3 KO mouse serum- opsonised 

AF488-labelled zymosan particles were added directly to 5x104 BV2 cells cultured in 0.5mL growth 

medium in 24-well plates and incubated for ~1hr (37°C, 5% CO2, humidified atmosphere) before 

fluorescent cell surface CD11b (M1/70; 1µg/mL) and viability (7-AAD; 2.5µg/mL) staining (4°C, 30 mins) 

followed by flow cytometric analysis. Where indicated, CR3 was blocked prior to zymosan treatment 

by incubation with 2µg CR3-blocking mAb (5C6) for 15 mins. Values are normalised to the uptake of 

non-opsonised particles without any mAb blockade (to permit inter-assay comparisons). Bars = means 

(+/- SDs); N = 3; Two-Way ANOVA with Bonferroni post-testing was performed: *P<0.05, **P<0.01. 

Individual variables: +/- CR3 Ab Blockade – p<0.0001, F = 100.6; Zymosan treatment-status – P<0.0001, 

F = 1663.0. 
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The use of WT and C3 KO mouse serum-opsonised particles, alongside untreated zymosan and 

CR3 blockade thus permits the consequences of iC3b engagement of CR3 to be investigated and, 

furthermore, dissected from those resulting from engagement of the same receptor by other 

ligands (e.g. β-glucan), along with other receptors (opsonic [e.g. FcR] and non-opsonic/scavenger 

[e.g. dectin-1]), whilst also circumventing issues of species mismatch. Both CR3-blockade (using 

mAb) and the use of C3 KO serum as an opsonising reagent provide a means to eliminate particle 

uptake mediated by iC3b-CR3 binding, but given that CR3 blockade also eliminates its minor role 

in non-opsonic uptake, coupled with the finding that opsonic phagocytosis mediated by fixed-C3 

occurs exclusively via CR3 in BV2 cells, it is determined that the use of C3 KO serum as an 

opsonising reagent provides the optimal means to control for off-target effects resulting from 

zymosan uptake via non-iC3b-CR3 interactions (e.g. β-glucan-CR3, IgG-FcγR). 

4.2.2.2 CR3 Binding of Zymosan-Borne iC3b and Microglial Phenotype 

4.2.2.2.1 Basal Phenotype - Rt-qPCR 

In-order to investigate the effects on microglial phenotype of CR3 engagement by iC3b generated 

on the surface of zymosan particles (as a consequence of sequential C activation and regulation 

during serum opsonisation), BV2 cells were exposed to an excess of un-opsonised zymosan, or 

particles opsonised with normal or heat inactivated WT, or C3 KO serum, and assayed for changes 

in mRNA/transcript levels of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) by Rt-qPCR. Cells 

were also treated with LPS as a pro-inflammatory immune cell activator (whose effects on 

microglial phenotypes were characterised and described in Chapter 3). 

LPS treatment resulted in a robust mRNA/transcript induction for all genes tested (TNF-α, IL-6 and 

IL-1β) (Fig.4.14) and in the case of IL-6 (Fig.4.14A) and TNF-α (Fig.4.14B) caused the greatest 

response among all conditions investigated. Similarly to LPS, treatment with non-opsonised 

zymosan particles was potently pro-inflammatory, resulting in a robust increase for all cytokines 

tested (Fig.4.14).  In the case of IL-6 this increase was ~40% of the magnitude of that observed 

following LPS treatment and in the case of TNF-α was ~75% (both significantly reduced Vs LPS, 

P<0.01**; Fig.4.14 A & B, respectively), while being slightly greater in the case of IL-1β (Fig.4.14C). 

Treatment of cells with zymosan particles incubated with WT serum which had been heat 

inactivated resulted in a response profile very similar to that of non-opsonised particles (Fig.4.14). 

In contrast, when cells were treated with normal WT serum-opsonised particles the 

mRNA/transcript levels for IL-6 (Fig.4.14A) and TNF-α (Fig.4.14B) were barely above baseline 

(significantly reduced Vs heat-inactivated serum, P<0.01**). In the case of IL-1β, however, the 

response relative to that for LPS, non-opsonised and heat-inactivated WT serum opsonised 

particles was significantly greater by some ~30% (P<0.01**; Fig.4.14C). For all genes tested, 
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treatment of cells with zymosan opsonised with C3 KO serum resulted in a response intermediate 

between that observed following stimulation with non-opsonised and WT serum-opsonised 

particles (significantly different Vs WT serum-opsonised particles, IL-6 & TNF-α [increased] 

P<0.01**, IL-1β [reduced] P<0.05*; Fig.4.14). 

 

 

 

 

 

 

 

 
 
 
 
 

4.2.2.2.2 Activation Response - Secreted Effectors and Surface Markers 

In-order to investigate the specific effects of CR3 engagement by iC3b generated on the surface of 

zymosan particles on the magnitude of microglial functional responses to subsequent activating 

stimuli, BV2 cells were stimulated with an excess of un-opsonised zymosan, or particles opsonised 

with (normal) WT, or C3 KO serum, before subsequent treatment with or without LPS; Cells were 

then assayed for changes in the release of pro-inflammatory effector molecules (TNF-α  and NO, 

by ELISA and Griess assay, respectively) and cell-surface markers (CD11b, C5aR and CD200R, 

FACS). 

Release of TNF-α (Fig.4.15Ai) into the supernatant in response to LPS alone was significantly 

increased ~3-fold (P<0.01**); although readily detectable, the TNF-α response to non-opsonised 

zymosan alone was ~60% lower (somewhat surprising given that the mRNA/transcript changes 

were similar for these triggers [Fig.4.14B]). In contrast, treatment with particles opsonised with 

WT serum had little impact on basal TNF-α secretion, resulting in a significant reduction in the 

TNF-α level relative to non-opsonised particle-treatment (P<0.05*). Treatment with zymosan 

opsonised with C3 KO serum elicited an intermediate response which was significantly greater 

than basal levels (P<0.05*). Pre-treatment with the different forms of zymosan caused moderate 

** 

** 

** 

** 
** 

** 

Fig.4.14: Impact of opsonic and non-opsonic zymosan exposure on microglial cytokine mRNA 

production—the role of zymosan borne iC3b. 5x104 BV2 cells were seeded into individual wells of a 

24-well plate and cultured overnight in 0.5mL growth medium. Cells were then treated for 24 hours 

with 1µg/mL LPS, or 2.5x106 un-opsonised zymosan particles (unlabelled), or particles opsonised 

(1mg/mL, 37°C, 1hr) with HI or normal WT or C3 KO serum. RNA was then extracted and subjected to 

DNase I (Ambion) digest prior to RT (20µg/mL) using the TaqMan RT reagents (Applied Biosystems). 

Quantitative PCR was then performed using 32ng RNA equivalent of cDNA as a template along with 

gene specific primers (as indicated) in 20µL reactions using SYBR green Jump-Start Taq-ready mix 

(Sigma-Aldrich). Data points represent individual replicates; bars = means +/- SDs; One-Way ANOVA 

with post-hoc t-testing was performed: *P<0.05, **P<0.01. 
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(~20-40%) reductions in the TNF-α response to LPS exposure; the largest effect was with WT 

serum opsonised zymosan (significantly reduced Vs non-opsonised particles, P<0.05*) while C3 KO 

serum-opsonised particles again had an intermediate effect (significantly increased Vs WT serum-

opsonised particles, P<0.05*). 

Very similar relationships were observed in the changes in the other parameters investigated 

following treatment with the different zymosan forms and/or LPS, although for all other 

parameters there was a smaller, or no difference in the response to non-opsonsed zymosan 

versus LPS alone (Fig.4.15 Aii & B). Additionally: in the case of surface CD11b (Fig.4.15Bi) and C5aR 

(Fig.4.15Bii), in-contrast to treatment with LPS or non-opsonised zymosan in isolation or 

sequential combination, treatment with WT serum opsonised particles resulted in a change to 

levels which were actually below baseline and the response continued to shift in this direction 

following subsequent LPS treatment; in the case of surface CD200R (Fig.4.15Biii), treatment with 

WT serum opsonised zymosan resulted in a response relative to LPS which was inverted 

compared with that detected for the other parameters (i.e. CD200R WT opZ > CD200R LPS; C5aR, 

CD11b, TNF-α, NO WT opZ < C5aR , CD11b, TNF-α, NO LPS) and which continued to shift in this 

direction following subsequent LPS treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  1

3
5 

 

 

 

 

 

  

** 

* * 

* * 
** * 

* 

* 

* 

** 
** * 

** 
** 

** 
* * 

* 
* 

* 

A i ii 

B i ii iii 

U
n

tr
e
a
te

d

L
P

S
 O

n
ly

N
o

n
-O

p
Z

 O
n

ly
W

T
 O

p
Z

 O
n

ly
C

3
 K

O
 O

p
Z

 O
n

ly
N

o
n

-O
p

Z
 +

 L
P

S
W

T
 O

p
Z

 +
 L

P
S

C
3
 K

O
 O

p
Z

 +
 L

P
S

0

250

500

750

1000

1250

1500

1750

C
D

1
1
b

 M
F

I

U
n

tr
e
a
te

d

L
P

S
 O

n
ly

N
o

n
-O

p
Z

 O
n

ly
W

T
 O

p
Z

 O
n

ly
C

3
 K

O
 O

p
Z

 O
n

ly
N

o
n

-O
p

Z
 +

 L
P

S
W

T
 O

p
Z

 +
 L

P
S

C
3
 K

O
 O

p
Z

 +
 L

P
S

0

200

400

600

800

C
5
a
R

 M
F

I

U
n

tr
e
a
te

d

L
P

S
 O

n
ly

N
o

n
-O

p
Z

 O
n

ly
W

T
 O

p
Z

 O
n

ly
C

3
 K

O
 O

p
Z

 O
n

ly
N

o
n

-O
p

Z
 +

 L
P

S
W

T
 O

p
Z

 +
 L

P
S

C
3
 K

O
 O

p
Z

 +
 L

P
S

0

2

4

6

N
it

ri
te

 C
o

n
c
e
n

tr
a
ti

o
n

 (


M
)

U
n

tr
e
a
te

d

L
P

S
 O

n
ly

N
o

n
-O

p
Z

 O
n

ly

W
T

 O
p

Z
 O

n
ly

C
3
 K

O
 O

p
Z

 O
n

ly
N

o
n

-O
p

Z
 +

 L
P

S

W
T

 O
p

Z
 +

 L
P

S
C

3
 K

O
 O

p
Z

 +
 L

P
S

0

250

500

750

1000

1250

T
N

F
-

 C
o

n
c
e
n

tr
a
ti

o
n

 (
p

g
 m

l-1
)

U
n

tr
e
a
te

d

L
P

S
 O

n
ly

N
o

n
-O

p
Z

 O
n

ly
W

T
 O

p
Z

 O
n

ly
C

3
 K

O
 O

p
Z

 O
n

ly
N

o
n

-O
p

Z
 +

 L
P

S
W

T
 O

p
Z

 +
 L

P
S

C
3
 K

O
 O

p
Z

 +
 L

P
S

0

2

4

6

8

N
it

ri
te

 C
o

n
c
e
n

tr
a
ti

o
n

 (


M
)

U
n

tr
e
a
te

d

L
P

S
 O

n
ly

N
o

n
-O

p
Z

 O
n

ly
W

T
 O

p
Z

 O
n

ly
C

3
 K

O
 O

p
Z

 O
n

ly
N

o
n

-O
p

Z
 +

 L
P

S
W

T
 O

p
Z

 +
 L

P
S

C
3
 K

O
 O

p
Z

 +
 L

P
S

0

500

1000

1500

C
D

2
0
0
R

 M
F

I

Fig.4.15: The effect of zymosan borne iC3b on microglial activation status — secreted effectors 

and surface markers. 5x104 BV2 cells were seeded into individual wells of a 24-well plate and cultured 

overnight in 0.5mL growth medium. Cells were then treated for 4 hours with 2.5x106 un-opsonised 

zymosan particles (unlabelled), or particles opsonised (1mg/mL, 37°C, 1hr) with HI or normal WT or C3 

KO serum before incubatin with 1µg/mL LPS for 48 hours. Cells were then assayed for TNF-α and NO 

production by ELISA and Griess assay (respectively) of supernatants, and surface CD11b, C5aR and 

CD200R by flow cytometry. Data points represent individual replicates; bars = means +/- SDs; One-

Way ANOVA with post-hoc t-testing was performed: *P<0.05, **P<0.01. 
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4.2.3 C3-Activation Fragments Immobilised on Tissue Culture Plastic 

4.2.3.1 System Development 

In-view of the issues associated with the use of zymosan as a ‘carrier’ for serum-derived activated 

C3, namely its intrinsic nature as a potent PAMP, other approaches were explored to specifically 

engage microglial CR3 with iC3b. Having validated the concept of activating serum C to achieve 

C3-fixation on surfaces, along with assays for its specific detection and the use of C3 KO serum as 

a negative control (Section 4.2.2.1), a method based on this principle (i.e. activation and fixation 

of serum C3) was sought. The very earliest formal recognition of C was that of the ability of 

complexed Ab to sensitise an Ag to C activation (2, 16, 20). Furthermore, as a basis for many 

common lab assays (e.g. ELISAs), it is long established that bio-molecules can be adsorbed to 

plastic surfaces (352): Based on these fundamental principles, the possibility of utilising a C-fixing 

Ab-Ag interaction to activate and immobilise serum-derived C3 to TC plastic was explored. 

Well characterised in-house C-fixing anti-MOG mouse mAbs (353-355) along with recombinant 

MOG were utilised as a foundation for the investigation of C3-fixation described above. 

4.2.3.1.1 Demonstrating Specificity of rMOG : anti-MOG Binding 

As a starting point for optimising the activation of C3 on TC plastic, 3 mouse anti-MOG mAbs (Z4, 

Z12 and Y10) were tested together with mouse anti-C1Inh monoclonal Ab was as a control. Target 

antigen (i.e. rMOG or C1Inh) was immobilised onto TC plastic and then incubated sequentially 

with a concentration gradient of either Z4, Z12, Y10 or anti-C1Inh, followed by HRP-labelled anti-

mouse Ab. Binding was detected by colourimetric means (as per Section 2.2.4.1.1). When rMOG 

was immobilised (Fig.4.16A), each of the anti-rMOG antibodies returned strong signal at the 

highest Ab concentrations. However, as concentrations of Abs decreased, signal for Y10 

decreased rapidly, becoming undetectable at the lowest concentrations, whereas that of Z4 and 

Z12 remained relatively stable throughout the concentration range tested. Anti-C1Inh mAb 

returned no signal above background for binding to immobilised rMOG, regardless of 

concentration. When C1Inh was immobilised (Fig.4.16B), Anti-C1Inh mAb returned strong signal at 

the highest concentrations, which declined with decreasing Ab concentration but remained above 

background throughout. No signal was detectable for Y10 binding to C1Inh at any of the 

concentrations tested. A modest signal for non-specific binding of Z4 and, more strongly, Z12 to 

C1Inh was detectable at the highest Ab concentrations tested, but this fell away with decreasing 

concentration. These data indicate all 3 anti-MOG Abs specifically bind rMOG (albeit with 

different affinities and specificities). 
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4.2.3.1.2    Demonstrating C-Activation by anti-MOG mAb: C-Fixing (Z4) Vs Non C-Fixing (Y10) 

The C-fixing capacity of the in-house anti-MOG mAbs has previously been determined (354): Z4 is 

a C-fixing mAb with high affinity and specificity for immobilised MOG (Fig.4.16); Y10 is non C-fixing 

and was included as a negative control. rMOG was immobilised and then incubated with (or 

without) Z4 or Y10 anti-rMOG mAbs prior to incubation with doubling-dilutions of WT or C3 KO or 

EDTA (10mM)-treated WT serum. Z4 mAb alone was also immobilised directly to the TC plastic 

(i.e. without any target Ag) and incubated (as above) with serum. Fixation of activated C3 was 

then assayed using a rat anti-C3b/iC3b/C3c mAb (clone 2/11), or an appropriate isotype control 

(rat IgG1), followed by anti-rat HRP and colourimetric detection (as per Section 2.2.4.1.2). 

