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Abstract 

Plant polyamines (PAs) are involved in several physiological processes and their 

application delays senescence. PA catabolism via amine oxidase (AO) activity is essential 

in regulating PA levels and generating compounds essential in the physiological 

interactions during development and stresses. AOs include polyamine oxidases (PAOs) 

and copper amine oxidases (CuAOs). In Arabidopsis, CuAOs are encoded by a gene 

family of ten members. 

The expression pattern of each AtCuAO gene was investigated in individual Arabidopsis 

leaves at four developmental stages using real-time PCR (qRT-PCR). Seven members of 

the family showed distinct patterns of expression during leaf development and 

senescence. These can be divided into two groups: the first is highly expressed at early 

stages whereas transcripts of the other group, which includes AtCuAO4, reached 

maximum levels at senescence. Growth and senescence of three AtCuAO4 over-

expression lines and two AtCuAO4 mutants were compared to wild-type (WT) under 

optimal conditions. Results demonstrated a clear phenotypic response to AtCuAO4 

mutation represented by late flowering and delayed senescence, although dark-induced 

senescence was unaffected. Since previous studies on gibberellic acid (GA)-deficient 

mutants showed a delay in flowering, mutant lines were treated with gibberellin, which 

rescued the mutant phenotype. Furthermore, the levels of some GA biosynthetic and 

flowering transcripts (by qRT-PCR) were lower in the mutants than in WT. Content of 

PAs both pre-bolting and post-bolting was altered in AtCuAO4 mutation. 

To avoid functional redundancy between AtCuAOs, two different artificial microRNA 

(amiRNA) clones were transformed into Arabidopsis. The amiRNAs were predicted to 

silence several AtCuAOs simultaneously. Artificial microRNA plants showed a wide 

range of phenotypic variations indicating the potential value of this approach for 

investigating the function of AtCuAOs. 

Overall, this work suggests the possibility of partial functional redundancy between 

AtCuAOs, an indirect role of these genes in senescence retardation and a link between 

PAs and GA signalling. 
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1. General Introduction 

Developmental senescence in old leaves is a genetically programmed process that aims 

to support actively growing parts of the plant through nutrient re-mobilization from the 

dying leaves (Hortensteiner and Feller 2002). During senescence, changes in metabolism 

are fundamental to enhance plant growth and reproduction and the ageing leaves must 

remain alive until nutrient transportation is complete (Buchanan-Wollaston et al. 2005). 

Leaf senescence can be initiated by several factors either external such as biotic and 

environmental stress conditions or internal such as phytohormones, metabolic 

compounds and developmental age (Guo and Gan 2012). In general, increasing 

understanding of the metabolism and regulation of this critical developmental process 

either pre- or post-harvest may contribute to reduction in deterioration rate of the 

harvested products which in turn leads to higher quality and lifespan extension of crop 

plants as well as consumer satisfaction (Hewett 2006). Exogenous treatment of plants 

with growth regulators and manipulation of endogenous growth regulator levels 

contribute to the reduction of the effects of stress on crop plants, and/or delay senescence 

through controlling the physiological and biochemical processes (Peleg and Blumwald 

2011). 

Polyamines (PAs) play a well-established role in the response of plants to different 

stresses and are involved in a wide range of crucial cellular processes during growth and 

development under stress or non-stress growth conditions (Alcazar et al. 2006). Moreover 

in many plant species PA application delays ageing and senescence by inducing DNA 

synthesis and mitotic activity and by inhibiting the rise in protease, RNase, and 

peroxidase activities (Dumbroff 1990). Hence, PAs can have a fundamental role in 

expanding the postharvest shelf life of vegetables and fruits due to their properties in 

maintaining membrane stability and homeostasis which are essential for different 

biochemical and physiological processes (Paliyath et al. 2009).  

PA catabolism is essential in regulating PA concentrations, controlling physiological 

processes in cells and in response to abiotic and biotic stresses (Angelini et al. 2010; Cona 

et al. 2006; Wimalasekera et al. 2011b). However, the exact roles of PAs in both delaying 

senescence and plant response to stresses remain unclear (Alcazar et al. 2006; Moschou 
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et al. 2012). In plants, degradation of PAs via the action of CuAOs contributes to the 

production of alkaloids (Kuznetsov and Shevyakova 2007; Moschou et al. 2012), but 

regulation of their expression has not been fully investigated. 

1.1. Polyamines 

Polyamines (PAs) are nitrogenous molecules that are ubiquitous in a wide range of living 

organisms (Anjum et al. 2014; Guo and Gan 2005). The first discovered PA was spermine 

(Spm), as crystals in human semen, upon microscopic examination by Anton Van 

Leeuwenhoek in 1678, while putrescine (Put) was found two centuries later and 

eventually spermidine (Spd) was discovered in 1927 (Mattoo et al. 2015). In the early 

twentieth century, PA chemical structure and biosynthesis pathways were determined 

(Wallace 2009). PAs have a low-molecular weight and an organic polycationic nature 

which facilitates their interaction with large anionic molecules such as RNA, DNA, 

protein and phospholipids, and negatively charged groups in membranes (Kuznetsov and 

Shevyakova 2007). These interactions lead to the stabilisation and regulation of the 

function of DNA, tRNA, membranes, some proteins such as enzymes as well as the 

regulation of ion channels (Bachrach 2005).  

The most common PAs in plants are the tri-amine Spd, the tetra-amine Spm and their di-

amine precursor Put (Bouchereau et al. 1999), which represent the main sinks of 

assimilated nitrogen due to their high intracellular concentrations (Moschou et al. 2012). 

The less common PAs are Cadaverine (Cad, present in legumes), diaminopropane DAP, 

nor-Spd, nor-Spm and thermo-Spm (the common Spm isomer in higher plants) (Gill and 

Tuteja 2010; Mattoo and Handa 2008). The three common PAs, Put, Spd and Spm, differ 

in their backbone length and their number of positive charges at cellular physiological 

pH (Figure 1-1) (Del Duca et al. 2014). 

Owing to their multiple roles in plant growth and development, polyamines are also 

regarded as growth regulators (Menéndez et al. 2013). Durner (2013) also considered 

PAs as hormones for a number of reasons: these include their presence in all cells, the 

clear regulatory control they perform through growth and development, and their 

efficiency at micro-molar titres. 
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In plants, PAs are involved in a wide range of crucial cellular processes, for example 

controlling cell division and elongation, somatic embryogenesis, plant growth, 

differentiation, development, reproduction and senescence (Galston et al. 1997; 

Kasukabe et al. 2004; Tisi et al. 2011b; Walden et al. 1997). They occur in all parts of 

the plant cell including the nucleus where they modulate the cell cycle, genome 

expression and signalling (Kuznetsov and Shevyakova 2007). PAs are also responsible 

for the agronomically important traits. For example in tomato they affect traits such as 

fruit quality, phytonutrient content and vine life (Mattoo et al. 2006). The influence of 

PAs as anti-senescence agents may occur through retaining chlorophyll, maintaining the 

stabilisation of membranes, inhibiting the synthesis of ethylene, preventing the 

peroxidation of lipid and scavenging free radicals (Wimalasekera et al. 2011a). PAs play 

an important role in the protection of chloroplasts and thereby enhance the ability of 

plants to repair the damage caused by the environmental stresses (Shu et al. 2012b). When 

the plant is placed under stressful conditions, PAs are produced to enhance its tolerance 

(Gill and Tuteja 2010), and they play a fundamental role in protecting the plant against 

these changes in many ways: for example, through osmotic adjustment, maintenance of 

membrane stability and ROS-scavenging (Bouchereau et al. 1999). 

Due to their association with anionic cellular macromolecules, PAs may be present in the 

plant cells as organic cations associated with other macromolecules or as low molecular 

weight compounds, and in some cases conjugated to phenols (Galston and Sawhney 

1990). PAs are able to bind to other molecules via links of various types and strength 

including hydrogen bonds (electrostatic linkages) which cause conformational 

stabilization/destabilization of RNA, DNA, chromatin, and proteins; covalent bonds with 

hydroxycinnamic acids and photosynthetic complexes; and ionic bonds with negatively 

charged molecules (Del Duca et al. 2014).  

PA concentrations in plants are much higher than any other phytohormones, and vary 

depending on the plant species, tissue, organ and developmental stage (Kuznetsov and 

Shevyakova 2007). The titre of PAs is carefully controlled in the cell (Moschou et al. 

2012). Because of the wide range of PAs functions in plants, their homeostasis is critical 

and controlled during cell cycle progression and the processes of the cell division and 
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expansion (Paschalidis and Roubelakis-Angelakis 2005b). This is done by the regulation 

of their biosynthesis (Figure 1-1), conjugation, interconversion and their transport 

(Angelini et al. 2010; Kusano et al. 2008), along with their catabolism (Figure 1-2). This 

occurs through oxidative de-amination interactions at their primary or secondary amino 

groups by the action of amine oxidase enzymes, which contribute to PA homeostasis 

maintenance (Angelini et al. 2010; Cona et al. 2006). PA contents may also be affected 

by surrounding factors and modified as a response to external conditions like temperature 

and light, in addition to physical and chemical stresses which are able to alter PA titres 

in the cell (Galston and Sawhney 1990). 

1.1.1. Polyamine biosynthesis 

In plants, the key enzymes that participate in PA biosynthesis include arginine 

decarboxylase (ADC), ornithine decarboxylase (ODC), spermidine synthase (SPDS), 

spermine synthase (SPMS), and S-adenosylmethionine decarboxylase (SAMDC) (Bagni 

and Tassoni 2001). At the transcriptional, translational and post-translational levels, the 

activities of PA biosynthetic enzymes are controlled developmentally and 

environmentally (Martin-Tanguy 2001). 

In most plant species, the first PA produced from the biosynthetic pathway of PAs is Put, 

which is the important intermediate precursor in the synthesis of higher amines Spd and 

Spm. Put forms either indirectly from L-arginine by ADC via Agmatine, or directly by 

the decarboxylation of L-ornithine via the activity of ODC (Figure 1-1) (Michael 2015). 

However, in Arabidopsis, ODC activity is absent and two different genes encoding ADC 

have been described (Hanfrey et al. 2001; Soyka and Heyer 1999). Conversion of Put to 

Spd and Spm needs successive addition of aminopropyl moieties. By sequential addition 

of an aminopropyl group generates from S-adenosylmethionine (SAM) via a reaction 

catalysed by SAMDC, Put is converted to Spd and the latter to Spm in a reaction catalysed 

by SPDS and SPMS successively (Figure 1-1) (Marco et al. 2011; Tiburcio et al. 1990). 

In plant cells, PAs occur in different forms: as free (soluble [S-PA]), and/ or soluble-

conjugated with small molecules such as phenolic acids (soluble-hydrolysed [SH-PA]), 
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and/ or insoluble-conjugated with various large molecules such as proteins (pellet-

hydrolysed [PH]-PA) forms (Paschalidis and Roubelakis-Angelakis 2005b). 

 

Figure 1-1 Biosynthetic pathways of polyamines in plants. The polyamines putrescine, spermidine, 

spermine and/or thermo spermine (T-Spermine) are consecutively derived from arginine through agmatine 

via arginine decarboxylase (ADC), agmatine iminohydrolase (AIH), and N-carbamoylputrescine 

amidohydrolase (CPA) activity or from ornithine via ornithine decarboxylase (ODC). S-

adenosylmethionine (SAM) is derived from methionine via methionine adenosyltransferase (MAT) activity 

and acts as a precursor of decarboxylated S-adenosylmethionine (dc-SAM) via S-adenosylmethionine 

decarboxylase (SAMDC) activity or as a producer of ethylene. dc-SAM is utilized as a source of 

aminopropyl groups in Spd, Spm and T-Spermine biosynthesis in the presence of spermidine synthase 

(SPDS), spermine synthase (SPMS), and T-spermine synthase (T-SPMS) or acaulis5 (ACL5) respectively. 

Cadaverine is derived from the amino acid lysine via lysine decarboxylase (LDC) activity. Chemical 

structure of different PAs is shown in the figure (Kusano et al. 2008; Sobieszczuk-Nowicka et al. 2015). 

Each PA molecule needs to be targeted to a particular intracellular site and/or a particular 

conjugated form (Imai et al. 2004b). In this regard,  it has been found that loss-of-function 

mutant in Arabidopsis ACL5, one of the two spermine synthases, showed a severe defect 

in stem expansion and exogenous treatment with Spm was not sufficient to reverse stem 

phenotype of the mutated plants, while mutation of the other spermine synthase, SPMS, 

displayed normal growth (Hanzawa et al. 2000). Interestingly, the double mutants 

affected in both SPMSs, acl5 and spms, showed the same stem phenotype observed in 
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acl5 mutant. These results suggested that Spm produced through the activity of ACL5 is 

the only Spm implicated in stem elongation (Imai et al. 2004a). 

1.1.2. Polyamine catabolism 

Amine oxidases (AOs) are widely found in fungi, bacteria, higher plants and animals 

(Federico and Angelini 1991).  

There are two classes of oxidative enzymes in plants which are responsible for the 

degradation of both exogenous and endogenous PAs (Kuznetsov and Shevyakova 2007). 

These enzymes can be classified, based on the cofactor involved, into two classes; 

copper-containing amine oxidases (CuAOs, EC 1.4.3.6), and flavin-containing 

polyamine oxidases (PAOs, E.C. 1.5.3.11) (Šebela et al. 2001). CuAOs are homodimeric 

enzymes, consisting of 70–90 kD subunits, in which each subunit contains a copper ion 

and the cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ) produced from an 

endogenous tyrosine residue (Angelini et al. 2010; Medda et al. 1995). 

Plant development and stress responses are diversely affected by PAs depending on the 

expression levels of AOs which alter the PA/ hydrogen peroxide (H2O2) ratio and lead to 

different plant responses (Tisi et al. 2011a). AOs play several pivotal physiological roles 

in plant growth and development, as well as response to the environmental stresses, 

whether they be biotic or abiotic (Angelini et al. 2010; Cona et al. 2006; Moschou et al. 

2008) via regulation of the cellular PA contents and primarily through production of some 

important compounds generated by AO activity, which are essential in the physiological 

interactions both during environmental stress and development (Martin-Tanguy 2001; 

Paschalidis and Roubelakis-Angelakis 2005a). These compounds are amino–aldehydes, 

1, 3-diaminopropane, γ-aminobutyric acid (GABA) and H2O2 (Angelini et al. 2010). 

PAOs oxidize the higher PAs Spd and Spm along with their acetylated derivatives at the 

secondary amino group (Cona et al. 2006). In contrast, CuAOs are more specific for the 

di-amines Put and Cad oxidizing them at the primary amino group. The action of CuAOs 

on Put yields H2O2, ammonium (NH4
+) and 4-aminobutyraldehyde which then directly 

cyclizes to ∆1-pyrroline that is further converted to GABA by the influence of aldehyde 
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dehydrogenase (Kuznetsov and Shevyakova 2007; Petrivalsky et al. 2007) (Figure 1-2). 

By its transamination and oxidization, GABA can enter the Krebs cycle, which ensures 

the recycling of nitrogen and carbon from PAs (Wen and Moriguchi 2015).  

GABA has a key role in signal transduction in many plants under stress conditions 

(Moschou et al. 2012). A critical role played by PA catabolism-derived GABA in 

protecting plants against salinity stress was demonstrated (Xing et al. 2007). 

Furthermore, GABA is an important metabolite that is implicated in various 

physiological processes such as carbon flow into the citric acid cycle, deterrence of 

insects, cytosolic pH regulation, and protection against oxidative stress (Bouche and 

Fromm 2004). On the other hand, H2O2 is a form of reactive oxygen species and has an 

established role in stomatal closure (Pei et al. 2000; She et al. 2004), root development 

(Dunand et al. 2007), and developmental programmed cell death (PCD) (Rogers 2005). 

PA oxidation-derived H2O2 has been involved in cell wall lignification and maturation 

during development, wound-healing, and reinforcement of cell walls during pathogen 

infection (Cona et al. 2006). As a signal molecule, H2O2 also mediates the expression of 

defence genes (Takahashi and Kakehi 2010). A rapid production of nitric oxide (NO) has 

also been described in Arabidopsis as a result of exogenous PA supplementation (Tun et 

al. 2006), and this reaction was attributed to the activity of the enzyme encoded by the 

AtCuAO1 gene (Wimalasekera et al. 2011b). 

The copper binding diamine oxidases also have the ability to oxidise Spd and Spm with 

a much lower affinity than for Put, producing H2O2 and NH4
+, in addition to the 

production of 4-aza-8-amino-octan-1-al or 4,9-diaza-dodecan-1,12 dialdehyde 

respectively (Moschou and Roubelakis-Angelakis 2014; Moschou et al. 2012) 

(Figure 1-2). The oxidation of Cad by CuAO generates aminoaldehyde which converts 

into 1-piperideine, and ultimately into alkaloids (Kuznetsov and Shevyakova 2007) 

(Figure 1-2). There is also a class of CuAOs in plants which preferentially oxidise N–

methyl–Put leading to the production of 4–methylaminobutanal which then converts into 

N-methylpyrrolinium cation, the precursor of alkaloids (Figure 1-2), but this class of 

enzymes can also oxidise Cad and Put (Moschou et al. 2012).  
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As enzymes, CuAOs occur at high levels in dicots, particularly in some Fabaceae (such 

as soybean, chickpea, lentil and pea); in these species CuAOs were detected as the most 

abundant soluble protein in the extra cellular fluid (Federico and Angelini 1991). As 

genes, CuAOs play an important developmental regulatory function which is species- and 

tissue-specific, and they have their own pattern of spatial-temporal expression (Cona et 

al. 2006). They also contribute to plant defence against plant pathogens and 

environmental factors (Angelini et al. 2010). 

 

Figure 1-2 The polyamine catabolic pathways. AtPAO1, Arabidopsis thaliana polyamine oxidase; CuAO, 

copper amine oxidase; GABA, γ-aminobutyric acid; ALDH, aldehyde dehydrogenase; α-KG, α-

ketoglutarate; LDC, lysine decarboxylase; MPO, N-methyl-putrescine oxidase; OAA, oxaloacetate; PAO, 

polyamine oxidase (per: peroxisomal, ex: extracellular); 1,3-Dap, 1,3-diaminopropane; PMT, putrescine-

N-methyl transferase. Adapted from (Moschou et al. 2012). 

In plants, CuAO genes have been characterised in only a few species to date including 

Arabidopsis thaliana (Moller and McPherson 1998; Planas-Portell et al. 2013) and 

chickpea (Rea et al. 1998). In Arabidopsis, copper-containing amine oxidase genes 

(CuAOs) form a gene family of ten members (Planas-Portell et al. 2013) (TAIR; 
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https://www.arabidopsis.org/) with different patterns of expression (Table 3-1). Six of the 

ten CuAOs are highly expressed in senescent leaves (eFP Browser; TAIR), although 

independent expression studies conducted by the PRESTA project (Breeze et al. 2011), 

and in the Cona lab (personal communication) are not always in full agreement 

(Table 3-1). Recently, it was indicated that only eight of the ten Arabidopsis thaliana 

CuAOs encode functionally active enzymes while the remaining genes (AtCuAO3-SP and 

AtCuAO9) are indeed consecutive fragments of the AtCuAO4 gene, and new names of 

AtCuAOs (Table 1-1) were reported (Tavladoraki et al. 2016). 

Table 1-1 Copper amine oxidase (CuAO) gene family in Arabidopsis thaliana (Planas-Portell et al. 2013; 

Tavladoraki et al. 2016).  

At gene code  
Gene bank  
accession number 

Gene  
common name 

Gene  
new name 

At4g14940 NM_117580 AtAO1 or ATAO1 AtCuAOβ 

At1g62810 NM_104959 AtCuAO1 AtCuAOγ1 

At4g12270 NM_117297 AtCuAO3-SP AtCuAOε1 

At4g12290 NM_117299 AtCuAO4 AtCuAOδ 

At1g31670 NM_102902 AtCuAO5 AtCuAOα1 

At1g31710 NM_102906 AtCuAO2 AtCuAOα3 

At3g43670 NM_114235 AtCuAO7 AtCuAOγ2 

At1g31690 NM_102904 AtCuAO8 AtCuAOα2 

At4g12280 NM_117298 AtCuAO9 AtCuAOε2 

At2g42490 AY120717 AtCuAO3 AtCuAOζ 

 

Taking into account known important amino acid residues in the deduced amino acid 

sequences of the four functional AtCuAOs (AtAO1, AtCuAO1, AtCuAO2, AtCuAO3) 

(Planas-Portell et al. 2013), alignment of the enzymatic domains produced from the eight 

functionally active AtCuAO genes showed a high to full level of sequence conservation 

in the amino acid residues which are catalytically active in plant CuAOs (Figure 1-3). 

Furthermore, aspartic acid active site base, tyrosine modified to TPQ, and the copper 

binding histidine residues (Planas-Portell et al. 2013) are also fully conserved among 

Arabidopsis AtCuAO enzymes (Figure 1-3). Protein alignment shows that there are very 

few differences around the catalytic sites suggesting that the enzymes act on the same or 

very similar substrates. This suggests that the functional differences amongst the genes 

may be due to the timing of their expression or the localisation of the encoded protein 

within the cell.  
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Figure 1-3 Alignment of amino acid sequences of the enzymatic domains of the functionally active 

AtCuAOs in Arabidopsis thaliana. Functional residues are marked with arrows: green for catalytically 

important residues (D), red for precursor of TPQ cofactor (Y), and yellow for residues involved in copper 

coordination (H). Totally conserved residues in most of the CuAOs are indicated by grey highlighted C. 

The conservation scoring was carried out using the multiple sequence alignment program PRALINE 

(http://www.ibi.vu.nl/ programs/pralinewww/). 

Unconserved 0 1 2 3 4 5 6 7 8 9 10 Conserved 
 

   . . . . . C. . . . 410 . . . . . . . . . 420 . . . . . . . . . 430 . . . . . . . C. . 440 . . . . . . . . . 450  

 AtAO1 F T A R A G V T I S T A S V L D P R T K R F R R V M Y R G H V S E T F V P Y M D P T Y E W Y Y R T F  
 AtCuAO1 A D Q R A G M I I S Q A T V R D S E T G E P R S V M Y K G F P S E L F V P Y M D P E E G W Y Y K G Y  
 AtCuAO7 P D Q R A G M I I S Q A T V R D S K T G E A R S V M Y K G F A S E L F V P N M D P G E G W Y S K A Y  
 AtCuAO2 F D V R A G I V I S L A S L F D T D V N K Y R Q V L Y K G H L S E M F I P Y M D P S D D W Y F I T Y  
 AtCuAO8 F D V R A G L V I S L A S I F D M D M N R Y R Q V L Y K G H L S E M F V P Y M D P N D D W Y F I S Y  
 AtCuAO3 F T P R E G L V I H S V A Y V D G S R - G R R P V A H R L S F V E M V V P Y G D P N E P H Y R K N A  
 AtCuAO4 P D P R A G V V I S R V R V H D P D T H E T R D V M Y K G F V S E L F V P Y M D P S D A W Y F K T Y  
 AtCuAO5 F D V R A G L V I S L A S I F D M D V N K Y R Q V L Y K G H L S E I F V P Y M D P S E D W Y F R T F  

 Consistency 4 7 4 * 8 * 7 8 * 8 4 7 6 7 3 * 3 5 5 3 5 3 * 4 * 7 8 8 7 5 4 8 * 6 8 9 * 7 7 * * 5 6 4 7 * 5 5 5 6  

                                                      

   . C . C. . . C. . . 460 . . . . . . . . . C 470 . . . . . . . . . 480 . . . . . . . . C. 490 . . . . . . . . . C 500  
 AtAO1 M D I G E F G F G R S A V N L Q P L I D C P Q N A A F L D G H V A G P D G T A Q K M T N V M C V F E  
 AtCuAO1 M D A G E L G L G P T A M P L V P L N D C P R N S Y Y I D G V F A S P D G K P I V Q P N M I C L F E  
 AtCuAO7 M D A G E F G L G P S S M P L V P L N D C P R N A Y Y I D G F F A S P E G I P I L Q P N M I C L F E  
 AtCuAO2 L D C G D F G C G Q C A V S L Q P Y T D C P A G A V F M D G I F A G Q D G T P A K I P K V M C I F E  
 AtCuAO8 L D C G E F G C G Q T A V S L E P Y T D C P P N A A F M D G I F P G Q D G T P T K I S N V M C I F E  
 AtCuAO3 F D A G E D G L G K N A H S L K K G C D C L G S I K Y F D A H F T N F T G G V E T I E N C V C L H E  
 AtCuAO4 M D A G E Y G F G L Q A M P L V P L N D C P R N A A Y M D G V F A A A D G T P F V R E N M V C I F E  
 AtCuAO5 F D C G E F G C G Q Y A V S L E P Y T D C P G N A A F M D G V F A S Q D G T P I K I T N V M C I F E  

 Consistency 6 * 5 * 9 5 * 4 * 4 3 9 6 5 * 4 8 4 4 * * 7 4 7 7 4 8 6 * 8 4 8 7 5 4 7 * 5 6 3 4 4 4 8 6 7 * 8 8 *  

    
 

                                                 

 
  . . . . . . . . . C 510 . . . . . . . . . 520 . . . . . . . . . 530 . . . . . C. . . C. 

C 

540 
. . . . . . . . . 550 

 

 AtAO1 K N G Y G A S F R H T E I N V P G Q V I T S G E A E I S L V V R M V A T L G N Y D Y I V D W E F K K  
 AtCuAO1 R Y A G D I S W R H S E I L F A N A D I R E S R P K V T L V A R M A T S V G N Y D Y I F D W E F Q T  
 AtCuAO7 R Y A G D T S W R H S E I L L P G V D I R E S R A K V T L V A R M A C S V G N Y D Y I F D W E F Q M  
 AtCuAO2 K Y A G D I M W R H T E A E I P N L E I T E V R P D V S L V A R I V T T V G N Y D Y I V D Y E F K P  
 AtCuAO8 K Y A G D I M W R H T E A E V P G L K I T E V R P D V S L V A R M V T T V G N Y D Y I I E Y E F K P  
 AtCuAO3 E D H G - I L W K H Q D W R T G L A E V R R S R - - - R L T V S F L C T V A N Y E Y G F Y W H F Y Q  
 AtCuAO4 S Y A G D I G W R H S E S P I T G I P I R E V R P K V T L V V R M A A S V G N Y D Y I I D Y E F Q T  
 AtCuAO5 K Y A G D I M W R H T E I E I P G L K V R P D V - - - S L V V R M V T T V G N Y D Y I V D Y E F K P  

 Consistency 6 6 6 7 6 7 4 8 9 * 6 9 4 3 6 5 5 5 4 9 6 6 4 6 3 3 5 6 * 8 7 8 7 6 5 7 9 8 * * 9 * 7 6 6 6 8 * 6 4  

                                          
 

           

   . C. . . . . . . . 560 . C. . . . . . . . 570 . . . . . . . . . 580 . . . . . . . . . 590 . . . . . . . . . 600  

 AtAO1 N G A I R V G V D L T G V L E V K A T S Y T S N D Q - - - - - - - I T E N V Y G T L V A K N T I A V  
 AtCuAO1 D G L I R V T V A A S G M L M V K G T P Y D N V D D - - - - - L G D R E D D A G P L I S E N V I G V  
 AtCuAO7 D G V I R V T V A A S G M L M V K G T A Y E N V E D - - - - - L G E K E D D S G P L I S E N V I G V  
 AtCuAO2 S G S I K M G V G L T G V L E V K P V E Y I H T S E - - - - - I K L G E D I H G T I V A D N T V G V  
 AtCuAO8 S G S I K M G V G L T G V L E V K P V E Y V H T S E - - - - - I - K E D D I Y G T I V A D N T V G V  
 AtCuAO3 D G K I E A E V K L T G I L S L G A L Q P - - - - - - - - - - - - G E T R K Y G T T I A P G L Y A P  
 AtCuAO4 D G L I K A K V G L S G I L M V K G T T Y Q N K N Q V E K D K D G N E E E L H G T L L S E N V I G V  
 AtCuAO5 S G S I K I G V G L T G V L E V K P V K Y V N T S - - - - - - E I K E D D I H G T I V A D N T I G V  

 Consistency 6 * 4 * 7 6 4 * 5 7 7 * 7 * 5 9 8 4 6 4 7 2 4 3 4 3 0 0 0 0 0 2 1 3 5 7 6 4 5 * 7 7 8 7 5 8 6 7 7 8  

                                                      

 
  . 

