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Abstract The computer graphics and computer vision communities have been working closely together in recent
years, and a variety of algorithms and applications have been developed to analyze and manipulate the visual media
around us. There are three major driving forces behind this phenomenon: i) the availability of big data from the
Internet has created a demand for dealing with the ever increasing, vast amount of resources; ii) powerful processing
tools, such as deep neural networks, provide effective ways for learning how to deal with heterogeneous visual data;
iii) new data capture devices, such as the Kinect, bridge between algorithms for 2D image understanding and
3D model analysis. These driving forces have emerged only recently, and we believe that the computer graphics
and computer vision communities are still in the beginning of their honeymoon phase. In this work we survey
recent research on how computer vision techniques benefit computer graphics techniques and vice versa, and cover
research on analysis, manipulation, synthesis, and interaction. We also discuss existing problems and suggest
possible further research directions.
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1 Introduction

Computer graphics and computer vision be-
gin with inverse problems. Traditional computer
graphics starts with geometric models and pro-
duces photorealistic images, with emphasis on in-
teraction, synthesis, etc. As illustrated in Fig. 1,
traditional computer vision starts with input im-
age sequences and produces geometric models,
with an emphasis on semantic understanding,
matching, etc. The trend that these two fields are
converging has been noticed since the 1990’s [1].
More and more computer graphics researchers are
trying to use vision techniques to help create and
manipulate visual scenes as efficiently as possi-
ble [2]. Using computer graphics techniques to
help solving vision problems is also becoming pop-
ular [3–5].

To date, billions of internet images, videos and
3D models have been created and are shared on
the internet everyday [6]. Such big visual data

have hastened a variety of image/video/geometry
analysis and manipulation applications, by provid-
ing ever existing vast amount of resources which
enable novel applications that are otherwise im-
possible by traditional methods. On one hand,
enabling smart computer graphics tools to intelli-
gently create compelling results with minimal user
interaction requires computer vision techniques to
extract semantic components and knowledge from
the huge volume of available data. e.g. deep con-
volutional neural networks [7], continually boost
state-of-the-art performance for a wide range of
tasks, but typically rely on expensive, large scale,
human labeled data to learn from. To overcome
this bottleneck computer graphics techniques can
be developed to automatically help learning algo-
rithms to collect training examples. The bond
between computer graphics and computer vision
has been further blurred by the emergence of
RGBD image capturing devices, such as Microsoft
Kinect, Intel RealSense, Apple PrimSense, etc.

Footnotes
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Fig. 1. Graphics and vision spectrum: traditional graphics starts on the right with more geometry based, while
traditional vision starts from more image based on the left. Currently, graphics and vision tends to fuse together,
with emphasis on interaction and semantics understanding respectively.

The RGBD images directly associate image and
geometry processing algorithms, making produc-
tive collaboration between computer graphics and
computer vision much easier.

In this paper, we survey recent research on
how computer vision techniques benefit computer
graphics techniques and vice versa. These topics
include saliency aware media processing (Sec. 2),
content understanding for smart image manipu-
lation (Sec. 3), depth estimation and 3D model-
ing (Sec. 4), and data synthesis for visual learn-
ing (Sec. 5). We also discuss existing problems
and suggest possible further research directions
(Sec. 6).

2 Saliency Aware Media Processing

The concept of saliency originates in the study
of human perception, and relates to how some
parts of the scene appear to be more important
than others. The computation of saliency is nor-
mally considered to be primarily a bottom-up (and
therefore general purpose) process, based on local
image features such as colour and contrast [8–11].
Computer vision widely uses saliency, as it pro-
vides a lightweight means to identify the most in-
formative and important areas in a scene, such as
the foreground objects. Another category of the
use of saliency is to help analyse the quality of
images generated by image and video compression
and processing algorithms. For instance, the arti-
facts created by compression need to be quantified

in a perceptually aware manner, and so saliency
is used as a convenient proxy [12]. Many algo-
rithms have been developed for salience detection,
and readers are referred to the recent surveys for
more details [13–15].