Incubation of WT serum with untreated TC plastic (Fig.4.17A) or plastic coated with unbound 

Ag/rMOG alone (Fig.4.17 A & C) failed to result in any detectable C3-fixation at the lowest serum 

concentrations, but appreciable levels of signal were detectable at the highest serum 

concentrations (i.e. >10%). Binding of Y10 mAb to rMOG failed to promote C3-activation fragment 

deposition, confirming its non-C-activating nature [Fig.4.17C; (354)]. In contrast, binding of Z4 

mAb to rMOG enhanced the deposition of C3-activation fragments, confirming its C-activating 

nature [Fig.4.17A; (354)]. Given that Ag binding and orientation are important determinants in 

terms of an antibody’s ability to fix C (2, 20), an unexpected finding was that the sensitisation 

conditions which yielded the greatest signal for activated-C3 deposition were those when Z4 was 

immobilised directly to untreated TC plastic (Fig.4.17A). When C3 KO (Fig.4.147B), or EDTA 

inhibited WT serum or a non-specific rat IgG1 monoclonal primary C3-detection Ab (Fig.4.17C) 

were utilised as negative controls, no signal for deposited C3-activation fragments was detectable 

under any conditions. 
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Fig.4.16: Specific binding of anti-rMOG mAbs to immobilised Ag. Absorbance (492nM) values 

following immobilisation of rMOG (2.5µg/mL; A) or C1Inh (10µg/mL; B) in 96-well plates and 

detection using a concentration gradient of a mouse anti-rMOG (Y10, Z4 or Z12) or anti-C1Inh mAb 

(0-40µg/mL) followed by anti-mouse HRP and colourimetric detection (OPD). Data points 

represent individual replicates. 
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These data illustrate the ability to specifically detect C activation and deposition on TC plastic and 

to utilise a C-fixing Ag-Ab interaction to enhance this process/sensitise the substrate. Additionally, 

they demonstrate that a level of C activation (and C3-deposition) occurs without requiring any 

sensitisation of TC plastic, becoming appreciable at the highest serum concentrations, and also 

show that C3 KO serum can act as a suitable control for any off target effects resulting from 

incubation of TC plastic with serum. Moreover, they illustrate that the most effective design in 

this system of C activation with the reagents in use is the direct immobilisation of Z4 mAb to the 

TC surface with subsequent incubation with WT serum.  
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Fig.4.17: Specific detection of C3 activation fragments deposited on TC plastic: the effects of 

sensitisation via the classical pathway. (A & B) Absorbance values (492nM) following incubation 

(1hr, 37°C) of WT (A) or C3 KO (B) mouse serum (0-80%) in native 96 well TC plates, or plates 

coated with rMOG (2.5µg/mL), Z4 mAb (10µg/mL), or rMOG (2.5µg/mL) followed by Z4 (10µg/mL), 

and indirect immuno-detection using a rat mAb (2/11; 1µg/mL) against mouse C3-activation 

fragments followed by HRP-labelled anti-rat Ab and colourimetric detection (OPD); (C) Absorbance 

values (492nM) following immobilisation of rMOG (2.5µg/mL) in 96-well TC plates prior to 

sequential incubations (1hr, 37°C) with or without an anti-rMOG mAb (Y10 or Z4 [both at 

10µg/mL]) and  normal or EDTA-treated (10mM) WT serum (0-80%), followed by indirect immuno-

detection using rat anti-mouse C3 activation fragment-specific (2/11), or appropriate isotype 

control (rat IgG1), mAb (both at 1µg/mL) followed by HRP-labelled anti-rat Ab and colourimetric 

detection (OPD). Data points represent individual replicates. 
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4.2.3.2 Effects of TC-Plastic Immobilised C3-Activation Fragments on Microglia  

4.2.3.2.1 Z4 mAb  

Having developed methods for the deposition of C3 activation fragments on TC plastic, the impact 

on microglial phenotype was investigated. TC wells were coated with C3 activation fragments as 

described above (Section 4.2.3.1.2); C3 KO serum was used as control. After thorough washing, 

BV2 cells were seeded onto the wells then treated with or without LPS. After 48 hours, cells and 

supernatants were harvested and assayed for expression of surface markers (CD11b, C5aR & 

CD200R; as per Section 2.3.1) and levels of secreted effectors (cytokines [TNF-α, IL-6] and NO; as 

per Section 2.3.3), respectively. 

4.2.3.2.1.1 Secreted Effectors 

As a pro-inflammatory control stimulus, LPS treatment alone resulted in a clear, significant 

increase in detectable levels of each secreted effector assayed in the culture supernatant 

(Fig.4.18): in the case of TNF-α (P<0.01**; Fig.4.18i) and NO (P<0.05*; Fig.4.18iii), levels following 

LPS treatment were roughly 2-fold baseline; in the case of IL-6 (Fig.4.18ii), where no cytokine was 

detectable at baseline, LPS treatment resulted in an increase from 0-25pg mL-1 (P<0.01**). 

Exposure of cells to a Z4 mAb-coated surface caused a 2-fold increase in TNF-α levels compared to 

baseline (Fig.18i), while smaller increases in the levels of IL-6 (Fig.18ii) and NO (Fig.4.18iii) were 

detected. Pre-incubation of serum with the Z4 coated substrate modified the effects of the 

antibody coat-alone, significantly reducing the levels of each analyte (P<0.05*; Fig.4.18); in the 

case of NO, this reduced production to below basal levels. The effects of WT serum mirrored 

almost exactly those of C3 KO serum (Fig.4.18). 

LPS treatment of cells seeded onto a Z4 mAb-coated substrate resulted in the highest recorded 

levels of TNF-α (Fig.4.18i) and IL-6 (Fig.4.18ii). In the case of NO release, however, levels were very 

similar to those following exposure of cells to a Z4-coated substrate alone (Fig.4.18iii). LPS 

treatment of cells seeded on serum-preincubated Z4-coated substrate resulted in an increase in 

all analytes relative to baseline or following exposure of cells to Z4 coated surface, with or 

without prior incubation with serum (WT or C3 KO) (Fig.4.18). In the case of TNF-α (Fig.4.18i) and 

IL-6 (Fig.4.18ii), levels were significantly reduced (P<0.05*) compared with those following LPS 

treatment of cells seeded onto Z4-coated substrate, being roughly equal with those detected 

following isolated LPS treatment; In the case of NO release however, levels were significantly 

greater than those following LPS treatment of cells seeded onto wells coated with Z4 mAb 

(P<0.05*; Fig.4.18iii). As observed in the absence of LPS treatment, the effects of incubation of 

WT serum with a Z4 coated substrate prior to seeding and treatment of cells with LPS mirrored 

almost exactly those observed following incubation with C3 KO serum (Fig.4.18). 
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Fig.4.18: C3-activation fragment deposition on TC plastic sensitised by Z4 mAb: effect on 

microglial phenotype — secreted effectors. Levels of supernatant TNF-α (i), IL-6 (ii) and NO (iii) as 

determined by ELISA (cytokines) and Griess assay (NO) following treatment of BV2 cells in 24-well 

plates (2.5x105-, 0.5mL- /well) with 100ng/mL LPS for 48 hours, with or without prior overnight 

culture in TC wells pre-coated (1hr, 37°C incubations) in Z4-mAb (10µg/mL) alone, Z4-mAb 

followed by WT serum (10µg/mL & 5%, respectively) or Z4-mAb followed by C3 KO serum 

(10µg/mL & 5%, respectively). Cells were also cultured on the same coated surfaces without 

subsequent LPS stimulation. Data points represent individual replicates; bars = means +/- SDs; 

One-Way ANOVA with post-hoc t-testing was performed: *P<0.05, **P<0.01. 
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4.2.3.2.1.2 Surface Markers 

In the case of both CD11b (Fig.4.19i) and C5aR (Fig.4.19ii) surface levels increased significantly 

following LPS treatment (~25%, P<0.05*). In contrast, culture of cells on Z4-coated TC plastic 

resulted in a dramatic reduction in expression of these markers (~55-70%). Incubation of serum in 

Z4-coated wells prior to cell seeding resulted in a significant shift in both markers back towards 

baseline levels, which was more pronounced in the case of CD11b (CD11b: ~50%, P<0.01**; C5aR: 

~15%, P<0.05*). Subsequent LPS treatment of cells seeded on Z4-coated wells incubated without 

serum had little effect on surface CD11b and C5aR responses to the mAb-coat. In the case of 

serum-incubated Z4-coated wells however, there was a significant increase in both (CD11b, 

P<0.01**, C5aR, P<0.05*), exceeding the levels under the same conditions without subsequent 

LPS stimulation. 

In the case of CD200R (Fig.4.19iii), LPS treatment alone significantly increased expression over 

basal levels (~20%, P<0.05*). In contrast to CD11b (Fig.4.19i) and C5aR (Fig.4.19ii), culture of cells 

on a Z4-coated substrate resulted in a slight (non-significant, P>0.05) decrease in basal surface 

CD200R levels, while exposure to serum-treated Z4-coated wells resulted in a further decrease 

which achieved significance (P<0.05*). LPS treatment of cells seeded onto Z4-coated TC plastic 

had no discernible effect on the surface CD200R response to the mAb-coat, while LPS treatment 

of cells seeded onto serum-treated Z4-coated wells resulted in a slight decrease (although not as 

great as the same conditions in the absence of LPS-treatment).  

As observed for secreted effectors (Fig.4.18) the effects of incubation of WT serum with a Z4-

coated substrate prior to seeding, with or without LPS treatment, were virtually identical to those 

detected when using C3 KO serum (Fig.4.19). 

 

 

 

 

 

 

 

 



 
  1

4
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These data illustrate a complex relationship between microglial activation and exposure to the 

different triggers employed here. The lack of difference between WT and C3-deficient serum 

opsonisation indicates that C3-activation fragments had no specific effects on microglial 

inflammatory effector release and surface maker expression. Instead these data show that the 
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Fig.4.19: C3-activation fragment deposition on TC plastic sensitised by Z4 mAb: effect on 

microglial phenotype — surface markers. Levels of surface CD11b (i), C5aR (ii) and CD200R (iii) 

following treatment of BV2 cells in 24-well plates (2.5x105-, 0.5mL- /well) with 100ng/mL LPS for 

48 hours, with or without prior overnight culture in TC wells pre-coated (1hr, 37°C incubations) in 

Z4-mAb (10µg/mL) alone, Z4-mAb followed by WT serum (10µg/mL & 5%, respectively) or Z4-mAb 

followed by C3 KO serum (10µg/mL & 5%, respectively). Cells were also cultured on the same 

coated surfaces without subsequent LPS stimulation.  Data points represent individual replicates; 

bars = means +/- SDs; One-Way ANOVA with post-hoc t-testing was performed: *P<0.05, 

**P<0.01. 



 
  1

4
3 

observed alterations from the normal basal and activated phenotypes are consequences of the 

mAb-coated substrate and the presence of serum-derived factors other than C3 and its activation 

products. 

4.2.3.2.2 Non-Sensitised TC Plastic:  BV2 Microglial Cell Line 

Given the powerful observed effects of the Z4 mAb-substrate coat on cell phenotype (Section 

4.2.3.2.1), it appears evident that, as shown above for zymosan (Section 4.2.2), the Ab-coated 

surface provides a powerful activation trigger that may mask effects of iC3b-CR3 interaction. 

Guided by the demonstration that C3-activation fragments are deposited even on untreated TC 

substrate when incubated with high serum concentrations (Fig.4.17), this simple system was 

utilised to achieve C activation and C3-activation fragment deposition in the absence of the 

confounding presence of the mAb substrate-coat.  

Previously untreated TC plastic was left untreated or incubated with 35% WT or C3 KO serum 

prior to seeding of BV2 cells and treatment with or without LPS; Cells and supernatants were then 

harvested and assayed for surface markers (CD11b and C5aR; as per Section 2.3.1) and secreted 

effectors (IL-6 and NO; as per Section 2.3.3), respectively. 

4.2.3.2.2.1 Secreted Effectors 

In the case of both IL-6 and NO, LPS treatment alone resulted in a significant increase, with NO 

levels in supernatant increasing ~2-fold and IL-6 levels from undetectable to ~80pg/mL (P<0.01**; 

Fig.4.20A). In the case of IL-6, incubation of the wells with serum (either WT or C3 KO) failed to 

significantly alter basal levels or the response to LPS (Fig.4.20Aii). In the case of NO however, 

serum pre-incubation significantly reduced basal levels to ~50% (P<0.01**), although no 

difference was observed between the effects of WT or C3 KO serum (Fig.4.20Ai). Pre-incubation 

with serum (WT or C3-deficient) failed to modify the normal IL-6 response to LPS treatment 

(Fig.4.20.Aii). However, while pre-incubation with C3 KO serum also failed to modify the normal 

NO response to LPS treatment, pre-incubation with WT serum significantly enhanced it (~40%, 

P<0.05*; Fig.4.20Ai). These results are compatible with previous reports of iC3b-CR3 modulation 

of microglial priming (1). 

4.2.3.2.2.2 Surface Markers 

LPS treatment of cells in untreated wells resulted in a significant increase in surface expression of 

both CD11b and C5aR (~20-25%, P<0.05*; Fig.4.20B). Incubation of cells in wells pre-incubated 

with C3 KO serum resulted in a small increase in basal CD11b and C5aR expression, while WT 

serum resulted in a reduction, with a significant difference between the serum-treatment groups 

(P<0.05*; Fig.4.20B). When cells cultured in wells pre-incubated with serum were subsequently 

treated with LPS, expression of both markers was further increased above that caused by LPS 
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alone; this effect was seen for both WT and C3-deficient serum but in the case of CD11b was 

significantly more pronounced for C3-deficient serum (P<0.05*) (Fig.4.20B). 
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Fig.4.20: C3-activation fragment deposition on non-sensitised TC plastic: effect on microglial 

phenotype — secreted effectors and surface markers. (A) Levels of supernatant IL-6 (i) and NO 

(ii) as determined by ELISA & Griess assay, respectively, and (B) surface CD11b (i) and C5aR (ii) as 

determined by flow cytometry, following treatment of BV2 cells in 24-well plates (2.5x105-, 0.5mL- 

/well) with 100ng/mL LPS for 48 hours, with or without prior overnight culture in TC wells pre-

coated in 35% WT or C3 KO serum (1hr, 37°C). Cells were also cultured on the same coated 

surfaces without subsequent LPS stimulation. Data points represent individual replicates; bars = 

means +/- SDs, One-Way ANOVA with post-hoc t-testing was performed: *P<0.05, **P<0.01. 