C
. 

. 
C
. 

. . . . . 610 C. . . . . C. . . . 620 . . . . . . . . . 630 . . . . . . . . . 640 . . . . . . . . . 650 
 

 AtAO1 N H D H Y L T Y Y L D L D V D G N G N - S L V K A K L K T V R V T E V N K T S S R R K S Y W T V V K  
 AtCuAO1 V H D H F I T F H L D M D I D G P M N N S L V K V H L E K Q R V P T G - K - - S P R K S Y L K V K K  
 AtCuAO7 V H D H F I S F H L D M D I D G S A N N S F V K V H L E K Q R L P P G - E - - S R R K S Y L K V K K  
 AtCuAO2 N H D H F V T F R L H L D I D G T E N - S F V R N E L V T T R S P K S V N - - T P R K T Y W T T K P  
 AtCuAO8 N H D H F V T F R L D L D I D G T E N - S F V R T E L V T K R T P K S V N - - T P R K S Y W T T K R  
 AtCuAO3 V H Q H F F I A R M D M S V D C K P A - E A F N Q V V E V N V R V D E R G E N N V H N N A F Y A E E  
 AtCuAO4 I H D H Y V T F Y L D L D V D G P D N - S F V K V N L K R Q - - E T - E P G E S P R K S Y L K A V R  
 AtCuAO5 N H D H F V T Y R L D L D I D G T D N - S F V R S E L V T K - - R T P K S V N T P R K S Y W T T K R  

 Consistency 4 * 8 * 8 7 7 6 5 9 8 8 8 9 * 7 4 3 8 0 8 6 8 7 4 4 9 4 5 4 3 2 4 4 2 1 4 0 1 6 5 8 8 7 8 5 5 6 5 6  

     
 

                                               

   . . . . . . . . . 660 . . . . . . . . . 670 . . . . . . . . . 680 . . . . . . . C. . 690 . . . . . . . . . 700  

 AtAO1 E T A K T E A D G R V R L G - S D P V E L L I V N P N K K T K I G N T V G Y R L I P E H L Q A T S L  
 AtCuAO1 Y I A K T E K D A Q I K L S L Y D P Y E F H I V N P N R K S R V G N P A G Y R I V P G G N A A - S L  
 AtCuAO7 Y V A K T E K D A Q I K M S L Y D P Y E F H L V N P N R L S R L G N P A G Y K L V P G G N A A - S L  
 AtCuAO2 K T A K T E A E A R V K L G - L K A E E L V V V N P N R K T K H G N E V G Y R L L H G S A A G - P L  
 AtCuAO8 N T A K T E A D A R V K L G - L R A E E L V V V N P T K K T K H G N E V G Y R L L P G P A S S - P L  
 AtCuAO3 K L L K S E A V A M R D C D P L S A R H W I V R N T R T V N R T G Q L T G Y K L V P G S N C - L P L  
 AtCuAO4 N I A K T E K D G Q I K L S L Y D P S E F H V I N S G K T T R V G N P T G Y K V V P R T T A - A S L  
 AtCuAO5 L K A E - - - - - - - - - - - - - - - E L L V V N P S R K T K H G N E V G Y R L L H G P A S E G P L  

 Consistency 3 5 8 8 6 7 4 4 5 4 5 5 5 4 1 3 4 4 2 8 5 4 8 7 * 6 5 6 5 7 8 4 * 8 4 6 * * 8 8 7 6 6 3 4 5 3 0 6 *  

                                                      
   . . . . . . . . . 710 . . . . . . . . . 720 . . . . . . . . . 730 . . . . . . . . . 740 . . . . . . . . . 750  
 AtAO1 L T D D D Y P E L R A G Y T K Y P V W V T A Y D R S E R W A G G F Y S D R S R G D - D G L A V W S S  
 AtCuAO1 L D H D D P P Q I R G A F T N N Q I W V T P Y N R S E Q Y A G G V L I Y Q S Q G D - D T L Q V W S D  
 AtCuAO7 L D H D D P P Q M R G A F T N N Q I W V T R Y N R S E Q W A G G L L M Y Q S R G E - D T L Q V W S D  
 AtCuAO2 L A Q D D F P Q I R A A F T N Y N V W I T P Y N R S E V W A G G L Y A D R S Q G D - D T L A V W S Q  
 AtCuAO8 L V Q D D Y P Q I R A A F T N Y N V W I T P Y N K S E V W A S G L Y A D R S Q G D - D T L A V W S Q  
 AtCuAO3 A R P E A K F L R R A A F L K H N L W V T R Y A P D E K F P G G E F P N Q N P R A G E G L A T W V K  
 AtCuAO4 L D H D D P P Q K R G A F T N N Q I W V T P Y N K S E Q W A G G L F T Y Q S H G D - D T L A V W S D  
 AtCuAO5 L A Q D D Y P Q I R A A F T N Y N V W I T P Y N N T E V W A S G L Y A D R S Q G D - D T L A V W S Q  

 Consistency 8 3 4 9 8 3 7 7 5 * 7 8 9 8 7 5 5 8 * 9 * 5 * 6 5 7 * 4 7 8 7 * 5 6 4 4 7 8 5 8 7 0 9 6 * 7 8 * 8 5  

                                                      

 
  . . . . . . . . C. 760 . . . . . . C. . . 

C 

770 
. . . . C. . . C . 780 . . . . . . . . C. 790 C. . . C. C. . . . C. 800 

 

 AtAO1 R N R E I E N K D I V M W Y N V G F H H I P Y Q E D F P V M P T L H G G F T L R P S N F F D N D P L  
 AtCuAO1 R D R S I E N K D I V L W Y T L G F H H V P C Q E D Y P V M P T V A A S F E L K P A N F F E S N P I  
 AtCuAO7 R D R S I E N K D I V L W Y T L G F H H V P C Q E D F P V M P T I A S S F E L K P V N F F E S N P V  
 AtCuAO2 R N R K I E K E D I V M W Y T V G F H H V P S Q E D Y P T M P T L S G G F E L R P T N F F E R N P V  
 AtCuAO8 R D R E I E N K D I V M W Y T V G F H H V P C Q E D F P T M P T M F G G F E L R P T N F F E Q N P V  
 AtCuAO3 Q N R S L E E S D V V L W Y V F G I T H V P R L E D W P V M P V E H I G F T L M P H G F F N C S P A  
 AtCuAO4 R D R D I E N K D I V V W Y T L G F H H I P C Q E D F P I M P T V S S S F D L K P V N F F E R N P I  
 AtCuAO5 R N R K I E K T D I V M W Y T V G F H H V P C Q E D F P T M P T L F G G F E L R P T N F F E Q N P D  

 Consistency 8 7 * 5 9 * 6 6 * 9 * 7 * * 7 6 * 8 7 * 9 * 4 8 * * 7 * 6 * * 8 6 4 5 7 * 6 * 6 * 4 8 * * 7 4 7 * 5  

                      
 

                               

   . . . . . . . . . 810 . . . . . . . . . 820 . . . . . . . . . 830 . . . .                  
 AtAO1 I G - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -                  
 AtCuAO1 L G S A P F F E K D L P V C R - - - - - P F A S S - - - - - - - - -                  
 AtCuAO7 L G I S P F F E K D L P V C - - - - - - - - - - - - - - - - - - - -                  
 AtCuAO2 L K T K P V K V T T A R K C T - - - - - P K N D - - - - - - - - - -                  
 AtCuAO8 L K A K P F N L T T I P K C T - - - - - T K N E - - - - - - - - - -                  
 AtCuAO3 V D V P P N P C E L E T K E S E V K E V V A P K A L Q T G L L S K L                  
 AtCuAO4 L S A A P N F E H D L P V C G - - - - - V Q S V S A - - - - - - - -                  
 AtCuAO5 L K T K P I K L N T T P T C T - - - - - A R N D - - - - - - - - - -                  

 Consistency 8 4 3 3 7 2 2 2 3 3 3 4 3 5 2 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0                  
                                                      
 

 



Chapter One   Introduction 

 

12 

 

During plant development and wound healing, the expression of some CuAOs is 

modulated (Rea et al. 1998; Rea et al. 2002). Moreover, CuAO expression is up-regulated 

in response to external stimuli such as hormones and pathogens. For example, methyl 

jasmonate (MeJA) is a potent promoter of CuAO gene expression in chickpea seedlings 

(Rea et al. 2002), and of soluble and particulate CuAO activities in barley leaves (Walters 

et al. 2002), while abscisic acid (ABA) is able to enhance the expression of CuAO in 

Vicia faba (An et al. 2008). Recently, a strong AtAO1 gene expression was detected, by 

a promoter::GFP-GUS fusion, in the protoxylem of the transition, elongation, and 

maturation regions of Arabidopsis thaliana roots suggested the involvement of this gene 

in the final stages of protoxylem differentiation (Ghuge et al. 2015a). Jasmonic acid (JA) 

acts as a promoter of early vascular tissue differentiation (Cenzano et al. 2003), and 

xylogenesis (Fattorini et al. 2009). Treatment of AtAO1::GFP-GUS Arabidopsis 

transgenic plant roots with MeJA enhanced AtAO1 expression in the protoxylem 

suggesting that AtAO1 plays a role in MeJA signalling leading to protoxylem 

differentiation (Ghuge et al. 2015a). Treatment of WT Arabidopsis seedlings with MeJA 

enhanced AtAO1 expression in roots and led to early protoxylem differentiation, decrease 

in Put content and H2O2 accumulation, while N,N1-dimethylthiourea, the H2O2 

scavenger, reversed this effect (Ghuge et al. 2015a). Likewise, Put application to WT 

Arabidopsis and AtAO1 overexpression induced early protoxylem differentiation and 

showed higher H2O2 accumulation in the root zone, and N,N1-dimethylthiourea treatment 

reversed these effects, while AtAO1 loss of function mutants (Atao1) did not response to 

either MeJA or Put treatments. (Ghuge et al. 2015a). These results suggested that PA-

derived H2O2 via the action of AtAO1 plays a role in MeJA-induced early differentiation 

of protoxylem in Arabidopsis roots. In addition, Planas-Portell et al. (2013) reported that 

ABA, SA, MeJA and flagellin are able to up-regulate the expression of Arabidopsis 

AtCuAO1 and AtCuAO3, whereas AtCuAO2 transcript accumulation is unaffected by 

most of these stimuli except the clear induction observed in the expression level as a 

result of MeJA application and wounding. These results suggested the different role 

played by these genes in plant reaction to stresses where AtCuAO1 and AtCuAO3 are 

implicated in plant response to abiotic stress while AtCuAO2 is more involved in plant 

defence responses against biotic stresses (Planas-Portell et al. 2013; Wimalasekera et al. 

2011b). In agreement with this, it has been found previously that interactions between 
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pathogens and plants, such as interaction of powdery mildew fungus and barley, Asochyta 

rabiei and chickpea or Arabidopsis plants and nematodes, induce the activity of CuAOs 

(Angelini et al. 1993; Moller and McPherson 1998; Walters et al. 2002). An up-regulation 

in the mRNA of the two AOs, CuAO and PAO, has been reported during Hordeum 

vulgare leaf ageing indicating that the internal PA pool is also subjected to regulation in 

plant senescent cells (Ioannidis et al. 2014). 

1.1.3. Interaction between polyamines and other phytohormones 

Along with their interaction with other anionic macromolecules in the cell, the cross talk 

between PAs and almost all the major plant hormones plays an important role in 

performing the biological activities of PAs. In this regard, it has been reported that 

treatment with different phytohormones including ABA, cytokinins, or MeJA may affect 

PA metabolism and thus their homeostasis by altering the expression of genes responsible 

for polyamine biosynthesis and/or catabolism (Anwar et al. 2015). For example, ABA 

treatment enhanced the transcript of SPDS3, encoding spermidine synthase, in 

Arabidopsis (Hanzawa et al. 2002), and with stressors such as dehydration and high salt 

ABA stimulated AtADC2 expression leading to Put accumulation and a decrease in Spd 

(Urano et al. 2003). Similar trend in PA homeostasis was found as a result of treatment 

of etiolated cucumber cotyledons with kinetin which stimulated PAO and down-regulated 

SAMDC activities (Sobieszczuk-Nowicka et al. 2007). Treatment of tobacco explants 

with MeJA up-regulated expression of ODC, ADC, and SAMDC, increased conjugation 

and oxidation of PAs and significantly inhibited organogenesis (Biondi et al. 2001).  

Conversely, PAs are able to affect the biosynthesis of other hormones: the production of 

cytokinin and ABA is induced by PA treatments (Cuevas et al. 2009; Cui et al. 2010; 

Wang et al. 2009b), whereas the biosynthesis of ethylene and gibberellin (GA) is reduced 

in response to PAs (Alcazar et al. 2005; Hu et al. 2006). Put accumulation in the 

transgenic Arabidopsis thaliana plants 35S:AtADC2 by constitutive overexpression of 

ADC2, one of the two genes encoding arginine decarboxylase in Arabidopsis, perturbed 

GA metabolism through down-regulating AtGA20ox1 and AtGA3ox1,3 expressions 

which led to plant dwarfism and late flowering (Alcazar et al. 2005). GA is involved in 
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several processes of plant growth and development including stem and hypocotyl 

elongation and leaf expansion (Matsuoka 2003). It is known in plants that GA enhances 

PA levels (Durner 2013). Stimulation of elongation of dwarf pea internode by GA is 

accompanied by an increase in ADC activity and thus PA concentrations, and primarily 

this elongation was due to increased cell division rather than cell elongation (Smith et al. 

1985). Likewise, an increase in PA contents was associated with GA-induced α-Amylase 

activity in germinating barley seeds (Lin 1984). During early development of 

parthenocarpic fruit induced by auxins and gibberellins, expression of SPDS and ODC 

genes is induced and a transient increase in the activity of ADC and ODC and thus in the 

amount of free PAs has been recorded and was accompanied by a decrease in conjugated 

PAs (Alabadı́ and Carbonell 1998). 

1.2. Leaf Senescence 

Leaf senescence can be defined as a highly regulated process that eventually leads to cell 

death either in a particular organ or in the whole plant, and aims to replace the senescent 

organ with a younger and physiologically more active one (Krupinska and Humbeck 

2008; Lim et al. 2007).  

Environmental factors and various internal signals can regulate leaf senescence (Guo and 

Gan 2012) (Figure 1-4). Internally, plant hormones such as ethylene, Abscisic acid 

(ABA), brassinosteroid (BR), salicylic acid (SA) and JA are able to promote leaf 

senescence whereas this phenomenon is inhibited by cytokinins, PA, NO and gibberellins 

(Gan 2010; Khan et al. 2014). In addition, leaf senescence is markedly affected by 

exposing plants exogenously to some hormones such as ABA, SA, and JA which can 

promote leaf senescence (He et al. 2002; Morris et al. 2000; Zeevaart and Creelman 

1988), whereas Spm retards this phenomenon (Serafini-Fracassini et al. 2002). Generally, 

exposing plants to environmental stresses that negatively affect plant growth and 

development, such as drought, radiation, extreme temperatures and light, pathogen 

infection, nutrient deficiency, presence of toxic chemicals in the surrounding 

environment and flooding, accelerates leaf senescence (Lers 2007). Globally, premature 

senescence which is induced by exposing plants to stresses is one of the major causes of 

crop losses as it can reduce plant growth and productivity (Mahajan and Tuteja 2005). 
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Transcriptome studies on Arabidopsis revealed that thousands of genes are down- or up-

regulated during developmental or dark-induced leaf senescence (Buchanan-Wollaston 

et al. 2005; Lin and Wu 2004; van der Graaff et al. 2006).  

 

Figure 1-4 The molecular regulatory mechanisms by which external or internal signals induce or delay leaf 

senescence. Developmental signals like leaf position on the plant and the growth stage are able to initiate 

leaf senescence. Developmental senescence might be controlled by signals of photosynthetic status, sugar 

levels and/ or changes in cytokinin levels. Environmental factors that cause oxidative stress such as ozone 

or UVB irradiation or nutrient stress due to deficiency in nitrogen, water, etc are able to promote precocious 

senescence. Senescence inducing signals can achieve their influence via activating the expression of 

senescence associated genes (SAGs) and by inhibiting the expression of senescence down-regulated genes 

(SDGs). On the contrary, suppressing SAGs and activating SDGs lead to retardation in leaf senescence. 

Jasmonic acid (JA); salicylic acid (SA); brassinosteroid (BR); abscisic acid (ABA); polyamine (PA); nitric 

oxide (NO); gibberellin (GA). Pointed arrows indicate activation, blunt-end arrows indicate repression or 

inhibition. Adapted from Buchanan-Wollaston et al. (2003) and Guo and Gan (2005).  

In old leaves, many changes in metabolism and gene expression occur due to the action 

of developmental senescence processes which are tightly regulated and genetically 

controlled (Lim et al. 2007). During developmental senescence, different leaves in an 

Arabidopsis rosette senesce at a different time and there are also differences in cell 
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senescence stages within an individual leaf. Studying developmental senescence is also 

inherently difficult due to the length of the experiments and requirement for tight 

environmental controls to avoid stress-induction. Various methods such as dark-induced 

senescence have been therefore used in order to induce senescence artificially and obtain 

a more synchronous process (Buchanan-Wollaston et al. 2005). 

In a comparison between developmental senescence and senescence enhanced by 

darkness Buchanan-Wollaston et al. (2005) revealed that in both types of senescence, 

cellular constituents are dismantled and macromolecules such as nucleic acids, proteins, 

and lipids are degraded through up-regulation of many genes encoding enzymes 

implicated in these processes. However in developmental senescence photosynthesis 

persists at a reduced rate to provide energy for senescence progression and to deal with 

oxidative stress resulting from catabolism processes. In addition there is a high expression 

of flavonoid synthesis genes. In dark-promoted senescence, however, a rapid reduction 

in sugar levels could be the main signal for the process leading to degradation of lipids 

which represent an energy source in this case. Nevertheless, dark-induced senescence can 

be a useful model as it eliminates other confounding factors such as bolting and 

flowering. 

Senescence associated genes (SAGs), chlorophyll loss, and yellowing in detached leaves 

are all induced by incubation in darkness (Weaver and Amasino 2001). Previous studies 

investigated the possibility of PA involvement in regulating dark induced senescence. In 

this regard, Legocka and Zajchert (1999) reported that incubation of barley leaf discs in 

the dark led to a massive accumulation of the polyamine Put, but this was associated with 

chlorophyll decline, increase in RNase activity and a rapid senescence. These reactions 

to darkness were reversible by exogenous Spd treatment which prevented the degradation 

of thylakoid membranes during senescence by enhancing their stabilization through the 

direct interaction with them (Legocka and Zajchert 1999). The concentration of 

exogenous PA applied also appears to influence the result. Spm at low concentrations (1-

10 mM) was more active than other PAs in preventing chlorophyll degradation in 

detached leaves of oat in darkness (Kaur‐Sawhney and Galston 1979).  
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The role of PAs in leaf senescence retardation might be through blocking the conversion 

of SAM to ACC (aminocyclopropane carboxylic acid) and of ACC to ethylene, a 

promoter of leaf senescence (Kaur-Sawhney et al. 2003), or by inducing the synthesis of 

the DNA and mitotic activity as well as inhibiting the rise in proteases, peroxidases, and 

RNases (Dumbroff 1990). However, quantitation of levels of various PAs during dark 

induced senescence of detached rice leaves suggested that the endogenous PAs may not 

play an important role in the control of dark-induced leaf senescence (Chen and Kao 

1991). Recently, Sobieszczuk-Nowicka et al. (2015) investigated the involvement of PA 

metabolism in dark-induced senescence in barley Hordeum vulgare L leaves and they 

reported an enhancement in the expression of genes implicated in both pathways of PA 

metabolism, the anabolic and the catabolic, as well as an increase in the activity of 

enzymes implicated in the two pathways, indicating that the internal PA pool is subjected 

to regulation during senescence in barley. These results underline the contradictory 

effects of PAs in different plants. 

Leaf senescence is of relevance to the storage of leafy vegetables. Factors which 

contribute to consumer attraction include leaf size uniformity, fresh appearance, colour 

and form, characteristic flavour and aroma, and lack of undesirable defects such as decay 

or yellowing (Cantwell and Reid 1993). Degradative processes taking place in leafy 

products exhibit many similarities to the events that take place during developmental leaf 

senescence where the most obvious visual change is chlorophyll degradation 

accompanied by protein and lipid loss and which eventually leads to cell death (Page et 

al. 2001). Exogenous signals such as nutrient availability, water deficit, and light 

intensity induce leaf senescence (Buchanan-Wollaston et al. 2003; Dangl et al. 2000; Lim 

et al. 2003; Lin and Wu 2004; Yoshida 2003) and typical post-harvest storage conditions 

for leafy vegetables include low light/dark, dehydration and lack of nutrients. Moreover, 

leafy products senesce rapidly at higher temperatures (Paull 1992), whereas visible 

senescence in broccoli is markedly retarded at low temperature (Page et al. 2001). Hence, 

a better understanding of the physiological processes underlying post-harvest leaf 

senescence is of direct relevance in controlling quality of leafy vegetables to increase 

shelf-life and reduce waste. 
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1.3. Regulation of flowering in Arabidopsis and PA involvement 

Transition from vegetative growth to reproductive development is a result of responses 

to different endogenous and external signals that later integrated leading to flowering 

(Srikanth and Schmid 2011). Internally, this process is controlled by a complex network 

of genes (Quesada et al. 2004), as well as alteration in hormonal balance including 

gibberellins (Mouradov et al. 2002) and polyamines (Applewhite et al. 2000). 

1.3.1. Gene regulation of flowering 

In flowering plants, switching from vegetative to the flowering phase is the main 

developmental switch and is fundamental for successful sexual reproduction 

(Weingartner et al. 2011). This transition needs reprogramming of lateral primordia at 

the shoot apical meristem to transform the vegetative meristem into the inflorescence 

meristem which leads to the production of flowers instead of leaves (Hempel and 

Feldman 1995). The timing of floral induction is regulated by a complex network of genes 

that integrate the developmental and environmental cues (Amasino 2010). In Arabidopsis 

thaliana, the isolation of numerous loss-of-function mutants and the completion of the 

sequencing of the A. thaliana genome led to the identification of more than 180 genes 

involved in the control of flowering time (Fornara et al. 2010). 

During the floral induction of Arabidopsis thaliana, five distinct genetic pathways 

regulate flowering (Figure 1-5): the photoperiod and vernalisation pathways control 

flowering in response to environmental signals, whereas the age, autonomous, and 

gibberellic acid (GA) pathways act more independently of environmental stimuli (Yeap 

et al. 2014). The core gene regulatory network of flowering time integration in 

Arabidopsis thaliana is composed of eight genes (Figure 1-5): FLOWERING LOCUS C 

(FLC), SHORT VEGETATIVE PHASE (SVP), FLOWERING LOCUS T (FT), 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), AGAMOUS LIKE 

24 (AGL24), APETALA1 (AP1), LEAFY (LFY) and FD (Valentim et al. 2015). 

The floral induction signals from photoperiod, vernalisation, autonomous, and GA-

induced pathways are transmitted to two major regulators of flowering that 
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antagonistically regulate flowering, FLC and CONSTANS (CO) (Putterill et al. 1995; 

Samach et al. 2000). The FLC gene mediates the vernalisation and autonomous pathways 

and acts as a repressor of flowering (Kim and Sung 2014; Searle et al. 2006). 

 

Figure 1-5 Simple model of the major genetic pathways regulating time of flowering in Arabidopsis 

thaliana. Five major signalling pathways control the switch from vegetative phase to flowering phase: 

autonomous, vernalisation, photoperiod, gibberellin and aging. The vernalisation and autonomous 

pathways repress the activity of FLC. The circadian clock regulates the transcription of the GI and CO 

genes, whereas light quality regulates CO protein abundance. In the photoperiod pathway, CO stimulates 

the expression of the floral integrators, FT and SOC1 whereas the floral repressor FLC suppresses their 

expression. LFY is regulated mainly by the gibberellin pathway and acts as a regulator of the floral meristem 

identity genes. The aging pathway represses the flowering repressors (miR-156) and controls both the floral 

integrators and the regulators of the meristem identity. (SPLs) SQUAMOSA PROMOTER BINDING LIKE, 

(FT) FLOWERING LOCUS T, (SOC1) SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, (LFY) 

LEAFY, (FLC) FLOWERING LOCUS C, (SVP) SHORT VEGETATIVE PHASE, (AP1) the MADS box 

factor APETALA1, (SAM) shoot apical meristem, (AGL24) AGAMOUS LIKE 24. Pointed arrows indicate 

activation, blunt-end arrows indicate repression or inhibition (Fornara et al. 2010; Kim and Sung 2014; 

Valentim et al. 2015).  
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FLC and SVP are expressed in leaves where they repress the expression of FT (Tao et al. 

2012), and they are also expressed in the shoot apical meristem (SAM) where they repress 

the expression of SOC1 (Deng et al. 2011). The CO gene, in contrast, mediates the 

photoperiodic pathway and acts as a floral activator (Suárez-López et al. 2001).  

Both the FLC and the CO genes regulate the expression of floral pathway genes, FT, 

SOC1 and LFY, that integrate signals from different flowering pathways and the level of 

their expression determine the exact time of flowering (Parcy 2005; Simpson and Dean 

2002). FLC enhances the response of plant flowering to the environmental cues through 

suppressing flowering under non-inductive conditions, and the level of its mRNA is 

reduced in response to winter cold (vernalisation) which allows flowering to proceed 

(Michaels and Amasino 1999; Sheldon et al. 1999).Both floral integrators, SOC1 and FT, 

are negatively controlled by FLC, but are the immediate targets of the transcription factor 

CO (Moon et al. 2005).  

In Arabidopsis, the FT protein moves from the leaf phloem, where it is expressed, to the 

SAM where it forms a complex with the FD protein and directly promotes transcription 

of the floral integrator SOC1 (Yoo et al. 2005) and of the downstream floral meristem 

identity gene AP1 (Corbesier et al. 2007).  

The expression of AP1 is used as a marker to indicate the floral transition (Valentim et 

al. 2015). The initiation of flower development stage, through the direct positive feedback 

interaction between AP1 and LFY (Valentim et al. 2015), terminates the process of floral 

induction, and by the time AP1 is expressed, plants continue to flower autonomously of 

environmental signals, such as day length and light quality (Hempel et al. 1997). LFY is 

under a direct control of SOC1 (Valentim et al. 2015), in addition to its regulation by the 

GA pathways and long days (Blázquez and Weigel 2000), and in contrast to SOC1 and 

FT, it is not an immediate target of CO (Samach et al. 2000). AGL24 is up-regulated via 

vernalisation and exists in leaf, SAM and flower bud tissue (Liu et al. 2008; Michaels et 

al. 2003). AGL24 promotes flowering by direct induction of SOC1 gene (Liu et al. 2008), 

and by activating the expression of LFY in response to inductive long day photoperiod 

(Lee et al. 2008).  
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On the other hand, the concentrations of the transcription factors SQUAMOSA 

PROMOTER BINDING LIKE (SPLs) increase with age (Wang et al. 2009a). The 

microRNA miR156 negatively regulates SPL proteins (Wang et al. 2009a). During the 

juvenile stage, the cellular level of miR156 is high and progressively decreases as the 

plant ages. Its overexpression, which reduces SPL expression, considerably delays 

flowering (Wu and Poethig 2006). SPLs promote flowering by initiating the expression 

of the floral integrator gene SOC1 and the floral meristem identity genes LFY and AP1 

(Wang et al. 2009a; Yamaguchi et al. 2009). 