There are also many instances in graphics that
can benefit from employing saliency to predict hu-
man perception. One category is the set of appli-
cations which manipulate an image or 3D model,
and incur some error during that process, e.g. im-
age resizing [16] or mesh simplification [17]. Better
results will be obtained if the errors can be re-
stricted to the non-salient parts of the data rather
than the salient parts. Another category is when
some part of the data is to be enhanced by am-
plification, e.g. boosting image intensities [18] or
surface curvature [19]. Restricting the amplifica-
tion to the salient regions tends to produce less
confusing and more attractive results.
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(a) resizing [16]

(b) view selection [20] (c) visualization [21]

Fig. 2. Saliency aware media processing. Images are
reproduced from the corresponding references.

2.1 Content aware resizing

When displaying image content at different
sizes and aspect ratios, content distortion is a com-
mon phenomenon. A smart way for enhancing the
user experience is to make sure that prominent ob-
jects should be kept similar to their original con-
tents and any distortion should be restricted to less
important regions.

The seam carving approach [22] was an
early classic work in content aware image resiz-
ing. It works by greedily removing/inserting one-
dimensional seams passing through regions which
are estimated, via saliency detection, to be of less
importance. Wang et al. [23] further improved the
speed issue and overcame jagged edges via continu-
ous optimization instead of discrete seam carving.
Inspired by conformal energy in geometry process-
ing, Zhang et al. [16] proposed a real-time convex
optimization solution with a closed form solution,
see Fig. 2(a). Several authors have extended the
bottom-up salience measure to incorporate higher-
level aspects, e.g. object semantics [24] and sym-
metry [25]. Image re-targeting has also been ex-
tended to deal with image enlarging [26], stereo
images [27], video sequences [28] and stereoscopic
3D video [29].

Resizing 3D models, while requiring the im-
portant structure of the underlying models to be
retained as much as possible, is of great impor-
tance. Significant research effort has gone into
this area in order to easily place 3D models into
different scenes. Miao and Lin [30] constructed

a quadratic energy function, that incorporated
an edge sensitivity measure, to help guide salient
feature-preserving model resizing, Jia et al. [31] de-
signed a region-based descriptor to compute the
saliency of each region based on its contrast to
neighboring regions and a hierarchical method for
computing saliency. They showed that by optimiz-
ing a global energy function on the mesh, visually
appealing mesh resizing results can be obtained.

2.2 Shape simplification and enhancement

Mesh saliency was first introduced by Lee et
al. [20], which used a center-surround operator
on Gaussian-weighted mean curvatures at multi-
ple scales. They used a weighting map derived
from the computed saliency map to guide the order
of vertex pair contractions to produce mesh sim-
plification, and showed their superiority to other
methods, see Fig. 2(b).

Song et al. [32] also proposed a mesh saliency
method for mesh simplification, which incorpo-
rated the Conditional Random Field (CRF) frame-
work with a saliency detection process. In this
approach, a multi-scale representation for meshes
is first generated and then a CRF is adopted to
detect saliency regions using neighborhood consis-
tency. Zhao et al. [17], provided an alternative ap-
proach for mesh simplification using mesh saliency
[32]. They produced a saliency map by diffusing
the shape index field with the non-local means fil-
ter. Recently, Castelló et al. [33] presented a view
based method for surface simplification using mesh
saliency. They first defined a new simplification er-
ror metric to improve the visual quality of the sim-
plified models and then used viewpoint saliency as
a weighting factor of the quality of the viewpoint.