* 

** 

A i ii 

B i ii 



 
  1

4
5 

 

 

 

 

 

4.2.3.2.3 Non-Sensitised TC Plastic: Primary Adult Murine Microglia 

In-light of their observed effects on the secretion responses of BV2 microglial cells and their 

consistency with a primed phenotype (specifically, LPS-stimulated NO production), the effect of 

serum-derived deposited C3-activation fragment exposure on the phenotype of primary microglial 

cells was explored. Again, TC wells were either left untreated or incubated with C3 KO or WT 

serum prior to cell seeding, followed by treatment with or without LPS. Cells and supernatants 

were harvested and assayed for surface markers (CD11b, C5aR and CD200R) and secreted 

effectors (TNF-α, IL-6 and NO), respectively; additionally, to assess for morphological changes 

(which are far clearer in primary Vs BV2 microglial cells [Chapter 3]) cells were imaged by phase 

contrast microscopy following culture on the different surfaces. 

4.2.3.2.3.1 Morphology 

Pre-incubation of wells with WT (Fig.4.21iii) but not C3 KO (Fig.4.21ii) serum resulted in striking 

morphological changes compared to cells cultured in untreated wells (Fig.4.21i). Cells cultured on 

plastic pre-treated with WT serum were larger with longer, more distinct processes, and fewer 

adopted an ‘amoeboid’ morphology. 

 

 

 

 

 

 

 

 



 
  1

4
6 

 

 

   

i 

ii 

iii 

Fig.4.21: C3-activation fragment deposition on non-sensitised TC plastic: effect on 

primary microglial cell phenotype — morphology. Representative photomicrographs of 

MACS sorted primary microglial cells following overnight culture in TC plates (24-well, 

1.25x105/well) pre-incubated with HBSS alone (i), or 35% C3 KO (ii) or WT (iii) serum in HBSS 

for 1hr at 37°C. Scale bars = 200µM. 
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4.2.3.2.3.2 Secreted Effectors 

After culture in untreated wells or wells pre-incubated with serum (either WT or C3 KO) without LPS 

treatment, levels of TNF-α (Fig.4.22i), IL-6 (Fig.4.22ii) and NO (Fig.4.22iii) were barely detectable or 

undetectable, with no significant differences between groups. LPS treatment resulted in a robust 

increase in secretion of TNF-α (P<0.01**, Fig.4.22i) and IL-6 (P<0.001***, Fig.4.22ii). Incubation of 

wells with C3 KO serum prior to cell seeding had no effect on the TNF-α and IL-6 responses to LPS 

treatment. Pre-incubation with WT serum, however, increased significantly their LPS-triggered 

secretion (TNF-α, P<0.01**, Fig.4.22i; IL-6, P<0.001***, Fig.4.22ii). In the case of NO (Fig.4.22iii), 

isolated LPS treatment resulted in a slight increase (~1.5µM) in detectable levels. Cells cultured in wells 

pre-incubated with WT serum had markedly greater NO responses when exposed to LPS (~10-fold 

increase). Wells pre-incubated with C3-deficient serum also significantly increased the NO response to 

LPS (~3-fold; P<0.01**) albeit to a significantly smaller degree (P<0.001***). 
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Fig.4.22: C3-activation fragment deposition on non-sensitised TC plastic: effect on primary microglial 

cell phenotype — secreted effectors. Levels of supernatant TNF-α (i), IL-6 (ii) and NO (iii) (as 

determined by ELISA [cytokines] and Griess assay [NO]) following treatment of MACS sorted primary 

microglia in 24-well plates (2.5x105-, 0.5mL- /well) with 100ng/mL LPS for 48 hours, with or without 

prior overnight culture in TC wells pre-coated in 35% WT or C3 KO serum (1hr, 37°C). Cells were also 

cultured on the same coated surfaces without subsequent LPS stimulation. Data points represent 

individual replicates; bars = means +/- SDs; One-Way ANOVA with post-hoc t-testing was performed:  

**P<0.01, ***P<0.001. 
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4.2.3.2.3.3 Surface Markers     

In the case of surface CD11b (Fig.4.23i) and C5aR (Fig.4.23ii), culture in wells pre-incubated with 

WT or C3 KO serum had little effect on baseline levels. Isolated LPS treatment, however, resulted 

in a clear increase in both markers to >2-fold baseline levels (P<0.001***). Pre-incubation of wells 

with serum (either WT or C3 KO) had little effect on the CD11b response to LPS, but significantly 

reduced the LPS-dependent increase in surface C5aR by ~40-60% (P<0.01**). Basal CD200R 

expression (Fig.4.23iii) was modestly increased by culture in wells pre-incubated with either WT 

or C3 KO serum (~20%, P<0.01**). LPS treatment caused a major reduction in surface CD200R 

(~65%, P<0.001***) that was not altered by serum pre-incubation (WT or C3 deficient). The 

effects of WT serum closely matched those of C3 KO serum. 
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These data demonstrate a clear effect of C3-activation fragment deposition on cell morphology 

(Fig.4.21) and on the capacity of primary microglia to release cytokines in response to LPS 

activation; surfaces pre-incubated with WT serum markedly enhanced the response while C3-

deficient serum coated surfaces did not (Fig.4.22). The data are compatible with the induction of a 
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Fig.4.23: C3-activation fragment deposition on non-sensitised TC plastic: effect on primary 

microglial cell phenotype — surface markers. Levels of surface CD11b (i), C5aR (ii) and CD200R 

(iii) (as determined by flow cytometry) following treatment of MACS sorted primary microglia in 24-

well plates (2.5x105-, 0.5mL- /well) with 100ng/mL LPS for 48 hours, with or without prior overnight 

culture in TC wells pre-coated in 35% WT or C3 KO serum (1hr, 37°C). Cells were also cultured on the 

same coated surfaces without subsequent LPS stimulation. Data points represent individual 

replicates; bars = means +/- SDs; One-Way ANOVA with post-hoc t-testing was performed:  

**P<0.01, ***P<0.001.  
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‘primed’ microglial phenotype mediated by iC3b-CR3 signalling (1). In the case of surface markers, 

while effects were clearly evident, they appeared predominantly as a consequence of LPS 

exposure, with smaller contributions from serum factors other than C3 (and its derivatives) and 

only minor specific effects due to C3-activation products (Fig.4.23).  

4.3 Discussion 

The results described in this chapter which, prompted by an earlier report (1), aim to characterise 

the in vitro phenotypic effects of microglial CR3 engagement by iC3b, illustrate some clear impacts 

on cellular responses in the systems investigated. However, the precise nature of the observed 

phenotypic effects appeared variable (and not necessarily consistent with a primed phenotype), 

although this is perhaps unsurprising given the differences in the systems employed to achieve 

CR3 engagement.  

4.3.1 Fluid-phase iC3b 

As the simplest treatment-system possible, with the potential to achieve specific iC3b-CR3 ligation 

in the absence of any other confounding ligand-receptor interaction, purified fluid-phase iC3b was 

initially investigated. Given the technical issues associated with the production of significant 

quantities of highly purified murine iC3b, commercially available preparations of human fluid-

phase iC3b were employed. Electrophoretic analysis and immuno-detection of immobilised 

protein confirmed the structural integrity and identity of the commercial protein. In a subsequent 

attempt to illustrate specific ligand-receptor binding, the fluid-phase human protein was 

fluorescently labelled and retention of its ability to specifically bind a solid-phase target (in the 

form of immobilised anti-human iC3b antibody) was confirmed. In FACS-based cell binding assays 

using the fluorescently labelled protein as a probe, data consistent with specific binding of fluid-

phase human iC3b to murine microglial CR3 were obtained, although these were not definitive. 

Previous studies have utilised fluid-phase iC3b to inhibit other CR3 ligand interactions (283, 351, 

356), thus illustrating the ability of fluid-phase iC3b to actually engage its cognate receptor on the 

cell surface. Furthermore, previous studies using other fluid-phase fluorescently labelled CR3 

ligands (e.g. soluble β-glucan) and FACS to demonstrate specific binding to cell surface receptor 

provide proof of concept of the experimental approach employed (337). Sequence alignment 

indicates a high degree of homology (~75-80% identity) between human and mouse C3 protein 

and gene transcript sequences, including retention of all major domains (e.g. TED, CUB), 

suggestive of inter-species compatibility. Moreover, phagocytosis assays clearly demonstrated the 

ability of mouse microglial CR3 to mediate uptake of zymosan opsonised with human serum-

derived C3-activation fragments, thus demonstrating the ability of human iC3b to interact 

functionally with mouse CR3; it is important to emphasise, however, that this interaction occurs 

with immobilised iC3b in the presence of numerous other cell surface receptor-ligands and thus is 
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highly distinct to that of fluid-phase iC3b. In-light of this there appears to be no barrier to human 

iC3b in the fluid-phase ligating murine CR3 on the cell surface, and while the results of the binding 

assay do not definitively demonstrate this specific interaction, they are compatible with such. 

Nonetheless, no clear phenotypic impact of fluid-phase iC3b treatment on microglia was 

detected. However, previous studies have illustrated that the physical state of CR3 ligands (e.g. 

fibronectin) can have important impacts on subsequent cell responses; specifically, only 

immobilised ligands have phenotypic effects (334-336, 356) and multivalent receptor occupation 

is required to achieve signalling (331, 356-359). Given these combined observations it seems 

probable that the absence of any overt impact of fluid-phase iC3b treatment on detected 

microglial responses is a consequence of the inability of iC3b to exert significant phenotypic 

effects when in the fluid-phase, rather than the xenogeneic fluid-phase ligand simply failing to 

engage the receptor. 

Given the issue of the ability of fluid-phase human iC3b to bind murine microglial CR3 and the 

problems associated with this in terms of interpreting the results of experiments designed to 

assess its impact on cell phenotype, it would be desirable to explore other systems to assess the 

fidelity of this interaction. Given that the preliminary experiments utilising immobilised specific 

mAbs in a plate-based system coupled with fluorescence detection clearly demonstrated specific 

binding of fluorescein-labelled fluid-phase human iC3b, utilising the same detection system with 

adherent murine microglial cells (in place of immobilised mAb) appears to provide a viable option. 

This approach would also have the added benefit of assessing binding in the native, adherent 

state, as opposed to the state of suspension necessitated by the FACS-based assay; indeed, a key 

difference between this and the earlier study assessing cell-borne receptor binding of 

fluorescently-conjugated soluble CR3 ligand by FACS is that the original study assessed binding to 

cells which naturally exist in suspension i.e. leukocytes: monocytes, neutrophils and NK cells 

(337). Furthermore, to supplement data from cell bnding assays, the ability of human fluid-phase 

iC3b to induce the intracellular signalling responses associated with CR3/CD11b:CD18 integrin 

ligation could be invesitaged (e.g. phosphorylation of SFKs, ERK/MAPK, Rho-GTPases, etc.; see 

Section 4.1.3). Indeed, this strategy would prove valuable in all systems where the demonstration 

of specific and/or functional iC3b-CR3 binding is desirable.                                

4.3.2 Zymosan 

Given the issues of species-mismatch and the inability to definitively demonstrate specific ligand-

receptor binding between fluid-phase human iC3b and mouse microglial CR3, coupled with an 

apparent absence of significant phenotypic effects of treatment, other strategies to engage 

murine microglial CR3 with syngeneic iC3b were pursued. As a well characterised particulate C 

activator which becomes abundantly coated in C3 activation fragments during the activation 
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process (344), zymosan was employed alongside WT and C3 KO mouse serum and CR3 blockade 

to dissect the specific role of iC3b-CR3 binding in mediating particle-cell interactions and 

subsequent phenotypic effects. 

4.3.2.1 Particle-Cell Interaction: Dependence on iC3b-CR3 Binding 

Having first specifically demonstrated the rapid deposition of C3-activation fragments on the 

particle surface following incubation of zymosan with serum, in order to subsequently establish 

the relative contribution of iC3b-CR3 binding to microglial-zymosan interactions, uptake assays 

were performed utilising fluorescently-labelled particles. Consistent with previous reports in the 

same and other cell types (344, 360), these assays revealed an important role for iC3b-CR3 

binding in mediating opsonic microglial zymosan uptake; although other serum factors contribute 

to this process, iC3b-CR3 binding was responsible for roughly 40%. Again, consistent with previous 

reports (344, 361), CR3 was also shown to have a minor role in non-opsonic microglial zymosan 

uptake. The ability to demonstrate the specific role of iC3b-CR3 binding in the dramatic 

enhancement of particle uptake which occurs upon serum opsonisation established a key 

precedent (which was absent in the case of fluid-phase iC3b), namely that exposure of microglia 

to WT serum opsonised zymosan particles definitively results in the engagement of CR3. 

Furthermore, the use of C3 KO serum alongside specific CR3 blockade also established that all, if 

not the vast majority of, C3-mediated microglial zymosan uptake occurs via CR3; this had 

important implications given that CR3 also has a minor role in non-opsonic zymosan uptake, in 

that it demonstrated the use of C3 KO serum opsonised particles, as opposed to (total) CR3 

blockade, represented the optimal choice to control for the off-target (i.e. non iC3b-CR3 

mediated) effects of serum-opsonised zymosan exposure.                 

4.3.2.2 Phenotypic Effects Attributable to iC3b-CR3 Binding 

In-contrast to fluid-phase iC3b, exposure of cells to zymosan particles, both serum-opsonised and 

non-opsonised, had marked phenotypic effects. The effects of non-opsonised zymosan exposure 

clearly result in a pro-inflammatory microglial phenotype, comparable to that observed for LPS. In 

contrast, initial effects of treatment with iC3b-bearing zymosan, which include an absence of a 

major induction and/or release of pro-inflammatory effector molecules or increase in surface 

activation molecules, despite a clear immunological challenge (i.e. osponic zymosan exposure), 

are compatible with a primed phenotype (1). These findings are in alignment with those of 

previous studies concerning the consequences of opsonic versus non-opsonic phagocytosis in the 

context of inflammation (312, 327-329, 362-364). However, the impact on a subsequent 

activation response, which results in reduced release of pro-inflammatory effector molecules and 

reduced expression of surface activation markers, along with increased expression of immune 

inhibitory receptors (i.e. CD200R), indicates that exposure to zymosan-borne iC3b results in a 
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state of dampened inflammatory potential (preceded by a non-inflammatory response i.e. to 

zymosan particles). The specific elimination of the zymosan-iC3b-CR3-microglial interaction during 

exposure of cells to serum-opsonised particles via removal of C3 from the opsonising agent (i.e. 

through use of C3 KO serum) reverted the detected cellular responses back towards those 

observed for pro-inflammatory stimuli (i.e. LPS, non-opsonised and heat-inactivated WT serum 

opsonised particles), illustrative of specific phenotypic effects attributable to it.  