Construction of the triple mutant co-2 fca-1 ga1-3, the genes that act in the long-day, 

autonomous and gibberellin pathways respectively, resulted in non-flowering plants 

under short or long day conditions, indicating that these three pathways are essential in 

promoting flowering under either short or long days, however, vernalisation rescued these 

triple mutant plants and promoted their flowering indicating the critical role of the 

vernalisation pathway in plant flowering even when these three pathways, long-day, 

autonomous and GA, are absent (Reeves and Coupland 2001). 

In Arabidopsis, the floral development gene SUPERMAN (SUP) is involved in 

controlling cell proliferation in carpel and stamen primordia and in ovules (Ito et al. 

2003), and in maintaining the stamen/carpel whorl boundary (Sakai et al. 2000). In the 

floral meristem, the expression of SUP is regulated by the floral meristem identity genes 

and by the floral organ identity genes (Sakai et al. 2000). Mutation of the Arabidopsis 

SUP resulted in flowers with increased number of stamens and reduced carpels as a 

consequence of the ectopic expression of the floral homeotic gene APETALA3 (AP3) 

(Gaiser et al. 1995). 

1.3.2. Hormonal regulation of flowering 

Various hormones (GAs, ABA, BRs) play a key role in the regulation of the floral 

transition (Domagalska et al. 2010), and alteration in the balance of hormones affects 

flowering time (Blázquez et al. 2001).  
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In plants, GA promotes bolting, seed germination, leaf expansion, stem elongation, 

trichome development, pollen maturation, and development of fruit and seed (Achard and 

Genschik 2009; Sun 2008). Thus the phytohormone GA regulates the development and 

fertility of Arabidopsis flowers (Cheng et al. 2004), in addition to its prominent role in 

regulating the timing of the floral transition (Richards et al. 2001).  

The mature flowers of GA-deficient mutants exhibited impaired floral development 

represented in reduced elongation growth of stamens and petals, and a block in anther 

development leading to male sterility due to the lack of mature pollen (Goto and Pharis 

1999; Wilson et al. 1992).  

In addition to their influence on Arabidopsis flowering time, mutations that disrupted GA 

pathways also affected other plant growth and development aspects including 

germination of seed, elongation of stem, and the floral development (Wilson et al. 1992). 

Furthermore, mutants with a defect in GA biosynthesis such as ga1-ga5 showed clear 

alterations in plant phenotypes such as dark green leaves, retardation in the vegetative 

growth of shoots (dwarfism), and late flowering which are rescued by exogenous 

treatment with GA (Koornneef and Van der Veen 1980; Peng and Harberd 1997). GA 

deficient mutants also produced rosette leaves with a reduced size indicating the 

important role of GA in promoting leaf expansion which is attributed to its effect on cell 

proliferation and cell elongation. 

The role of GA in promoting Arabidopsis flowering was demonstrated at first by the 

exogenous application of GA (Langridge 1957; Wilson et al. 1992). Furthermore, 

mutants that are defective either in GA biosynthesis (ga1-5, gibberellin deficient) or in 

GA signalling (gai, gibberellin insensitive) exhibited various defects in plant phenotype 

including dwarfism and late flowering (Koorneef et al. 1985; Koornneef and Van der 

Veen 1980). The GA pathway is essential in both short and long day conditions, however, 

the effect of mutating GA biosynthesis on flowering time is stronger under short days 

(Blázquez et al. 1998; Reeves and Coupland 2001; Wilson et al. 1992). In Arabidopsis, 

GA induces flowering through activation of the floral integrators SOC1 and LFY 

(Blázquez et al. 1998), while the expression of FT is not regulated by the GA pathway 
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suggesting that both genes, SOC1 and FT, act differently in integrating the flowering 

process (Moon et al. 2003). 

Recently, Yamaguchi et al. (2014) reported that the switch from vegetative to flowering 

in Arabidopsis includes two stages: branching of the inflorescence and flowering. GA 

acts positively, then negatively, in controlling the onset of flower generation in 

Arabidopsis, indicating that GA enhances the termination of vegetative development as 

well as inhibiting flower formation. This was illustrated as follows: in the presence of 

bioactive GA, DELLA proteins (which restrain plant growth by repressing GA-dependent 

pathways) are degraded, however, activation of the transcription factor LFY causes 

reduction in GA levels by promoting the expression of gibberellin catabolism genes 

allowing accumulation of DELLA proteins which is required to up-regulate the AP1 

leading to, synergistically with LFY, flowering. 

1.3.3. GA biosynthesis and metabolism 

The major pathways for the formation and degradation of the bioactive GAs and the 

enzymes catalysing these reactions are shown in Figure 1-6. GA12 and GA53 are substrates 

for the final stages of GA biosynthesis and their oxidation by the action of GA20-oxidases 

(GA20ox) produces GA9 and GA20 respectively as immediate precursors of active 

gibberellins. Via GA3-oxidase (GA3ox) activity, the bioactive GAs, GA4 and GA7 are 

produced from GA9, while the bioactive GAs, GA1 and GA3 are derived from GA20 

(Hedden and Phillips 2000; Paparelli et al. 2013). 

GA20ox is the key enzyme in GA biosynthesis pathway and involved in stem elongation 

and shoot growth (Chiang et al. 2015). Plants overexpressing GA20ox showed 

acceleration in flowering time under long and short days (Croker et al. 1999). While 

GA20ox and GA3ox are involved in the biosynthesis of the bioactive GAs, GA2-oxidase 

(GA2ox) deactivates them via oxidation (Yamaguchi 2008). Overexpression of a bean 

GA2ox in Arabidopsis exhibited a range of alterations in plant phenotypes: extreme dwarf 

phenotype was exhibited by Arabidopsis plants with strong overexpression of the 

transgene GA2-oxidase, whereas plants with lower expression levels of the transgene 
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showed a semi-dwarf or WT phenotype due to the increased expression of both GA20ox 

and GA3ox genes (Hedden and Phillips 2000). 

 

Figure 1-6 Gibberellin biosynthesis and degradation in plants. (GGDP) geranylgeranyl diphosphate, (CDP) 

ent-copalyl diphosphate, (CPS, AtCPS1) ent-copalyl diphosphate synthase, (KS, AtKS1) ent-kaurene 

synthase, (KO, AtKO1) ent-kaurene oxidase, (KAO, AtKAO1, 2) ent-kaurenoic acid oxidase, (GA20ox) 

AtGA20-oxidase1-5, (GA2ox) AtGA2-oxidase1-5, (GA3ox) AtGA3-oxidase1-4. (Farrow and Facchini 

2014; Hedden and Phillips 2000; Magome et al. 2004) 

1.3.4. Role of PAs in flowering 

PAs are implicated in flowering induction, differentiation of the flowers and in regulating 

fertility (Huang et al. 2004), in addition to their essential role in the germination of pollen 

and tube growth (Falasca et al. 2010; Song et al. 2001). In Arabidopsis thaliana, PAs are 

essential for flowering and altering their levels can affect the transition to flowering 

(Applewhite et al. 2000). Measurement of Put and Spd concentrations in different organs 

of Arabidopsis thaliana (Col-0) showed that these two PAs present in flowers at the 

highest concentration, with Spd prevailing, in contrast to other organs where Spd and Put 
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contents were lower (Applewhite et al. 2000). Application of Spd inhibitors that lower its 

endogenous levels completely inhibited bolting and flowering and plants were only able 

to overcome that developmental defect when transferred to inhibitor-free medium 

(Applewhite et al. 2000). Treatment of Arabidopsis plants with Spd under short day 

conditions where flowering is naturally late, increased its endogenous titres and enhanced 

flowering rate, treatment of the delayed-flowering mutant CS3123 with Spd considerably 

hastened flowering (Applewhite et al. 2000). All of these results suggest a strong 

correlation between PAs and the physiological processes leading to reproductive 

development. In general, sexual organs of Arabidopsis thaliana wild-type (Col-0) such 

as buds, mature and immature siliques, and flowers accumulate all the major PAs, Put, 

Spd and Spm, at high titres under normal conditions, while in other organs such as leaves 

and roots, the major PAs present at less concentrations (Urano et al. 2003). 

In both long- and the short-day plants, previous studies reported an increase in foliar PAs 

as a response to photoperiodic induction followed by their increase in the SAM where 

floral initiation eventually takes place (Hamasaki and Galston 1990; Havelange et al. 

1996). The increase in PA levels enhances flowering events in different plants and 

alterations in PA titres were reported during the switch from vegetative to flowering 

phases. For example, while PAs were absent in young vegetative parts of tobacco plants, 

a progressive accumulation of the conjugated PAs, hydroxycinnamoyl amides, in apical 

leaves and ultimately in the floral organs was recorded as the plant started its reproductive 

stage (Martin-Tanguy 1985). Under short day conditions, the exogenous treatment of the 

short-day plant Pharbitis nil cv. Kidachi with Put increased the internal free PA levels 

and induced flowering (Wada et al. 1994). In contrast, application of inhibitors that may 

reduce PA levels inhibited flowering, for instance, a decline in endogenous Spd levels, 

as a result of treatment with dicyclohexylammonium sulfate (CHA), an inhibitor of Spd 

synthase, was associated with a delay in flowering (Batchelor et al. 1986). Likewise, 

inhibiting Put biosynthesis by α-difluoromethylarginine (DFMA), an inhibitor of the 

ADC enzyme, or by α-difluoromethylornithine (DFMO), an inhibitor of the ODC enzyme 

postponed flowering in tobacco (Burtin et al. 1991), chrysanthemum (Aribaud and 

Martin-Tanguy 1994), and in Spirodela punctate (de Cantú and Kandeler 1989). 

However, exceeding the optimal concentration of PAs may also negatively affect the 
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flowering process. In this regard, it has been reported that accumulation of Put as a result 

of overexpressing its biosynthetic gene, ADC2, delayed flowering time through 

disturbing gibberellin metabolism by down-regulating GA biosynthetic genes (Alcazar et 

al. 2005). The phenotype was rescued by exogenously applied GA3 and was attributed to 

the decrease in the contents of bioactive GAs as a result of down-regulation of two GA-

biosynthetic genes, GA 20-oxidase and GA 3-oxidase, suggesting a negative effect of 

elevated Put on GA metabolism. 

PA titres can affect plant fertility across different species. In stem mustard (Brassica 

juncea var. tsatsai), male sterility has been correlated with PA levels, in both free and 

conjugated forms (Guo et al. 2003). Furthermore, sterile pollen resulted from silencing 

SAMDC, one of the key genes in polyamine biosynthesis, in tomato tapetal tissue (Sinha 

and Rajam 2013). The polyamine Spd appears to be essential in maintaining male fertility 

and pollen viability (Ma et al. 2012), and an increase in Spm and Spd levels along with 

up-regulation of SAMDC was found to be important for pollen germination and tube 

growth in tomato plants (Song et al. 2001). 

1.4. Aims of the project 

Prior work on PAs raised many interesting questions about the mechanism of their action 

in regulating plant growth, development, response to stresses and their involvement in 

plant senescence. Since some of the physiological actions of PAs were attributed to their 

catabolism, the aim of this study was to investigate the role of different AtCuAO genes in 

affecting development and senescence. Work was therefore carried out to test the 

following hypotheses: 

 Each member of the AtCuAO family has a particular role in Arabidopsis thaliana 

growth, development, productivity and senescence and this is linked to a 

differential expression pattern. 

 A reduction in AtCuAO expression will affect the endogenous PA balance 

resulting in an increase of putrescine content. 
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 An increase in putrescine content will affect the timing of flowering and this is 

related to an interaction with gibberellin signalling. 

 Perturbation of the expression of AtCuAO genes that are highly expressed during 

leaf senescence will affect the timing or progression of leaf senescence. 

 Silencing multiple members of the AtCuAO gene family will have a strong effect 

on Arabidopsis growth and development. 

To accomplish the aim of this research and test the hypotheses set out above, different 

experimental approaches were used: 

 The temporal expression of AtCuAO gene family members and mRNA 

distribution was studied in individual leaves of wild type Arabidopsis during 

vegetative and floral development under controlled conditions using two 

different expression-detection methods: quantitative real-time reverse 

transcription polymerase chain reaction (qRT-PCR) and histochemical GUS 

assay (Chapter 3). 

 To investigate the involvement of AtCuAO in regulating plant growth and 

development, the phenotype of catalytically-repressed AtCuAO4 mutants and 

transgenic plants overexpressing AtCuAO4 was tracked under optimal growth 

conditions (Chapter 4).  

 The effects of AtCuAO4 involvement in senescence was tested by comparing 

developmental and dark induced senescence by measuring changes in the visible 

leaf greenness and in the chlorophyll contents caused by mutation or 

overexpression of the AtCuAO4 gene (Chapter 4).  

 AtCuAO4 loss of function mutant lines were tested for changes in endogenous 

polyamines at two critical stages, pre- and post-bolting, by analysing the PA 

contents using High Performance Liquid Chromatography (HPLC) (Chapter 4).  
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 In order to understand the possible interactions between PAs and gibberellins, 

mutant lines were treated with GA3 at early stages and timing of flowering was 

scored along with analysing the transcription levels of selected genes involved 

in gibberellin biosynthesis (Chapter 4). 

 For a better understanding of the physiological role of CuAOs in plants, and to 

avoid issues related to the compensation effect of other gene family members, 

an artificial microRNA (amiRNA) approach was used to down-regulate multiple 

AtCuAO gene family members simultaneously and observable traits of AtCuAO 

silenced transformants were recorded (Chapter 5). 

The conclusions from these studies and the concept for the role of AtCuAOs is then 

discussed (Chapter 6). 



 

 

 

Chapter Two 
Methodology 
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2. General Materials and Methods 

This chapter explains the materials and methods used in two or more of the subsequent 

chapters of the present thesis. The specific methods and/or conditions related to the work 

specific to each chapter are described in the relevant chapter. Unless stated, all chemicals 

and reagents used in this work were obtained from Sigma, UK, (Sigma-Aldrich Co. LLC).  

2.1. Plant materials and growth conditions 

Seeds of Arabidopsis thaliana (L.) Heynh. ecotype Columbia (Col-0) were utilized in all 

experiments of this study as wild type. For different types of experiments, plants were 

grown differently but in general plants were grown either on a sterilized mix of sand and 

commercial multi-purpose compost (1: 3, v/ v respectively) or on autoclaved Murashige 

and Skoog (MS) (4.708 g/ L) basal salt (Duchefa Biochemie, Belgium), in 9 cm Petri 

dishes supplemented with 1 % DifcoTM agar and 1 % (w/ v) sucrose, pH 5.5- 5.7 with 

or without a selective agent that was added when the agar had cooled to just above the 

gelling point.  

Where soil was used to grow plants, seeds were first immersed in water within an 

Eppendorf tube and then stratified in the dark at 4° C for 48 h. Seeds were then sown in 

3.5×4×5 cm plastic tray pots filled with autoclaved wet sand and compost (1: 3) and kept 

in a controlled environment in a growth room or Sanyo-Fitotron growth chamber under 

the required conditions: long day (LD) conditions [16 h light (120-140 µmol m-2 s-1) and 

8 h dark] at 21° C or short day (SD) conditions [8 h light (120-140 µmol m-2 s-1) and 16 

h dark] at 21° C. Seeds were sown at a density of five per pot until the first two leaves 

emerged then each plant (seedling) was transferred to a bigger single plastic pot with a 

diameter of 9 cm. Plant pots were placed on trays with or without a capillary matting, and 

they were watered with tap water 3-4 times weekly to maintain 1 cm of water around base 

of pots and thus retain soil humidity.  

For using MS media, seeds were first sterilized in microcentrifuge tubes as described in 

Section 2.2, then stratified as described above. After sprinkling seeds on the surface of 

MS media (by adhering seeds one by one to the tip of a sterile 1 ml pipette using suction 
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then releasing it onto the surface of the MS medium), they were allowed to dry then plates 

were sealed with 3M™ Micropore™ Medical Tape 1530-0 (BM, USA). The agar plates 

with seeds were then moved to the growth chamber or the growth room to grow under 

the required conditions as described above. Ten to fifteen days later, seedlings were 

transferred to 9 cm plastic pots (one plant/ pot) filled with sterilized wet sand and compost 

(1:3) and were left to develop in the same conditions. 

In both cases, plates or pots were relocated to a new position in the growth chamber or 

growth room after each measurement in order to reduce position dependent variations. 

2.2. Surface sterilization and sowing of Arabidopsis Seeds 

In order to ensure that all seeds were free of any source of contamination, seeds were 

sterilized in a sterile Microflow Laminar flow workstation each time prior to propagation 

on MS media.  

A small amount of seeds (~60-100 seeds) were surface sterilized in Eppendorf tubes using 

1 ml of 10 % (v/ v) sodium hypochlorite. The tubes were inverted thoroughly for 2-3 min 

to ensure contact between all seeds and solution, and then they were centrifuged for a 

short spin (5 s) in an Eppendorf MiniSpin® microcentrifuge to accumulate them at the 

bottom of the tube. The supernatant was pipetted off to remove most of the sodium 

hypochlorite solution from the tube. Seeds were then washed in 1 ml of ethanol mix 

(Ethanol: sterile distilled water (SDW): hypochlorite; 7: 2: 1) for 2- 3 min and again 

inverted thoroughly. They were centrifuged for a short spin and the ethanol mix removed 

by pipetting. After that, seeds were washed with 1 ml SDW three to five times to remove 

all traces of hypochlorite. Seeds were then stratified for 48 h at 4° C, and after that sown 

on the surface of MS agar in Petri dishes and allowed to dry on the agar for several 

minutes. Dishes were then sealed with 3M™ Micropore™ Medical Tape 1530-0 (BM, 

USA). 

2.3. Seed stocks of Arabidopsis thaliana used in this work 

All the seed stocks used for the work described in this thesis are listed in Table 2-1. 
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Table 2-1 Seed stocks of Arabidopsis thaliana. 

Study type Name 
Selection/ 

Description 
Chapter Origin 

P
h

en
o

ty
p

in
g
 

35SCaMV::AtCuAO4 

(AT4G12290)-His tag 

Kan*, (50 μg/ ml) 

HZ*,OEX*, 

P9 (T2) 

P17 (T2) 

P27 (T2) 

5 

Ghuge, S. (Cona, A 

group. Roma TRE 

Uni) 

SALK_072954.55.00.x  

T-DNA insertional 

line for AtCuAO4 

(AT4G12290) [C#4] 

5 NASC 

GK_011C04-013046 

T-DNA insertional 

line for AtCuAO4 

(AT4G12290) 

[BIS#4] 

5 NASC 

 
amiRNA; 

CSHL_058443 
BASTA, HZ* 6 

amiRNA constructs 

were cloned at 

ABRC 

(http://abrc.osu.edu) 

and transformed into 

Agrobacterium 

tumefaciens and then 

into Arabidopsis 

thaliana plants in 

the present work 

 
amiRNA; 

CSHL_017399 
BASTA, HZ* 6 

S
p

at
ia

l 
an

d
 t

em
p

o
ra

l 

ex
p

re
ss

io
n
 

AtCuAO7::GUS 

(AT3G43670) 

Kan*, (50 μg/ ml) 

HZ* 

Lines; T2-16 

4 

Ghuge, S. (Cona, A 

group. Roma TRE 

Uni) 

AtCuAO8::GUS 

(AT1G31690) 

Kan*, (50 μg/ ml) 

HZ* 

T1 

4 

Ghuge, S. (Cona, A 

group. Roma TRE 

Uni) 

SAG12::GUS HM* 4 

Buchanan-

Wollaston, V. 

Warwick Uni. 

A
tC

u
A

O
s 

te
m

p
o

ra
l 

ex
p

re
ss

io
n

 a
n

d
 

as
 a

 c
o

n
tr

o
l 

WT* 
Arabidopsis thaliana 

Columbia (Col-0) 
3, 4, 5, 6 

Cona, A; group. 

Roma, TRE Uni and 

the present work 

(* Kan: kanamycin; OEX: overexpression line; HZ: heterozygous or hemizygous; HM: 

homozygous; WT: wild type, Col-0). 

 

2.4. Growth measurement 

During the growth of the plants, selected growth parameters were recorded from the day 

of sowing as follows: bolting day was scored at the day of initiation of the inflorescence 
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stem distinguished by a visually discernible morphological change in the shoot apical 

meristem. Number of true rosette leaves was counted on the day of bolting excluding the 

two cotyledons. The first day a flower bud opened was recorded as the day of first 

flowering. In order to measure productivity rate, plants were scored for the formation of 

the first silique and the total number of siliques produced by the plant in the following 

week on the primary inflorescence, secondary inflorescence branches (at the axils of the 

cauline leaves), and inflorescence branches (grown out from the axillary buds subtended 

by rosette leaves).  

2.5. DNA extraction 

For genotyping purposes, DNA was extracted as described by Edwards et al. (1991) as 

follows: The frozen tissue (flash frozen in liquid nitrogen) of a cauline leaf from the floral 

stem was macerated using a sterile plastic pestle in a sterile Eppendorf tube at room 

temperature (RT) for about 10 s. Edwards extraction buffer (400 µl of 100 mM Tris-HCl 

pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5 % SDS) was added and the sample was ground 

briefly in order to remove tissue from the pestle, then vortexed for 5 s. The extract was 

centrifuged at 13,000 rpm for 1 min in a microcentrifuge (Eppendorf MiniSpin®) and 

300 µl of the supernatant transferred to a clean Eppendorf tube. The supernatant was then 

mixed with 300 µl of isopropanol and left at RT for 2 min. Following centrifugation at 

13,000 rpm for 10 min using an Eppendorf MiniSpin® microcentrifuge, the pellet was 

allowed to dry for 30 min, and then the dried pellet was dissolved in 100 µl of SDW. 

DNA quality was then checked by PCR reaction (Section 2.9 and 2.11.1) using PUV 

primers (Table 2-2) that bind to the 18S ribosomal RNA (rRNA) as the rRNA is the most 

abundant type of RNA in the cell (Vandesompele et al. 2002). 

2.6. RNA extraction 

As ribonucleic acid (RNA) is susceptible to contamination by RNases, mortars and 

pestles used for RNA extraction were first soaked in 0.1 NaOH for 30 min, rinsed 

thoroughly with SDW, wrapped with aluminium foil, autoclaved at 120° C for 15 min 

and dried at 60° C. All plastic-ware was autoclaved, dried and containers opened shortly 

before use. Prior to using them, mortars and pestles were frozen at -20° C overnight.  
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RNA was isolated using an RNeasy Plant Mini kit (QIAGEN) as follows. Plant tissue 

was ground to a fine powder in liquid nitrogen with a mortar and pestle and 100-150 mg 

of the fine powdered tissue was transferred into a 1.5 ml Eppendorf tube with 450 µl of 

buffer containing β-mercaptoethanol (1 β-mercaptoethanol: 100 RLT buffer supplied 

with the kit). The mixture was vortexed vigorously, transferred to a QIAshredder spin 

column (Lilac) placed in 2 ml collection tube, and centrifuged for 2 min at maximum 

speed 13,000 rpm in a microcentrifuge (Eppendorf MiniSpin®). Without disturbing the 

pellet, the supernatant of the flow-through was then carefully transferred to a new 2 ml 

microcentrifuge tube and 250 µl (0.5 volume) of absolute ethanol was added, mixed 

immediately by pipetting up and down and directly transferred to an RNeasy mini column 

(pink) placed in a 2 ml collection tube. The pink column was centrifuged for 30 sec at 

10,000 rpm in a microcentrifuge (Eppendorf MiniSpin®) and the flow-through was 

discarded. To wash the column, 700 µl of RW1 buffer supplied with the kit was added, 

centrifuged for 30 sec at 10,000 rpm as above, and the flow-through was discarded. Next, 

500 µl of RPE buffer was added onto the pink column and centrifuged for 30 s at 10,000 

rpm as above and the flow-through was discarded. The last step was repeated but the 

centrifugation was for 2 min, then the collection tube containing flow-through liquid was 

discarded and the column was transferred into a new 2 ml collection tube. To dry the 

column membrane and remove any residual of RPE buffer which contains ethanol that 

may interfere with downstream reactions, the column was centrifuged for another 1 min 

as above. Finally, the column was transferred to a new 1.5 ml Eppendorf tube and 30-50 

µl of warm RNase-free water was added directly on to the silica-gel membrane, left for 

1 min at room temperature, and centrifuged for 1 min at 10,000 rpm as above to elute the 

RNA. Eluted RNA was stored at -80° C until further use. The concentration of RNA was 

measured as described in Section 2.11.2. 

2.7. DNase treatment after RNA extraction 

Prior to real time RT-PCR analysis, RNA extracts were treated with DNase to eliminate 

genomic DNA contamination and thus avoid amplification of genomic DNA. For each 

digestion, 1x RQ1 RNase-free DNase buffer (40 mM Tris-HCL pH 8, 10 mM MgSO4, 1 

mM CaCl2; PROMEGA, Southampton, UK) and 3 µl RQ1 RNase-free DNase (1 unit/ 

µl; PROMEGA, Southampton, UK) were added to 2 µg RNA in PCR tubes, made up to 
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20 µl with SDW, mixed and incubated at 37° C for 30 min . To inactivate the DNase and 

terminate the reaction, 2 µl of RQ1 stop solution (20mM EGTA, pH 8, Promega) was 

added to the mix which was then incubated at 65° C for 10 min. Subsequently, treated 

RNA samples (1 µl) were checked via PCR (Section 2.9), using 18S rRNA primers (PUV 

primers, Table 2-2) to confirm that all genomic DNA was indeed digested. 

2.8. cDNA Generation 

The first strand cDNA was generated from DNase-treated RNA as follows: 2 µg of total 

RNA was mixed with 1 µl Oligo (dt) 15 Primer (500 µg/ ml, Promega), incubated at 70° 

C for 10 min, and the mix was then cooled on ice for 10 min. Afterwards, 6 µl of 5x M-

MLV RT buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl, 15 mM MgCl2, 50 mM DTT, 

Promega), 1 µl of 10 mM dNTP mix, and 2 µl of 0.1 M DTT were added to each tube 

and the reaction mix was then incubated for 2 min at 42° C. To start the cDNA synthesis, 

1 µl of M-MLV Reverse Transcriptase, RNase [H-] (Promega: 200 unit/ µl) was added 

and the reaction further incubated at 42° C for 50 min in a PCR machine. To terminate 

the reaction, the incubation temperature was increased to 70° C for 15 min. Samples were 

stored at -80° C for further expression analysis.  

Quality of cDNA was tested by PCR (Section 2.9) using Actin2 primers (Table 2-2) 

before proceeding to real-time RT-PCR.  

2.9. Polymerase chain reaction (PCR) 

PCR was performed in either a GeneAmp® PCR System 2700 (Applied Biosystems, 

USA), Techne Flexigene (Techne, UK), or Veriti® thermal cycler (Life Technologies, 

USA) PCR machine.  

For each reaction the PCR volume was 25 µl and contained: 1 µl of each appropriate 

primer (10 µM; Table 2-2 and Table 2-3), 0.5 µl dNTP mix (10 mM, Promega), 5 µl of 

5x Green GoTaq Flexi buffer (Promega), 1.5 µl MgCl2 (25 mM), 0.125 µl GoTaq DNA 

Polymerase (5U/ µl, Promega), 14.9 µl SDW, and finally 1 µl of isolated DNA or cDNA. 