Enhancing shape signatures so that impor-
tant features could be highlighed for viewing and
artistic reasons also requires estimation of mesh
saliency. In [34], Miao et al. developed a saliency
guided shading scheme for shape depiction by in-
corporating the visual saliency measure of a polyg-
onal mesh into the normal enhancement operation.
Due to the introduction of the visual saliency mea-
sure of the 3D shape, this approach can adjust the
illumination and shading to enhance the geometric
salient features of the underlying model by dynam-
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ically perturbing the surface model. In [19], Miao
et al. presented a visual saliency based shape de-
piction scheme for relief surface. They combined
three different bottom-up feature maps and de-
fined a new multi-channel salience measure. By
incorporating this salience measure into an exag-
geration operation, a saliency-guided shape depic-
tion scheme was developed. Understanding salient
features is also been used to preserve important
shape features during mesh deformation [35].

2.3 Visualization

Visualization aims to guide the observer’s at-
tention to the relevant aspects of the representa-
tion. Therefore, it is important to model aspects
of the human visual system, and saliency provides
a simple approach to doing so.

Kim et al. [21] designed a visual saliency based
operator to help enhance selected regions of a vol-
ume, see Fig. 2(c). They plugged the operator
into an existing visualization pipeline and showed
that based on the center-surround mechanisms of
the human visual system, saliency-guided enhance-
ment for volume visualization was effective and
could be applied in several contexts. Besides,
Jänicke and Chen [18] proposed a metric to mea-
sure the quality of a visualization. They believed
that the distribution of saliency over a visualiza-
tion image could be thought of as an important
measure of the quality of the visualization. Mean-
while, they provided an approach to compute such
a metric for a visualization image in the context of
a dataset.

Semmo et al. [36] used salience to control the
use of different graphic styles and levels of detail
for visualizing a given view of a 3D city model, in
order to direct the viewer’s gaze to the most im-
portant information. Salient regions were rendered
with photorealistic graphics, while non-salience re-
gions were rendered with non-photorealistic graph-
ics, which provided image abstraction. The differ-
ent rendering styles were combined in a seamless
manner using alpha blending.

2.4 3D printing

3D printing as an additive manufacturing
work recently has been applied to a wide range of

applications on account of its ability to facilitate
rapid fabrication of objects of any shape. There-
fore, without doubt, it is one of the hot topics in
graphics.

Song et al. [37] presented a voxelization-based
method for 3D printing which dispenses with con-
nectors, glue, and screws while proposing to con-
nect the printed 3D parts by 3D interlocking. The
object is decomposed into a set of initial 3D inter-
locking parts. To improve their aesthetic property,
these cutting seams are refined by swapping voxels
among adjacent 3D parts so as to avoid putting
cutting seams across salient parts. The salience
of boundary voxels is estimated via a 3D mesh
salience [20] measure.

In [38], Wang et al. present an adaptive width
slicing scheme for 3D printing systems. In or-
der to reduce the printing time while at the same
time maintaining the visual quality of the print-
ing results, they optimise a cost function involving
those two factors, the latter being computed using
a saliency based metric. Furthermore, they gain
greater efficiencies by developing a saliency based
segmentation approach to partition an object into
subparts, and then optimize the slicing of each sub-
part separately.

3 Content Understanding for Smart Ma-
nipulation and Synthesis

While most existing computer graphics tools,
e.g. Adobe PhotoShop and Autodesk Maya,
mainly support low-level operations and are typi-
cally employed for touch-up or local enhancement
of visual content [39, 40], high level image editing
techniques that allow users to specify large scale
meaningful changes using simple interactions have
recently gained great research attention [41–44].
Psychologists believe that humans process and or-
ganize visual information based on relations be-
tween scene structures [45]. Allowing the user to
manipulate content at the level of objects in the
scene, while being aware of scene structure, is an
attractive editing modality that is aligned with our
mental data representation.

However, to mimic real world user experience
with physical environments and to enable object
level manipulation, we need to understand the con-
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tent in the visual data and overcome four major
challenges: i) visual data are composed of un-
grouped elements, e.g. pixels and polygons, rather
than semantic objects; ii) recovering geometry in-
formation about how objects are arranged in 3D
is often an ill-posed problem and unlikely to be
solved in the near future; iii) correlations between
objects are hard to infer but are critical to main-
tain realism during the editing processing; iv) se-
mantic constraints about how objects should be-
have after user adjustments requires not only in-
formation about the target being manipulated, but
also prior knowledge that exists in human experi-
ence and big internet data.