The finding that microglial CR3 signalling triggered via receptor engagement by particle-borne 

iC3b, in conjunction with other undefined signalling events triggered by other serum-derived 

opsonic factors, results in a minimal or absent pro-inflammatory response upon exposure to 

zymosan (which otherwise triggers a potent proinflammatory response), coupled with a notably 

reduced functional response to subsequent exposure to a pro-inflammatory activator, raises 

interesting possibilities regarding the use of iC3b-opsonised zymsoan as a prophylactic: In cases 

where a CNS lesion is inevitable, for example during brain surgery, iC3b-/WT serum- opsonised 

zymosan (or a refinement of this agent) could be previously administered to quell microglial 

reactivity, leading to a net reduction in the subsequent pro-inflammatory response and reduced 

side-effects. Given the potently pro-inflammatory nature of the iC3b-bearing particle (i.e. 

zymosan) however it would be critical to ensure correct opsonisation. In this regard, the use of 

other, less intrinsically pro-inflammatory parent/barer particles would merit investigation. Indeed, 

in-order to validate this strategy at the very earliest pre-clinical stages, the use of different 

parent/barer molecules and opsonising agents along with the effects on other cell-types would 

require further investigation. Also, as mentioned above, the contribution of serum-derived C3-

activation fragments to the effects of serum-opsonisation on microglial responses, although 

important, is only partial, indicating that other serum factors also contribute to the anti-/non- 

inflammatory effect mediated by serum opsonisation. What remains unclear however is whether 

all serum-derived opsonins orientate cellular responses in a non-/anti- inflammatory direction, or 

whether some actually promote a pro-inflammatory response. Suggestive of the latter, natural 

antibodies against zymosan exist and FcR-mediated cellular interactions are generally 

characterised as pro-inflammatory (312, 327, 363, 365-368). It is possible that an optimised 

opsonisation reagent could enhance the inflammation-dampening effect observed following 

treatment of cells with WT serum opsonised particles.   

While results of the studies into phenotypic consequences of microglial zymosan exposure reveal 

distinctive effects attributable to iC3b-CR3 interaction, these effects are not compatible with a 

primed phenotype previously hypothesised to be induced by microglial iC3b-CR3 engagement (1). 

Nonetheless, other, highly contrasting phenotypic effects were identified for other interactions in 

this system, interactions which that of iC3b-CR3 binding can only occur in the presence of; 
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furthermore, in this particle-based system, iC3b-CR3 interaction occurs exclusively in the context 

of phagocytosis, a complex cellular event which invariably stimulates numerous signalling 

pathways during the processing of the phagocytic compartment (20, 102, 259). Given the 

somewhat degenerate nature of cell signalling, where multiple discrete pathways ultimately feed-

in to common pathways which govern different major aspects of cellular behaviour (369), it is 

likely that these other interactions and signalling events exert a strong degree of influence over 

the net effect of zymosan-iC3b-CR3-microglial signalling. Indeed, the zymosan carbohydrate 

ligands present in this system are known to impact CR3 functional responses through direct 

interactions (331, 350) and also exert cellular effects through other receptor systems (344). 

Additionally, natural antibodies capable of binding zymosan would have been present and FcR 

interactions are also known to influence CR3 functional responses along with having CR3-

independent effects (363, 366). In the model of priming reported by Ramaglia et al., microglial 

iC3b-CR3 interaction was a consequence of the intrinsic sensitivity of the cell to C activation and 

subsequent C3-activation fragment deposition (resulting from Crry deficiency) (1) and therefore 

occurred in the absence of the plethora of confounding interactions present in the zymosan-

based system. With this in mind, despite the demonstration of clear phenotypic effects, the 

consequences of microglial iC3b-CR3 binding described in this section do not accurately mimic the 

scenario of C-dependent priming reported previously (1); the exploration of other simplified, 

particle-free systems for the engagement of microglial CR3 was thus necessitated. 

4.3.3 C3-Activation Fragments Immobilised on Tissue Culture Plastic 

The ability to exploit the interaction between a C-fixing mAb and its specific antigen as a means to 

sensitise TC substrate to C3-activation fragment deposition was explored. Under the presumption 

that Ag binding and Ab orientation would be key to achieving sensitisation, it was assumed that a 

design in which the antibody bound to its immobilised antigen (i.e. via F(Ab)2) would yield the 

greatest degree of C3-activation fragment deposition; However, analysis of all possible antigen, 

antibody combinations revealed that the greatest level of deposition occurred in a system design 

where the C-fixing antibody was immobilised directly to the substrate in the absence of antigen, 

and this design was therefore selected to achieve C3-activation fragment deposition. This also had 

the added benefit of simplifying the design, although removal of the rMOG antigen eliminated a 

potentially interesting feature from this CNS-orientated system.      

In a parallel to the scenario regarding the zymosan-based system described above, the factor 

included in the system design to stimulate C-activation (i.e. Z4 mAb Vs zymosan) had a pro-

inflammatory effect which was absent when the C source (i.e. serum) was included; furthermore, 

the inclusion of the C source led to a reduction in the overall pro-inflammatory activation 

response. Again, while the use of this system to explore the phenotypic effects of microglial iC3b-
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CR3 engagement revealed some clear impacts on inflammatory cell responses, the use of a mAb-

coat acting to sensitise the TC substratum is complicated by the intrinsic stimulatory nature of the 

C-activating agent (i.e. mAb, zymosan), which may mask effects of isolated iC3b-CR3 interaction 

(363, 366-368). In this case, however, the observed effects on the cellular responses appeared to 

be entirely due to serum factors other than C3 and its derivatives. While the findings relating to 

the use of this system are not compatible with the induction of a primed mictroglial phenotype, 

they do provide further evidence in a different setting suggesting that highly controlled elective 

microglial activation regimes which promote a transient non-/anti- inflammatory phenotype may 

have potential to reduce responses to unavoidable pro-inflammtory activation triggers (e.g. 

surgery, drugs, etc.). 

Simplification of the system to its most basic elements (i.e. serum, culture substrate and cells) 

eliminated the confounding effects of inclusion of the C-fixing mAb in the design; it is important to 

emphasise however, that even in this most simplified system, numerous other non-C serum 

factors are deposited on the TC plastic during incubation. Under such conditions, significant 

effects on microglial functional responses were detected in both adult primary and immortalised 

cells, which, importantly, were almost entirely dependent on iC3b-CR3 signalling (as 

demonstrated through the use of C3 KO serum) and consistent with a primed phenotype. These 

findings therefore support those reported and the mechanism proposed by Ramaglia et al. (1). 

4.3.4 General 

The overriding theme which emerges from the studies presented in this chapter is that the 

consequences of microglial CR3 engagement by iC3b are heavily context dependent: while this 

event exerts a non-/anti- inflammatory effect over the multi-factorial process of innate immune-

phagocytosis, in isolation (or at least, in the absence of an intrinsically stimulatory C-activator) it 

appears to promote an overt yet apparently benign basal phenotype which progresses to an 

overly reactive phenotype in response to a robust pro-inflammatory trigger i.e. a ‘primed’ 

phenotype. Nonetheless,  questions still remain: while the use of C3 KO serum can control for the 

off target effects resulting from the use of serum as a C source, it remains unclear whether or to 

what extent other non-C3-derived serum factors influence the specific interaction between iC3b 

and microglial CR3 and the consequences thereof; Furthermore, it remains unclear as to whether 

monomeric iC3b is able to exert an effect on microglial phenotype from the fluid phase, or, as 

suggested by other studies of CR3 ligation (331, 334-336, 356-359), if such effects can only be 

mediated by the immobilised protein or through multivalent receptor occupation. To address 

these issues, future work would seek to utilise purified iC3b protein and/or a minimal system of 

C3 activation and processing utilising purified components and regulators (e.g. C3, factors B, D, H, 

I and P) to generate soluble iC3b and to immobilise iC3b to surfaces and particles, in-order to 
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assess the effects of iC3b-CR3 interactions which differ in terms of their isolation, phase and 

valency. 

Other possible avenues to be explored by future work pertaining to the cellular consequence of 

iC3b-CR3 engagement include the adoption of other strategies to achieve (and demonstrate) this 

key binding event, both as an isolated interaction and in systems of mixed (and presumably more 

physiological) interactions. To this end attempts could include: blockade of key microglial C 

regulators (e.g. Crry) to achieve sensitisation to C activation and iC3b deposition on the cell 

surface; the use of mAbs (whole IgG, F(ab)2 and F(ab)) which specifically ligate the iC3b binding 

site of CR3 (e.g. clones M1/70 and OX42) to stimulate receptor signalling.       
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5 The In Vitro Crry KO Microglial Phenotype 

5.1 Introduction 

The C3-dependent mechanism of microglial priming described by Ramaglia et al. (2012) in Crry KO 

mice in vivo (1) is the central focus of this study. The previous chapter sought to further 

investigate this mechanism through the development of in vitro systems to recreate the key 

interaction which is proposed to underpin it - i.e. ligation of microglial CR3 by iC3b. This chapter is 

intended to further explore this mechanism through the investigation of the Crry KO microglial 

phenotype in vitro; this will address the question of whether the primed Crry KO microglial 

phenotype reported in vivo is retained in vitro, or whether it is lost due to the absence of the 

chronic C activation which occurs in the live animal, or possibly the isolation and culture process 

per se and/or absence of the plethora of other factors with which microglial cells interact in vivo. 

5.1.1 Biological Role of Crry 

Following the discovery (85, 87, 145, 147-149, 151-154) and functional characterisation of Crry as 

an inhibitor of the classical and alternative activation (but not the terminal) pathways, with both 

decay-acceleration and fI-cofactor activity (155-157), attention focused on its biological roles. 

These studies identified a number of roles and potential therapeutic uses for Crry. Use of Crry-

based pharmacological inhibitors of C-activation has proven to be protective against anti-

phospholipid Ab induced foetal-loss in a murine model of lupus pregnancy failure (98) and to 

ameliorate tissue damage in models of mesenteric ischemia-reperfusion injury (370) and 

antibody-induced glomerulonephritis (371). Crry-based therapeutics have been shown to reduce 

atherosclerosis in mice (372) and inhibit the development of a rat model of myasthenia gravis 

(EAMG) (373). Furthermore Crry-based therapeutic agents block tubulointerstitial injury and renal 

dysfunction in a rat model of puromycin-induced nephrosis (374), and IgG deposition and 

elevated aquaporin-4 expression (associated with cerebral oedema) in a mouse model of lupus 

cerebritis (375).  Use of transgenic mice with systemic soluble Crry over-expression has also 

shown that Crry can be protective in the same model of antibody-induced glomerulonephritis 

(376). The development of global Crry KO mice immediately revealed a critical role for Crry in 

murine feto-maternal tolerance, revealing that Crry is essential for protecting the developing 

foetus from C-mediated injury and subsequent pregnancy failure (169). Establishing ways to 

circumvent the embryonic lethal Crry KO phenotype led to increased understanding of C 

homeostatic mechanisms (170). The subsequent use of global Crry KOs has revealed roles for Crry 

in modulating, among other things, immunological processes in EAMG (377). Tissue-specific Crry 

KOs have been used to study T-cell dynamics (378), platelet dynamics and C sensitivity (379), and 

renal ischemia-reperfusion injury (380). To circumvent the issue of C-insufficiency intrinsic to the 
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Crry-deficient phenotype and also intrinsic to some earlier models of global Crry KO (i.e. C3 or 

factor B -/- or +/-), adoptive transfer models were developed where Crry -/- cells or tissues were 

transferred to a syngeneic C-sufficient host: these studies revealed the critical role for Crry in 

protecting cells (erythrocytes) (164) and tissue (renal) (381) from C-mediated injury. Studies of T-

cell biology have also identified an unexpected role for Crry in cell signalling, independent of its C-

regulatory function (382-386). 

Another key observation emerging from studies of Crry function is that of its primary importance 

over other membrane C-regulators in protection of a variety of cell types against C-mediated 

injury. Cell types include: T-cells (378, 387, 388); erythrocytes (163, 164); platelets (379); tubular 

epithelial cells (389). Additionally, it appears that Crry’s ability to function as a C regulator is 

specific to homologous C, with reports of no difference in sensitivity of mouse cells to C from 

other closely related species (e.g. rat) regardless of Crry expression-status, despite clear 

differences in sensitivity to mouse C (156, 157, 164).         

5.1.2 Crry and the CNS 

Despite its status as the chief membrane regulator of C activation in the mouse (84, 390) and the 

availability of pharmacological agents capable of modulating Crry function (e.g. sCrry, Crry-Ig, 

Crry-CR2) (84) along with both Crry KO (global (1, 377, 391) and conditional (378-380)) and over-

expression (376, 392, 393) transgenic mice strains, relatively few studies have directly addressed 

the question of Crry function in the CNS. In-terms of KO animals, a highly valuable resource for 

the investigation of gene function, the embryonic lethality of the Crry KO phenotype (169) has 

probably contributed to the limited use of this mode of investigation; the relatively recent 

development of ways to circumvent this whilst maintaining an otherwise intact C system (170, 

171) has seen the situation change somewhat. Among the earliest CNS-specific studies of Crry, 

around the turn of the millennium, were characterisations of its expression at a cellular level (394, 

395), since previous studies had merely noted its presence in the CNS and expression relative to 

other tissues (396, 397). It was found that microglia and astrocytes express both Crry mRNA and 

protein, with microglia possessing more surface Crry than astrocytes, whereas neurones, under 

physiological conditions, express the gene only at the transcript level (394, 395). In parallel, the 

same investigators assessed the effect of sCrry over-expression in the CNS driven by the GFAP 

promoter in transgenic mice and found that this was protective against MOG-induced EAE (392). 

Later, the phenotype of the same transgenic mice was assessed in the cuprizone model, where 

de-myelination, featuring an inflammatory infiltrate, occurs in certain CNS white-matter tracts 

(e.g. corpus callosum), followed by a period of re-myelination upon withdrawal of the copper-

chelating, oligodendrotoxic drug. The Crry-over-expressing transgenics were protected against de-

myelination; interestingly, the same animals were found to have a mild degree de-myelination 
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during the recovery-phase of the model in-which the diseased white-matter tracts of WT animals 

were repairing, suggesting that C has a role in neural regeneration as well as destruction (398). In 

addition to de-myelinating inflammatory diseases of the CNS, the role of Crry has also been 

investigated in TBI models: transgenic mice which express Crry under the control of the astrocytic 

GFAP promoter were employed and assessed for pathology and neurological deficits following TBI 

and were found to be protected (393); In a follow-up study by the same group, Crry-Ig was used 

to assess the potential for pharmacological C inhibition as a treatment for TBI and was also found 

to be protective (399). Crry-Ig has also been used to investigate the effects of pharmacological C-

inhibition on parameters of inflammation and cerebral oedema (IgG deposition and aquaporin-4 

expression, respectively) in a mouse model of lupus cerebritis: chronic Crry-Ig treatment was 

show to have a beneficial effect (375). Most recently, the status of the Crry KO CNS has been 

investigated with respect to markers of Alzheimer’s disease pathology: in a basic investigation 

designed to assess the presence of tau-235 (serine)-phosphate and fH in hippocampal 

homogenates it was found that these markers were both significantly reduced in Crry KO mice 

(391).  