As a negative control to detect any contamination, 1 µl of SDW replaced the DNA 

template. All PCR reactions were started with a DNA denaturation step at 95° C for 2–3 
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min and ended with an extension for 7 min at 72° C. The number of cycles was between 

35 and 40 of 1 min at 94° C, 1 min at 50-58° C (depending on the Tm ° C), and 1 min at 

72° C. When using Hot Star Taq polymerase (5 U/ µl, Qiagen), the same protocol was 

used except that 2.5 µl of 10X PCR buffer (Qiagen) and 1 µl MgCl2 (15 mM) were used, 

and the programme started with a denaturation step at 95° C for 15 min. 

2.10. Quantitative real time RT-PCR 

As assessed by NanoDrop (see Section 2.11.2), equal amounts of RNA of each sample 

were used for cDNA synthesis. To equalize transcript concentrations in cDNA samples, 

cDNAs were normalized prior to proceeding with the analysis of the samples by 

measuring the cDNA using the nanodrop and adjusting the concentration accordingly to 

100 ng/ µl. Quantitative real-time PCR was performed in triplicate with SybrGreen using 

the first-strand cDNA as a template on an Agilent Mx3000P QPCR System (Agilent 

Technologies UK 28 Ltd., Stockport, UK).  

The qRT-PCR mixture for each reaction was in a total volume of 20 μl containing: 400 

nM of each primer, 60 ng of the single strand cDNA, and 10 µl of 2 x qPCRBIO SyGreen 

Mix LoROX (Applied Biosystems Ltd., London, UK), made up to 20 μl with SDW. The 

thermal profile was: 1 cycle at 95° C for 5 min, 40 cycles at 95° C for 15 s, 60° C for 30 

s, 72° C for 30 s. After amplification, a dissociation curve analysis (from 60° C to 95° C 

where the temperature is increased by 0.5° C s-1) was carried out to test primer specificity 

and check for the absence of primer dimers. Gene expression was calculated according 

to the 2-ΔΔCT (2-ΔΔCt) method (Livak and Schmittgen 2001), using the equation ΔΔCT 

= 2 -[ΔCt treated-sample - ΔCt control-sample], with ΔCt = Ct target-gene – Ct reference-gene, where 

Ct refers to the cycle threshold.  

The software used to control the thermocycler and to analyse data was the MxPro qPCR 

software (Agilent Technologies), and Actin2 mRNA was used as a housekeeping gene to 

normalize target gene expression levels (see Table 2-3 for primer sequence). Actin2 

primers were used because the expression of this gene is high throughout leaf 

development and stable amongst leaf tissue (Winter et al. 2007). 
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2.11. Quantification of the nucleic acids 

2.11.1. Agarose gel electrophoresis 

PCR products were checked by electrophoresis of 12 μl of the reaction mixture on an 

agarose gel as follows. Depending on the size of nucleic acid to be separated, 1- 1.4 % 

(w/ v) agarose (Bioline, London, UK) was added to 1x Tris-acetate-EDTA (TAE) buffer 

(4.84 g/ L Tris, 1.142 ml/ L glacial acetic acid, 2 ml/ L 0.5M EDTA), heated using a 

microwave to dissolve the agarose, and cooled down to approximately 45° C. This was 

then mixed with ethidium bromide EtBr (1 µl of 10 mg/ ml EtBr per 10 ml of agarose gel 

solution) and poured into a tray with a comb to form wells and left at RT for 20 min to 

solidify the gel. The comb was removed, and the gel placed in a gel tank containing 1x 

TAE buffer covering the gel and each deoxyribonucleic acid (DNA) sample was loaded 

into a separate well.  

Likewise, the integrity of the ribonucleic acid (RNA) was assessed by agarose gel 

electrophoresis after soaking all parts of the equipment, the gel tank, comb and tray, in 

0.1 M NaOH for 20 min and then rinsing them with distilled water to prevent RNA 

degradation by RNase. Prior to pipetting RNA samples into wells, 2 µl 5x Green GoTaq 

Flexi buffer (Promega) was added to each sample. 

The gel was electrophoresed in 1x TAE buffer, at 100 V for 30-40 min alongside 7-10 µl 

(400– 500 ng) 1Kb+ DNA ladder (1 µg/ µl, Invitrogen) as an indicator of DNA fragment 

size. The gel was then visualized under UV light and an image captured using a Gene 

Genius Bioimaging System (Syngene Ltd.). 

2.11.2. Spectrophotometry 

Concentration of both DNA and RNA expressed as ng/ µl was determined using a 

NanoDrop ND-1000 UV-Vis spectrophotometer (Thermo Scientific), to analyze a sample 

of 1-1.2 µl at 260 nm. Ratios of 260/ 280 and 260/ 230 were also measured to assess 

nucleic acid purity. 
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2.12. Purification of PCR amplicons 

PCR products were either purified directly from the PCR reaction mixture using a 

QIAquick PCR purification kit or gel purified using a QIAquick gel extraction kit as per 

the manufacturer's instructions provided in the QIAquick® Spin Handbook (QIAGEN). 

Before sequencing, DNA fragments were re-checked on a 1.7 % agarose gel 

(Section 2.11.1) and the concentration of the extracted PCR product was determined 

using a spectrophotometer (Section 2.11.2). 

2.13. DNA sequencing 

Sequencing reactions were performed using the Big Dye Terminator (v 3.1) (Applied 

Biosystems, Foster City, CA, USA), with an automated sequence analyzer ABI PRISM® 

3730XL (Applied Biosystems), by Eurofins MWG Operon in the forward direction using 

appropriate primers (Section 2.14). 

2.14. Primers 

Primer pairs for each gene, analysed by either PCR or qRT-PCR, were designed with 

Primer3 (Rozen and Skaletsky 1999), on-line software (http://fokker.wi.mit.edu/primer3 

/input.htm).  

For high specificity, primers used for qRT-PCR were designed using 300 –500 

nucleotides downstream of the open reading frame including the 3’UTR. The Arabidopsis 

Information Resource (TAIR; https://www.arabidopsis.org/), the Munich Information 

Centre for Protein Sequences (MIPS; http://mips.helmholtz-muenchen.de/plant/), and the 

National Centre for Biotechnology Information (NCBI; http://ncbi.nlm.nih.gov/pubmed) 

databases were used as sources of information about coding sequences of genes.  

Primers were all purchased from Sigma-Genosys Ltd, UK. They were all desalted-grade 

(scale 0.025), except ssActin2 primers which were Reverse Phase-grade (scale 0.05). 

Primer sequences are listed in Table 2-2 and Table 2-3. 
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Table 2-2 Sequence of primers used for PCR 

Target Primer Primer sequence (5’-3’) 
Fragment 
size (bp) 

Tm° C 

AtCuAO4 (At4g12290) 
(Flank the T-DNA) 

AtCuAO4 F 
AtCuAO4 R 

CTGGTTACCCGATGATGACTA 
TCGGTTATCTCGATCACTTGC 

283 50 

AtCuAO4 (At4g12290) 
(Up-stream) 

Up F 
Up R 

CTTTGCGCTTCGAGAAACTT 
TGTGGTGTACCGGAAGTGAA 

200 58 

AtCuAO4 (At4g12290) 
(Down-stream) 

Down F 
Down R 

GAGTTACGCCGGAGATATTG 
TAGCGTCACTTTTGGTCTCA 

199 gDNA 
88 cDNA 

58 

SALK_072954.55.00.x 
Line C#4 

LBa1 
AtCuAO4 F 

GATGGTTCACGTAGTGGGCCATCGC 
CTGGTTACCCGATGATGACTA 

400 50 

GK-011C04-013046 
Line BIS#4 

P6 
AtCuAO4 R 

GAAGATAGTGGAAAAGGAAGGTGGCTC 
TCGGTTATCTCGATCACTTGC 

200 50 

Gateway vector 
ABB1 
ABB2 

GGGGACAAGTTTGTACAAAAAAGCAGGCTAT 
GGGGACCACTTTGTACAAGAAAGCTGGGTC 

500 55 

18S rRNA 
PUV2 
PUV4 

ATGGTGGTAACGGGTGAC 
TCCCATGCTAATGTATCCAGAG 

459 55 

UBQ10  
(At4g05320) 

F 
R 

CACACTCCACTTGGTCTTGCGT 
TGGTCTTTCCGGTGAGAGTCTTCA 

~400 58 

AtCuAO4  
Over-expression lines 

35SforW1 
AtCuAO4 R 

AGGAGCATCGTGGAAAAAGA 
TCGGTTATCTCGATCACTTGC 

~1075 52 

Actin2 
(At3g18780) 

F 
R 

TGTGCCAATCTACGAGGG 
TTTCCCGCTCTGCTGTTGT 

137 55 

BASTA 229 Bar_R TTTCGGTGACGGGCAGGACCG 545 58 

MIR-443_F 
(amiRNA sequence) 

F AAAGGAGAACGTAAACGGTAT  58 

MIR-399_F 
(amiRNA sequence) 

F CGAGCAGCATTTAGCAACTAT  61 

35Sp  
(Used with amiRNA) 

 GATTGATGTGATATCTCCACTGACG  65.5 

amiRNA 
designed primers 

F 
R 

AGGACGCATATTACACATGTTCA 
TTGGCGACTCGGTATTTGGA 

158 60 

AtCuAO3-SP  
verification  

F 
R 

TCGACTGCACAAAATCTTCG 
CCCTTTTGGTGTTGTCGTCT 

579 58 

AtCuAO9 
verification 

F 
R 

TGGGGTTATGAGAGCAAAG 
GGAATGTGATGGAACCCAAG 

834 58 
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Table 2-3 Sequence of primers used for quantitative real time RT-PCR 

Gene / 
 Locus 

Primer Primer sequence (5’-3’) 

Amplified fragment Size 
(bp) Tm° C 

cDNA gDNA 

AtAO1 
(At4g14940) 

F 
R 

CGTCAAACATATGATCATTGAAAA 
GGCACGACCAACTTGAAAAT 

189 189 58 

AtCuAO1 
(At1g62810) 

F 
R 

CCGAACAAGAAGCCTGAGTC 
CGATGGCAGAACCATCTTTT 

109 109 58 

AtCuAO3-SP 
(At4g12270) 

F 
R 

GGAACGCCATATGTGAGAGAG 
GGTATCCGGAGCCAACTTTT 

152 545 58 

AtCuAO4 
(At4g12290) 

F 
R 

CCGCTCCAAACTTTGAACAT 
TCCGCATGAATATATGGATTCTC 

218 218 58 

AtCuAO5 
(At1g31670) 

F 
R 

TGGTACACTGTCGGATTCCA 
CGTTGGTGTGGTGTTGAGTT 

153 153 58 

AtCuAO2 
(At1g31710) 

F 
R 

GACCGACCAACTTTTTCGAG 
TCGAATCGTTACAGTCCATCA 

155 155 58 

AtCuAO7 
(At3g43670) 

F 
R 

TTTTCCAGTGATGCCAACAA 
TGAAAATGCACAGTGTCGAA 

156 156 58 

AtCuAO8 
(At1g31690) 

F 
R 

TCAATCTCACCACCATTCCA 
TTGGAATCTCTTTACAATTCCTCA 

114 114 58 

AtCuAO9 
(At4g12280) 

F 
R 

TGGGGTTATGAGAGCAAAG 
CATTTTCGGACAGAATCGTG 

137 234 58 

AtCuAO3 
(At2g42490) 

F 
R 

GCTTGATCTTCCCCCTTCTC 
CTCAAGATCCGGTGACGAAT 

172 172 58 

ssActin2 
(At3g18780) 

F 
R 

ACATTGTGCTCAGTGGTGGA 
CTGAGGGAAGCAAGAATGGA 

163 163 55 

AtKS1 
(At1g79460)  

F 
R 

TTTACAGGAAGGACGATGGA 
TACCTGCCAGATCAACTTGG 

122 122 55 

AtCPS1 
(At4g02780) 

F 
R 

AACCGCTTCTGGATTTGTCT 
TCCATTCCAAGTACAACCTTTC 

112 934 60 

AtGA2ox1 
(At1g78440) 

F 
R 

GTACAACCTCTCGTCCTCATTGTCT 
CTTCGCTGGACCTTCATTGAC 

76 76 58 

AtGA3ox1 
(At1g15550) 

F 
R 

AGATCGTCTTTAGGGGTCCA 
GAGCAAGATGCCTGCTATGT 

132 132 55 

AtGA20ox1 
(At4g25420) 

F 
R 

CTGCTTGCGTAGCCAACACT 
GGCATCAGCGAGGAGCTTATT 

122 122 65 

SUP 
(At3g23130) 

F 
R 

CCATAAAGGATTCGAAGTTCA 
AAACGGTAACAAGCGCATAC 

185 185 60 

SOC1 
(At2g45660) 

F 
R 

CAGCATCACAAAGCACTGAG 
TTTCTGTGTGCAAGGGAAAT 

161 161 55 
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2.15. Chlorophyll determination 

Chlorophyll content was measured in leaves number 5 and 6 according to (Lichtenthaler 

1987). Leaves were weighed and then powdered in liquid nitrogen using a sterile plastic 

pestle in a sterile Eppendorf tube. Methanol (99.8 %) was added, 10 % (w/ v), and then 

samples were incubated in complete darkness at 4° C for 24h. Samples were then 

centrifuged at 13,000 rpm in a microcentrifuge (Eppendorf MiniSpin®) for 5 min at RT. 

Magellan™ 701 software (TECAN) was used to measure the optical densities of 200 µl 

of the supernatant against a methanol blank at 665 and 652 nm using an Infinite M200, 

quad4 monochromator™ detection system (Tecan Austria, Austria) and 96-well flat 

bottom transparent microplates (Greiner Bio-One, Germany). Chlorophyll and carotenoid 

concentrations were then calculated according to Lichtenthaler and Buschmann (2001) 

as follows: Chl. a (µg/ ml) = 16.72 x Abs.665 - 9.16 x Abs.652; Chl. b (µg/ ml) = 34.09 x 

Abs.652 - 15.28 x Abs.665; Chl. a+b (µg/ ml) = 1.44 x Abs.665 + 24.93 x Abs.652; Carotenoid 

(µg/ ml) = (1000 x Abs.470 - 1.63 x Chl. a - 104.96 x Chl. b)/ 221. Then µg Chl. per mg 

fresh weight of plant tissue was calculated using the following equation: [Chl. a, b, total, 

or carotenoid (µg/ ml)] x volume methanol/ mg tissue. 

2.16. Microscopy and Imaging 

Visualization of different parts of the plant was performed at suitable magnifications 

either under a light microscope using an Olympus BH-2 microscope or under a dissecting 

microscope using a Nikon SMZ-2T. Images were captured using a Tucsen Camera 

(Tucsen imaging technology Co., Ltd. TCA-5.0 C). 

2.17. Statistical analysis 

All statistical work was carried out using SPSS 18.0 software. To identify the best test to 

use, the normality of data was tested among plant lines using a Shapiro-Wilk test and 

accordingly the parametric test, T-test, was used on normally distributed data whereas 

the non-parametric test, Mann-Whitney, was used on non-normal data. The statistical 

analysis of gene expression, chlorophyll contents, GUS activity among stages, and 

phenotype of GA treated plants was performed with one-way ANOVA. Significance of 

differences was determined if the P value was ≤ 0.05 in all statistical tests used. 
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3. Developmental regulation of AtCuAO gene family expression in 

Arabidopsis thaliana 

3.1. Introduction 

In all plant species studied to date, copper amine oxidase genes are found in multigene 

families (Moller and McPherson 1998; Tipping and McPherson 1995). In Arabidopsis, 

ten genes encoding putative copper-binding amine oxidases (AtCuAOs) have been 

predicted based on sequence homology (Table 3-1) (Arabidopsis genome database; 

TAIR; https://www.arabidopsis.org). 

Four of the Arabidopsis CuAOs, AtAO1 (At4g14940); AtCuAO1 (At1g62810); AtCuAO2 

(At1g31710); AtCuAO3 (At2g42490), have been characterized at the protein level. A 

peroxisomal localization has been reported for two of them, AtCuAO2 and AtCuAO3, 

while AtCuAO1 and AtAO1 are predicted to be extracellular (apoplastic) proteins (Moller 

and McPherson 1998; Planas-Portell et al. 2013). CuAOs mediate polyamine (PA) 

catabolism in different cellular compartments of Arabidopsis (Planas-Portell et al. 2013). 

Most of the intracellular PA catabolism occurs in peroxisomes (Moschou et al. 2012). 

Recently Planas-Portell et al. (2013) studied three CuAOs, AtCuAO1; AtCuAO2; 

AtCuAO3, and found that these genes encode functional CuAOs that are able to oxidize 

putrescine (Put) and spermidine (Spd) but not spermine (Spm). Put and Spd are oxidized 

in the apoplast by AtAO1 and AtCuAO1 (Planas-Portell et al. 2013; Wimalasekera et al. 

2011b), while this reaction is catalysed by AtCuAO2 and AtCuAO3 in the peroxisomes 

and co-localized with PA back conversion pathways catalysed by polyamine oxidases 

(PAOs). This suggests a tight organisation between the two catabolic enzyme 

machineries to preserve PA cellular content at the optimum level (Planas-Portell et al. 

2013). Both spatial and temporal expression of CuAOs is regulated during plant 

development and it can be affected by environmental or endogenous stimuli (Angelini et 

al. 1990; Laurenzi et al. 2001; Moller and McPherson 1998; Paschalidis and Roubelakis-

Angelakis 2005a; Rea et al. 1998). AtCuAO1-3 are expressed in whole seedlings, rosette 

leaves, stems and flowers (Planas-Portell et al. 2013). AtCuAO1 and AtCuAO3 were 

similar in their expression pattern as shown by quantitative real time RT-PCR (qRT-PCR) 

using total RNA isolated from the whole plants but their expression increased during 
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plant development. AtCuAO3 reached a peak in flowers whereas AtCuAO1 peaked in 

stems and flowers suggesting the involvement of these genes in plant development. On 

the other hand, no change in AtCuAO2 expression was observed during plant 

development although its transcript level was abundant in stems and low in other organs. 

AtAO1 expression also changes spatially with high expression in cells undergoing 

programmed cell death (PCD) such as developing xylem and lateral root cap cells (Moller 

and McPherson 1998). This is consistent with a need for high levels of amine oxidases 

(AOs) in tissues and cells undergoing wall rigidification or lignification as the AOs are 

thought to have a role in affecting the rigidity and stiffness of the cell wall and thus plant 

growth and development (Cona et al. 2003). Strong expression of AtAO1 gene, detected 

by a promoter::GFP-GUS fusion, in guard cells of Arabidopsis leaves and xylem tissue 

of roots, suggested its involvement in balance between supply of water via root xylem 

and its loss via transpiration through stomata (Ghuge et al. 2015b). AtAO1 expression is 

also high in developing leaves, hypocotyl, and style/ stigmatal tissue (Moller and 

McPherson 1998).  

Expression analysis of AtCuAO1, AtCuAO4 and AtCuAO7 genes during plant 

development using qRT-PCR in Arabidopsis rosette leaves grown under normal 

conditions showed an increase in the transcript level of all the three genes at 6 and 8 

weeks compared with 2 and 4 weeks and these changes were dramatic for AtCuAO4 

expression (Ghuge 2014). 

Tissue and organ specific activity of the GUS reporter enzyme in six AtCuAO::GUS 

transgenic plants has been monitored in young seedlings (4-5 day old), and results 

revealed that promoters of AtAO1, AtCuAO1, and AtCuAO7 are active in both roots and 

leaves, whereas AtCuAO2 is root specific gene, and both AtCuAO4 and AtCuAO8 are leaf 

specific genes (Ghuge 2014). Overall the information on the expression of the AtCuAO 

gene family is fragmentary. Some of the AtCuAO genes have been studied by qRT-PCR 

analysis and some by GUS reporter gene assays either in the whole plant at specific stages 

or at different developmental stages, or in specific tissues at specific stages. Information 

on the expression of the whole family of AtCuAO genes is available by microarray 
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analysis on TAIR and PRESTA websites but the microarray data sources are not in full 

agreement regarding AtCuAOs expression during leaf senescence as shown in Table 3-1. 

Detailed information about stage specific changes in AtCuAO gene expression is needed 

for a full understanding of the gene regulatory network underlying development. 

Table 3-1 Characteristics of the ten AtCuAOs in the Arabidopsis thaliana genome. 

CuAO genes Localization 
(P sort) 

Expression in 
plant* 

Expression during 
senescence* Expression during 

stress* 
TAIR PRESTA Cona 

Lab 

AtAO1 
(At4g14940) 

Apoplastic 

During early 

stages of 

vascular tissue 

development. 

No Yes Yes 
Highly expressed under 
different abiotic and biotic 
stresses 

AtCuAO1 
(At1g62810) Apoplastic 

During different 

stages of plant 

development 

Yes+ Yes ___ 
Expressed in leaves under 
osmotic stress 

AtCuAO3-SP 
(At4g12270) 

Outside 

During all the 

stages of plant 

development 

Yes+ maybe ___ 

Highly expressed in roots in 
response to abiotic stresses 
and in leaves in response to 
some biotic stresses 

AtCuAO4 
(At4g12290) Vacuole 

During late seed 

germination and 

dry seeds 

Yes+ maybe Yes 
Highly expressed under 
different abiotic and biotic 
stresses 

AtCuAO5 
(At1g31670) 

ER 
(membrane) 

During seed 

germination 
No No ___ 

Expressed in leaves during 
biotic stresses and in roots 
during abiotic stresses 

AtCuAO2 
(At1g31710) Peroxisome 

Expressed in 13 

plant structures 

during 8 growth 

stages 

No No ___ 

Expressed in roots and 
leaves in response to abiotic 
stresses and in leaves under 
biotic stresses 

AtCuAO7 
(At3g43670) Apoplastic 

Expressed in 20 

plant structures 
Yes+ maybe Yes 

Expressed in leaves under 
biotic and abiotic stresses 

AtCuAO8 
(At1g31690) 

Peroxisome 

Expressed in 9 

plant structures 

during 7 growth 

stages 

No maybe ___ 
Expressed in leaves in 
response to some abiotic 
and biotic stresses 

AtCuAO9 
(At4g12280) 

Cytoplasm 

Highly 

expressed 

during late seed 

germination and 

dry seeds 

Yes+ maybe ___ Expressed under different 
biotic and abiotic stresses 

AtCuAO3 
(At2g42490) 

Peroxisome 

Expressed in 22 

plant structures 

during 13 

growth stages 

Yes+ No ___ 

Expressed in roots and 
leaves as a response to 
abiotic stresses and in 
leaves under biotic stresses 

* Data from TAIR eFP browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) and PRESTA, the 

Arabidopsis project (http://www2.warwick.ac.uk). +, high level of expression; ___, not studied. 
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To date, no data are available on the expression pattern of all AtCuAO gene family 

members in leaves during development using qRT-PCR. The real time quantitative 

reverse transcriptase (qRT-PCR) technique is both a highly sensitive and specific method 

(Bustin 2000), that is generally accepted as a gold standard for relative gene expression 

measurement and is frequently used to confirm results of microarray data (Qin et al. 

2006). Because it allows the specific detection of each member of the family, the qRT-

PCR technique is indeed a good tool to carry out an analysis of the expression level of 

genes belonging to a very conserved gene family as was illustrated previously with 

members of four different gene families in Arabidopsis thaliana (Baud et al. 2004; 

Charrier et al. 2002; Orsel et al. 2002; Yokoyama and Nishitani 2001). This analysis 

method has therefore been used in the present chapter to validate available expression 

data on the CuAO gene family in wild type Arabidopsis. Single leaves, 5 and 6, were used 

to obtain an accurate representation of changes in the expression of different members of 

the family during four critical developmental stages in the life cycle of the plant (pre-

bolting, at bolting, post bolting and at senescence) under controlled conditions. These 

two leaves were chosen because they are less shaded by other rosette leaves (Mullen et 

al. 2006), and because of their synchronized (concurrent) emergence and development 

under our growth conditions, and the synchronization of senescence and nutrient 

remobilization from these two leaves with reproductive growth (Breeze et al. 2011). For 

further confirmation and as the reporter gene β-glucuronidase (GUS) is helpful for better 

understanding of gene expression (Jefferson 1987), the expression of two members of 

CuAO gene family, AtCuAO8 and AtCuAO7, was also examined in GUS reporter lines 

during Arabidopsis development. Promoter regions of around 1.8 and 2.5 kb upstream of 

the ATG were used in AtCuAO8 and AtCuAO7 GUS lines respectively (Ghuge 2014), for 

more details see Appendix B (c). 

3.2. Materials and methods 

3.2.1. Plant materials and growth conditions 

Seeds of Arabidopsis thaliana (L.) Heynh. ecotype Columbia (Col-0) were used in this 

experiment. Seeds were stratified and sown on soil in plastic pots as described in 

Section 2.1 at a density of 1-2 plants per pot and grown under long day conditions until 
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the first two leaves emerged, then seedlings were thinned out to keep a single plant in 

each pot and leaves 5 and 6 were tagged with thread 18 days after sowing (DAS). During 

plant growth, leaves 5 and 6 were always harvested in the morning (to avoid any possible 

circadian effects), randomly selected to avoid any potential effects of position within the 

growth incubator, at specific time points starting at 20 DAS and continuing every week 

until almost full senescence was reached (41 DAS). Two biological replicates consisting 

of 20 leaves/ replicate, were collected at each stage. Samples were frozen in liquid 

nitrogen and then kept at -80° C until further use. 

For promoter GUS (β-glucuronidase) analysis, Arabidopsis thaliana (Col-0) and 

transgenic lines expressing SAG12::GUS, AtCuAO7::GUS, AtCuAO8::GUS plants were 

grown in vitro (with kanamycin (Kan) at 50 μg/ ml for AtCuAO7::GUS, AtCuAO8::GUS 

or without for other plants) and then in soil in a controlled environment as described in 

Section 2.1. Samples were collected as described above except that sampling was from 

six plants at early stages while three plants were used at late stages for this purpose. 

3.2.2. Primer design, sequence alignment and analysis 

Primer sets of each CuAO gene were designed with Primer 3 software, as described in 

Section 2.14. To ensure the specificity and efficiency of designed primers during real-

time PCR using cDNA as a template and under standard reaction conditions, primers 

were designed based on a specific set of criteria. These included primer length of 20-24 

nucleotides, PCR amplicon lengths of 100- 200 bp and when possible, both primers of 

each pair (or at least one of them) were designed from the 3’ UTR zone. BioEdit software 

was used for multiple sequence alignment of AtCuAO cDNAs and primer sequences. To 

determine the evolutionary relationship among the gene family members, using amino 

acid or nucleotide sequences, Arabidopsis CuAO members were used for Phylogenetic 

and molecular evolutionary analyses using Phylogeny.fr (http://www.phylogeny.fr) in 

“Advanced” mode using the MUSCLE 3.7 program for multiple alignments, PhyML 3.0 

aLRT program for phylogenetic tree building based on an approximation of the standard 

likelihood ratio test, and TreeDyn 198.3 for tree rendering (Dereeper et al. 2008). 
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3.2.3. Testing primers and sequencing of PCR products 

Primers were tested first on genomic DNA (gDNA) to confirm primer efficiency and 

specificity, and amplified fragments were then sequenced to confirm gene identity by 

aligning sequencing results with the original gene.  

PCR reactions were performed, using UBQ10 as a positive control because the expression 

of this gene is stable throughout leaf development (Winter et al. 2007), as described in 

Section 2.9 (and Table 2-2) using the following thermal program; 94° C for 2 min. initial 

denaturation and a final extension for 7 min at 72° C while number of cycles was 40 (94° 

C, 1 min, 58° C, 1 min, 72° C, 1 min). Products were separated on 1.5 % agarose gels 

and visualized as described in Section 2.11.1. PCR products were then extracted and 

sequenced as described in Section 2.13.  