(a) RepFinder [46] (b) object manipulation [47]

(c) 3-Sweep [43] (d) image montage [48]

Fig. 3. Content understanding for smart manipulation
and synthesis. Images are reproduced from the corre-
sponding references.

3.1 Smart Manipulation

With an increased level of content under-
standing provided by computer vision techniques,
visual media manipulation tools could more intel-
ligently infer user intentions, thus reducing the re-
quirement of precise user input and tedious inter-
actions.

In [46], the RepFinder system detects approx-
imately repeated objects and builds dense corre-
spondences between them, to enable object level
manipulation whilst preserving correlations among
the repetitions, see Fig. 3(a). Goldberg et al. [47]
proposed a data-driven approach to interactively
manipulating objects in a photograph using re-
lated objects obtained from internet images, see
Fig. 3(b). By matching the candidate object with
user input strokes, the system automatically finds

candidate objects from the internet, enabling a
range of novel editing experiences that is impos-
sible with low-level operations (e.g. removing part
of an object to reveal its interior). Lu et al. [49]
further enables object level manipulation for time-
line editing of video contents.

Understanding object shapes and their per-
spective relations is also crucial for high level im-
age manipulation experience. Zheng et al. [50] ex-
plore user interaction to creates partial scene re-
constructions based on cuboid-proxies structures.
Such partial scene structure allows a range of in-
tuitive image edits, so that users only need to pro-
vide high-level semantic hints and the system en-
sures plausible operations that mimic real-world
behavior, which are otherwise difficult to achieve.
In [43], the 3-Sweep system further uses general
cylinders and cuboid structure to understand the
components of the shape, their projections, and
relationships, see Fig. 3(c). Besides object geom-
etry, rough scene geometry is also important for
high level image editing applications. Iizuka et
al. [51] proposed a system in which the user can
move objects in an image whilst ensuring that ob-
ject size and object overlap are automatically ad-
justed. This is achieved by estimating the per-
spective structure of the scene in a single image
with the assistance of user-drawn strokes. Esti-
mating object shape and scene geometry from a
single image is inherently an ill posed problem.
The success of these methods such as [51–54] typ-
ically rely on user interactions (e.g. strokes [54]
and bounding boxes [55]) and simplifying assump-
tions (e.g. cuboid-proxies [50] and general cylin-
ders [43]).

High level graphics applications which rely on
semantic meanings [56] or scene geometry of com-
plex objects [44,57] often require information that
does not explicitly exist in a single image. Knowl-
edge acquired from large collections of visual data
are useful for obtaining plausible results by re-
solving ambiguity and uncertainty. In the Image-
Spirit [56] system, Cheng et al. proposed treating
nouns as object labels and adjectives as visual at-
tribute labels. This allows novel verbal interaction
based on semantic knowledge learned from a set of
images with dense object class and attribute labels.
Kholgade et al. [44] proposed to leverage the struc-
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ture and symmetry in stock 3D models for estimat-
ing illumination and completing the hidden parts
of an object seen in a single photograph. Huang et
al. [57] jointly analysed web images and shape col-
lections for single view reconstruction. Such joint
analysis regularizes the optimization formulation
and stabilizes correspondence estimation, thus en-
abling reconstruction of different objects using a
smaller collection of existing 3D models.

3.2 Visual Content Synthesis

Chen et al. [48] developed an interesting sys-
tem named Sketch2Photo that was capable of au-
tomatically converting a simple freehand sketch,
along with a few text label annotations, into a re-
alistic picture, see Fig. 3(d). Due to the fact that
the pictures are found by searching the Internet,
many inappropriate results may be produced. In
order to overcome this drawback, a filtering scheme
is used to eliminate inappropriate images, and an
image blending algorithm is adopted to find an op-
timal combination of discovered images.