5.1.2.1  The Microglial Phenotype of Crry KO Mice 

As discussed in previous chapters, a 2012 report by Ramaglia et al. (1) described a CNS-specific 

investigation of Crry function where the Crry KO CNS was examined. This investigation identified a 

C-dependent primed microglial phenotype unique to Crry KOs (i.e. not present in another system 

of C3 dysregulation [fH KO]) and based on co-localisation of fixed C3-activation fragments 

(C3b/iC3b) and microglial CR3, along with the local nature of C activation and primary effect, 

attributed this phenotype to locally accumulated iC3b ligating CR3 and triggering microglial 

priming in the Crry−/− CNS. Furthermore, the relevance of this mechanism of C-mediated 

microglial priming was demonstrated in a human inflammatory and degenerative CNS disease 

(MS). Nonetheless, while this report detailed a molecular mechanism of in vivo microglial priming 

for the first time, implicating C along with its regulators and receptors in microglial membranes, 

no other studies have addressed the question of the phenotypic consequences of Crry function in 

the CNS at the cellular level, beyond that of inferred sensitivity to C-activation. Furthermore, 

despite methods for in vitro microglial characterisation being long-established, the Crry KO 

primed microglial phenotype reported by Ramaglia et al. (1) was based solely on in vivo 

investigations. A detailed in vitro study of the Crry KO microglial phenotype is therefore proposed 

here and will feature as the subject of this chapter. 

5.1.3 Chapter Aims 

The aim of this chapter is the further characterisation of the Crry KO microglial phenotype 

through in vitro investigation. Microglial cells from Crry KO and WT mice will be isolated and 
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cultured. The absence/presence of the key regulator (i.e. Crry) on the cell surface shall be 

specifically determined and the sensitivity to C activation (both syngeneic and xenogeneic) 

assessed. The methods described in chapter 3 shall be employed to assess cell phenotype, both at 

baseline and following exposure to C and/or activation. 

 

5.2 Results 

5.2.1 Specific Detection of Surface Crry Expression 

As a prerequisite to any further studies concerning their in vitro phenotype, it was essential to 

formally establish the phenotype, with regards to surface Crry expression, of the primary 

microglial cells cultured following isolation from both Crry KO and WT CNS tissues. The FACS-

based assay of surface Crry expression described in chapter 3 was therefore employed for this 

purpose.    

5.2.1.1  Red Blood Cells 

In order to validate the assay designed to specifically demonstrate cell surface expression of Crry, 

a cell type which is known to express high levels of membrane-bound Crry, i.e. erythrocyte (163, 

164, 400), was first assayed to serve as a positive control. In addition, to demonstrate the 

specificity of staining and serve as a further control, red blood cells from Crry KO and WT mice 

were also assayed for CD59 expression, in-addition to those from CD59 KO mice. 

Cells were assayed by FACS as per Section 2.3.1. In all cases, cells stained with isotype control 

antibodies returned signal which was undetectable over levels obtained from unstained cells 

(Fig.5.1). As expected, while CD59 expression was readily detectable and equivalent on WT and 

Crry KO erythrocytes, it was undetectable on CD59 KO cells, where signal was equivalent to that 

of cells of (any genotype) stained with an isotype control antibody primary mAb (Fig.5.1A). 

Similarly, Crry expression was readily detectable and equivalent on WT and CD59 KO erythrocytes, 

but was undetectable on Crry KO cells, (the same situation applied in-relation to isotype control 

staining) (Fig.5.1B). These data thus validated the FACS-based assay for surface Crry expression 

and enabled its expression by primary cells derived from other (i.e. CNS) tissues to be assessed 

with confidence.  This assay was then applied to primary microglial cells cultured following 

isolation from both Crry KO and WT CNS tissues. 
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5.2.1.2  Primary Microglial Cells 

Primary microglial cells isolated from WT and Crry KO mice were assayed for surface Crry 

expression by FACS. In addition, to demonstrate the specificity of staining and serve as a positive 

control, cells were also assayed for surface F4/80 antigen expression. In all cases, cells stained 

with isotype control antibodies returned signal which was barely detectable over that returned by 

unstained cells (Fig.5.2). As expected, while F4/80 expression was readily detectable above 

background and equivalent on WT and Crry KO cells (Fig.5.2A), Crry expression was readily 

detectable on WT microglia, but was undetectable on Crry KO cells, (the same situation applied in-

relation to isotype control staining) (Fig.5.2B). These data thus clearly demonstrate the specific 

detection of Crry on the surface of primary microglial cells purified from WT sources, and 

conversely, its absence on that of microglial cells purified from Crry KO sources. 

 

 

 

 

Fig.5.1: Flow cytometric analysis of surface CD59 and Crry expression by WT, Crry KO and CD59 

KO RBCs. 107 WT, Crry KO or CD59 KO red blood cells were stained (4°C, 30 mins) with 5µg/mL rat-

anti mouse CD59 (MEL-2; A) or Crry (1F2; B) mAb, or appropriate isotype controls, followed by 

2µg/mL anti-rat IgG AF488 Ab, then analysed by flow cytometry. Representative histograms of 

unstained (grey) or isotype control stained (black) RBCs, or following staining of WT (red), Crry KO 

(green) or CD59 KO (blue) RBCs with anti-CD59 (A) or anti-Crry (B) mAbs. 
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5.2.2 In Vitro Phenotype of Crry KO Microglia 

In-order to examine and define the phenotype of Crry KO microglia in vitro, primary microglia 

isolated from Crry KO and WT mouse tissue were assayed for expression of surface markers and 

release of cytokines at baseline and following exposure to a concentration gradient of LPS. The 

results showed that regardless of genotype, treatment of cells with increasing LPS concentrations 

resulted in dose-dependent changes in the release of secreted effector molecules and levels of 

surface markers (Fig.5.3). Furthermore, the profile of these changes broadly resembled those in 

chapter 3 which describe the initial characterisation of systems for in vitro assessment of 

microglial responses to LPS (e.g. greatest effect between 1-10ng mL-1 LPS). However, despite the 

primed Crry KO microglial phenotype reported in vivo (1), no dramatic differences in the profile of 

cytokine release and surface markers were observed between Crry KO and WT microglia, at 

baseline or in response to LPS treatment (Fig.5.3). These data indicate that when removed from 

the in vivo environment and taken into culture, Crry KO microglia are no longer hyper-responsive 

relative to WT cells. 

 

F4/80 A Crry B 

Fig.5.2: Flow cytometric analysis of surface F4/80 Ag and Crry expression by WT and Crry KO 

primary microglia. 5x105 WT, Crry KO or CD59 KO MACS sorted microglia were stained (4°C, 30 

mins) with rat-anti mouse F4/80 (Cl:A3-1, 10µg/mL; A) or Crry (1F2, 5µg/mL; B) mAb, or appropriate 

isotype controls, followed by 2µg/mL anti-rat IgG AF488 Ab (4°C, 30 mins), then analysed by flow 

cytometry. Representative histograms of unstained cells (grey, open) or cultured primary microglia 

isolated from WT (green) or Crry KO (yellow) CNS tissue following incubation with isotype control 

mAb (open histograms) or test mAbs (filled histograms) against F4/80 antigen (A) or Crry (B). 
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5.2.3 Sensitivity to C Activation: C3-Activation Fragment Deposition and MAC-

Mediated Lysis 

In-light of the absence of any detectable difference between the basal- and activated- WT and 

Crry KO in vitro microglial phenotype in the absence of any previous cell exposure/treatment, and 

given that the Crry KO primed microglial phenotype is proposed to be a consequence of the 

intrinsic sensitivity of these cells to C-activation resulting in the chronic local presence of C-
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Fig.5.3: Assessment of the in vitro Crry KO microglial phenotype. 2.5x105 WT (green) and Crry KO 

(red) MACS sorted primary microglia (per well, 24 well-plates, 0.5mL medium) were incubated 

with increasing concentrations (0-10µg/mL) of LPS for 48 hours before: (A) flow cytometric 

assessment of surface CD11b (i), C5aR (ii) and CD200R (iii); (B) ELISA of supernatant TNF-α and IL-

6 (N = 4; bars = means +/- SDs). (N = 4; bars = means +/- SDs).    
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derived CR3 ligands (which ligate the receptor), an attempt was made to recreate this proposed 

mechanism of in vivo priming in vitro. In-order to achieve this, assays to chart the activation of C 

and the deposition of C-activation products (C3b/iC3b; MAC) on the surface of murine microglial 

cells, along with their viability, were developed. 

5.2.3.1  Human Serum as C Source 

5.2.3.1.1 BV2 Cells 

Given the ready availability of the BV2 murine microglial cell line relative to primary murine 

microglial cells, along with its close approximation to primary cells (as detailed in chapter 3), 

coupled with the ready availability of fresh normal human serum relative to that of mouse, BV2 

cells and human serum were employed in an initial attempt to establish an assay of C deposition 

on murine microglial cells. 

BV2 cells were incubated with increasing concentrations of normal or heat inactivated human 

serum, with or without the addition of the C5-activation blocking agent (derived from the saliva of 

the tick, Ornithodoros moubata), OmCI, and then assayed for C3 activation fragment deposition 

along with MAC formation and viability (see Section 2.2.5). Incubation of BV2 cells with normal 

serum resulted in a dose dependent increase in C3 deposition which was detectable at the lowest 

serum concentration tested (5%) and, although at ~95% maximal signal at 40% serum, continued 

to increase up to the highest serum dose tested (80%) (Fig. 5.4A & 5.4Ci). Although very low levels 

of MAC formation appeared to be detectable at the lower serum concentrations of 10% and 20% 

serum, which coincided with emergence of a rapid increase in the levels of detectable deposited 

C3, a dramatic increase in the levels of detectable MAC formation occurred between 20-40% and 

40-80% serum; this increase coincided with a dramatic decrease in viability (from ~95% to ~20%) 

as assessed by staining with the fluorescent dye, PI (impermeant to an intact cell membrane) 

(Fig.5.4Bi, Fig.5.4C ii & iii). As expected, when cells were incubated with heat inactivated human 

serum, no change in C3 deposition, MAC formation or viability was detected (Fig.5.4 Aii, Bii & C), 

confirming ablation of all serum C factors. Notably, when cells were incubated with normal serum 

which had been pre-treated with OmCI, while the same change in C3 deposition occurred as 

described for cells incubated with normal serum, no change in MAC formation or viability was 

detected (Fig.5.4 Aiii, Biii & C), illustrating successful and specific blockade of C5-activation and 

confirming that MAC formation was responsible for the observed cell death. 
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Fig.5.4: Activated C3 deposition and MAC formation on BV2 cells: development of assay of murine 

microglial C activation. BV2 cells seeded at 5x104 per well in 24-well plates were treated with NHS, HI 

NHS, or NHS pre-incubated with OmCI (10µg mL-1, RT, 15 mins)  at concentrations ranging from 0-80% 

(1hr, 37°C; all experimental media/serum volumes = 0.5mL). Cells were then stained (4°C, 30 mins) 

with rat anti-human iC3b/C3dg/C3g (Clone 9, in-house; 9µg/mL) or mouse anti-human TCC (aE11; 

1µg/mL) mAbs followed by AF488/FITC-labelled anti-rat or mouse IgG (as appropriate; 1µg/mL), 

before PI staining (2.5µg/mL; 5 mins, 4°C) and flow cytometric analysis. Prior to mouse anti-human 

TCC mAb use, cells were pre-treated (10mins, 4°C) with rat-anti-mouse Fc blocking Ab (2.4G2; 5µg/mL) 

and secondary Ab was used which had been cross-adsorbed against rat serum proteins (to prevent 

binding to rat Fc blocking Ab instead of mouse anti-human TCC target).  (A & B) Representative 

fluorescence dotplots (Y axis A & B = PI fluorescence; X-axis A = fluorescence due to C3 deposition, X-

axis B = fluorescence due to MAC formation) of BV2 cells following incubation with increasing 

concentrations (0-80%) of normal, heat-inactivated or OmCI pre-treated human serum; (C) 

Quantification/Combined graphical illustration of fluorescence depicted in A and B showing signal due 

to C3-activation fragment (i) and MAC (ii) deposition, along with calculated viability (iii).   
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These data thus demonstrate proof of concept in terms of achieving C activation on murine 

microglial cells combined with specifically and quantitatively detected the process. Regardless of 

previous reports indicating the species-restricted function of Crry (156, 157, 164), in-light of the 

success of the assay detailed here, this assay of human C activation and membrane deposition 

was applied to both Crry KO and WT primary microglial cells, in an attempt to detect differences 

in sensitivity to C activation based on the presence of the membrane regulator (i.e. Crry). 

 

5.2.3.1.2 Primary Microglial Cells: Crry KO Vs WT 

In a similar manner to BV2 cells, exposure of WT primary microglia to increasing concentrations of 

human serum resulted in a dose-dependent increase in C3-deposition which was readily 

detectable even at the lowest serum concentration tested (25%) and which continued to increase 

in parallel with serum concentration up to the highest serum concentration tested (100%) 

(Fig.5.5A). Again, similarly to BV2 cells, very low levels of MAC formation appeared to be 

detectable at the lower serum concentrations (≤50%), with a dramatic increase occurring at the 

higher serum concentrations tested (>50%) (Fig.5.5B) which coincided with a dramatic decrease in 

viability (from ~90% to ~35%) (Fig.5.5C). The profile of C3-depostion, MAC formation and viability 

for Crry KO primary microglial cells in response to increasing concentrations of human serum 

mirrored almost exactly that of WT cells (Fig.5.5A-C). 
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5.2.3.2 Mouse Serum as C Source 

C3-activation fragment deposition and cell viability (which parallels MAC formation; Fig.5.4 & 

Fig.5.5) was next assayed by FACS for Crry KO and WT primary microglial cells following incubation 

with increasing concentrations of mouse C (using WT serum as a C source). As controls, to 
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Fig.5.5: C3-activation fragment deposition and MAC formation on Crry KO Vs WT primary microglial 

cells: human serum. WT or Crry KO MACS sorted primary microglia cells seeded at 5x104 per well in 

24-well plates were treated with NHS at concentrations ranging from 0-100% (1hr, 37°C; all 

experimental media/serum volumes = 0.5mL). Cells were then stained (4°C, 30 mins) with rat anti-

human iC3b/C3dg/C3g (Clone 9, in-house; 9µg/mL) or mouse anti-human TCC (aE11; 1µg/mL) mAbs 

followed by AF488/FITC-labelled anti-rat or mouse IgG (as appropriate; 1µg/mL), before PI staining 

(2.5µg/mL; 5 mins, 4°C) and flow cytometric analysis. Prior to mouse anti-human TCC mAb use, cells 

were pre-treated (10mins, 4°C) with rat-anti-mouse Fc blocking Ab (2.4G2; 5µg/mL) and secondary Ab 

was used which had been cross-adsorbed against rat serum proteins (to prevent binding to rat Fc 

blocking Ab instead of mouse anti-human TCC target). MFIs (+/- SDs) of Crry KO (red) and WT (green) 

primary cells due to staining of C3-activation fragments (A) or TCC/MAC (B), or viability (means +/- 

SDs) as determined by PI staining (C) (N = 3). 
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demonstrate the specificity of the responses, microglia were incubated with serum obtained from 

C3 KO mice. Assay controls also included appropriate isotype control mAb (in place of the mouse 

C3-activation fragment specific primary mAb i.e. clone 2/11). 