3.2.4. RNA extraction and DNase treatment 

RNA was isolated from frozen material using an RNeasy Plant Mini kit (QIAGEN) as 

described by the manufacturer (Section 2.6). Genomic DNA was then removed from 

RNA samples as described in Section 2.7. Subsequently, the first-strand cDNA was 

generated by reverse transcription of RNA as described in Section 2.8.  

3.2.5. Estimation of mRNA by real time RT-PCR 

Quantitative CuAO expression using real-time PCR was carried out according to Livak 

and Schmittgen (2001) as described earlier in Section 2.10. The transcript levels of each 

gene at each stage were expressed compared to the stage where its expression was the 

highest. 

3.2.6. Chlorophyll determination 

Chlorophyll content of leaves was determined according to Lichtenthaler (1987) as 

described in Section 2.15 using twelve individual leaves (of leaves 5 and 6) at each stage. 
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3.2.7. Analysis of GUS enzyme activity 

Chemicals used for GUS assay, 4-methylumbelliferone (MU); 5-bromo-4-chloro-3-

indolyl-β-D-glucuronic acid cyclohexyl ammonium (X-GlcA, CHA salt) and 4-Mu-β-D-

Glucuronide Trihydrate (MUG), were purchased from Melford, UK. 

3.2.7.a) Histochemical GUS assay 

For histochemical GUS assays, plant material, seedlings or leaves, were immersed in 

GUS staining solution (5 mg/ ml X-GlcA salt/ DMSO, 0.5 M sodium phosphate pH 7, 

200 mM potassium ferricyanide, 20 mg/ml chloroamphenicol, 0.01 % Triton X-100) in 

flasks covered with aluminium foil to protect the solution from oxidation. Flasks were 

then vacuum infiltrated for 2-3 min and incubated overnight at 37° C. Following 

incubation, GUS staining solution was replaced by absolute ethanol for 3- 4 h to 

decolorize the leaves. This step was repeated as needed until plant tissues became 

completely white which means that all chlorophyll was removed. Ethanol was then 

replaced with 50 % sterilized glycerol solution in water and GUS-stained tissues were 

kept at 4° C. GUS staining was visualised under a light microscope and images of the 

stained tissues were captured as described in Section 2.15. 

3.2.7.b) Quantitative fluorogenic GUS assay 

Proteins were extracted by grinding frozen plant tissues with liquid nitrogen in a micro-

centrifuge tube with an Eppendorf grinder. This step was followed by the addition of 100 

µl of GUS extraction buffer (50 mM sodium phosphate pH 7, 1 mM EDTA pH 8, 10 mM 

DTT, 0.1 % (w/ v) sarcosyl, 0.1 % (v/ v) Triton X-100). Tubes were then vortexed briefly 

and centrifuged in a Heraeus Fresco 17 centrifuge (Thermo scientific) at 13000 rpm, 4°C, 

for 5 min. The supernatant was aliquoted into small volumes and kept at -20° C until 

further use. BSA dilution standards in GUS extraction buffer (1-10 µg/ ml) were prepared 

and protein content was quantified using the Bradford assay (Bradford 1976) as follows: 

5 µl of sample or BSA dilution standards were pipetted into wells of a flat bottom 

transparent 96 microplate (Greiner Bio-One, Germany). Bradford reagent (Biorad, 250 

µl) was added to each well, mixed gently by pipetting up and down, and incubated at RT 
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for 10- 30 min. The absorbance was measured at 590 nm using an Infinite M200, quad4 

monochromator™ detection system (Tecan Austria, Austria) and Magellan 701 software 

was used to analyse the output. A BSA standard curve was used to determine the 

concentration of unknown protein samples and the final unit was expressed as µg/ ml. A 

fluorogenic GUS assay was set up according to Jefferson (1987): Protein extract (5 µl) 

was added to wells of a Black-Opaque Optiplate-96 microplate (Perkin Elmer) filled with 

50 µl GUS assay buffer (1 mM 4-MUG in GUS extraction buffer) and incubated at 37°C. 

Reaction mix (10 µl) was removed at 5, 10, 30 and 60 min of incubation, and the reaction 

was terminated by the addition of 90 µl of stop buffer (0.2 M Na2CO3). Fluorescence was 

measured with emission at 455 nm and excitation at 365 nm using Magellan 701 software 

and an Infinite M200, quad4 monochromator™ detection system (Tecan Austria, 

Austria). A freshly prepared MU dilution standard (ranging from 100 nM to 1 µM 4-MU 

in Stop buffer) was used to calibrate the instrument. With the assumption that 1µM 4-

MU is equivalent to 1000 F.U, relative fluorescence units (F.U) produced by the MU, 

standards were plotted against concentration to calculate the activity in the unknown 

samples. The concentration of the unknown sample was determined from the standard 

curve, and the obtained values were further normalised against the incubation time (min) 

and total protein (µg) and expressed as nmol 4-MU/ min/ µg of protein. 

3.3. Results 

3.3.1. Sequence alignment of AtCuAOs and evolutionary relationships 

Multiple sequence alignment of cDNA sequences revealed a low level of sequence 

homology when all members of AtCuAO were aligned (Appendix A), however, alignment 

of the AtCuAO family in groups showed a high level of sequence conservation. In 

particular, alignment of predicted amino acid sequences of the gene family excluding 

AtCuAO3-SP, AtCuAO9, as they are short proteins, and AtCuAO3, as it is a very long 

protein, showed a high level of sequence conservation. 

Comparison of amino acid and nucleotide sequences among members of AtCuAO family 

suggested that they could be grouped into discrete subsets (Figure 3-1). Phylogenetic 

trees derived from these two types of sequence analysis, at protein and DNA levels, were 
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identical. In the resulting phylogram, two distinct groups can be discriminated; AtAO1/ 

AtCuAO2/ AtCuAO8/ AtCuAO5 and AtCuAO1/ AtCuAO3-SP/ AtCuAO4/ AtCuAO7/ 

AtCuAO9. AtCuAO3 was divergent and shared the lowest similarity to other members of 

AtCuAO family, which excludes it from either of the two groups. The arrangement of 

Arabidopsis CuAO gene family members in the resultant tree branches in the present 

work agrees with their arrangement in parts of the phylogenetic tree created in a previous 

study to compare the relationship of grapevine CuAO sequences with other known plant 

CuAOs such as Arabidopsis, pea, soybean, lentil and tomato (Agudelo-Romero et al. 

2013). 

(a) 

 
(b) 

 

Figure 3-1 A phylogenetic tree of AtCuAO gene family. (a) Amino acid and (b) CDS nucleotide sequences 

showing the inferred evolutionary relationships between Arabidopsis CuAO genes.The phylogenetic trees 

were generated via Phylogeny.fr (http://www.phylogeny.fr) in “Advanced” mode. Multiple alignment of 

sequences was carried out by MUSCLE program (v3.7) using default parameters. The maximum likelihood 

method implemented in the PhyML program (v3.0) was used to reconstruct the phylogenetic tree. 

Reliability for internal branch was assessed using the bootstrapping method (100 bootstrap replicates). The 

bootstrap values are indicated at the nodes. Accession numbers of AtCuAO genes are shown in Table 1-1.  

3.3.2. Quantitative RT-PCR primer design, specificity, and RNA extraction 

It was possible to design primers for all the AtCuAO family members such that at least 

one primer was from the 3’UTR zone except for AtCuAO1 and AtCuAO5 where the 
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3’UTR zone of these two genes was too similar to other genes. In addition, it was not 

possible to design primers for the short protein AtCuAO9 with similar criteria because 

no information was available about its 3’UTR sequence, and in addition homology with 

other genes was too high. Therefore, the first 300 nucleotides were used instead to design 

primers for AtCuAO9 gene (Appendix A).  

Testing the designed real-time PCR primers first on gDNA (Figure 3-2) showed that each 

pair of primers was efficient at amplifying a product of the predicted size (see Table 2-3). 

Amplification from the H2O control was detected when AtAO1 primers were used but the 

product was clearly not the same size and probably nonspecific. Specificity was further 

confirmed by sequencing the PCR product and alignment of the sequence results with the 

entire gene sequences. However, for AtCuAO9 sequencing results revealed lack of 

specificity of the primers designed for this gene. Two new pairs were designed one from 

the 3’UTR sequence following the last exon, which did not work, and the other one from 

the ORF, the first 300 nucleotides of the gene (Appendix A), which allowed amplification 

of the gDNA and showed high specificity based on sequencing and alignment results. 

 

Figure 3-2 Test of AtCuAO primers on gDNA to verify the specificity. (Table 2-3, amplifying the correct 

gene). An ethidium bromide (EtBr) stained agarose gel was used to separate PCR products. CuAO genes 

are indicated by their symbols and UBQ10 (Table 2-2) is used as a housekeeping gene.  
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RNA was extracted from plant leaves at different stages. Results showed that all RNA 

samples were of a good quality (Figure 3-3.a). DNA contamination was removed from 

RNA samples and then tested by PCR using 18S rRNA primers (Table 2-2) which 

revealed that all samples were free of genomic DNA (Figure 3-3.b). Quality of cDNA 

generated from the RNA was confirmed by amplification of Actin2 (Table 2-2) by PCR 

using specific primers (Figure 3-3.c). 

(a) 

 

 
   

(b) 

 

 
   

(c) 

 

 

Figure 3-3 Quality control applied to isolated RNA from Arabidopsis leaves 5 and 6 before analysis by 

qRT-PCR. (a) Integrity of RNA was tested by agarose gel electrophoresis. (b) DNA digestion after DNase 

treatment was confirmed by PCR using 18S rRNA primers (Table 2-2). (c) Integrity of generated cDNA 

was tested by PCR reaction with Actin2 primers (Table 2-2). Numbers 1 and 2 represent biological 

replicates at each stage. In both cases (b and c), gDNA was used as a positive control, 1Kb plus ladder 

(Invitrogen) was used as marker for PCR products, and electrophoresis performed on 1.4 % agarose.  
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As well as checking the qRT-PCR primers on gDNA, they were also tested using the 

single-strand cDNA generated from soil-grown Arabidopsis leaves no 5 and 6 at different 

stages during plant development, and the gDNA was used as a positive control. However, 

although amplification with AtCuAO3-SP, AtCuAO5 and AtCuAO9 was successful from 

gDNA after 40 PCR cycles, no amplicons were generated from the leaf cDNA 

(Figure 3-4.c, e, and i). 
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Figure 3-4 Test of the efficiency and specificity of AtCuAO primers on Arabidopsis thaliana leaf cDNA. 

Genomic DNA was used as a positive control. EtBr stained agarose gel of PCR products from gene specific 

primers (Table 2-3).  
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Both AtCuAO3-SP and AtCuAO9 were analysed with other primer sets, which would 

amplify bigger fragments on the cDNA (an amplicon of 579 bp from AtCuAO3-SP and 

645 bp from AtCuAO9) for more confirmation of the absence of these two transcripts. 

Results showed that neither of these two genes are represented in the leaf transcripts 

(Figure 3-5). Alternative primers for AtCuAO5 were not sought as this gene from NCBI 

is a silique specific gene. 

(a) 

 

(b) 

 

Figure 3-5 Confirmation of the absence of both AtCuAO3-SP and AtCuAO9 from leaf transcripts using 

primers which are able to amplify bigger amplicons. (a) Arabidopsis leaf cDNA with alternative primers 

for AtCuAO3-SP. (b) Arabidopsis leaf cDNA with alternative primers for AtCuAO9. Genomic DNA 

(gDNA) was used as a positive control.  

3.3.3. Chlorophyll content 

The level of photosynthetic pigments was measured in leaves 5 and 6 of Arabidopsis 

rosettes as a marker for senescence progression (Figure 3-6). Total chlorophyll levels fell 

significantly at each time point compared with the amount at the previous measured stage 

until they reached the lowest level at 48 DAS. At this stage, leaves 5 and 6 were visibly 

yellow, and the total chlorophyll content was about 14 % of concentration recorded in the 

first studied stage (20 DAS). In contrast, carotenoid levels fell significantly as the plant 

developed up to 34 DAS, which was the stage at which yellowing commenced at the tip 

of leaves 5 and 6. After this, no variation in carotenoid content was observed. 
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(a) 

 
 

(b) Representative at bolting 

 

Figure 3-6 Progression of leaf senescence in soil grown Arabidopsis thaliana WT. (a) Photosynthetic 

pigment levels measured in leaves 5 and 6 at each stage of plant development. Different letters are used to 

indicate means that differ significantly (mean values ± SE; n=12; P ≤ 0.05), and the results were statically 

tested using One-way ANOVA analysis. FW; fresh weight; DAS; days after sowing. (b) Images of the 

whole rosette (Scale bar = 1 cm).  

3.3.4. Temporal expression of Arabidopsis CuAO genes 

To understand more about the expression pattern of AtCuAOs in leaves during plant 

development, transcript levels of all the ten AtCuAO genes was examined by real-time 

RT-PCR using total RNA isolated from leaves 5 and 6 of Arabidopsis thaliana (Col-0) 

wild type at different stages of development (20, 27, 34, and 41 DAS). Results 

demonstrated that, seven out of ten genes of the AtCuAO gene family are expressed at 
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different levels during leaf development, whereas the expression level of three of them, 

AtCuAO3-SP; AtCuAO5 and AtCuAO9, was below detection in leaves at all analysed 

stages during Arabidopsis growth (Figure 3-7). 

(a) 

 
 

(b) Representative at bolting 

 

Figure 3-7 Expression pattern of the AtCuAO gene family in Arabidopsis thaliana WT. (a) Transcript levels 

of mRNA were estimated by qRT-PCR using SYBR green dye in leaves 5 and 6 at four different stages 

(20, 27, 34, 41 DAS) during WT Arabidopsis (Col-0) growth using gene specific primers designed for each 

member of AtCuAO gene family (Table 2-3). Actin2 was used as a housekeeping gene to normalize target 

gene expression levels (see Table 2-3 for primer sequence). The transcript levels of each gene at each stage 

were expressed compared to the stage where its expression was the highest. Values are the mean ± SE of 

two biological replicates (20 leaves/ replicate), each with three analytical replicates. Bars of the graph 

represent standard errors, and significant differences in means are indicated by different letters (P ≤ 0.05). 

The results were statically tested using One-way ANOVA analysis. (b) Images of the whole rosette (Scale 

bar = 1 cm).  
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The highest expression level of AtAO1 and AtCuAO8 was at early stages of leaf 

development (before bolting) and gradually declined until their expression was below 

detection in senescent leaves (Figure 3-7).  

In the same manner, AtCuAO2 was highly expressed in young leaves (20 DAS) and 

gradually declined upon growth progression until it reached its lowest level of expression 

during senescence (Figure 3-7).  

In contrast, the transcript levels of AtCuAO1, AtCuAO4 and AtCuAO3 increased 

significantly in leaves of 41 day-old seedlings compared with earlier stages and the first 

two genes showed a very similar pattern of expression (Figure 3-7). Interestingly, 

AtCuAO7 had a unique pattern of expression where the transcript of this gene 

accumulates at bolting, dropped post-bolting and then reached the highest level when 

leaves 5 and 6 were 41 days-old and almost senescent (Figure 3-7). 

3.3.5. Spatial and temporal expression of AtCuAO7 and AtCuAO8 

The temporal and spatial expression pattern of selected AtCuAO genes was characterised 

in leaves at similar stages of plant growth (before bolting, at bolting, after bolting, and at 

senescence), by using AtCuAO7::GUS and AtCuAO8::GUS lines. 

SAG12::GUS was used as a positive control since it is a senescence-specific gene (Gan 

and Amasino 1997), up-regulated during senescence in leaf, stem, and flowers (Grbić 

2003), and is often used as a molecular marker for senescence (Weaver et al. 1998). WT 

plants were used as a negative control. 

The first expression of AtCuAO7::GUS was detectable in leaves of 20 day old plants and 

occurred at specific sites in the leaf (Figure 3-8), such as the epithem of hydathodes 

(Figure 3-8.e), the epidermal hair trichomes (Figure 3-8.f), and axillary buds in the axils 

of leaves (Figure 3-8.g). However, during further leaf development, the expression of 

AtCuAO7 was too low to be detected by AtCuAO7::GUS (Figure 3-9.d, Figure 3-10.c, 

and Figure 3-11.c). Furthermore, expression of AtCuAO7::GUS was high in roots during 

early stages of seedling development (Figure 3-8.c, Figure 3-9.d). 
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Figure 3-8 Histochemical GUS staining of AtCuAO transgenic Arabidopsis thaliana plants. (a) Pre-staining 

phenotype of AtCuAO7::GUS and AtCuAO8::GUS compared with WT and SAG12::GUS as negative and 

positive control plants respectively at 20 DAS (pre-bolting). (b-d) Post-staining phenotype of WT, 

SAG12::GUS, AtCuAO7::GUS and AtCuAO8::GUS respectively. Arrows in (c) and (d) indicate leaves 

number 5 and 6. (e-g); light microscopy analysis showing blue stain accumulation in different leaf sites of 

AtCuAO7 transgenic plants, hydathodes, trichomes, and axillary vegetative meristems respectively. Scale 

bars of (a-d) = 1 cm and in (e-g) = 100 µm.  
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On the other hand, AtCuAO8::GUS was strongly expressed in leaves at all studied stages 

(Figure 3-8.d, Figure 3-9.e, Figure 3-10.d, and Figure 3-11.d and e). Strongest 

AtCuAO8::GUS expression was found in green leaves of young transformed plants, 

mainly in leaf blades (Figure 3-8.d), and the intensity of GUS staining declined as leaves 

aged and senesced (Figure 3-10.d and Figure 3-11.e). It can be observed that the onset of 

decline in AtCuAO8 activity was associated with floral transition (Figure 3-9.e), and 

thereafter, expression appeared to depend on the level of leaf yellowing. It disappeared 

completely in senescent leaves (Figure 3-11.d) depending on leaf developmental stage, 

or remained at a low level of expression in greener leaves (Figure 3-11.e). 

 

Figure 3-9 GUS expression pattern detecting AtCuAOs expression at bolting stage in 27-day old plants. (a) 

Shows plant phenotype at bolting before staining with the X-Gluc solution. (b-e) GUS histochemical 

staining of WT, SAG12::GUS, AtCuAO7::GUS and AtCuAO8::GUS respectively. Arrows in (d) and (e) 

indicate leaves number 5 and 6. Scale bars of (b-e) = 1 cm. 
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Figure 3-10 Expression of AtCuAO7 and AtCuAO8 in Arabidopsis transgenic plant leaves after bolting in 

34-day old plants. Left panel shows leaf phenotype of the oldest seven leaves before staining starting from 

the oldest leaf on the left for different lines studied, grown under controlled conditions (16 h light/ 8 h 

dark). The right panel shows GUS activity after using X-Gluc as a substrate for histochemical staining. (a) 

WT, (b) SAG12::GUS, (c) AtCuAO7::GUS, and (d) AtCuAO8::GUS. Arrows indicate GUS expression 

pattern in leaves 5 and 6. Scale bars = 1 cm.  
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Figure 3-11 Expression of AtCuAO7 and AtCuAO8 in Arabidopsis transgenic plant leaves at late stage in 

41-day old plants. Left panel shows leaf phenotype of the oldest seven leaves before staining, starting from 

the oldest one on the left for different studied lines grown under controlled conditions (16 h light/ 8 h dark). 

The right panel shows GUS activity after using X-Gluc as a substrate for histochemical staining. (a) WT, 

(b) SAG12::GUS, (c) AtCuAO7::GUS, (d and e) AtCuAO8::GUS transformed plants. Arrows indicate GUS 

expression pattern in leaves 5 and 6. Scale bars represent 1 cm.  
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GUS activity was further quantified by a fluorometric method (Figure 3-12). Levels of 

GUS activity in AtCuAO8::GUS plants was significantly high in leaves compared with 

WT and SAG12::GUS in all studied stages except the last stage (41 DAS), where its 

expression reduced to the lowest level (became undistinguishable from WT). This 

coincided with the onset of leaf yellowing, which was obvious at this stage, along with 

expression of the senescence marker gene SAG12 which reflects the onset of late 

senescence processes in leaves. 

GUS activity in the SAG12::GUS line was low up to 41 DAS where it suddenly rose and 

became significantly higher than the other plants. AtCuAO7::GUS activity was lower 

compared to AtCuAO8::GUS at all time points, and no significantly greater activity of 

AtCuAO7::GUS was detectable by the fluorogenic assay in any of the stages studied 

compared with the other lines tested including WT. 

 

Figure 3-12 Fluorogenic assay of AtCuAO8 and AtCuAO7 driven GUS activity. Plants were first grown on 

MS medium with or without Kan and were then moved to soil. GUS activity was assayed quantitatively in 

leaves 5 and 6 at different stages under control conditions. Values are the mean ± SE of two biological 

replicates each with three analytical replicates. Bars of the graph represent standard errors. Significant 

differences in means between genotypes at each stage are indicated by different letters (P ≤ 0.05). The 

results were statically tested using One-way ANOVA analysis.  
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3.4. Discussion 

The results presented here provide, for the first time, a complete picture in leaves of the 

expression of seven of the ten AtCuAO genes together allowing a comparison in their 

patterns of expression throughout leaf senescence including before and after bolting. 

Analysis of CuAO gene expression using real-time quantitative PCR revealed that the 

expression of three of them, AtCuAO3-SP; AtCuAO5 and AtCuAO9, was below detection 

in leaves at all analysed stages. Results obtained by qRT-PCR about AtCuAO5 expression 

in the present work are in good agreement with the microarray data on TAIR and 

PRESTA which showed that this gene is not expressed in leaves at any developmental 

stage, in addition to the information available on NCBI database which indicates that this 

gene is expressed in silique at specific stages. However, these two bioinformatic sources, 

TAIR and PRESTA, are not in full agreement regarding the expression information of 

AtCuAO3-SP and AtCuAO9.  

According to TAIR, AtCuAO3-SP is expressed in young and senescent leaves while 

AtCuAO9 is expressed only in senescent leaves; according to the microarray data from 

PRESTA the expression of these two genes did not clearly change during leaf 

development. Primer sets that were used to study the expression of all AtCuAO genes, 

including the three undetectable genes, by qRT-PCR in the present work were tested first 

on the gDNA and showed strong bands (Figure 3-2). In addition, the homology shown 

by multiple alignment between sequencing results of amplified fragments using gDNA 

and sequences of these genes was high.  

To refute the doubt that primers used in the case of the two non-expressed genes, 

AtCuAO3-SP and AtCuAO9, were amplifying a small fragment which was below the limit 

of detection or that the sequence was in some way incorrect, another combination of 

primers which should amplify a bigger fragment were used. Both new sets of primers 

amplified the target sequence on the gDNA but nothing resulted by using them on the 

cDNA (Figure 3-5). These verification steps are probably sufficient to reflect the 

efficiency and specificity of these primers and hence I conclude that these genes are 

probably not expressed under normal conditions in leaves at the stages studied or they 
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may be expressed only under specific conditions. It is possible that array data may be 

giving a false positive result due to homology with other members of the gene family. 

For some of the other genes studied here expression can be compared to the literature. 

Planas-Portell et al. (2013) examined the expression of three CuAOs, AtCuAO1-3, in the 

whole seedling at different time points (4-, 12-, 21-, and 28-day old plants) using real-

time RT-PCR. They detected an increase in AtCuAO1 and AtCuAO3 by about 3-fold in 

28-day old seedlings compared with young ones (4-day old) which fits with the increase 

with increasing age seen here for these two genes in leaves where AtCuAO1 expression 

increased by about 7.5 fold while AtCuAO3 increased by ~3 fold in leaves of 41-day old 

seedlings compared with younger ones of 20-day old plants by taking into account that 

comparison between transcript levels of each gene was performed at later stages in the 

present work. In contrast, expression analysis of AtCuAO2 showed a decrease in its 

transcript accumulation in 28 day old seedlings compared with the 4 day old seedlings, 

although this change in gene activity was not significant (Planas-Portell et al. 2013). The 

significant decrease in AtCuAO2 expression seen here between day 20 and day 41 (8.5 

fold decrease) is thus in agreement with these previous data. Taking into consideration 

that using a specific organ (single leaves), as used in this study, may provide clearer 

results of gene expression change than utilizing RNA isolated from the whole seedling 

which is composed of different organs at different stages of development. 

The expression results of AtCuAO1, AtCuAO4 and AtCuAO7 that showed an increasing 

trend with progressive stages of leaf development are consistent with results reported 

previously (Ghuge 2014). The developmental expression of three CuAOs in whole 

rosettes at four different time points (2-, 4-, 6-, and 8- week old plants) was investigated 

using qRT-PCR analysis, and results showed that the expression of AtCuAO1 was 

induced by 3 and 9 fold (Ghuge 2014), which is consistent with what we found here 

where the expression of this gene increased about 8 fold in leaves of 41-day old seedlings 

as compared with those of 20-day old plants (Figure 3-7), while Ghuge (2014) reported 

an increase in AtCuAO7 expression estimated by 2 fold, in 6 and 8 week old plants which 

is again in agreement with our results showing a significant increase by about 3 fold in 

41-day old plant leaves as compared with those of 20-day old plants (Figure 3-7). The 
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expression of AtCuAO4 increased dramatically with plant age and recorded a 21 fold 

increase in 6 and 8 week old plants relative to the transcript levels of these genes 

measured in 2 week old plants (Ghuge 2014). In addition, the effect of transition towards 

flowering on AtCuAO4 transcript levels was tested in leaves of 22 day-old plants and of 

52 day-old plants corresponding to before and after onset of flowering, and results 

showed a 21-fold induction in leaves AtCuAO4 after flowering as compared to its 

transcript accumulation measured in leaves before flowering (Ghuge 2014). Again this 

agrees with results here showing a strong increase, by about 16 fold, in AtCuAO4 gene 

expression in leaves following bolting, with the advantage that in the present study the 

use of single leaves gives a better representation of senescence progression than using the 

whole rosette since gene expression obtained from the whole rosette leaves results from 

leaves at different developmental stages. 

There is no clear change shown by microarray data of the expression pattern of AtAO1 in 

developing leaves, however, GUS staining analysis revealed high activity of this gene in 

young leaves of 4-5 day old seedlings (Ghuge 2014), and a previous study tested the 

expression of AtAO1-GUS in leaves at three different stages (primary, secondary and 

tertiary leaves) from a single Arabidopsis rosette and reported a high expression of 

AtAO1-GUS in the vascular tissue of immature developing leaves (tertiary leaves) which 

reduced in later stages of leaf development in primary and secondary leaves (Moller and 

McPherson 1998). These results support the expression presented here by qRT-PCR 

where the highest AtAO1 expression was detected in young leaves and gradually reduced 

with plant age until it disappeared in senescent leaves. 

To confirm the expression pattern of AtCuAOs at various stages of leaf growth obtained 

by real time RT-PCR analysis, the temporal leaf-specific expression patterns of two 

available GUS lines, AtCuAO7::GUS and AtCuAO8::GUS, were studied in leaves 5 and 

6 at corresponding time points during plant development. Qualitative analysis of 

AtCuAO7 promoter revealed GUS expression in leaves only at 20 DAS restricted to some 

specific sites as shown in Figure 3-8.c, but it was not significantly different from either 

SAG12::GUS or WT, as control plants, when it was analysed quantitatively by the 

fluorometric method. Furthermore, no induction of AtCuA7::GUS expression could be 
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detected in leaves beyond this time point. Results from the promoter-GUS lines were not 

therefore entirely consistent with expression data from transcriptional analysis. AtCuAO7 

was found to be expressed at early stages of leaf development and increase with plant age 

until it reached its highest level of expression at senescence (Ghuge, 2014; TAIR; 

https://www.arabidopsis.org/), which is in agreement with results obtained here by qRT-

PCR. However, AtCuA7 was expressed at low levels throughout early stages of leaf 

development (Winter et al. 2007). The reason for this underestimation of expression using 

the AtCuAO7::GUS reporter gene may include a higher sensitivity of real time PCR 

compared to GUS assays (Pistón et al. 2009), the low level of expression of this gene 

throughout early stages of leaf development, the length of the promoter used in the 

construct or the point of insertion in the genome of the transgenic plant. Another 

discrepancy between the GUS and TAIR data is AtCuAO7 expression in root. According 

to TAIR, the expression of AtCuA7 is very low in roots while it seems to be high in the 

AtCuA7::GUS plants during early stages of development (Figure 3-8.c, Figure 3-9.d). 