In [58], the PoseShop system was proposed for
constructing a segmented human image database
that was used to synthesise personalized comic-
strips. By employing computer vision techniques,
only minimal manual intervention was required.
Segmentation followed by further filtering [48] was
able to produce four hundred thousand segmented
human characters of sufficient quality. The im-
ages were analysed so as to automatically provide
clothes descriptions that can be used by the user
alongside the text attributes to query the database
when constructing the comic-strips. Tanahashi et
al. [59] proposed an efficient framework for sto-
ryline visualization from streaming video data.
Hasegawa and Saito [60] presents a method for syn-
thesis stroboscopic image from video sequence for
sports analysis.

Lalonde et al. [61] developed a system that
can insert new objects into existing photographs.
A new automatic algorithm is presented so as to
improve the object segmentation and blending, es-
timate true 3D object size and orientation, and
estimate scene lighting conditions. Moreover, an
intuitive user interface is provided, which is able
to make object insertion much faster.

In [62], Xu et al. presented a system that could
automatically convert a freehand sketch draw-
ing containing multiple objects into a semanti-
cally valid and well arranged scene composed of
3D models. By performing co-retrieval and co-
placement of 3D models, the amount of user in-
tervention needed for sketch-based 3D modeling is
greatly decreased.

Chia et al. [63] designed a new colorization
system that can colorize grayscale photos with less
manual labor. The user provides a semantic text
label and selects an automatically generated fore-
ground object segmentation, and this system can
automatically download and filter suitable relevant
images using a new filtering method. These then
provide reference images that are suitable for driv-
ing the colorization process.

4 Depth Estimation and 3D Modeling

Scene modeling from imagery data is one of
the main tasks of both computer vision and com-
puter graphics, and thus also the point at which
the above two fields merge or diverge. Many anal-
ysis methods which originate in the graphics do-
main, such as 3D geometry analysis, are intro-
duced into depth estimation and 3D modeling to
produce much more accurate 3D geometric data
of the scenes. Thus, this section describes appli-
cations in both graphics and vision that use tech-
niques such as structure from motion to recover
geometry and also synthesise imagery.

(a) building Rome in a day [64] (b) facial capture [65]

Fig. 4. Depth estimation and 3D modeling. Images are
reproduced from the corresponding references.

4.1 Modeling 3D Scenes

Unlike active scene modeling systems, such
as structured light projectors, vision based model-
ing aims at creating a 3D model of the real world
by simply taking images of it mainly using stereo
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matching. Structure from motion (SfM) is a pas-
sive modeling technique that simultaneously esti-
mates 3D scene structure and camera poses from
2D image sequences. Although the problem of SfM
was proposed several decades ago [66], it was not
until recently that progress became dramatic due
to the advances in computing performance [67].
Applications based on SfM also occur in scene re-
construction and 3D object modeling.

Snavely et al. developed a photo browser [68]
which takes unstructured collections of photos of
sites as input and computes the viewpoint of each
photo as well as a sparse 3d point cloud of the
scene. The results enable the user to explore the
photos in 3D space. Later Agarwal et al. presented
a system named ‘Building Rome in a Day’ [64], see
Fig. 4(a). The system can handle an extremely
large quantity of photos (e.g. the results returned
by Google when searching for a city). Frahm et
al. [69] introduced a dense 3D reconstruction sys-
tem which is able to deal with about 3 million in-
ternet images within the span of a day on a single
PC with a GPU. Recently, Fuhrmann et al. im-
plemented the ‘Multi-View Environment’ [70], an
end-to-end image-based geometry reconstruction
tool which takes the photos of a scene as input and
produces a textured surface mesh as the result.

Various applications can be developed us-
ing vision based scene modeling and point cloud
matching and rendering. Ceylan et al. [71] cou-
pled structure-from-motion and 3D symmetry de-
tection for urban facades. The recovered symme-
try information along with the 3D geometry en-
ables image editing operations maintaining con-
sistency across the images. Kopf et al. [72] pro-
posed an algorithm to create videos with smooth
camera motion from first-person videos, which are
captured during sports and thus suffer from erratic
camera shake. This work employs SfM to estimate
the camera pose for each frame and re-renders the
video using a smooth camera path.