Incubation of Crry KO cells in normal mouse serum resulted in a dose dependent increase in C3-

activation fragment deposition which was readily detectable even at the lowest serum 

concentration tested (10%) (Fig.5.6A). However, in-contrast to human serum (Fig.5.5) and despite 

the noted C3-deposition effect, incubation in normal mouse serum at any concentration tested 

failed to have any effect on cell viability (Fig.5.6B). Incubation of WT microglial cells in low 

concentrations of normal mouse serum (≤10%) resulted in C3-deposition which, while still 

detectable, was never on the same scale as that detected on Crry KO cells (Deposited C3 MFI at 

10% serum: WT ~10% that of Crry KO). Incubation of WT cells in higher serum concentrations 

(>10%) resulted in a level of C3 deposition which never exceeded ~1/2 that observed for Crry KO 

cells at the equivalent serum dose (Fig.5.6A). Similarly to Crry KO cells, no effect on viability was 

detected for WT cells regardless of serum concentration (Fig.5.6B). 
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Fig.5.6: C3-activation fragment deposition and viability of Crry KO Vs. WT primary microglial cells in 

response to mouse serum incubation. WT or Crry KO MACS sorted primary microglia cells seeded at 

5x104 per well in 24-well plates were treated with WT or C3KO serum at concentrations ranging from 

0-80% (1hr, 37°C; all experimental media/serum volumes = 0.5mL). Cells were then stained (4°C, 30 

mins) with rat anti-mouse iC3b/C3dg/C3g mAb (Clone 9, in-house; 9µg/mL), or appropriate isotype 

control, followed by AF488-labelled IgG (1µg/mL), before PI staining (2.5µg/mL; 5 mins, 4°C) and flow 

cytometric analysis. (A) MFIs (+/- SD) of Crry KO (red) and WT (green) cells due to staining with mAb 

specific for C3-activation fragments or an isotype control mAb (N = 3); (B)  Viability of  Crry KO (red) 

and WT (green) as determined by PI staining (N = 3). 
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5.2.4 Phenotypic Effects of C Activation on Crry KO Microglia in Vitro 

In-order to further characterise the phenotype of Crry KO microglia in vitro, including the capacity 

of C-derived CR3 ligands to elicit an activation response consistent with a primed phenotype (1), 

primary microglia isolated from Crry KO and WT mouse tissue were assayed for expression of 

surface markers and release of cytokines at baseline and following exposure to 10% WT or C3 KO 

mouse serum or LPS alone, or 10% WT or C3 KO mouse serum with the subsequent addition of 

LPS. 

The data show that WT and Crry KO cells had a very similar basal cytokine and surface marker 

profile (Fig.5.7); treatment with LPS alone resulted in comparable, readily-detectable increases in 

the release of pro-inflammatory cytokines and levels of surface markers (Fig.5.7 A, Bi & Bii), with 

the exception of surface CD200R which (as expected) decreased slightly (Fig.5.7Biii). Moreover, 

treatment of cells of either genotype with 10% WT or C3 KO mouse serum alone failed to 

significantly modify their basal cytokine and surface marker profiles (Fig.5.7). Furthermore, no 

dramatic differences in the response to LPS were detected between WT and Crry KO cells 

following previous exposure to 10% mouse serum (C3 KO or WT) (Fig.5.7), despite the C3-

dependent primed Crry KO microglial phenotype reported in vivo (1) along with the clear and 

specific demonstration of C3-deposition on Crry KO microglia upon incubation with 10% WT 

mouse serum (Section 5.2.3.2). 
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Fig.5.7: Assessment of the in vitro Crry KO microglial phenotype in response to C3-activation 

fragment deposition resulting from sensitivity to autologous C activation. 2.5x105 WT or Crry KO 

MACS sorted primary microglia were seeded per well in 24-well plates (0.5mL media). After 24 hours, 

cells were incubated with 10% WT or C3KO mouse serum (37°C, 1hr) before thorough washing (2 PBS 

followed-by 2 complete-media washes) and treatment with or without 10ng/mL LPS for 48 hours. 

Some wells were also left untreated or treated with LPS alone. Cytokine (IL-6 and TNF-α) production 

was determined by ELISA of supernatants and cell surface markers (CD11b, C5aR, and CD200R) were 

assayed by flow cytometry. (A) IL-6 (i) and TNF-α (ii) supernatant concentrations; (B) Fluorescence 

intensities due to CD11b (i), C5aR (ii) and CD200R (iii) staining. WT: green, Crry KO: red; Bars = Means 

+/- SDs; N ≥ 3.    
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5.3 Discussion 

5.3.1 The in Vitro Crry KO Microglial Phenotype and the Mechanism of C-dependent 

Priming 

The work described in this chapter was conducted in-order to further characterise the mechanism 

of C-dependent microglial priming reported in vivo in Crry KO mice. Given that the original study 

which identified this mechanism was based solely on data gathered from in vivo and in situ 

observations, the intrinsic complexity of the experimental systems means that the fine details of 

this mechanism remained veiled. For example, the question of whether the Crry KO primed 

microglial phenotype is lost in the absence of the plethora of other factors with which microglial 

cells interact in vivo and/or the chronic C activation which occurs in the live animal, remains to be 

fully investigated. 

As a key starting point, expression and deficiency of surface Crry protein was demonstrated for 

microglial cells isolated from WT and Crry KO CNS tissue, respectively, confirming the in vitro 

retention of the innate difference between cells of the different genotypes. Initial phenotypic 

characterisation experiments failed to show any evidence of a primed phenotype in Crry KO cells 

in the form of pro-inflammatory hyper-reactivity. This is perhaps unsurprising given that through 

pharmacological C-inhibition, Ramaglia et al., found evidence to suggest that in the absence of 

chronic local C-activation, the in vivo primed Crry KO microglial phenotype is lost (1). However, 

the possibility cannot be excluded that the isolation and culture process per se and/or the 

absence of other in vivo interaction partners, and not that of chronic local C-activation is 

responsible for the initial loss of distinction between WT and Crry KO microglial cells in-terms of 

pro-inflammatory reactivity.  

Given the absence of any detectable differences in basal pro-inflammatory responses consistent 

with a primed phenotype for cultured Crry KO microglia, an attempt was made to recreate the 

mechanism of in vivo priming in the Crry KO CNS, in the context of the sensitivity of the Crry KO 

microglia to C-activation. C-deposition assays were developed which were employed to 

demonstrate the specific sensitivity of Crry KO cells to autologous C activation and C3-deposition. 

Based on the results of these assays a system was designed which, analogous to the mechanism 

of C-dependent priming reported in vivo, resulted in readily detectable C3-deposition on Crry KO 

cells, whilst C3-deposition on WT cells remained undetectable. Given that the intrinsic sensitivity 

of Crry KO microglia to C activation and C3-deposition, leading to microglial CR3-ligation by C3-

activation products, is proposed to underlie the mechanism of C-dependent priming, the effect of 

this design on microglial pro-inflammatory activation responses was subsequently investigated. 

These experiments revealed no evidence to support the role of C3-activation fragments in the 
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promotion of a primed phenotype in microglia derived from Crry KO mice. This was somewhat 

surprising given the initial report describing the priming mechanism (1), together with the results 

presented in the previous chapter implicating C3-derived CR3 ligands in the induction of a primed 

phenotype in WT microglia (Section 4.2.3.2).  

Given previous reports implicating serum factors which enter the parenchyma upon BBB 

disruption in microglial activation (173, 401, 402), the lack of any phenotypic effects resulting 

from direct treatment of cultured cells with serum, albeit dilute, is notable. Nonetheless, even 

under pathological conditions leading to a disruption in BBB intgirty, some selectivity for entry of 

blood-borne factors into the tissue remains since BBB disruption occurs at a degree along a 

spectrum (ranging from minimal to severe) and cannot simply be considered as an ‘all or nothing 

event’. It therefore follows that while the direct treatment of cultured primary microglial cells 

with serum results in their exposure to the entire serum load, the exposure to blood-borne 

factors experienced by in vivo migroglia during BBB-disruption will vary depending on the extent 

to which the barrier is compromised. It is therefore possible that the inability to observe any pro-

inflammatory effects associated with exposure of cultured primary microglia (WT or Crry KO) to 

serum is a consequence of the presence of serum factors beyond those typically experienced by 

microglia during BBB disruption. The results of phenotyping experiments using opsonised 

zymosan (Section 4.2.2.2) and immobilised serum proteins (Section 4.2.3) further highlight the 

potential for non-/anti- inflammatory responses to be elicited by serum factors. The possibility 

cannot, of course, be excluded that the observed altered responsiveness is simply a product of 

the in vitro microglial environment. These data further emphasise the importance of context in 

the vectoring of cellular responses.   

5.3.1.2  The Inability to Detect a Primed Crry KO Microglial Phenotype in Vitro 

A possible explanation for this apparent inability of C3-derived CR3 ligands to induce a primed 

phenotype in Crry KO microglia in vitro is that having been already primed by C in vivo, Crry KO 

cells, unlike WT, fail to respond to subsequent C3-CR3 ligation with a priming effect. The 

importance of the context-differences of the systems employed must also be emphasised: the 

study of Crry KO cells attempted to closely mimic the original in vivo study, utilising the intrinsic 

sensitivity of Crry KO cells to achieve C-activation and C3-deposition on them by adding 

autologous normal serum directly to the cells in culture; the results described in the previous 

chapter (Section 4.2.3.2.3) seeded WT cells directly onto C3-activation fragment coated TC plastic 

surfaces, obtained by incubation of autologous normal serum in plastic TC wells followed by 

multiple washes. Crry KO cells were therefore exposed, albeit briefly, to a plethora of other serum 

factors (including CR3 ligands e.g. fibrinogen) which have potential to modify the phenotypic 

response to CR3-ligation by C3-derived products. In contrast, in the experiments detailed in the 
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previous chapter, the relative abundance of C3-derived CR3 ligands would be dramatically 

increased, since C3-activation fragments actively attach to activating surfaces through covalent 

bonding via the TED, whereas other serum factors attach passively through adsorption. 

Furthermore, the probable differences in the scale of the exposures should also be emphasised: in 

the results described in the previous chapter, although a higher serum concentration was used 

(35% Vs 10%), the vast majority of serum factors, including C3-activation fragments, would fail to 

adhere and subsequently be washed away; in the experiments with Crry KO cells, cells would 

invariably be exposed to the entirety of the serum load. It is therefore likely that the scale of the 

exposures in the different systems varied widely both quantitatively and qualitatively and may 

well account for the apparent discrepancy of between the phenotypic effects of C3-derived CR3 

ligands observed therein. Indeed, given that the CNS is shielded from peripheral C by the BBB, the 

level of C activation to which Crry KO cells are exposed in vivo is likely to be very low (albeit 

chronic).  

A key point, however, is the duration of exposure to C3-derived CR3 ligands required to induce a 

phenotypic response when deposited on Crry KO cells during autologous C activation. Given that 

in the in vivo scenario C activation in the Crry KO microglial locality is chronic (although probably 

low-grade), iC3b ligation of CR3 is presumably continuous over the lifetime of the animal (1). In 

the in vitro investigation of Crry KO microglia described in this chapter, the phenotypic effects of 

just a single, acute C (1hr) exposure were tested, distancing the experimental system in its 

approximation of the in vivo Crry KO setting. This also presents a key difference between the 

results of the previous chapter where priming was successfully demonstrated (Section 4.2.3.2.3), 

where priming-trigger exposure was overnight. On reviewing the data, it seems clear that the 

length of time between the iC3b-CR3 ligation event (i.e. the priming-trigger) and the LPS exposure 

(i.e. the activator) is of pivotal importance for the elaboration of any priming phenotype. Indeed, 

on reflection it appears highly likely that a period of at-least several hours would be necessary for 

the cellular phenotypic consequences of iC3b-microglial CR3 ligation to become fully initiated, 

since the process of priming is likely to involve mid-longer term cellular responses (i.e. changes in 

gene expression beginning at the level of transcription, proliferation). It is therefore possible that 

the requirement for a more prolonged C exposure (due to autologous C activation) than was 

employed here underlies the inability to induce a primed phenotype in Crry KO microglia in vitro. 

Future work should revisit this key point and investigate the effects of longer-term exposures to 

C3-derived CR3 ligands on Crry KO microglia resulting from uncontrolled C-activation. Although 

the investigation of a system which re-created the in vivo scenario was the aim of the studies 

presented here, future work could also investigate the use of Crry KO primary microglia in the 

same experimental system utilised in the previous chater (Section 4.2.3.2.3) to successfully 
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achieve priming in WT cells. This would address questions concerning both the timings of the 

priming and activation triggers and the quantitative and qualitative differences between the 

factors present in the different systems designed to achieve iC3b-CR3 ligation.        

A fundamental way in which the in vitro experimental system employed here differs from the in 

vivo Crry KO scenario is the absence of countless of the in vivo factors with which microglial cells 

interact in the live animal. Given the accumulating evidence (including results presented in 

Section 3.2.2) that other CNS cell types have important effects on microglial activation, 

particularly the inhibitory effect of neuronal-microglial ligand-receptor partners (e.g. CD200-

CD200R, CX3CL1-CX3CR1) (173, 246, 249), it is conceivable that in their absence important aspects 

of normative microglial biology would be perturbed enough to prevent the elaboration of normal 

(including C-induced priming) responses. Indeed, this is perhaps a more obvious explanation for 

the inability to detect a C-dependent primed phenotype in Crry KO microglia than any 

consideration of the fine details of the nature of the C exposure and CR3 ligation. However, the 

results presented in the previous chapter, where C3-derived CR3 ligands were found to induce a 

primed phenotype in isolated WT microglia, indicate that the absence of other CNS cell types does 

not necessarily exclude the induction of a primed phenotype by C3-derived CR3-ligands. 

Experiments involving mixed CNS cell cultures would be required to assess the influence of other 

CNS cell types on microglial priming. 

Moreover, in the absence of clear phenotypic effects attributable specifically to the presence of 

C3-activation fragments in the system, it remains unclear whether C3-activation fragments 

deposited on Crry KO cells in vitro actually functionally engage CR3: While the presence of C3-

activation products specifically on Crry KO microglia was definitively demonstrated, the 

engagement of microglial CR3 by these products was not, thus raising the possibility that C3-

activation fragment mediated CR3-signalling was not induced or was insufficient to have a priming 

effect. Indeed, in-contrast to the 3-dimensional situation in vivo, the microglial culture systems 

employed here had a standard 2-dimensional, planar nature and thus, although pure populations 

were used, the sum of total microglia-microglia interactions would be expected to be reduced 

relative to the scenario in vivo. It is unknown whether an individual cell can reposition CRs in its 

membrane to engage a C3-derived ligand deposited thereon, although presumably some ligand 

could be deposited directly upon a receptor, or in sufficiently close proximity to be engaged by it 

(at a frequency dependant on the densities of both the receptor and ligand). Although this issue 

of ‘auto-signalling’ applies equally in vitro and in vivo, it is therefore impossible to delineate the 

relative contributions of ‘auto-signalling’ (i.e. CR3 in a membrane engaging C3-derived ligands 

deposited therein) and ‘juxta-signalling’ (i.e. CR3 in a membrane engaging C3-derived ligands 

deposited on the membrane of a neighbouring cell) to the induction of the primed microglial 
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phenotype reported in Crry KO mice in vivo. As stated previously (Section 4.3.1) the induction of 

the intracellular signalling responses associated with CR3/CD11b:CD18 integrin ligation could be 

invesitaged (e.g. phosphorylation of SFKs, ERK/MAPK, Rho-GTPases, etc.) as a means to assess 

functional engagement of CR3 in a system dependent on its ligation.  