This further suggest a problem with the transgenic line. Variability in gene expression 

patterns can occur as a result of random integration of genes in the genome (Mertens 

2008). Effects on expression have also been noted in Arabidopsis transgenic plants 

constructed with four different sizes of the DRG2 promoter which resulted in 

undetectable GUS expression in case of shortest promoters while the longest promoters 

showed strong activity of GUS gene (Stafstrom 2008).  

The results reported by AtCuAO8::GUS gene activity quantified qualitatively or 

quantitatively were in good agreement with previously reported microarray data (TAIR 

eFP Browser; http://bar. utoronto.ca/efp/cgi-bin/efpWeb.cgi) and with the real time PCR 

results presented in this work, showing a reduction in AtCuAO8 expression as leaves age. 

In some cases AtCuAO8 expression fell below detection or was very low (Figure 3-10.d 

and Figure 3-11.d and e). This variability may be due to variation in leaf development 

across different plants. The high variability of leaf development amongst Arabidopsis 

thaliana plants at a specific time after sowing has been reported previously (Granier et 

al. 2002; Leister et al. 1999), and the effect of variation in leaf emerging time and leaf 

position on levels of gene expression was indicated (Xie et al. 2012). Hence, differences 

in results of AtCuAO8 expression produced by both methods may be attributed to the 
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variability in developmental stages of leaves used to perform the analysis due to 

variability in seed germination or plant developmental stage. 

The evolutionary relationship resulting from the phylogenetic analysis using amino acid 

and CDS nucleotide sequences (Figure 3-1.a and b), which divided the AtCuAO gene 

family into two distinct groups, AtAO1/ AtCuAO2/ AtCuAO8/ AtCuAO5 and AtCuAO1/ 

AtCuAO3-SP/ AtCuAO4/ AtCuAO7/ AtCuAO9 maps very closely onto the distinct 

expression pattern seen here from real-time qRT-PCR. Amino acid alignment showed a 

high level of sequence conservation between AtAO1, AtCuAO1 and AtCuAO2 (Planas-

Portell et al. 2013). AtAO1 exhibited 60 and 65 % similarity to AtCuAO1 and AtCuAO2 

respectively, while AtCuAO1 and AtCuAO2 showed a similarity of 63 %. However, the 

sequence similarity of AtCuAO3 with AtAO1, AtCuAO1, and AtCuAO2 was lower, 45%, 

43%, and 44% respectively. Thus the differences in expression pattern may be reflected 

in differences in protein structure and hence distinct enzymatic roles during leaf 

development. 

A variety of physiological, morphological and molecular changes take place during the 

different stages of leaf development which eventually lead to leaf senescence. One of the 

most obvious leaf senescence syndromes is the visible colour change as a result of 

chloroplast dismantling and chlorophyll degradation (Bleecker and Patterson 1997). In 

the present work, chlorophyll contents were analysed along with AtCuAO gene family 

expression analysis during leaf development to act as a marker for leaf development and 

senescence. The expression pattern of one group, AtCuAO1, AtCuAO4, AtCuAO7 and 

AtCuAO3, was negatively associated with total chlorophyll contents suggesting that these 

genes could have a more relevant role in leaf senescence. In contrast, the expression of 

the other group of genes, AtAO1, AtCuAO2 and AtCuAO8, was positively correlated to 

the total chlorophyll concentrations suggesting a relation between the activity of these 

genes and chlorophyll content. The present results of the expression patterns of AtCuAO1, 

AtCuAO4, AtCuAO7 and AtCuAO3 are supported by the information available about 

microarray analysis of CuAOs at TAIR, the Arabidopsis genome database (Winter et al. 

2007), which showed that these four genes are included within the six members of CuAOs 

that are highly expressed at late stages of plant development. 
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In fact it may not be surprising that some AtCuAOs are expressed at early stages of leaf 

development, due to the increasing evidence that suggests the contribution of some of 

them, AtAO1 and AtCuAO1, to vascular tissue differentiation, via hydrogen peroxide 

(H2O2) generated by CuAO activity, which is a key process in young leaves (Cona et al. 

2006; Paschalidis and Roubelakis-Angelakis 2005a). Arabidopsis AtAO1 protein was 

detected in the tracheary elements of root vascular tissue, root caps, and cells subject to 

PCD (Moller and McPherson 1998). However, the high level of the other CuAO 

transcripts at late stages, during leaf senescence, are less clear. The final developmental 

phase of leaf is the senescence program (Schippers et al. 2007) which includes many 

changes in gene expression (Lim et al. 2007). Towards the end of leaf senescence, once 

most remobilization of nutrients has taken place, cells start to undergo PCD (Gan 2007). 

This is also often associated with a rise in reactive oxygen species (Woo et al. 2013). The 

fall in chlorophyll levels post-bolting indicates that remobilisation has been initiated, 

which will ultimately lead to PCD. Hydrogen peroxide (H2O2) is one of the products 

produced by PAs catabolism via the action of CuAOs (Moschou et al. 2012). It is possible 

that AtCuAO genes which were highly expressed during leaf senescence (AtCuAO1, 

AtCuAO4, AtCuAO7 and AtCuAO3) may contribute as sources of reactive oxygen species 

during leaf senescence but this would need further investigation.   
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4. Effects of mutation and over-expression of AtCUAO4 on Arabidopsis 

growth and development 

4.1. Introduction 

Of the ten AtCuAO genes in the Arabidopsis copper binding diamine oxidase gene family, 

AtCuAO4 (At4g12290) (Figure 4-1) is one of the CuAO genes known to be highly 

expressed in ageing leaves (Arabidopsis genome database; TAIR eFP browser; 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). It was therefore selected here for further 

study. Ghuge (2014) further verified its expression in whole rosettes and using promoter-

GUS lines, and characterised the seedling phenotypes of two mutant lines and several 

over-expressor lines which were made available to us by Prof. Alessandra Cona, 

University of Rome (Roma Tre) for a whole plant phenotypic analysis. 

According to the data on the eFP browser, AtCuAO4 is located in vacuoles and the gene 

is most highly expressed in maturing seeds and in senescent leaves (Winter et al. 2007). 

A more detailed expression analysis using qRT-PCR revealed that under normal 

conditions the expression of AtCuAO4 increases dramatically (21 fold) in leaves of 52-

day old plants as compared to its expression in leaves of 22-day old plants, whereas GUS-

staining analysis in five-day old seedlings showed that AtCuAO4 transcript is abundant 

in the new emerging leaves and tips of cotyledons (Ghuge 2014). Furthermore, AtCuAO4 

was identified as a senescence associated gene [SAG], by suppression subtractive 

hybridisation (Gepstein et al. 2003) confirmed by northern blotting. 

 

Figure 4-1 Schematic representation of the full length AtCuAO4 (At4g12290) gene. Gene size = 2540 bp 

on the genomic DNA, and 2226 bp on CDS-ORF sequence. The domains were identified using the NCBI 

conserved domain search tool (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), and they are shown 

in different colours [green, CuAO N2 domain with a length of 250 bp starts from 250 to 500; blue, CuAO 

N3 domain with a length of 300 bp starts from 525 to 825]. Function of both N2 and N3 domains is 

uncertain. The rest of the protein coding region contains the active site and copper binding residues. The 

enzyme catalyses the oxidative deamination of primary amines to the corresponding aldehydes, with 

concomitant reduction of molecular oxygen to hydrogen peroxide. 

Recently, Ghuge (2014) analysed the expression of the AtCuAO4 gene quantitatively 

using qRT-PCR in twelve-day old seedlings following treatment with phytohormones 

3` UTR5` UTR
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and abiotic stresses. Application of the defence related hormone, salicylic acid (SA) 

induced the expression of the gene indicating a possible role for this gene during pathogen 

infections. Treatments with abscisic acid (ABA; 10 and 100 µM) as well as treatment 

with NaCl also induced AtCuAO4 expression suggesting the involvement of AtCuAO4 in 

abiotic stress responses related to regulation of water balance such as salt or water stress. 

However, cytokinin down-regulated the expression of AtCuAO4, while auxin and 

mannitol treatments were not effective in modulating the expression of the gene. 

Furthermore, as AtCuAO4 mRNA transcript is abundant in guard cells (TAIR eFP 

browser; http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi, and PRESTA; http://www2. 

warwick.ac.uk), Ghuge (2014) investigated the involvement of AtCuAO4-induced 

polyamine (PA) oxidation in guard cells in the ABA-mediated stomatal closure. While 

no differences in the stomatal closure between WT and AtCuAO4 mutants (BIS#4 and 

C#4) under normal conditions, a significant reduction in the stomatal closure was 

observed in the two AtCuAO4 mutants as compared to WT plants after treatment with 10 

and 100 µM ABA. Treatment of WT plants with the hydrogen peroxide (H2O2)-scavenger 

dimethylthiourea (DMTU) reversed the ABA-induced stomatal closure (~75%) while 

treatment with DMTU alone did not affect stomatal closure. Treatment with the substrate 

of AtCuAO4, putrescine (Put) at 100 µM, induced stomatal closure in both AtCuAO4 

mutants and WT plants to a different extent (~56% in WT, ~27% in BIS#4 and ~33% in 

C#4). These results provided new evidence that PA degradation via AtCuAO4 activity is 

an essential source of H2O2, the component involved in signalling pathways leading to 

ABA-induced stomatal closure in leaves of Arabidopsis thaliana. 

In this chapter in order to test the hypothesis that AtCuAO4 (At4g12290) may be an 

important gene in plant senescence, its functional role was investigated by studying the 

aerial phenotype and senescence of two lines with T-DNA insertions in the gene of 

interest (C#4 and BIS#4), and three lines (P9, P17 and P27) constitutively overexpressing 

the same gene under optimal conditions of growth in comparison with WT plants. In 

addition, the two over-expression lines P17 and P27 and the two mutant lines C#4 and 

BIS#4 were assessed for their response to dark-induced leaf senescence. Expression of 

the transgene at the protein level in the over-expression lines was verified in Prof. Cona’s 

lab through western blots using an antibody targeting a His tag incorporated into the 
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coding region of the construct. Real time PCR was also used to verify that total transcripts 

of AtCuAO4 were increased in the over-expressing lines using gene-specific primers, 

Appendix B). To understand whether PA titres were altered by manipulating the 

expression of AtCuAO4, levels of free polyamines [S-PA], Put, spermidine (Spd), and 

spermine (Spm), were also evaluated in two specific leaves, leaves 5 and 6, at two critical 

time points (before and after bolting). In addition, I tested the hypothesis that effects of 

the mutations in AtCuAO4 on flowering time might be mediated by the growth hormone 

gibberellic acid (GA). 

4.2. Materials and methods 

4.2.1. Plant materials and growth conditions 

Three transgenic Arabidopsis lines (P9, P17 and P27) over-expressing the copper amine 

oxidase gene AtCuAO4 (At4g12290), under the control of the constitutive promoter 

35SCaMV (Figure 4-2.a), and two homozygous mutant lines with a T-DNA insertion in 

the first exon of AtCuAO4 gene, SALK_072954.55.00.x (line C#4) and GK_011C04-

013046 (line BIS#4) (Figure 4-2.b) were kindly donated by the lab of Prof. Alessandra 

Cona, University of Rome (Roma Tre). The background ecotype of these manipulated 

seeds was Columbia (Col-0). Seeds and a WT line was also kindly donated by Prof. A. 

Cona. 

(a) 

 
  

(b) 

 

Figure 4-2 Arabidopsis thaliana transgenic and mutant lines used to study AtCuAO4 gene. (a), Schematic 

representation of the construct used for generating the transgenic lines (P17 and P27 and P9). 35S 

CaMV::AtCuAO4-His tag cloned first into pDONR 221 (entry vector) and then into pK2GW7 (destination 

vector) and then transformed into plants. (b), Locations of the two T-DNA insertions on AtCuAO4 in the 

two lines used (C#4 and BIS#4). Location of primers used to genotype both over-expression and mutant 

lines are shown in blue. Primers for upstream and downstream regions of the T-DNA insertion site are 

shown in brown and green respectively in (b). 
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Homozygous T-DNA insertion lines were grown alongside WT on soil (as described in 

Section 2.1), while heterozygous over-expression lines with their control (WT plants) 

were grown on MS medium in Petri dishes supplemented with kanamycin (Kan) at 50 

µg/ ml for overexpression lines or without for WT seeds (as described in Section 2.1).  

4.2.2. Isolation of Plant DNA, PCR, and Agarose gel electrophoresis 

For genotyping purposes, DNA was extracted as described by Edwards et al. (1991) 

(Section 2.5). PCR reactions using extracted DNA were performed as described in 

Section 2.9. All primers are listed in Table 2-2. The PCR reaction products were then 

electrophoresed on an agarose gel and then visualized under UV light as described in 

Section 2.11.1. 

4.2.3. RNA extraction and DNase treatment 

RNA was isolated from frozen material using an RNeasy Plant Mini kit (QIAGEN) as 

described by the manufacturer (Section 2.6). Genomic DNA was then removed from 

RNA samples (Section 2.7), and subsequently the first-strand cDNA was generated 

(Section 2.8). 

4.2.4. Estimation of mRNA by real time RT-PCR (qRT-PCR) 

Quantitative expression of selected genes involved in GA metabolism and of two floral 

genes was carried out using real-time PCR according to Livak and Schmittgen (2001) as 

described in Section 2.10. All primers used for qRT-PCR are listed in Table 2-3. The 

transcript level of each analysed gene in each mutant line was expressed compared to the 

transcript level of the same gene in WT plants. 

4.2.5. Backcrossing mutant lines 

Plants were grown on soil as described in Section 2.1. The first stalks were removed and 

plants were ready after 6-7 weeks when they had developed 5-6 inflorescences. Branches 

with the largest buds were selected on the mother plant of mutant lines, and marked with 
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a small piece of micro-pore tape. The mature flowers and siliques were then removed 

from the selected branches.  

Using a dissecting microscope (Section 2.16) and fine forceps, unopened buds were 

opened and sepals, petals and stamens were removed leaving the mature stigmas. Fresh 

fully opened flowers of WT plants with sticky and yellow pollen were removed from 

plants and squeezed with fine forceps to expose the anther. The end of stigmas of the 

mutant lines were then touched with the anthers of WT flowers until they were covered 

with pollen grains.  

Plants with pollinated flowers were then allowed to grow in optimal conditions for 2-3 

weeks until siliques were completely developed. When siliques were a little yellow, they 

were cut individually and allowed to dry fully in opened Eppendorf tubes labelled with 

the plant name and date.  

4.2.6. Growth and Physiology 

All phenotypic traits were carefully visualized daily starting when the first set of true 

leaves had emerged.  

The rate of plant development was characterized by the number of days from sowing to 

emergence of leaves numbers 1- 9 which was scored when each leaf was initiated and 

become visible at the vegetative shoot apical meristem. In addition, bolting day, first open 

flower day and first silique day were assessed as described in Section 2.4.  

Plant growth was estimated by the following quantitative characters: number of rosette 

leaves at bolting, total number of rosette leaves and number of yellow leaves at four 

weeks post-bolting, length of the primary stalk at four weeks post-bolting (measured from 

the base of inflorescence stem at the point of attachment to plant rosette to the tip using 

a cotton thread), rosette fresh weight at four weeks post-bolting, and rosette diameter at 

four weeks post-bolting (measured using electronic digital calipers, Maplin electronics, 

UK). Productivity of plants was assessed as described in Section 2.4. 
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The measurement of inflorescence elongation rate was carried out on six replicates of 

each plant as follows: a wooden stick was fixed in the soil next to the plant post bolting 

day when the length of the bolt was ~1- 2 cm. The height of the inflorescence was marked 

on the wooden stick every day over a two week period. Marks on the stick were then 

measured to determine a daily stem extension rate. 

Before bolting (-1 week), 2 weeks after bolting, and 4 weeks after bolting (late stage), 

leaf numbers 5 and 6 were harvested, flash frozen in liquid nitrogen and stored at -80 for 

evaluation of chlorophyll content (Section 2.15). 

4.2.7. Dark treatment of rosettes perturbed in the expression of the polyamine 

catabolic gene AtCuAO4 

4.2.7.a) Plant materials and growth conditions 

Seeds of Arabidopsis thaliana (L.) Heynh. ecotype Columbia (Col-0) were used in this 

experiment as a control. The two homozygous mutant lines (C#4 and BIS#4) were 

stratified and sown on soil as described in Section 2.1. Two segregating populations of 

over-expression lines (P17 and P27) were surface sterilized, stratified, and sown on MS 

medium containing Kan (50 µg/ ml) as described in Sections 2.1 and 2.2. Survivors 

(which would be homozygous or heterozygous for the transgene) were transferred to soil 

as described previously in Section 2.1. In both cases, plants were grown under short day 

conditions at 21° C (Section 2.1) for 30 days then rosettes with at least nine leaves were 

harvested before bolting to study dark induced leaf senescence. Leaves 5 and 6 were 

sampled (6 leaves/ time point) at 0 and 8 days of dark treatment for chlorophyll analysis 

as described in Section 2.15 

4.2.7.b) Dark-induction protocol for Arabidopsis rosettes 

Harvested Arabidopsis rosettes were rinsed briefly using sterile water. Rosettes were 

placed on a 9 cm wet filter paper in the lid of a Petri dish ensuring that rosettes would not 

interfere with each other or the side of the dish. Dishes were then incubated at 22° C in 

complete darkness inside a thick walled plastic box for quantification of dark-induced 

senescence. 
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4.2.7.c) Quantitation of senescence by image analysis 

Plants were photographed every day using a web-cam (Microsoft LifeCam) attached to a 

computer until the rosettes became completely yellow. Photographs were analysed using 

the colour histogram function in Image J software to obtain the RGB score for a defined 

rectangle from the centre of leaf number 5. RGB intensities were normalized using a 

white-background reference point (Figure 1 in Appendix E), and average green/ red ratios 

provided a quantitative measure of leaf yellowing where a ratio of around 0.8 indicates 

the initiation of senescence. Data were further analysed using an R script programme to 

produce values which could be then analysed statistically by SPSS as described in 

Section 2.17. 

4.2.8. Seed germination assay 

Seeds used in this experiment, were harvested at approximately the same time from 

individual plants grown in identical environmental conditions. Seeds of different 

genotypes used in the Arabidopsis phenotype experiment were surface-sterilized and 

stratified as described in Section 2.3. Imbibed seeds were then plated in batches of 30-50 

individuals in each Petri dish containing wet 3MM filter paper (Whatman, Maidstone, 

UK) (5 dishes/ line). Petri dishes were then incubated under long day conditions 

(Section 2.1) and seed germination was assessed regularly by monitoring radicle 

emergence using a dissecting microscope (Section 2.16). The number of germinated 

seeds on each day was noted and the percentage of germination was calculated as follows: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑒𝑒𝑑𝑠 𝑥 100

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑤𝑛 𝑠𝑒𝑒𝑑𝑠
 

 

4.2.9. Analysis of Polyamine in Arabidopsis thaliana plants 

High-performance liquid chromatography (HPLC) was used as a method for the 

quantification of putrescine (Put), spermidine (Spd) and spermine (Spm) in their free 

form. Leaf numbers 5 and 6 were collected from ten Arabidopsis plants grown on soil as 

described in (Section 2.1) at two specific stages of growth, the vegetative stage (pre-
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bolting) and the reproductive stage (post-bolting). This analysis was repeated two times 

(2 biological replicates), each with 3 analytical replicates. 

4.2.9.a) Extraction of polyamines from Arabidopsis leaves 

Sample preparation was carried out according to the method of Marcé et al. (1995) as 

follows: 150-200 mg of leaves were ground to a fine powder in liquid nitrogen using a 

plastic pestle and a micro-centrifuge tube. They were then homogenized in 5 % (v/ v) 

cold perchloric acid (PCA; Fisher Scientific, UK) at a ratio of 100 mg fresh weight/ 300 

µl PCA in an ice bath. After 30 min of incubation on ice, homogenates were centrifuged 

at 17,000 g, 4° C, for 25 minutes in a Heraeus Fresco 17 centrifuge (Thermo scientific) 

and then the supernatant, containing the free polyamines, was stored at -20° C until 

dansylation was performed. 

4.2.9.b) Dansylation 

Prior to separation by HPLC, amino groups of polyamines were derivatised using the 

derivatization reagent dansyl chloride (to enhance the detection of PAs by UV absorbance 

or fluorescence) as described by Marcé et al. (1995).  

In a glass tube, 200 μl of perchloric acid extracts were mixed with 200 μl of a saturated 

solution of sodium carbonate Na2CO3 (Fisher Scientific, UK) and 400 μl of dansyl 

chloride (5 mg/ ml in acetone, Sigma Aldrich, UK). Next, 40 μl of 0.05 mM 1,7 diamino 

heptane (DIA; Sigma Aldrich, UK) were added as an internal standard as it resolves well 

from the derivatives of endogenous polyamines. The resulting mixture was vortexed 

briefly for 30 s and stored in the dark in a water bath at 70° C for 10 min.  

To stop the reaction and react with excess dansyl chloride, 100 μl of a proline solution 

(100 mg/ ml water, Fisher Scientific, UK) was added, vortexed briefly for 30 s, and then 

stored in the dark for 30 min at room temperature. Following incubation, 500 μl of toluene 

(Fisher Scientific, UK) was added in order to extract dansylated polyamines, vortexed 

intensively for 30 s, and then the milky layer was removed to be discarded.  
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Toluene was then evaporated from each tube under a stream of nitrogen gas and the dry 

polyamines were re-suspended in 400 μl of acetonitrile (Fisher Scientific, UK). Tubes 

were then vortexed for 1 min to thoroughly dissolve the polyamines. Alongside, a blank 

sample using dansylated 5 % PCA was run.  

Polyamine standard stock solutions (putrescine (Put), spermidine (Spd), spermine (Spm), 

cadaverine (Cad), and diamino heptane (DIA), Sigma Aldrich, UK) at a concentration of 

10 mM were made in water and then diluted to obtain different concentrations of 

standards (ranging from 1.25 µM to 16.7 µM containing DIA at 8.3µM) and they were 

also dansylated following the same procedure described above. 

Finally, the dansylated samples were passed through a 0.45 μm pore size syringe filter 

(PVDF membrane, GE Healthcare Life Sciences) into a dark vial prior to injection into 

the HPLC (20 μl of sample was injected into the HPLC for each analytical replicate). 

4.2.9.c) Measurement of free polyamines by HPLC 

Reversed-phase HPLC was carried out using a Thermo Separation Products HPLC 

system consisting of SCM 1000 Degasser, P4000 Pump, AS300 Autosampler, and UV-

6000 LP photodiode array detector (measurement of absorption was at two wavelengths 

216.5-217.5 and 249-251 nm). The derivatised PAs were separated on a Phenomenex 

Max-RP column (250 mm x 4.6 mm with Phenomenex C18 security guard). 

Dansylated polyamines were separated with the HPLC method optimized by Marcé et al. 

(1995). The procedure was carried out as follows: 20 µl of sample or standard were 

injected into the HPLC system, and then they were subjected to a gradient elution in 

acetonitrile and water over 15 minutes (Figure 4-3). 

The initial conditions were 70 % acetonitrile and 30 % water pumping at a flow-rate of 

1.5 ml/ min. The mixture was pumped for 4 min; then the acetonitrile concentration was 

increased to 100 % and was kept constant at this concentration for another 4 min, and 

finally returned to the initial conditions. After each cycle, the column was re-equilibrated 

in the remaining 6 min. 
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Elution was performed at room temperature (22° C), and quantification of the different 

amines was performed using the HPLC system’s Thermo Xcalibur software (V 1.2). 

Areas of each sample peak were integrated and compared to those of the standards of 

known concentration. Polyamine final concentrations were expressed as nmol/ gm FW. 

 

Figure 4-3 Diagram of the gradient used in the HPLC method. Percentage concentrations of acetonitrile 

(green line) and water (blue line) in the mobile phase vs. time in minutes.  

4.2.10. Treatment of Arabidopsis plants with GA3 

Homozygous seeds of C#4 and BIS#4 along with WT seeds were sown on soil and grown 

under LD conditions (Section 2.1). Beginning at the 6-7 leaves stage, a solution of GA3 

(dissolved in ethanol and made up to 50 µM, Sigma, UK) containing 0.02 % Tween-20 

was applied to plants by spraying on aerial parts (plant rosettes) on six alternate days until 

the onset of bolting. The concentration 50 µM of GA3 was chosen based on Devaiah et 

al. (2009); a higher concentration of 100 µM was tested and gave severe abnormalities 

in plant growth.  

Twelve replicates of each mutant line and WT were used for GA3 treatment along with a 

similar number of the same plants used as control and sprayed with water at the same 

time intervals. The effect of GA3 application on initiation of the inflorescence stem 

(bolting), number of leaves at this stage and day of the first flower were evaluated in the 

two mutant lines and WT plants with or without GA3 treatment. In addition, two weeks 

after sowing (before bolting), five rosettes of each untreated mutant line and WT were 

collected, immediately frozen in liquid nitrogen, and stored at -80° C until further use for 

RNA extraction. 
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4.3. Results 

4.3.1. Screening of AtCuAO4 T-DNA mutant plants to check the lines were 

homozygous 

Plants of mutant lines used as a source of seeds in the phenotyping experiment were 

genotyped to verify that they were homozygotes and therefore carried the T-DNA 

insertion on both alleles.  

Extracted DNA was screened firstly with gene specific primers which span the insertion 

site to ensure the absence of the WT gene then genotyped using mutant specific primers 

for each line (Table 2-2) to verify the presence of the T-DNA insertion (Figure 4-4). No 

product was produced from any of the mutant plants, when gene specific primers 

spanning the T-DNA insertion region were used (using Hot Star Taq polymerase), 

compared with the WT gene (positive control) indicating that the WT allele was not 

present in the mutant plants and they were therefore indeed homozygous mutants 

(Figure 4-4.a).  

The PCR results presented bands with a size of 150 bp when P6 and AtCuAO4-R were 

used with DNA extracted from BIS#4 plants (Figure 4-4.b). Whereas LBa1 and 

AtCuAO4-F amplified a product of 400 bp from the DNA of C#4 plants (Figure 4-4.c) 

indicating in both cases that the T-DNA insertion was present. 

  (a)   (b)   (c) 

   

Figure 4-4 Screening AtCuAO4 mutant plants used as a source of seeds. Ethidium bromide (EtBr) stained 

agarose gel of PCR products from gene specific primers: (a) AtCuAO4-F + AtCuAO4-R primers, (b) P6 + 

AtCuAO4-R primers, and (c) AtCuAO4-F + LBa1 primers. gDNA of WT plant, gDNA of known BIS#4 

mutant, and gDNA of known C#4 mutant were used as a control in (a), (b) and (c) consecutively.  
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4.3.2. Verification of AtCuAO4 expression in T-DNA insertion mutant lines 

RNA was extracted from leaves of five week old mutant (C#4 and BIS#4), and WT plants 

(leaves 5 and 6 of 5 rosettes/ line) and was analysed by PCR. Five week old plants were 

chosen as at this stage of development the AtCuAO4 transcripts should be abundant. 