Since SfM can recover the structure of large
scaled scenes, it can be exploited for positioning.
Recent studies have developed algorithms to rec-
ognize the location of the query image from the
point cloud produced by SfM. Tan et al. [73] pre-
sented a monocular SLAM (Simultaneously Local-
ization and Mapping) system which uses a special

keyframe representation and updating method to
handle dynamic environment. Li et al. [74,75] pro-
posed an approach to use a sparse transform to
the joint estimation of 3D shapes and motions,
while using wa avelet basis to fit 3D shape tra-
jectory. The system demonstrated robust perfor-
mance when handling nonrigid target with occlu-
sion.

4.2 Facial performance

Facial expression plays a critical role in al-
most all aspects of human interaction and face-
to-face communication. As such, face and facial
performance modeling has long been considered a
grand challenge in the field of computer graphics
and vision. Using special equipment, such as facial
markers [76], camera arrays [77], and structured
light projectors [78], enables the capture of high
fidelity 3D facial geometry, which are crucial to be
captured especially in film and game production.

Recently, techniques have been developed
which are more suitable for consumer-level cap-
ture approaches [79]. They do not require such
special equipment, but instead are based on the
co-modeling of 3D geometry and 2D landmarks
in videos of facial expressions. Cao et al. [80]
present a fully automatic approach to real-time fa-
cial tracking and animation with a single video
camera, which can reach the same level of ro-
bustness and accuracy as demonstrated in RGBD-
based algorithms. This method introduces a Dis-
placed Dynamic Expression (DDE) model that si-
multaneously represents the 3D geometry of the
user’s facial expressions and the 2D facial land-
marks which correspond to semantic facial features
in video frames. By learning a generic regression
model from public image datasets, this approach
can be applied to arbitrary video cameras to in-
fer accurate 2D facial landmarks as well as the 3D
facial shape without any training. Cao et al. [65]
further developed facial tracking system that cap-
tures human performance with high fidelity in re-
altime, see Fig. 4(b).

4.3 Human Motion Capture

Motion capture is the process of recording the
movement of people (animals or jointed rigid struc-
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tures in general), which is one of the main demands
of scene modeling. It is mainly used in connec-
tion with capturing large scale body movements,
which are the movements of the head, arms, torso
and legs. Motion capture is widely used in edu-
cation, training, sports and recently computer an-
imation for television, cinema, and video games,
virtual reality, which are mainly in the graphics
domain. Although traditional methods are often
based on the capture and processing of active or
passive sensors, i.e. acoustic, inertial, LED, mag-
netic or reflective markers, the vision based ap-
proaches allow in principle for touch-free capture
and gradually being introduced into graphics and
VR applications. Recently, 4D Performance Cap-
ture (4DPC) [81] has been introduced to capture
shape, appearance and motion of the human body
from multi-view videos. It derives a sequence of
reconstructed 3D meshes with temporally consis-
tent vertices and topology, which capture detailed
surface dynamics plus associated video that can
be projected onto the mesh. Making use of 4DPC
data, Huang et al. [82] proposed a skeleton driven
character animation by motion graph path opti-
mization and a learnt part-based Laplacian surface
deformation model.

Recent works focus on motion and appearance
control to reproduce character animations, and use
machine learning. Xia et al. [83] present a novel
solution for real-time generation of stylistic human
motion that automatically transforms unlabeled,
heterogeneous motion data into new styles using
an online learning algorithm that automatically
constructs a series of local mixtures of autoregres-
sive models (MAR) to capture the complex rela-
tionships between styles of motion. Pons-Moll [84]
propose a new model called Dyna that is learned
from examples and is able to produce realistic soft-
tissue motions for a wide range of body shapes and
motions.