 

To summarise: through isolating the cells in vitro, the effect of C withdrawal on the Crry KO 

microglial phenotype was tested. The lack of distinction between Crry KO and WT microglia in 

vitro under basal conditions would appear to further indicate that in the absence of C3-derived 

CR3 ligands, the primed Crry KO-specific phenotype is lost. However, when the intrinsic sensitivity 

of Crry KO microglia to C-activation was exploited in vitro to recreate the mechanism of priming 

proposed based on in vivo observations (1), a phenotypic effect consistent with priming failed to 

emerge. In-light of the results presented in the previous chapter (where C3-derived CR3 ligands 

were found to induce a primed phenotype in isolated WT microglia; Section 4.2.3.2.3), along with 

those of the original report of C-depoendent microglial priming in the Crry KO in vivo setting (1), it 

seems logical to conclude that the failure to detect a C-induced primed phenotype in Crry KO 

microglia in vitro is either a consequence of the cells being resistant or intolerant having already 

been primed by C in vivo, an inability to adequately mimic the in vivo Crry KO scenario (with 

timing of CR3-liagnd exposure being a key issue), and/or an inability to detect the primed 

response. Additionally, given the accumulating evidence of the importance of interactions with 

other CNS cell types for microglial responses (173, 177, 246-249) the very nature of the highly 

purified cultured cells employed may have conspired against the ultimate goal of these 

experiments and precluded the stimulation of a primed microglial phenotype by C. These 

observations do not exclude a role for C activation in the promotion of a primed phenotype in vivo 

but demand a more careful consideration of how to study and elicit these responses in vitro, 

particularly in terms of the issure of timing between the priming and the activatin triggers. 

5.3.2 Crry as the Key Regulator of Microglial Sensitivity to Autologous C Activation 

The results presented in this chapter clearly show that Crry is critical for protection from 

autologous C3 activation, but ineffective against heterologous C. These findings support previous 

reports of species restriction of Crry function (156, 157, 164). However, to my knowledge, this is 

the first time sensitivity of microglial cells to C activation has been assessed in vitro. These 

findings reveal that, similarly to other murine cell types, Crry is critical for microglial protection 

from autologous C activation and indicates that functional redundancy is not achieved through 

other C-regulators. Furthermore, while Crry KO cells were clearly far more sensitive to C3 

deposition, in-contrast to the results with human serum, autologous serum had no effect on 
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viability. Since viability appears to be directly related to MAC formation (based on results with 

human serum on both BV2 and primary cells) it seems reasonable to summarise that: a) the 

primary cells are protected against MAC formation; b) the level of C3 deposition achieved on Crry 

KO cells, although readily detectable, was insufficient to trigger sufficient C5-covertase formation 

and C5-activation to trigger MAC-mediated lysis, and/or; c) the known decreased terminal 

pathway activity of mouse Vs human serum (144, 403) resulted in a failure to trigger lysis, 

regardless of abundant deposition of C3-activation fragments. Given the results described in 

chapter 3, it appears that BV2 and primary microglial cells express similarly low levels of CD59, 

suggesting that differential expression of MAC-regulators isn’t responsible for the difference in 

sensitivity to lysis by autologous Vs heterologous serum. Based on this evidence, coupled with the 

sensitivity of primary microglial cells (both WT and Crry KO) to MAC-mediated lysis in the 

presence of human C (Fig.5.4), it seems likely that the well documented species difference in the 

lytic activity of serum from human and mouse (144, 403) underlies the failure of incubation with 

autologous serum to result in the lysis of primary microglial cells, regardless of Crry expression 

status and sensitivity to C3-deposition. This issue could readily be further investigated by assaying 

C activation on BV2 cells using WT mouse serum as the C source and/or attempting to further 

increase the level of autologous C activation (and thus achieve MAC-mediated lysis) by sensitising 

cells with a C-fixing Ab. Moreover, since the main aim of this study was to explore the 

consequences of microglial CR3-ligation by iC3b resulting from unrestricted C3 activation and 

deposition, specifically on Crry KO microglia i.e. Ramaglia et al., 2012 (1), the failure of autologous 

serum to result in lysis at any concentration, coupled with the Crry KO-specific sensitivity to C3-

deposition, was beneficial in-terms of the requirement to balance maximal C3-deposition on Crry 

KO cells against minimal cell death. 
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6 Discussion 

6.1 Study Outline 

Microglia, the sole-resident innate immune cells within the highly specialised and sensitive 

environment of the CNS parenchyma, interact with their environment through a wide variety of 

receptor-based detection systems (173). Prompted by a previous in vivo investigation in Crry KO 

mice (1), this study chiefly sought to characterise in vitro the consequences of ligation of the 

hetero-dimeric integrin receptor CR3 with its archetypical ligand [the iC3b fragment of C (284)] on 

the microglial immune response, specifically in the context of the induction of a primed/hyper-

responsive state. Furthermore, the in vitro phenotype of Crry KO microglia, previously shown to 

be functionally ‘primed’ in vivo (1), was a focus of this project. The results presented in this thesis 

further illustrate the potential for C-derived CR3 ligands to induce exaggerated microglial 

inflammatory responses, whilst also further emphasising the importance of the context of 

interactions for cell fate.  

Additionally, through the use of BV2 cells in validating the identity of primary microglial cells 

isolated from adult mouse CNS tissue, a mouse microglial cell line was compared directly with 

primary mouse microglia in-order to assess their resemblance and thereby determine the 

suitability of cell lines as a substitute for primary microglia. In-view of increasing awareness of the 

importance of microglial interactions with other CNS cell types (173, 177, 246-249), the 

phenotype of microglia maintained in isolation or in mixed CNS cultures was also investigated. 

6.2 Summary of Main Findings 

6.2.1 The Influence of C on In Vitro Microglial Phenotypes 

6.2.1.1  Purified Fluid-Phase Human iC3b 

In an initial attempt to define the consequences of microglial CR3 ligation by iC3b in the simplest 

possible system of cell treatments, commercially-available purified fluid-phase human iC3b was 

used as an agonist of CR3 on cultured primary microglial cells. Although interaction could be 

detected, binding studies using fluorescently labelled ligand (iC3b-fluorescein) along with blocking 

antibody directed against the iC3b-binding site of CR3 were unable to definitively demonstrate 

specific binding of fluid-phase human iC3b to mouse microglial CR3. Coupled with the absence of 

any overt phenotypic effects, it therefore remained unclear whether the xenogeneic ligand can 

engage the receptor in this system, or whether iC3b is simply unable to exert significant 

phenotypic effects when in the fluid-phase. Nonetheless, previous studies demonstrate the ability 

of fluid-phase iC3b to bind its cell-borne receptor (283, 351, 356) along with the ability to use 

fluorescently labelled soluble CR3 ligands to demonstrate specific binding (337). Combined with 
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the results of sequence comparisons (Section 4.2.1.2.2) and binding studies using zymosan 

opsonised with NHS alongside mouse microglia (Section 4.2.1.2.3), these data indicate that there 

should be no intrinsic impediment to fluorescent human fluid-phase iC3b ligating mouse cell-

borne CR3 and detecting this interaction through the method employed. Furthermore, it has been 

illustrated that the physical state of CR3 ligands (e.g. fibronectin) can have important impacts on 

subsequent cell responses, specifically that only immobilised ligands have phenotypic effects 

(334-336, 356) and that multivalent receptor occupation is required to achieve signalling (331, 

356-359). The data presented in this thesis is broadly in line with these studies, indicating that 

monomeric fluid-phase iC3b is incapable of inducing a significant effect on the microglial 

activation response. 

6.2.1.2  Zymosan 

In-light of the difficulties associated with the use of fluid-phase xenogeneic iC3b, alternative 

approaches were sought which would circumvent these issues. The well-characterised particulate 

C-activator, zymosan (233, 404), was thus employed to generate fixed C3-derived CR3 ligands. 

These studies were aided by the commercial availability of fluorescently-labelled zymosan for use 

in binding assays, along with the ability to utilise WT mouse serum as a C-source in-parallel with 

C3 KO serum as a negative control to account for non-specific effects of serum opsonisation. 

Using non-opsonised fluorescently labelled (AF488) zymosan, along with particles opsonised with 

WT or C3 KO serum, in combination with anti-CR3 blocking reagent, the specific contribution of 

CR3 to both opsonic and non-oposnic microglia zymosan phagocytosis was characterised. 

Importantly, it was determined that C3-dependent microglial opsonic zymosan phagocytosis is 

exclusively CR3-mediated and that this represents a significant proportion (~25%) of total 

zymosan phagocytosis. Phenotyping assays demonstrated clear effects specific to iC3b-CR3 

interactions; however, the specific effects of iC3b-CR3 interactions on microglial responses (both 

basal and to LPS) were masked greatly in this system by the major intrinsic activating effects of 

the β glucan-rich zymosan particles used to bear iC3b. Nonetheless, in alignment with studies 

concerning the consequences of CR3-mediated opsonic and non-opsonic phagocytosis in other 

cell types (312, 327-329, 362-364), non-opsonic CR3-mediated (i.e. β-glucan site-mediated) 

microglial phagocytosis was found to be potently pro-inflammatory, whilst in sharp contrast, 

opsonic CR3-mediated (iC3b site-mediated) zymosan phagocytosis was found to be non-

inflammatory. Furthermore, it was shown that the non-inflammatory effects of iC3b-CR3-

mediated phagocytosis can lead to a net reduction in inflammation upon secondary exposure to 

an activating trigger (Section 4.2.2.2.2). 
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6.2.1.3  C3-Activation Fragments Immobilised on TC Plastic 

6.2.1.3.1 Using C-Fixing mAb 

The complexities associated with the use of zymosan as an iC3b-bareing particle called for the 

pursuit other strategies to achieve specific engagement of microglial CR3. A design based on the 

classical C activation pathway was employed where a C-fixing in-house mouse mAb (354) was 

utilised alongside WT mouse serum (as a C-source) to achieve deposition of C3-activation 

fragments on TC plastic, in-parallel with C3 KO serum (as a negative control). In similar vein to the 

results seen with zymosan, the activation of serum-borne C resulted in specific effects on 

microglial responses, however, the presence of the C-fixing mAb-coat itself had a potently pro-

inflammatory activating effect on the basal microglial phenotype which prevented assessment of 

the isolated effects of iC3b-CR3 interaction. These data are also in alignment with other studies 

concerning the consequences of FcR-ligation on microglia along with other cells (367, 368). 

6.2.1.3.2 Native TC Plastic 

Although use of the C-fixing mAb-based system described above yielded the greatest deposition 

of C3-activation fragments on TC plastic, it was noted that even on native TC plastic, signal for 

deposited C3-activation fragments was readily detectable and, at higher serum titres, was 

comparable with that achieved using the C-fixing mAb (Fig.4.11). The mAb was therefore removed 

from the design, yielding a system devoid of other factors beyond TC plastic and those found in 

(mouse) serum; through use of WT and C3 KO mouse serum, it was therefore possible to isolate 

the specific effects of iC3b-CR3 ligation on basal microglial responses. Marked phenotypic effects, 

specific to the presence of C-derived CR3 ligands, which are consistent with priming (e.g. changes 

in basal morphology in the absence of pro-inflammatory effector release; exaggerated pro-

inflammatory LPS-response) were observed, particularly in primary microglia. Coupled with the 

finding that CR3 is the principle microglial receptor for C3-activation fragments, these data 

demonstrate that ligation of microglial CR3 by its archetypical ligand (iC3b), can induce a primed 

phenotype in this in vitro setting of relatively isolated CR3 ligation. 

6.2.1.4  Crry KO Microglia 

Investigations using cultured Crry KO microglia showed that the sensitivity of these cells to C 

activation at the C3-level is clearly elevated, in a similar manner to that seen in vivo (1). While 

other studies have investigated the expression of membrane C-regulators (i.e. DAF, Crry, CD59) by 

CNS cells (394, 395) and thereby inferred that Crry is the chief microglial form, to my knowledge 

this is the first time that the sensitivity of microglial cells to C activation has been assessed in 

vitro, and certainly the first time that the deposition of C3-activation fragments (along with 

viability) has been charted directly and shown to be altered as a function of differences in 
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membrane C-regulator expression. Nonetheless, unlike in vivo (1), investigations of the in vitro 

Crry KO microglial phenotype failed to show any consequence of Crry expression status, even 

when the intrinsic sensitivity of Crry KO cells to C3 activation and deposition was exploited, thus 

mimicking the in vivo scenario (including the potential for iC3b ligation of CR3). While perhaps 

somewhat surprising, this result further illustrates the critical importance of context in 

determining the outcome of microglial CR3 engagement by its cognate ligand, iC3b.. 

6.2.1.5  Summary 

Overall, specific effects attributable to the interaction of iC3b with microglial CR3 have been 

demonstrated, some of which are compatible with the induction of a primed microglial 

phenotype while others are associated with non-/anti- inflammatory responses. The picture that 

has emerged is that the effects of CR3 ligation are heavily influenced by the combination of the 

binding site(s) engaged, valencey of ligands, presence of other ligands (both CR3 and non-CR3), 

adhesive substrates and cell type. The interactions of these numerous factors culminate in a 

spectrum of CR3 functional responses, the range of which is striking: from non-/anti-inflammatory 

(e.g. iC3b-CR3-mediated phagocytosis) to the potently pro-inflammatory (e.g. β glucan-CR3-

mediated phagocytosis). 

The findings presented here which centre on the binding of microglial CR3 by iC3b make novel 

contributions to the understanding of the phenotypic consequences of ligation of C receptors for 

the larger (i.e. non-C3a) fragments of activated C3, including the concept of C-dependent priming. 

Furthermore, they also contribute to the broader theme which is emerging in recent times 

regarding the important influence that C has on microglia and other CNS cells and how these 

interactions are involved in diverse processes ranging from developmental, homeostatic and 

protective to ageing and degenerative (96, 178, 222, 405-409). 

6.2.2 Microglial Culture Systems 

6.2.2.1  Primary Vs Cell Lines 

A comparison of primary mouse microglial cells with a widely utilised microglial cell line derived 

from the same species (BV2) was performed. This initially served as a comparator and validation 

tool for the isolated primary cells, but by the same token, subsequently served as a means to 

assess the degree to which this cell line approximates its intended replacement (i.e. primary 

mouse microglial cells) and thus its suitability for its purpose. This comparison revealed that while 

all aspects of microglial biology investigated were retained in BV2 cells, many were suppressed 

(e.g. level of surface marker expression, cytokine secretion) or otherwise altered (e.g. 

morphology, proliferation rate) relative to primary cells. These findings are in alignment with 

those of others who have investigated the same issues (183, 192, 240, 258) and lead to the 
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conclusion that while BV2 cells are a useful tool for investigations pertaining to microglial biology, 

they are an imperfect replacement for primary cells. This is particularly true in the case of 

functional studies (i.e. dependent on cellular responsiveness), where relatively low gene 

expression levels and rapid-turnover rate of BV2 cells Vs primary microglia reduces their ability to 

faithfully mimic key aspects of microglial biology. This is exemplified by the experiments involving 

the culture of microglia on C3-activation fragment-coated TC plastic prior to LPS activation 

(described in Sectons 4.2.3.2.2 and 4.2.3.2.3), where priming was far more evident in primary 

microglia Vs BV2 cells.   