First, the integrity of extracted RNA was checked on an agarose gel (Section 2.11.1) and 

results revealed that all extracted RNAs were of a good quality (Figure 4-5.a). DNA in 

RNA samples was digested and then RNA samples were tested by PCR using 18S rRNA 

primers (Section 2.9 and Table 2-2) to confirm the absence of any contamination with 

DNA traces. This showed that all samples were free of genomic DNA (Figure 4-5.b). 

Quality of cDNA generated from the RNA was confirmed by amplification of Actin2 by 

PCR using actin specific primers (Section 2.9 and Table 2-2) (Figure 4-5.c). 

  (a)   (b)   (c) 

   

Figure 4-5 Quality control applied to isolated RNA from Arabidopsis leaves 5 and 6 of 5-week old WT and 

AtCuAO4 mutant plants. (a) Integrity of RNA was tested by agarose gel electrophoresis. (b) DNA digestion 

after DNase treatment was confirmed by PCR using 18S rRNA primers (Table 2-2). (c) Integrity of 

generated cDNA was tested by PCR reaction with Actin2 primers (Table 2-2). Genomic DNA (gDNA) was 

used in both b and c as a positive control while water was used as a negative control to detect any 

contamination. Electrophoresis was performed on EtBr stained 1 % agarose gels.  

To confirm the lack of expression of AtCuAO4 mRNA as a result of T-DNA insertions 

in the mutant lines, three different combinations of primers were used to amplify three 

regions within the AtCuAO4 mRNA in WT and mutant plants, up-stream (in the 5` UTR 

zone), flanking (to span the T-DNA insertion site), and down-stream of the T-DNA 

insertion site (flanking an intron between the 1st and 2nd exons) (Figure 4-2.b and 

Table 2-2).  
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Primers upstream of the T-DNA insertion site amplified a fragment of 200 bp on cDNAs 

of all analysed mRNAs as predicted from the sequence (Table 2-2, Figure 4-6.a). When 

primers flanking the T-DNA insertion site were used for PCR, the amplification product 

of 283 bp from the AtCuAO4 transcript was absent in both mutants (C#4 and BIS#4) and 

present only in cDNA of WT plants (Figure 4-6.b). When primers downstream of the T-

DNA insertion site were used, both mutant lines produced only a very low amount of 

amplification product and only cDNA of WT plants produced an abundant fragment of 

the predicted size (88 bp), while a fragment of 199 bp was amplified from gDNA of WT 

(Figure 4-6.c). 

  (a)   (b)   (c) 

   

Figure 4-6 PCR analysis of AtCuAO4 T-DNA insertional lines C#4 (SALK_072954.55.00.x) and BIS#4 

(GK_011C04-013046). Three different primer pairs were used to amplify three regions on AtCuAO4 

mRNA (Figure 4-2.b, Table 2-2): (a) primers for upstream of the T-DNA insertion site, (b) primers 

spanning the T-DNA insertion site, (c) primers for downstream of the T-DNA insertion site. Wild type 

mRNA (WT) was used as a positive control, and H2O as a negative control. Since downstream primers 

span an intron, genomic DNA (gDNA) was used in (c) as another positive control. EtBr stained 1 % agarose 

gels were used to separate PCR products.  

4.3.3. Seed germination in T-DNA insertion and over-expressor lines of AtCuAO4 

Homozygous T-DNA insertion lines for both C#4 and BIS#4 were tested to see if their 

germination was affected. At the beginning of the experiment, radical protrusion of both 

T-DNA lines was considerably slower compared to WT (Figure 4-7.a).  

On the first day, less than 50 % of both mutant seeds (C#4 and BIS#4) germinated while 

more than 80 % of WT seeds had done so. On the second day and the following days of 
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the experiment period, no clear differences were observed between the germination of 

either mutant and WT seeds.  

On the other hand, radical emergence rate of both homozygous over-expression lines 

(P17 and P27) was similar to that of the WT seeds and almost 100 % of seeds of each 

tested plant germinated within 24 h (Figure 4-7.b). Note that overexpression seed batches 

used for evaluating the germination were tested on MS medium in Petri dishes 

supplemented with Kan at 50 µg/ ml. 

(a) 

 
(b) 

 

Figure 4-7 Effect of AtCuAO4 manipulation on seed germination. (a) Mutant lines (C#4 and BIS#4) and 

(b) over-expressor lines (P17 and P27) compared to WT seeds. Surface sterilized seeds were sown on filter 

paper saturated with sterile distilled water in Petri dishes and monitored regularly for radical protrusion. 

Values are the mean ± SE of five biological replicates in (a) (30 seeds/ replicate) and three biological 

replicates in (b) (50 seeds/ replicate). Significant differences in means are indicated by * at P ≤ 0.05 based 

on a T-test where data were normally distributed or Mann-Whitney test where data were not.  

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

G
er

m
in

at
io

n
 (

%
)

Time (days)

C#4

BIS#4

WT
*
*

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

G
er

m
in

at
io

n
 (

%
)

Time (days)

P17

P27

WT



Chapter Four Manipulation of AtCuAO4 

 

85 

 

4.3.4. Growth and development of AtCuAO4 over-expressor and T-DNA mutant lines 

Emergence of leaves 1-9 was delayed significantly in the C#4 mutant line and emergence 

of leaves 4, 5, 6, 8 and 9 was also delayed in BIS#4 compared with WT (by about 2 d) 

(Figure 4-8.a). However, the overexpression lines did not show clear differences in time 

of emergence of their leaves (Figure 4-8.b). 

(a) 

 

(b) 

 

Figure 4-8 Comparison of emergence time of individual leaves of AtCuAO4-mutant plants and AtCuAO4-

overexpressing lines with wild type Arabidopsis. (a) Mutant plants (C#4 and BIS#4) and (b) overexpressing 

plants (lines P17 and P27). Mean ± SE; n = 8; significant differences are indicated by asterisks (P ≤ 0.05) 

based on a T-test where data were normally distributed or Mann-Whitney test where data were not.  

Plants from both mutant lines (C#4 and BIS#4) bolted and flowered later and they 

produced a greater number of leaves before bolting relative to WT (Figure 4-9.a). 

Conversely in transgenic lines (P17 and P27) bolting and flowering occurred sooner 

compared with WT (Figure 4-9.b). However, the number of leaves produced before 

bolting were only significantly lower in P17 but not P27 compared to WT.  
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(a) 

 

 

 

   

(b) 

 

 

 

Figure 4-9 Developmental stages of wild type Arabidopsis, AtCuAO4 mutants and AtCuAO4 over-

expressors. (a) C#4 and BIS#4 mutant lines and (b) P17 and P27 overexpression lines. Right-hand images 

show phenotype of representative plants at different stages of development: (a) 33-day old plants at the top 

and 48-day old plants at the bottom, (b) 26-day old plants at the top and 42-day old plants at the bottom. 

Mean ± SE; n=8; asterisks indicate significant differences to WT (P ≤ 0.05) based on a T-test where data 

were normally distributed or Mann-Whitney test where data were not. 
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At four weeks post-bolting there were fewer yellow leaves in both mutant lines (C#4 and 

BIS#4). However, the number of total leaves was only lower in BIS#4 plants compared 

to WT, and rosette biomass was not significantly different from WT plants in either 

mutant line (Figure 4-10.a). These three parameters in the two over-expression lines (P17 

and P27) were not significantly different to WT plants (Figure 4-10.b). 

(a) 

 
(b) 

 

Figure 4-10 Effect of AtCuAO4 mutation or overexpression on number of leaves at 4 weeks post-bolting, 

number of yellow leaves and fresh weight of rosettes. (a) C#4 and BIS#4 mutant lines and (b) P17 and P27 

overexpression lines. Mean ± SE, n = 8, asterisks indicate significant differences to WT (P ≤ 0.05) based 

on a T-test where data were normally distributed or Mann-Whitney test where data were not.  

Four weeks post-bolting, the height of the primary stalk and number of siliques produced 

by the two T-DNA insertional lines (C#4 and BIS#4) were both significantly lower than 

WT (Figure 4-11.a). However, there were no clear significant differences in these 

parameters in the overexpression lines compared to WT plants (Figure 4-11.b). Rosette 

diameter was also unaffected by perturbation of AtCuAO4 expression. 

0

1

2

0

10

20

30

40

50

60

C#4 BIS#4 WT

g

C
o

u
n
t

*

*

*

0

1

2

0

10

20

30

40

P17 P27 WT

g

C
o

u
n
t

Number of leaves at 4 weeks post-bolting Number of yellow leaves at 4 weeks post-bolting

Rosette fresh weight at 4 weeks post-bolting



Chapter Four Manipulation of AtCuAO4 

 

88 

 

(a) 

 
 

   

   

(b) 

 
 

Figure 4-11 Length of primary inflorescence shoot, rosette diameter and number of siliques produced by 

the plant at 4 weeks after bolting in plants perturbed in AtCuAO4 expression either via mutation or over-

expression compared to WT plants. (a) AtCuAO4 mutated lines C#4 and BIS#4. (b) AtCuAO4 

overexpression lines P17 and P27. Total number of siliques was scored on the primary inflorescence, 

secondary inflorescence branches, and inflorescence branches (Section 2.4). Right-hand images show plant 

phenotype at 4 weeks post-bolting corresponding to left-hand graphs. Mean ± SE; n =8; asterisks indicate 

significant differences to WT (P ≤ 0.05) based on a T-test where data were normally distributed or Mann-

Whitney test where data were not.  
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The concentration of photosynthetic pigments was measured in leaves 5 and 6 of mutants 

and WT rosettes as a marker for senescence progression (Figure 4-12). There were no 

clear differences in the concentrations of photosynthetic pigments between mutant lines 

and WT plants at an early stage of growth (pre-bolting). However, knock-out of the 

expression of AtCuAO4 in the two mutant lines (C#4 and BIS#4) resulted in significantly 

higher total chlorophyll levels compared with WT at both measured stages, 2 and 4 weeks 

post-bolting (Figure 4-12.a). In contrast, no variation in the total chlorophyll content was 

observed in either of the over-expression lines (P17 and P27) compared to WT plants 

(Figure 4-12.b). 
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Figure 4-12 Chlorophyll contents of the two T-DNA insertional lines and the two over-expression lines 

relative to WT plants. (a) C#4 and BIS#4 mutant lines and (b) P17 and P27 overexpression lines. Different 

chlorophyll levels were analysed in leaves number 5 and 6 of different lines at three different stages. Pre-

bolting indicate 1 week pre-bolting, post-bolting indicate 2 weeks after bolting and late stage indicates 4 

weeks post-bolting. The right panel shows differences in leaf yellowing of the nine oldest leaves (oldest to 

youngest, left to right) from mutants and overexpression lines grown under 16 h light/ 8 h dark for 8-9 

weeks. Values are mean ± SE (n = 6). Asterisks indicate statistically significant differences to WT (P ≤ 

0.05) based on a T-test where data were normally distributed or Mann-Whitney test where data were not.  
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Since the two over-expression lines were not always consistent in their phenotype, a third 

line, P9, was analysed phenotypically to confirm the results from the two other lines. In 

general, results of the P9 phenotyping showed no clear differences relative to WT except 

in bolting and flowering days, length of the primary stalk and chlorophyll contents at four 

weeks post-bolting (Figure 4-13).  

(a)  (b) 

 

 

 
(c)  (d) 

 

 

 
   

(e)  (f) 

 

 

 

Figure 4-13 Phenotypic analysis of the AtCuAO4 over-expression line P9 compared to wild type plants. (a) 

Germination rate, (b) emergence time of individual leaves, (c) early morphological and developmental 

traits, (d) and (e) late morphological and developmental traits, and (f) chlorophyll levels at three different 

stages of plant development, pre-bolting indicate 1 week pre-bolting, post-bolting indicate 2 weeks after 

bolting and late stage indicates 4 weeks post-bolting. n = 8 in a-e, while in f, n = 6. Mean ± SE, asterisks 

indicate significant differences to WT (P ≤ 0.05) based on a T-test where data were normally distributed 

or Mann-Whitney test where data were not.  
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Overexpressing AtCuAO4 in P9 did not affect germination rate or leaf emergence 

(Figure 4-13.a and b) but accelerated bolting and flowering times (Figure 4-13.c), 

although not the number of leaves at bolting.  

Numbers of leaves, rosette fresh weight and number of yellow leaves at four weeks post-

bolting were, however, unaffected (Figure 4-13.d). AtCuAO4 over-expression in the P9 

line did increase the primary stalk length but not rosette diameter or numbers of siliques 

at four weeks post-bolting weeks (Figure 4-13.e).  

Total chlorophyll levels were reduced in leaves of the P9 line at four weeks post-bolting 

weeks compared to WT (Figure 4-13.f). 

Images of the whole plant of line P9 and WT at different stages of development are shown 

in Figure 4-14. 

(a)                      WT | P9  (b)  WT | P9   (c)     P9 | WT  

 

  

 

(d) P9 

 

(e) WT 

 

Figure 4-14 Phenotype of the over-expression line P9 relative to wild type plants. (a) 26-day old plants (~1 

week post-bolting), (b) 42-day old plants (2 weeks post-bolting), and (c) plant phenotype at 4 weeks post-

bolting. The differences in leaf yellowing of the nine oldest leaves, oldest to youngest (left to right), from 

the over-expression line P9 (d) and WT (e) grown under 16 h light/ 8 h dark for 8 weeks.  
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Storage of detached AtCuAO4 rosettes in the dark affected the progression of leaf 

senescence, however, there was no consistent response between the two mutant or the 

two over-expressor lines (Figure 4-15). Overexpression of AtCuAO4 accelerated 

senescence significantly in the dark in one line (P27) as indicated by the higher RGB 

values (an indication of yellowing) which was clear at early time points (day 2, 3, 4, 5 

and 6) compared with control plants. In contrast, in the other line (P17), darkness delayed 

yellowing significantly at early stages (day 1, 2 and 3) and then no clear differences were 

obvious between WT and overexpression lines. On the other hand, both mutant lines were 

late in their senescence during the dark period but this retardation was significant only on 

the first day for C#4 and in the last three days of incubation in the dark for BIS#4 when 

compared to WT plants. 

 

Figure 4-15 Comparison of leaf senescence in AtCuAO4 mutant and overexpressor lines with wild type 

during dark-induced senescence. 30-day old rosettes grown on soil under short-day conditions, with at least 

nine leaves, were used in this experiment. Change in leaves color was examined daily during dark 

incubation by obtaining RGB score. Data represent mean values ± SE (n=9). * P ≤ 0.05.  

The fifth and sixth leaves were sampled after 0 and 8 days in the dark for chlorophyll 

analysis (Figure 4-16). Values of the concentration of chlorophyll confirmed that there 

were no significant differences between WT and AtCuAO4 manipulated plants in the 

progression of dark-induced leaf senescence. 
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(a) 

 

(b) 

 

Figure 4-16 Chlorophyll content of AtCuAO4 manipulated leaves incubated in the dark to induce 

senescence. (a) Chlorophyll content of leaves at the beginning of treatment. (b) Chlorophyll levels in leaves 

incubated in the dark for 8 days. Data represent mean values ± SE (n=6). * P ≤ 0.05.  

4.3.5. Dominance of AtCuAO4 T-DNA insertion mutant alleles 

To verify that the AtCuAO4 alleles in the two mutant lines C#4 and BIS#4 were indeed 

recessive, the mutant lines were backcrossed to WT and the phenotype of heterozygote 

mutant plants were compared to WT. Seeds of siliques produced by pollination of 

homozygous mutant plant stigmas with WT flower pollen were sown on soil. Genotyping 

of randomly selected plants using both WT AtCuAO4 gene primers and T-DNA insertion 
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specific primers showed that the plants were heterozygous bearing both mutated and WT 

alleles (Figure 4-17). 

(a) 

 

(b) 

 

Figure 4-17 Genotyping plants produced by backcrossing mutated plants with WT. (a) PCR products from 

gene specific primers AtCuAO4-F + AtCuAO4-R (Table 2-2). (b) PCR products from mutant specific 

primers P6 + AtCuAO4-R (on the left), and AtCuAO4-F + LBa1 (on the right). Genomic DNA (gDNA) and 

DNA from homozygous mutant plants were used in (a) and (b) respectively as positive controls while water 

was used as a negative control to detect any contamination. Electrophoresis was performed on EtBr stained 

1 % agarose gels. 

Heterozygous plants from the backcrossed seed were monitored for bolting day relative 

to WTs to check the dominance of mutant alleles (Figure 4-18). Results showed a 

significant retardation in bolting day of the heterozygous C#4 mutant plants compared 
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with WT, while heterozygotes of the other mutant line (BIS#4) were similar in their 

bolting day to WT plants. 

 

Figure 4-18 Bolting day of heterozygous mutants compared to wild type plants. Error bars represent 

standard error of the mean, values are means ± SE (n = 24), asterisk indicates significant differences to WT 

(P ≤ 0.05) based on a T-test where data were normally distributed or Mann-Whitney test where data were 

not. The experiment was repeated twice with similar results.  

4.3.6. The effect of mutation of AtCuAO4 on stem elongation, plant productivity and 

silique phenotype 

Since the AtCuAO4 mutant lines (C#4 and BIS#4) both showed shorter stems and fewer 

siliques at four weeks post-bolting weeks, a more detailed analysis of growth and silique 

phenotype was made. When the floral (primary) inflorescence of the two mutant lines 

(C#4 and BIS#4) and WT reached ~1-2 cm in length, measurement of stem extension rate 

was started (Figure 4-19). During the first four days WT stalks elongated much faster 

than the inflorescence stems of mutant lines (Figure 4-19.a). The stem elongation rate of 

the mutants remained lower until they reached a length of ~15 cm (Figure 4-19.b). After 

this point the extension rate of both mutants increased which compensated for the shorter 

stem length, but stem length remained significantly shorter until the end of the 

experiment. 
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(a) 

 
(b) 

 

Figure 4-19 Effect of knocking out the expression of AtCuAO4 in BIS#4 and C#4 lines on the growth of 

the primary stem compared to WT. (a) Elongation rate of the primary stalk over two weeks (b) Length of 

the primary stalk over two weeks. Error bars represent standard error of the mean, values are means ± SE 

(n = 6), asterisks indicate significant differences to WT (P ≤ 0.05) based on a T-test where data were 

normally distributed or Mann-Whitney test where data were not.  

The activity of the reproductive system after bolting in mutant lines C#4 and BIS#4 

compared with WT plants was analysed by scoring the number of siliques produced over 

a week on the primary inflorescence, secondary inflorescence branches (at the axils of 

the cauline leaves) and inflorescence branches (grown out from the axillary buds 

subtended by rosette leaves) starting from the day of formation of the first silique 

(Figure 4-20.a). Results show that abolishing the expression of AtCuAO4 has no effect 

on plant productivity: no clear difference in number of siliques per week was observed 

relative to WT plants. However, both mutant lines generated significantly longer siliques 

compared to WT siliques (Figure 4-20.b and c).  
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(a) 

 
(b) 

 

  

(c) 

   
                                        C#4 BIS#4        WT 

Figure 4-20 Effect of knocking out the expression of AtCuAO4 in the two mutant lines C#4 and BIS#4 on 

plant productivity and silique phenotype as compared to WT plants.  (a) Total number of siliques produced 

by the plant on the primary inflorescence, secondary inflorescence branches, and inflorescence branches 

over a week starting from formation of the first silique (n = 30-33). (b) Mature silique length of 8-week old 

plants (n = 100). Values are mean ± SE, asterisks indicate statistically significant differences to WT (P ≤ 

0.05) based on a T-test where data were normally distributed or Mann-Whitney test where data were not. 

(c) Mature siliques at 4 weeks post-bolting, scale bar = 1 cm  

4.3.7. The effect of manipulation of the expression of AtCuAO4 on free polyamine 

content in Arabidopsis single leaves 

To determine whether the phenotypic effects due to perturbation of AtCuAO4 expression 

were mediated by a change in the concentrations of PAs, relative concentrations of Put, 

Spd and Spm were analysed in rosette leaves 5 and 6 before and after bolting. The elution 

order of the different dansylated standard polyamines (Figure 4-21) was as follows: Put 

(RT; 6.54 min), Cad (RT; 6.96 min), DIA (RT; 7.63 min), Spd (RT; 8.18 min), and Spm 

(RT; 8.92 min). The standard deviations of these values ranged between +/- 0.25 of a 

minute. 
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Figure 4-21 Chromatogram of dansylated standard polyamines. Peaks: 6.54 (Put), 6.96 (Cad), 7.63 (DIA), 

8.18 (Spd) and 8.92 (Spm).  

Analysis of free polyamine content before bolting in leaves 5 and 6 of two week old 

mutant plants (Figure 4-22.a) showed a 1.7 and 1.36 fold increase in the free Put content 

in leaves of BIS#4 and C#4 respectively compared to the WT. No differences in content 

of the free form of the tetra-amine Spm were observed pre-bolting between mutants and 

WT leaves. Put content increased in all tested plants during reproduction compared with 

the vegetative stage but this increase was not significantly different among the three 

tested lines. Conversely, Spm content in leaves declined during reproductive 

development relative to the vegetative stage but its content in leaves of both mutants was 

significantly higher and almost double (1.75 fold) that in WT leaves. An increase in the 

tri-amine Spd content in its free form was seen pre-bolting in leaves of mutant plants with 

suppressed AtCuAO4 expression, but this increase was only significant in leaves of C#4 

compared with wild type (Figure 4-22.b). Free Spd decreased in leaves of all studied plant 

lines post-bolting relative to their titres in the pre-bolting stage. However, free Spd 

content was significantly higher in leaves of mutant plants (BIS#4 and C#4) compared 

with leaves of WT plants showing a ~1.5 and ~1.7 fold increase in BIS#4 and C#4 leaves 

respectively compared to WT leaves at the same stage. Total PA content was significantly 

high in both mutant plants pre-bolting as compared with WT, however, total PAs reduced 

post-bolting in all plants including WT relative to its level pre-bolting with no clear 

difference between mutants and WT at this stage (Figure 4-22.c). 
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(a) 

 
  
(b) 

 
  
(c) 

 
  
(d) 

   
 All lines pre-bolting Mutants post-bolting WT post-bolting 

Figure 4-22 Free polyamine contents in leaf 5 and 6 of the two mutant lines (C#4 and BIS#4) and WT 

plants at two critical stages, pre-bolting and post-bolting. (a) Content of the di-amine Put and the tetra-

amine Spm. (b) Content of the tri-amine Spd. (c) Content of the total free polyamines. Asterisks in (a) and 

(b) indicate values significantly different from the corresponding values of the wild type (WT) plants at P 

≤ 0.05 based on a T-test where data were normally distributed or Mann-Whitney test where data were not. 

Significant differences in means between genotypes at both stages in (c) are indicated by different letters 

(P ≤ 0.05), statistically tested using One-Way ANOVA. Mean values ± SE, n = 6. (d) Images of plant stage 

at sampling, pre-bolting for all, mutants post-bolting and WT post-bolting respectively (Scale bars = 2 cm). 
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4.3.8. Effect of exogenous GA3 on phenotype of AtCuAO4 mutant plants 

Following early treatment (at 6-7 leaves stage) with GA3 at 50 µM, the effect of GA3 on 

initiation of the inflorescence stalk (bolting), number of leaves at bolting and day of the 

first open flower were evaluated in the two mutant lines, C#4 and BIS#4, compared to 

WT plants (Figure 4-23). Results revealed that the delayed bolting and flowering and 

increased number of leaves at bolting seen in the two mutants (Figure 4-9.a) were 

reversed in the two mutant lines sprayed with GA3 as compared to plants of the same 

mutant lines treated with water while at this concentration of GA3 WT development was 

not affected, in measured parameters, by GA3 treatment (Figure 4-24). 

 

Figure 4-23 Effect of exogenous application of GA3 on bolting day and number of leaves at bolting of the 

two mutant lines (C#4 and BIS#4) and wild type plants. Error bars represent standard error of the mean. 

Letters indicate a statistically significant difference (n = 12, One-way ANOVA, P ≤ 0.05) between 

genotypes as a result of different treatments. The experiment was repeated twice with similar results. 
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Figure 4-24 Exogenous application of GA rescues the effects of AtCuAO4 mutation. (a) Phenotype of 

untreated and GA3-treated homozygous AtCuAO4 mutant lines and WT plants, grown under LD conditions 

as described in Section 2.1, at the stage of bolting of untreated WT plants. (b) Phenotype of homozygous 

mutants and WT plants at ~6 weeks with or without GA3 application. Scale bars = 5 cm.  

RNA was extracted from two week old rosettes of the two insertion lines, C#4 and BIS#4, 

and WT (5 rosettes/ genotype), and all the RNA samples were of a good quality 

(Figure 4-25.a). DNA contamination was removed from the RNA samples and then they 

were tested by PCR using 18S rRNA primers (Table 2-2) which revealed that all samples 

were free of genomic DNA (Figure 4-25.b). Quality of cDNA generated from the RNA 
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was confirmed by amplification of Actin2 (Table 2-2) by PCR using specific primers 

(Figure 4-25.c). 

(a) 

 
(b) 

 
(c) 

 

Figure 4-25 Quality control applied to isolated RNA from the two Arabidopsis T-DNA insertion lines (C#4 

and BIS#4) and wild type before qRT-PCR analysis. (a) Integrity of RNA was tested by agarose gel 

electrophoresis. (b) DNA digestion after DNase treatment was confirmed by PCR using 18S rRNA primers 

(Table 2-2). (c) Integrity of generated cDNA was tested by PCR reaction with Actin2 primers (Table 2-2). 

All steps were performed on two biological replicates (1st and 2nd) from each mutant line and WT plant. In 

both cases (b and c), genomic DNA (gDNA) was used as a positive control, and electrophoresis performed 

on 1.4 % agarose.  
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The relative transcript abundance of genes encoding GA biosynthetic enzymes as well as 

of selected floral genes as markers for floral development was evaluated in two week old 

rosettes of WT and AtCuAO4 mutant plants (C#4 and BIS#4) grown under LD conditions 

as described in Section 2.1 (Figure 4-26). This stage was chosen because growing the 

plant for two weeks under long day conditions activates flowering genes and thus induces 

plant to flowering. For example, expression of SOC1 is one of the earliest markers for 

floral induction in the meristem (Borner et al. 2000). The GA biosynthesis genes tested 

included AtCPS1, AtKS1, AtGA20ox1, AtGA3ox1, and AtGA2ox1 along with the two 

floral genes SUP and SOC1. Apart from AtCPS1 which was below detection in all tested 

plants including WT, results showed that all analysed GA biosynthetic genes were 

significantly down-regulated to different extents in both mutant lines relative to WT 

plants. Expression of the floral gene SUP was not detected in 2-week rosettes of either 

mutant or WT plants, however the transcript of the other floral gene SOC1 was detectable 

and its abundance was significantly reduced in the two T-DNA insertional lines as 

compared to WT plants. 

 

Figure 4-26 The effect of repression of AtCuAO4 on the expression of the floral gene SOC1 and GA 

biosynthetic genes in mutant lines (BIS#4 and C#4) and wild type (WT) plants. Two week old seedlings 

grown under LD conditions (Section 2.1) were used for real-time RT-PCR analysis. Actin2 was used as a 

housekeeping gene to normalize target gene expression levels (see Table 2-3 for primer sequence). 