5 Synthesize Big Data for Visual Learning

In recent years there has been an increased de-
mand for data in computer vision. This is due in
part to the widespread use of machine learning, as
well as the increased emphasis within computer vi-
sion on large scale, rigorous testing. Consequently

researchers are looking for efficient means with
which to acquire or generate such large training
and test tests.

(a) pose recognition [3] (b) data augmentation [85]

(c) shape manifold [5]

Fig. 5. Synthesize big data for visual learning. Images
are reproduced from the corresponding references.

Databases of 3D models provide examples
from which we can learn models of scenes. Such
3D models provide rich information from which vi-
sion algorithms can learn from, such as shape, sur-
face normal, materials, lighting, viewpoint, per-
spective, occlusions, etc. The problem is whether
such synthesised data are of sufficient quality to
be useful for computer vision algorithms, and so
care needs to be taken to provide realistic charac-
teristics such as noise and natural variations. This
section provides three examples that use synthe-
sized data for visual learning.

5.1 Pose Recognition

Human pose recognition from videos and im-
ages has been widely studied for decades. How
to estimate human pose fast and reliably is chal-
lenging. This subsection will review some ad-
vanced pose recognition approaches using synthe-
sized data.

Shotton et al. [3] proposed a real-time human
pose recognition approach that transformed the
difficult pose recognition task into a simple pixel-
level classification problem by presenting an inter-
mediate representation in terms of body parts, see
Fig. 5(a). For training data, they designed a ran-
domized rendering pipeline that randomly selected
a set of parameters, such as height, weight, cam-
era noise, etc. and then used computer graphics
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methods to render depth and body part images
from 3D meshes. In the learning process, they em-
ployed simple depth comparison features that were
3D translation invariant and used randomized de-
cision forests. With a huge database of synthesized
image pairs very deep forests can be trained with-
out overfitting.

In [86], Shotton et al. introduced two efficient
approaches, body part classification (BPC) and
offset joint regression (OJR), to predict the 3D po-
sitions of body joints from a single depth image. A
similar rendering method as done in [3] was used
for generating synthetic data that includes fully
labeled training data, alongside real hand-labeled
depth images, and test data. Both BPC and OJR
use decision forests and simple depth-invariant im-
age features. But differently, the BPC approach
tries to infer a set of surface body parts that are
aligned with the joints of interest, while the OJR
approach tries to directly estimate the positions of
interior body joints.

Rogez and Schmid [85] designed an image-
based synthesis engine that combined image re-
gions from different images to augment images
and used the resulting images to train a CNN for
3D pose prediction, see Fig. 5(b). Their image-
based synthesis engine is composed of two parts.
A MoCop-guided image mosaicing is first used to
stitch images patches together and then a pose-
aware blending process is performed to improve
the quality and erase patch seams. With training
data, an end-to-end CNN is adopted for 3D body
pose classification.

5.2 Object Detection

Object detection is one of the most challeng-
ing tasks in computer vision, and has made great
success in recent years. Synthesized datasets from
depth images further promote its development.

Song et al. [87] proposed to use depth maps
for object detection. They developed a 3D detec-
tor to help overcome various impediments to recog-
nition, such as the variations of texture, illumina-
tion, shape, clutter, etc. The training data is a col-
lection of synthetic depth maps that are obtained
by rendering 3D CAD models from hundreds of
viewpoints. During depth rendering, features are

extracted from the 3D point cloud, followed by an
Exemplar-SVM classifier [88].

Peng et al. [89] used synthetic images to inves-
tigate the invariance of deep CNNs to various low-
level cues and presented their own CNN for object
detection. Given some 3D CAD models for each
object, a set of synthetic 2D images are generated
by simulating a variety of low-level cues, including
shape, surface color, reflectance, and location, etc.
They showed that if a model had been trained for
detection task, it was unnecessary to incorporate
synthetic images with simulated cues.