6.2.2.2  Isolated Microglial Vs Mixed CNS Cultures 

Given the emerging theme of the importance of inhibitory surface interactions of microglia with 

other CNS cell types (particularly neurones) for the maintenance of a resting/basal phenotype 

(173, 177, 246-249) a minor investigation into the activation response of primary microglia 

maintained in isolation or in mixed CNS culture was conducted. This revealed distinct differences 

in the profile of surface CD11b expression during microglial activation, illustrating detectable 

changes in microglial phenotype which are dependent on the presence of other CNS cell types. 

This is one of the very few experimental studies to-date which has directly addressed the question 

of how microglia maintained in isolation differ from those cultured in mixed populations and 

provided some quantitative measure to this end. The concept of taking measures to restore 

microglial culture systems to a closer approximation of their in vivo environment in-terms of 

interactions with other CNS cells (e.g. through supplementing the culture medium with neurone-

derived ligands) has recently been established (249) and could become an important and popular 

tool for in vitro microglial research in future; This work therefore contributes towards the 

development of this concept. 

6.2.2.3  Summary 

Combined with in vivo models for the study of CNS cell biology and neuroinflammation, methods 

for the in vitro culture of microglia (and other CNS cells) will continue to be an important tool for 

research into all aspects of their biology for the foreseeable future. The findings related to 

microglial culture systems presented here (i.e. cell lines Vs primary cells; isolated Vs mixed) 

contribute to the ongoing development of this important resource. With increasing recognition 

and manifestation of the current and future global mental health burden leading to emphasis on 

research into neuro-inflammatory mechanisms, in vitro experimentation with microglia (and other 

CNS cells) will likely feature even more prominently in future, thus increasing the value of such 

design improvements.     
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6.3 Future Directions 

6.3.1 Purified iC3b 

Investigations using commercially available purified human iC3b in the fluid-phase were 

confounded by the inability to determine with certainty whether the interaction of the soluble 

protein with mouse microglial cells was specifically mediated by CR3, leading to difficulties in 

making definitive conclusions regarding the lack of overt functional effects of soluble iC3b 

treatment. Since a system utilising purified iC3b provides the ‘cleanest’ possible approach to the 

exploration of the isolated effects of microglial CR3 ligation by C, it would be desirable to employ 

this strategy with greater effectiveness having established the fundamental element of specific 

interaction between ligand and receptor. Although the technical difficulties (including acquiring 

the necessary volume of C-sufficient mouse serum) coupled with the commercial availability of 

soluble human iC3b preparations meant an attempt to purify mouse iC3b was never made, 

soluble iC3b could be generated and purified from fresh mouse serum. This purified mouse iC3b 

could then be employed, initially in attempts to establish the specificity of binding, then in 

experiments concerning the functional consequences of treatment. This approach would (of-

course) circumvent the issues associated with species-mismatch and would determine if this 

underlies the failure to definitively show binding specificity. Furthermore, in a further attempt to 

assess binding specificity, a plate-based system for detection of interaction of the fluorescently-

labelled soluble ligand with an immobilised binding partner (i.e. microglial CR3), similar to that 

used to assess the ability of fluorescently-labelled soluble human iC3b to bind immobilised 

specific mAb (Section 4.2.1.2.1.1), could be employed. This approach has the distinct benefit over 

the FACS based assay used to assess specific ligand – cell-borne receptor binding in this study of 

the ability to assess binding while the cells remain in their native state (i.e. adherent). 

Furthermore, based on the results of the comparative assessment between the BV2 microglial cell 

line employed and primary microglial cells (Section 3.2.1.1), along with those which demonstrate 

more pronounced effects of iC3b-CR3 interaction in primary microglia Vs BV2 cells (Section 

4.2.3.2), it appears that primary microglia express greater levels of surface CR3 and are thereby 

more responsive to iC3b ligands. Although, primary cells were used for phenotypic/functional 

experiments, BV2 cells were employed to assess specific ligand-receptor binding. Therefore, in-

order to definitively demonstrate the specificity of ligand-cell borne receptor binding, future work 

would be best served by employing primary cells. Moreover, in-order to demonstrate specific 

and/or functional iC3b-CR3 binding, the ablity to detect activation of CR3/CD11b:CD18 integrin-

linked intracellular-signalling mediators (Section 4.1.3) would be highly valuable. 

Additionally, based on the known potential importance of the physical state of CR3 ligands (331, 

334-336, 356-359), and the interesting results from experiments using fresh mouse serum to 
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achieve immobilisation of C3-activation fragments on TC plastic (Section 4.2.3.2), future work 

using purified iC3b preparations could seek to immobilise the ligand onto TC plastic and then seed 

microglial cells onto this opsonised/coated surface, in-order to investigate the potential 

phenotypic effects. This avenue was briefly explored in preliminary investigations using 

immobilised purified human iC3b and BV2 cells. However, as attempts to demonstrate specific 

binding through adhesion assays failed, this approach was not pursued further, although in 

hindsight there is a possibility that this failure to exhibit specific interaction was simply a 

consequence of the relatively low expression levels of CR3 by BV2 cells. 

6.3.2 The Priming Effect of Immobilised Mouse iC3b Derived from Serum Borne C3 

The most positive finding to emerge from this study in support of the C3-dependent mechanism 

of microglial priming reported by Ramaglia et al. (based on observations in Crry KO mice) (1) is 

that concerning the phenotypic effects of C3-activation products immobilised on TC plastic 

generated from serum-borne mouse C3 (Section 4.2.3.2). However, this remained largely 

undefined. Thus a clear objective of future work could be to explore the fine details of the C-

primed state, including its functional consequences. To this end, attempts to define the molecular 

hallmarks of C-mediated microglial priming would perhaps be best served by the employment of 

systems biology approaches such as global gene expression analyses (e.g. oligonucleotide 

microarray, RNA sequencing technology, quantitative mass-spectrometry/TMT) which have the 

interrogative power to detect differences in cellular factors involved in every aspect of cell 

function. This will likely be necessary to distinguish between the C-primed microglial phenotype 

and those induced in other non-physiological settings (e.g. other modes of priming and 

dysfunction such as: activation through P/DAMPs such as LPS, β-glucan and β-amyloid; aging; 

CD200 deficiency; prion-infection). Indeed, in other scenarios of priming (i.e. ageing and 

neurodegeneration), Holtman et al. have recently reported the application of such global 

approaches to phenotyping (oligonucleotide microarray) and provide what is probably the most 

detailed picture to-date of its molecular hallmarks in the form of a distinctive transcriptomic 

profile (235). Having initially being defined through functional readout of soluble inflammatory 

effector release in different contexts, this represents a significant step forward in the 

characterisation of the primed microglial phenotype.  

Perhaps the most interesting potential avenue of future research stemming from this study is that 

concerning the consequences of C-mediated in vitro priming in a wider context than the simple 

measurement of inflammatory effector molecule release, such as those for neuronal and 

(thereby) cognitive integrity. In pursuit of a greater understanding of this, future studies could 

employ mixed systems where C-primed microglia are cultured alongside neurones and the effect 

of a subsequent insult assessed on parameters of neuronal function and viability. In an in vivo 
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setting, C-primed microglia could be transferred to a host CNS before or alongside an 

inflammatory insult (e.g. TBI, ischaemia, infection, LPS-administration) and the effect on the 

clinical profile, along with parameters derived from tissue analysis (e.g. histology, RNA 

profile/gene expression, protein expression) assessed. Furthermore, particularly since microglial 

priming is thought to be a common event/process which occurs with ageing and contributes to 

the cognitive decline and diseases (e.g. Alzheimer’s) associated with it (223), future research 

pursuing therapies to modulate neuro-inflammation should consider the development of 

strategies to reverse priming.        

6.3.3 Crry KO Microglia 

The failure to demonstrate any difference in the activation profile between cultured Crry KO and 

WT microglial cells, even under conditions which exploit the clear C-sensitivity of Crry KO cells and 

thereby closely approximate the in vivo setting in which the initial report of their primed 

phenotype originates (1) (Chapter 5), is perhaps surprising, especially given the priming effect 

achieved with WT cells and immobilised serum-derived C3-activation products discussed above. 

Several possible explanations exist for this inability (see Section 5.3.1.2) and should be explored in 

more depth, with the issue of timing between the priming and activation triggers believed to be 

of particular importance. Such studies should continue to explore the magnitude of the Crry KO 

microglial activation response and determine definitively if the inability to show an altered 

phenotype [such as that described in vivo (1)] is a genuine feature of Crry KO microglia in vitro or 

was due to some inaccuracy or imprecision in the fidelity of the experimental design or artefact. 

6.3.4 The Assessment of IL-1β as a Priming Marker 

Initial studies into microglial priming using in vivo prion disease models identified dramatic 

increases in IL-1β expression as an important feature of the activation-profile of primed microglia 

(217, 221). Research involving the same investigators also linked IL-1β production to systemic 

infection and cognitive decline in Alzheimer’s disease patients (229). Other investigators have also 

noted exaggerated IL-1β production as a central feature following the activation of primed 

microglia (1). While other major soluble pro-inflammatory mediators were measured, including 

TNF-α, IL-6 and NO, all of which have been implicated as components of the primed microglial 

activation profile (1, 217, 221), the measurement of this key cytokine was omitted during 

experiments involving the measurement of cytokine release of microglial cells exposed to priming 

stimuli. It is possible that the inclusion of IL-1β as an analyte would have revealed a far different 

different picture of the relationship between iC3b-CR3 ligation and microglial priming. Future 

studies concerned with this research theme should undoubtedly include IL-1β as a primary 

analyte of interest. Furthermore, the production and release of IL-1β has an important and 

emerging link to the inflammasome, which analogous to priming, also features a ‘two-hit’ 
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functional model. An area with great research potential is that of the links between the functional 

stages in microglial priming (i.e. primed and activated), and the step-wise synthesis and release of 

IL-1β via the inflammasome.                

6.3.5 Exploiting CR3 Non-Inflammatory Responses 

A notable finding in this study was the striking spectrum of responses elicited by microglial CR3 

ligation ranging from distinctly pro-inflammatory (e.g. β-glucan binding-site mediated 

phagocytosis) to non-inflammatory (e.g. iC3b binding-site mediated phagocytosis). Furthermore, 

it was shown that the non-inflammatory effects of iC3b-CR3-mediated phagocytosis can lead to a 

net reduction in inflammation upon secondary exposure to an activating trigger (Section 

4.2.2.2.2). Previous studies have considered the potential to exploit the mechanistic quirks of CR3 

ligation by promoting β-glucan site ligation to induce pro-inflammatory responses to iC3b-bearing 

targets (i.e. cancer cells) (313). An interesting possibility which further employs this concept of 

exploiting CR3 mechanisms would be the potential to promote non-inflammatory iC3b-CR3 

mediated phagocytosis leading to a net inflammatory reduction in pathological conditions in-

which predictable pro-inflammatory mechanisms (e.g. FcR- and CR3 β-glucan site- mediated) 

prevail (e.g. relapsing Ab-driven autoimmunity and hypersensitivity, surgery, infection and sepsis). 

In-order to explore the viability of this approach a common animal model of in vivo inflammation 

could be employed: particles which possess minimal inflammatory potential such as latex beads 

(unlike e.g. zymosan) could be opsonised with iC3b and then transferred to the peritoneal cavity 

of an experimental animal; the effects of this treatment on the net response to a subsequent pro-

inflammatory trigger could then be investigated, through measures such as the dynamics and 

phenotypic/functional status of immune cell populations found therein, systemic levels of 

inflammatory effectors (e.g. cytokines), etc. 

6.4 Concluding Remarks 

As the sole resident innate immune cells within the CNS parenchyma which are unique in origin to 

all other cell types normally resident therein (along with resident innate immune cell populations 

in peripheral organs e.g. macrophages and dendritic cells), microglia are highly specialised cells, 

both in-terms of function and development, in a very sensitive organ. They exist to support and 

maintain the normal CNS physiology but intrinsically, due to their function and nature as fully 

competent innate immune cells, possess the potential for non-discriminatory damage and 

destruction of their host tissue which they are intended to protect. With the accumulation of 

insults through normal ageing, local pathology (e.g. trauma, infection, ischaemia) and 

inflammatory signals delivered from the periphery (e.g. arising from systemic infection or 

trauma), the balance of microglial responses is tipped in-favour of a pro-inflammatory, 

intrinsically self-destructive nature. Questions concerning the fine details of the molecular 
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mechanisms which mediate these changes are only just coming into the focus of the research 

community and attempts to answer them will likely lead to important developments in the 

understanding of neuro- inflammatory and degenerative conditions, and potentially the 

emergence of new therapeutic targets to combat the cognitive decline which is a sequela of these 

pathologies. The work presented in this thesis makes a small contribution towards understanding 

the role of C in this process. The development of validated therapeutic targets to modulate the 

activities of microglia in disease processes will almost certainly be of extreme importance for the 

development of therapies for neuro- inflammatory and degenerative conditions. Indeed, the 

challenge of, and potential for, therapeutic microglial targeting is also coming to the fore in the 

field of neuroscience research (182, 410-412). Perhaps the greatest hope in this sphere of interest 

is that future work in the vein of understanding microglial function in health and disease along 

with therapeutic targeting reaches a level of sophistication where efficacious microglia-orientated 

therapies are developed. This is particularly true for the most common and debilitating form of 

CNS disease for-which no effective therapy is available and the burden is forecast to increase 

greatly in coming decades (i.e. Alzheimer’s) (224). Although major progress is required before any 

sort of microglia-targeted/specific therapy is sufficiently developed to enter clinical (or even pre-

clinical) use, we should perhaps take heart from the fact that this avenue of research is still in its 

infancy and many stones yet lay unturned. 
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Ambion, Life Technologies Ltd., Paisley, UK 

Applied Biosystems, Life Technologies Ltd, Paisley, UK  

Becton Dickinson, Oxford, UK  

BioLegend, London, UK 

Biomers.net GmbH, Ulm, Germany  

Bio-Rad Laboratories Ltd, Hemel Hempstead, UK  

BMG Labtech, Aylesbury, UK 

Complement Technology, Inc., Tyler, Texas, USA 

Corning B.V Life Sciences, Amsterdam, Netherlands  

eBioscience Inc., San Diego, USA  

Fisher Scientific, Loughborough, UK  

Gibco, Life Technologies Ltd, Paisley, UK  

GraphPad Software Inc, San Diego, CA, USA  

Greiner, Stonehouse, Gloucestershire, UK  

Hycult Biotech, Uden, Netherlands  

Invitrogen, Life Technologies Ltd, Paisley, UK 

Jackson Immuno Research Europe Ltd, Suffolk, England  

Millipore (U.K.) Ltd, Watford, UK 

Miltenyi Biotec, Surrey, UK  

MJ Research Inc., St. Bruno, Canada  

New England Biolabs, Ipswich, Massachusetts, USA 
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Starlab, Milton Keynes, USA 

Thermo Fisher Scientific, Waltham, USA 

Treestar, Inc./FlowJo, L.L.C., Ashland, Oregon, USA 

Vector Laboratories, Peterborough, UK  
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