In [90], Gupta et al. used semantically rich
image and depth features to do object detection.
To generate more data for training and fine-tuning
their network, they rendered the full 3D synthetic
CAD object models from various viewpoints to
produce synthesized scenes. At each pixel from the
depth image they extracted three channels: hori-
zontal disparity, height above ground, and the an-
gle with respect to gravity. A modified R-CNN
framework is used to produce rich features and to
perform object detection.

Zheng et al. [5] generate object detection pro-
posals by using compact 3D shape manifold. A
low dimensional Gaussian Process Latent Variable
Shape Space is trained. Then, shape variations are
sampled from this manifold and then used for the
training process, see Fig. 5(c).

5.3 Object recognition

2D object recognition has made great progress
because of the development of deep networks.
With the appearance of advanced devices that
produce 3D point clouds, there is an increasing
amount of works [91–93] that focus on developing
3D recognition using 3D convolutional networks.

Wu et al. [91] designed a convolutional deep
belief network to model the joint probabilistic dis-
tribution over 3D voxel data. In order to train the
deep network, a large-scale 3D CAD model dataset
is generated by mapping each voxel to a binary
tensor according to whether the voxel is inside the
mesh surface. Synthetic data has also been demon-
strated as a powerful tool for generating large scale
annotated data for training text recognition neural
networks [94,95].
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Wohlhart and Lepetit [93] introduced the effi-
cient and scalable Nearest Neighbor search in a de-
scriptor space to perform object recognition. They
used a mixture of synthetic and real world data for
training. The latter was created by regularly sam-
pling viewpoints over a half-dome over the object
mesh, and rendering the object in RGBD an empty
background using Blender. A convolutional net-
work is used to directly map the raw image patch
to a compact and discriminative descriptor. They
also used the Euclidean distance to evaluate the
similarity between descriptors.

6 Discussion and Conclusion

We have reviewed a variety of recent studies
in which computer graphics and computer vision
techniques benefit each other. On the one hand,
advanced vision techniques provide powerful tools
for understanding and providing salient features,
object segmentation, 3D geometry, scene perspec-
tive, semantic meanings, etc. With an improved
degree of scene understanding, a number of image
manipulation tools could be made more intelligent,
by being aware of important object parts, being
able to perform manipulations at the object level,
or being able to guess user intentions. We note
that there are still few large scale benchmarks for
comparing the performance of different graphics
applications that use vision techniques. This pre-
vents the systematic study and boosting of per-
formance that is often observed in pure computer
vision work. With the rapid development of vision
techniques, especially recent deep learning meth-
ods, we believe more and more vision analysis will
becoming robust enough to support ever more vi-
sion applications.

On the other hand, graphics techniques have
also been explored for synthesis of big visual
data for pose recognition, object detection, ob-
ject recognition, etc. There are also many analysis
methods which originate in the graphics domain,
such as 3D geometry analysis, which have been in-
troduced into depth estimation and 3D modeling
to produce much more accurate 3D geometric data
of the scenes, or capture human motion and fa-
cial performance. However, although growing very
quickly, the amount of graphics techniques that

have been used in vision is still much less than
in the other direction. More research effort is re-
quired to assist the creation of training data, the
generation of candidate detections, assistance with
the modeling process, etc.

Both the graphics and vision communities re-
quire total scene understanding for a variety of real
world tasks. Such semantic understanding typi-
cally involves various individual tasks, which are
highly correlated. To date, the majority of the
research has been devoted to research in one or
two tasks. Although such research is typically very
deep, it is not broad enough to consider many of
the vision and graphics tasks jointly, which would
potentially enable a lot more cues to be exploited
than is used in a typical computer vision or graph-
ics system. Recently some pioneering work has
jointly explored 3D modeling, object segmenta-
tion, user interaction, online learning, and camera
localization [96–98]. Although these novel systems
can only deal with simple visual scenes, and sup-
port a limited amount of scene understanding, they
lead the way to a bright future using total scene
understanding via jointly discovering, reconstruct-
ing, interacting and learning in the environment.
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