Transcript levels are expressed relative to the level of transcripts in WT plants. Values are the mean ± SE 

of two biological replicates each with three analytical replicates. Bars of the graph represent standard errors, 

and significant differences in means are indicated by different letters (P ≤ 0.05). The results were statically 

tested using One-way ANOVA analysis.  
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4.4. Discussion 

PCR screening confirmed that both T-DNA insertions for the AtCuAO4 gene were 

homozygous (Figure 4-4), hence seeds could be sown directly onto soil for phenotyping 

experiments. Verification of mutant lines using three different combination of primers 

(upstream, flanking, and downstream; Figure 4-6) showed that both mutants, C#4 and 

BIS#4, did not produce transcripts flanking the T-DNA insertion site, while faint bands 

were detected when downstream primers were used which could be primer dimers or 

possibly due to a very weak expression of the mutant allele driven from the T-DNA 

insertion (Wang 2008). However, a product was obtained from the 5` end, upstream of 

the insertion point. It is assumed therefore that although truncated transcripts are 

produced, the gene is essentially knocked out by both insertions and no functional 

AtCuAO4 protein can be produced by either of them. 

Analysis of heterozygous mutant lines generated by the backcross of homozygous T-

DNA insertional lines with WT (Figure 4-18), revealed that C#4 is probably a dominant 

or semi-dominant mutant (since homozygous mutant lines were not phenotyped 

alongside, it is not possible to be sure) while BIS#4 gives a first evidence that the insertion 

confers a recessive trait. Most T-DNA insertion mutants are recessive (Shu et al. 2012a), 

however, a dominant effect could arise if, for example, a truncated transcript or protein 

is produced from the mutant allele resulting in interference with the transcription or 

enzymatic activity of the WT allele (Lodish et al. 2000). Results of free PA content may 

support the suggestion that C#4 could be a dominant mutant as C#4 plants showed high 

accumulation of the higher polyamine Spd pre-bolting (Figure 4-22.b). 

Since, wild type Arabidopsis plants from different regions vary in terms of shape, 

development and physiology (TAIR, About Arabidopsis: https://www.arabidopsis.org/ 

portals /education/aboutarabidopsis.jsp), great care was taken in this part of the project 

to use WT as a source of seed that was directly comparable to the mutant and transgenic 

lines. Transgenic over-expressor and mutant lines were compared to WT which was 

received from the Cona lab in Italy where overexpression lines were originally generated. 

However, for the mutant lines, it might have been better to have chosen different WT 

sources due to small differences observed in some studied traits (for example: 
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productivity, Figure 4-20.a) which might have been more evident had isogenic WT seed 

been used. So, for the future experiments it would be useful either to source WT lines 

directly from NASC (the source of mutant seeds) or to obtain WT seeds from the 

segregation of mutant heterozygous lines. 

Although previous results with barley leaves indicated that endogenous levels of the 

polyamines Spd and Spm did not change during dark-induced senescence, the 

concentration of Put rose dramatically (Legocka and Zajchert 1999). Moreover, although 

the rise in Put in barley leaves did not appear to delay senescence, expression of genes 

related to PA metabolism were positively affected in barley (Sobieszczuk-Nowicka et al. 

2015). To determine whether changing the balance of PAs through manipulation of CuAO 

genes affects the progression of dark-induced leaf senescence in Arabidopsis, the 

senescence symptoms of AtCuAO4 mutant and over-expressor lines were examined in 

which it is presumed the balance of PAs may be altered. Results indicated no obvious 

phenotypic difference between studied lines and WT (Figure 4-15). Thus AtCuAO4 is 

probably not required for darkness-induced leaf senescence. Lack of correlation between 

PA content and dark-induced senescence was also noted previously as inhibitors of 

polyamine biosynthetic enzymes did not affect the progression of cereal leaf senescence, 

suggesting that endogenous PA levels may not have an important role in regulating dark-

induced senescence (Birecka et al. 1991; Chen and Kao 1991). 

Since the effects of PAs in regulating plant growth and development are mediated by the 

regulation of cellular PA levels (Planas-Portell et al. 2013), an obvious hypothesis is that 

the delay in flowering and senescence in both of the mutant lines as a result of the 

AtCuAO4 knockout was due to a change in the concentration of free polyamines. The 

oxidative deamination action of CuAOs contributes to down-regulation of free PA levels 

in plants (Moschou et al. 2008), and specifically Put is the substrate of AtCuAOs (Walters 

2003). For example, high CuAO activity in tobacco leaves resulted in lower Put levels 

(Cona et al. 2014). Hence, my hypothesis was that down-regulation of AtCuAO4 may 

result in increased levels of Put. However, AtCuAO4 is not the only AtCuAO gene in 

Arabidopsis as it belongs to a gene family of 10 members (Planas-Portell et al. 2013). 

Therefore, there may be compensatory up-regulation of other AtCuAO genes due to the 
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disruption of AtCuAO4 expression such that the PA contents would not be not affected. 

This hypothesis was tested by analysing the levels of free polyamines at two critical 

stages, pre- and post-bolting in both mutants and WT.  

Similar concentrations of different PAs were found in leaves of WT plants during 

vegetative and reproductive stages as compared to previous work (Bagni et al. 2006). 

Although mutation of AtCuAO4 in the present work repressed only one gene involved in 

Put catabolism, it was found to be enough to produce a clear accumulation of Put in leaves 

before bolting, and also increased both Spm and Spd after bolting. Before bolting, there 

appeared to be no clear increase in the tri-amine Spd and the tetra-amine Spm, however, 

a significant increase in both of them was observed in both mutant lines compared to the 

WT after bolting. This might also be attributable to the inhibition of AtCuAO4 activity. 

In many plant systems, high concentrations of PAs are associated with rapid cell division 

(Heimer and Mizrahi 1982; Montague et al. 1978; Slocum and Galston 1985). However, 

an imbalance of PAs can also have negative effects. The balance in PA distribution in 

different parts of the plant depends on the stage of development and is an important factor 

controlling plant development (Urano et al. 2003). Excess accumulation of polyamines 

is toxic to plant cells (Bouchereau et al. 1999), and high levels of Spd and Spm detected 

in leaves of both mutant rosettes, and associated with normal titres of Put post-bolting 

relative to WTs, could be a mechanism for regulating the cellular contents of polyamines 

to reduce the toxicity of high Put levels. The higher content of Spm could be due to 

elevated concentrations of its precursor Spd which was detected before bolting 

(Figure 4-22.b), although this was only significant in the C#4 plants. 

The effect on seed germination could also be due to PA imbalance although the levels of 

PAs in seeds of the mutant lines were not tested. Several studies have previously related 

the PA [(Spm + Spd) : Put] ratio with seed germination indicating the importance of Spm 

and Spd in the period prior to radicle protrusion and the fundamental role of Put at later 

stages when the division rate is high (Dias et al. 2009; Pieruzzi et al. 2011). Another 

possible explanation for the initial delay in germination of AtCuAO4 knockout seeds is 

by affecting H2O2 production, the product of Put oxidation by CuAO (Cona et al. 2006). 
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This is essential for seed dormancy breaking (Bailly et al. 2008), and acts as a promoter 

of seed germination (Ogawa and Iwabuchi 2001). In Arabidopsis, seed germination is 

promoted by H2O2 through promoting GA biosynthesis and up-regulating ABA 

catabolism (Liu et al. 2010). Treatment of pea seeds with H2O2 increased germination 

rate and seedling growth and this was attributed to the key role played by H2O2 in 

regulating these processes via mediating specific changes at the proteome, transcriptome 

and hormonal levels (Barba‐Espín et al. 2011).  

On the other hand, seed germination, root protrusion and other growth processes need 

energy for the growing tissues (Gallardo et al. 2001). As another product of the CuAO 

enzymatic activity is γ-aminobutyric acid (GABA), an important compound for energy 

production (Bouche and Fromm 2004), another hypothesis is that the mutation of 

AtCuAO4 down-regulated GABA biosynthesis pathways derived from oxidation of PAs 

via CuAOs (Kuznetsov and Shevyakova 2007) resulting in reduced energy levels with 

consequent effects on germination. However, the delay in germination time does not 

seem sufficient to account for the later effects. For example, day of bolting was delayed 

by over 5 days while germination was only delayed by 1 day. While other studies have 

shown that flowering time and seed germination are co-regulated (Chiang et al. 2009), 

the present results suggest that the down-regulation of this gene affects development and 

flowering time independently of seed germination.  

Mutant lines appeared to be delayed in several characteristics compared to WT 

(summarised in Table 4-1): firstly in germination, then in leaf emergence, bolting and 

flowering and in the size of the rosette before bolting occurred. At four weeks post-

bolting, mutant lines were also delayed in senescence (as determined by number of 

yellowed leaves) although differences in total leaf number were no longer significant. 

Higher total chlorophyll content found at late stages (6 and 8 weeks) in both mutant lines 

is another piece of evidence for senescence retardation as a result of knocking out the 

expression of AtCuAO4. Stalk height and number of siliques produced were also lower 

in the mutant lines. These data suggest that suppression of the expression of AtCuAO4 

significantly delays growth including flowering and senescence (Figure 4-9.a, 

Figure 4-10.a, Figure 4-11.a, Figure 4-12.a, and Figure 4-27). 
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The high level of Put observed in rosette leaves was associated with retardation in the 

mutant lines in their transition from vegetative to reproductive stage, indicating that levels 

of free Put over this specific threshold may disturb normal development of the plant. It 

was reported that high Put accumulation as a result of overexpressing arginine 

decarboxylase (ADC2), the gene involved in Put biosynthesis, in Arabidopsis resulted in 

late flowering (Alcazar et al. 2005). However, similar observations were recorded in 

Arabidopsis plants with reduced Put due to simultaneous silencing of the two ADC by 

amiRNA:ADC (Sánchez-Rangel et al. 2016). In transgenic tobacco plants, 

overexpression of oat ADC accumulated Put and showed an early-flowering phenotype 

in one line while the rest of the transgenic plants which showed higher or lower Put levels 

did not exhibit any changes from control plants (Masgrau et al. 1997). These results 

emphasize that flowering time is affected by changes in PA levels. 

 

Figure 4-27 Flowchart depicting the impact of AtCuAO4 (At4g12290) gene on the natural progression of 

growth in Arabidopsis thaliana. The pointed arrows indicate activation, and repression is represented by 

blunt arrows. 
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Table 4-1 Phenotype of the two mutant lines C#4 and BIS#4 and the three over-expression lines P9, P17, 

and P27 as compared to WT plants. 

Phenotype C#4 BIS#4 P17 P27 P9 

Emergence of leaves Emergence 
of leaves 1-9 
was delayed 
significantly 

Emergence 
of leaves 4, 
5, 6, 8 and 9 
was delayed 

Leaves no. 1 
and 2 were 
earlier in 
their 
emergence 
while the 
rest were 
similar to WT 

Leaves no. 1, 
2, 4 and 5 
were later in 
their 
emergence 
while the 
rest were 
similar to WT 

Leaf no. 4 
was later in 
its 
emergence 
while the 
rest were 
similar to WT 

Bolting day Later  Later Earlier Earlier Earlier 

No. of leaves at bolting 
Greater 
number of 
leaves 

Greater 
number of 
leaves 

Less leaves - - 

1st flower day Later  Later  Earlier Earlier Earlier 

No. of leaves at 4 
weeks post-bolting 

- Lower - - - 

No. of yellow leaves at 
4 weeks post-bolting 

Fewer  Fewer - - - 

Rosette’s fresh weight - - - - - 

Primary stalk’s length Shorter  Shorter - Taller Taller 

Rosette’s diameter - - - - - 

No. of siliques at 4 
weeks post-bolting 

Lower Lower - - - 

Total chlorophyll level 
(a+b) 

Higher at 2 
and 4 weeks 
post-bolting 

Higher at 2 
and 4 weeks 
post-bolting 

- - 
Lower at 4 
weeks post-
bolting 
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Endogenous PA levels were perturbed in transgenic plants which were engineered using 

sense arginine decarboxylase (ADC), a key enzyme involved in the biosynthesis of Put 

in plants (Masgrau et al. 1997) or antisense S-adenosylmethionine decarboxylase 

(SAMDC), which is necessary for the synthesis of Spd and Spm (Kumar et al. 1996) and 

this affected plant development, including stem elongation, due to defects in cell 

elongation. Therefore, I tested the hypothesis that knockouts in the expression of 

AtCuAO4 with altered PA levels may also be affected in stem length. This was tested by 

assessing stem elongation rate of mutant plants compared with WT and primary stalk 

length 4 weeks after bolting. Results showed an initial temporary lower stem expansion 

rate which seemed to recover afterwards (Figure 4-19), indicating no continued defect in 

stem cell elongation, however the overall stem length was reduced in the mutant lines. 

This effect could also be due to the elevated levels of PAs. 

Previous studies also reported that high Spd concentrations may act as a growth 

suppressor (Vuosku et al. 2012), and treatment of Arabidopsis with Spd under LD 

conditions had an inhibitory effect on flowering (Applewhite et al. 2000). Moreover, high 

levels of Put can alter the plant phenotype including reduced stem growth and leaf 

chlorosis to different degrees depending on the level of accumulated Put (Alcazar et al. 

2005; Masgrau et al. 1997). The early increase in Spd observed here in mutant leaves 

(though not significant in both) might be another possible cause for delaying bolting in 

the mutant lines. An important molecular mechanisms of polyamine action in cell 

proliferation and cell division has been suggested based on their ability to modulate DNA 

conformation and interactions between DNA and protein by their direct binding to DNA 

(Stes et al. 2011). Further investigations are required to understand whether cell 

proliferation and/ or differentiation was affected by accumulation of Put or Spd before 

bolting. 

In the present work, both mutant lines display a significantly postponed leaf senescence 

phenotype. This could be attributed to the indirect effect of delayed bolting (Nooden and 

Penney 2001; Sharabi-Schwager et al. 2010) or directly to the effect of high levels of PAs 

seen post-bolting (Figure 4-22). The result of dark treatment of both mutants 

(Figure 4-15) would seem to support this first hypothesis, i.e. that effects on senescence 
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are indirect. It has been reported that treatment with PAs prevents or delays senescence 

progression (Sood and Nagar 2003). Levels of polyamines have been correlated to 

senescence suggesting that reduction in polyamine levels may be a step in initiating 

senescence while treatment with polyamines can prevent senescence (Shama and 

Alderson 2005). The anti-senescence action of PAs may be due to potential repression of 

ethylene synthesis and to their effect in stabilizing and protecting membranes by 

combining with negatively charged phospholipids (Galston and Sawhney 1990). 

Postponement in bolting day is another possible contributor in the shift observed in the 

successive developmental processes including senescence.  

Effects of amine oxidases (AOs) on plant growth and development are also mediated by 

their oxidation reaction products including aminoaldehydes, GABA (γ-aminobutiric acid) 

and markedly, H2O2 (Planas-Portell et al. 2013). Therefore, another possible explanation 

for the observed alterations in the mutants’ phenotype is due to the temporary repression 

of one of the pathways for H2O2 production (by inhibition of PA-terminal oxidation by 

AtCuAO4). This may then be later compensated by other members of the family since 

the genetic redundancy by gene family members is common to compensate for each 

other’s loss (Kafri et al. 2009). In general, the polyamine catabolic product H2O2 has 

well-established roles in plant growth and development (Lim et al. 2006). H2O2 produced 

in particular from oxidation of PAs by CuAOs is an important element in the biosynthesis 

of lignin and cell-wall cross-linking reactions and cell expansion and thus has been 

suggested as a fundamental factor in regulating growth and development processes (Lim 

et al. 2006; Tavladoraki et al. 2012). A burst of H2O2 is also associated with bolting 

(Zimmermann et al. 2006), thus a reduction in CuAO-generated H2O2 may account for 

the delayed bolting in the AtCuAO4 mutant lines. 

Another effect noted in transgenic plants which were manipulated to produce higher 

levels of PAs was an effect on GA biosynthesis. Transgenic Arabidopsis plants 

overexpressing ADC2 accumulated high concentrations of Put and the expression of GA 

biosynthetic genes involved in early and latter parts of the GA biosynthetic pathway were 

down-regulated, resulting in reduced levels of bioactive GA which in turn resulted in a 

severe dwarf and late-flowering phenotypes (Alcazar et al. 2005). GA promotes cell 
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division and expansion thus both processes contribute to the elongation of internode in 

the pith rib meristem region (Achard et al. 2009; Cowling and Harberd 1999). Thus a 

dwarf phenotype is consistent with a reduction in GA biosynthesis through an indirect 

effect of elevated PAs.  

The phenotype observed in AtCuAO4 mutant plants (late bolting, late flowering, and short 

stalks), although not as severe as reported by Alcazar et al. (2005) is consistent with GA-

deficiency. Hence, the effects of exogenous GA application were tested. The response of 

the mutants to exogenous GA3 application (Figure 4-23), suggested a role for AtCuAO4 

in regulating GA biosynthetic genes. Therefore, the relative transcript levels of selected 

genes encoding the primary enzymes involved in GA metabolism as well as two GA-

controlled floral genes, SOC1 and SUP, were analysed in 2-week old rosettes of WT and 

AtCuAO4 mutant plants grown under normal conditions. The results obtained showed 

that expression of GA biosynthesis genes as well as the flowering gene SOC1, a 

transcription factor associated with floral homeotic genes (Moon et al. 2003) was 

affected. Again this would be consistent with the high level of Put in Arabidopsis rosettes 

before bolting, as a result of the AtCuAO4 knockout. However, GA biosynthesis is 

regulated mainly by light, temperature, and feedback inhibition (Hedden and Kamiya 

1997), and the developmental transition from vegetative to reproductive stage in 

Arabidopsis is controlled by several pathways including the photoperiodic pathway and 

response pathway to the growth regulator gibberellin (Fornara et al. 2010). Hence, it 

would be necessary to measure GA content in the mutant lines before bolting to verify 

whether down-regulation of GA production in mutant plants may be a cause of the mutant 

phenotypes.  

As well as analysing the phenotype of knockout mutants, analysis of over-expressors can 

be useful in understanding the function of genes and gene families (Bolle et al. 2011). 

However caution must be exercised in the interpretation of over-expression lines 

especially when the transgene is driven by a different promoter to the native gene, as was 

the case in the AtCuAO4 over-expression lines. In this case the gene will be expressed at 

different times and locations compared to the native gene and thus phenotypic effects 

may be due to ectopic expression rather than true over-expression. 
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Three AtCuAO4 over-expressor lines were analysed, all of which expressed the transgene 

at high levels, with expression in P17 > P9 > P27. Phenotypes differed between the lines 

(Table 4-1), however the relationship between level of AtCuAO4 expression and effects 

on the phenotype were not directly proportional. For instance, P17 which had the highest 

level of AtCuAO4 expression (372 x relative to WT) showed early emergence of some 

leaves, however, other lines (P9 and P27) with lower expression levels of AtCuAO4 

showed taller flowering stalks. None of the three transgenic lines over-expressing 

AtCuAO4 presented any obvious differences in germination as compared to WT seed. In 

addition, no consistent phenotypic differences in vegetative growth or development were 

noted relative to WT plants. The only phenotypic characters that were consistently altered 

in all three over-expressor lines were shortening of the time to bolting and first open 

flower. The lack of a correspondingly opposite phenotype in the over-expressor lines 

could be explained in several ways. Compensatory mechanisms may prevent a drop in 

PAs for example by down-regulation of other catabolic genes, or by increasing PA 

biosynthesis (Rea et al. 2004). Since PAs are essential for many cellular functions 

(Kusano et al. 2007), it is possible that the plant is less able to tolerate their reduction. 

For example, a reduction in PA concentrations (Put, Spd and Spm) in transgenic tobacco 

plants due to silencing ornithine decarboxylase (ODC, the PA biosynthetic enzyme) 

resulted in a negative impact on plant growth and vigour (Dalton et al. 2016). Further 

studies are important in order to elucidate whether in fact PA contents are affected in the 

transgenic over-expressor lines and what homeostatic mechanisms might be activated to 

compensate for the increased AtCuAO4 expression. 
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5. The effect on Arabidopsis thaliana development of expressing artificial 

microRNA targeted to AtCuAO gene family members 

5.1. Introduction 

In various organisms, it is common that large multi-gene families comprise genes with 

identical or extremely similar sequences, and this phenomenon is more prevalent in plants 

including Arabidopsis thaliana (Arabidopsis Genome Initiative, 2000). Genetic 

redundancy includes partial overlap in functions of genes amongst family members to 

compensate for each other’s loss (Kafri et al. 2009). The occurrence of the functional 

redundancy of genes within family members makes the analysis of single gene functions 

more complicated (Jover-Gil et al. 2014). Owing to the phenotypic similarity between 

many single mutants and wild type, resulting from the compensation of the lack of 

function of the mutated gene by the overlapping function of one or more paralogs, in most 

cases there is a requirement for double, triple, or quadruple mutant combinations of loss 

of function mutations to affect paralogous genes and show increasing severity of 

phenotypes (Martienssen and Irish 1999; Pérez-Pérez et al. 2009). To overcome the 

difficulties in using analysis of mutants for genes that overlap functionally, different 

techniques have been applied such as overexpression methods (Tautz 2000; Weigel et al. 

2000), and RNA interference based techniques (Abbott et al. 2002; Ott et al. 2005; 

Wagner 2005). However, these techniques may have some disadvantages represented by 

pleiotropic and neomorphic phenotypes caused by overexpression which make 

interpretation difficult (Strabala 2008), and off-target effects as a result of using RNA 

interference methods. This is due to the generation of numerous small RNAs from one 

double stranded RNA which potentially affect undesired targets (Jackson et al. 2003). 

Alternatively, artificial micro RNA precursors can be computationally designed in plants 

to form mature amiRNAs which are able to target a specific group of possibly redundant 

genes (Ossowski et al. 2008; Schwab et al. 2006). 

MicroRNAs (miRNAs), small non-coding RNAs with a length of ~21 nucleotides, are 

described in eukaryotes as important endogenous regulators of gene expression through 

their involvement in the process of post-transcriptional gene silencing (Bartel 2004). 

They are derived from hairpin RNA precursors to produce one predominant miRNA 



Chapter Five Silencing of AtCuAOs 

 

116 

 

alongside an imperfectly complementary antisense miRNA* (Figure 5-1.a) (Axtell 

2013). Micro RNAs in plants induce cleavage of the target mRNA at a position opposite 

to nucleotides10 and 11 of the miRNA (Llave et al. 2002) (Figure 5-1.b). 

(a) 

 

 

(b) 

 

Figure 5-1 Biogenesis and function of miRNAs. (a)A single strand RNA is transcribed from nuclear 

encoded MIR gene via RNA polymerase II (POLII) and then folds back forming a double stranded stem-

loop structure (Pri-miRNA). Pri-miRNA is further converted into pre-miRNA via the action of DCL1with 

assistance of HYL1 and SE proteins. Pre-miRNA is then converted into a 20-22 nucleotide 

miRNA/miRNA* duplex in the presence of the three proteins (DCL1, HYL1and SE). A methylation 

catalysed by HEN1 at the 3` terminus of duplex takes place before its exportation to the cytoplasm by 

HST1. One strand of the duplex (miRNA) incorporates into AGO1 protein the stimulator and guide of 

RISC. RISC binds to the target transcript by sequence complementarity to control mRNA cleavage and 

translation inhibition (Khraiwesh et al. 2012). (b) Alignment between mRNA target site and miRNA, the 

expected miRNA-based cleavage site is indicated by a red arrow.  

Recently, experiments and bioinformatic predictions identified many putative miRNAs 

in plants (Sunkar and Jagadeeswaran 2008; Zhang et al. 2006), but the biological roles of 

these miRNAs in plant functional genomic networks and their target genes are mainly 

still obscure (Chen et al. 2015). MicroRNAs were first discovered in Arabidopsis and 

since then studies on plant miRNAs have become one of the most important fields in 
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plant biology which has made substantial progress in the past few years (Sun 2012). By 

employing direct cloning technology, more than one hundred miRNAs were identified in 

Arabidopsis in 2002 by several independent research groups, some of them are highly 

conserved in other plants (Llave et al. 2002; Reinhart et al. 2002). 

The regulation of gene expression by miRNAs in plants is carried out via different modes 

of action that have yet to be fully understood (de Alba et al. 2013). The common 

mechanism for miRNA-mediated gene regulation in plants is by guiding RISC, the RNA-

induced silencing complex, in the presence of the RNA slicer protein AGO1 to a complete 

or near-complete binding to their mRNA targets, which causes RNA cleavage or 

degradation and thus repress the expression of the gene (Figure 5-1.a) (Baumberger and 

Baulcombe 2005; Rhoades et al. 2002; Schwab et al. 2005). In addition, in some cases 

miRNAs direct DNA methylation (Bao et al. 2004), or block mRNA translation when 

they bind imperfectly to it (Brodersen et al. 2008). Mismatches between miRNA and 

their targets are mostly found towards the 3` end suggesting that pairing to the 5` and 

central part of the miRNA is most important (Mallory et al. 2004). 

Experimentally, artificial micro RNAs (amiRNAs) can be designed to analyse functions 

of single or multiple target genes of interest by efficient silencing of endogenous gene 

expression at a post-transcriptional level (Ossowski et al. 2008; Schwab et al. 2006). This 

approach was first used to silence individual genes in human cells (Zeng et al. 2002), and 

later in Arabidopsis plants (Parizotto et al. 2004). In plants, amiRNAs can be designed to 

effectively down-regulate the expression of specific endogenous genes leading to loss of 

function changes in phenotype (Hauser et al. 2013), and they are effective when 

expressed under the control of a constitutive promoter (Li et al. 2014). The amiRNA 

approach employs the precursor of a natural miRNA as a backbone by replacing the 

natural miRNA/miRNA* duplex with the artificial one to gain new targeting ability 

(Ossowski et al. 2008; Vaucheret et al. 2004), and allows processing of the amiRNA in 

a similar way to the natural one producing mature functional amiRNA (Figure 5-2) (Hu 

et al. 2009). High level of miRNA accumulation of the desired sequence results when 

both sequences (miRNA/miRNA*) are changed without altering structural features like 

bulges or mismatches (Ossowski et al. 2008). The effectiveness of the amiRNAs has been 
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underlined by the fact that they have high specificity as with the endogenous miRNAs, 

which facilitates optimizing their sequences to silence one or multiple target mRNAs 

without disturbing the expression of other transcripts (Schwab et al. 2006; Schwab et al. 

2005). The mechanism of amiRNA action does not require a perfect complementarity 

with its targets and up to five mismatches are accepted (Ossowski et al. 2008). 

 

Figure 5-2 amiRNA pathway mediating transgene-induced gene silencing in plants. From non-coding 

genes, amiRNA are transcribed and then processed to 21 nucleotide miRNA via the action of DCL1 which 

interacts with the double stranded RNA binding protein HYL1. HEN1 catalysis methylation of the miRNA 

duplex at the 3` end. The 21-nucleotide miRNA guides cleavage of target transcript via AGO1. Black bars 

represent sequences that the amiRNA is derived from (Ossowski et al. 2008). 

HEN1

HYL1

DCL1

Promoter

~21 nt

AGO1

AAA

miRNA

RNA degradation



Chapter Five Silencing of AtCuAOs 

 

119 

 

This technique has been efficiently applied to dicotyledonous plants including 

Arabidopsis thaliana, and it has proven to be more specific in mediating gene silencing 

and has less off-target effects compared with other techniques of gene knockdown 

(Ossowski et al. 2008; Schwab et al. 2006). AmiRNAs can be designed to target in a 

highly specific way one or several genes of interest to induce post-transcriptional gene 

silencing (PTGS) (Ossowski et al. 2008; Schwab et al. 2005).  

To test the effect of amiRNA on multiple target genes, Schwab et al. (2006) designed 

three types of amiRNA with multiple possible targets, the first was amiR-trichome which 

was designed to target three MYB genes involved in trichome patterning, the second was 

including amiR-mads-2 and amiR-mads-1 to silence genes that have a role in regulating 

floral patterning and flowering time respectively, and the third was including amiR-

yabby-2 and amiR-yabby-1 which target several members of the YABBY gene family, 

with one predicted target for amiR-yabby-2 and two for amiR-yabby-1. Their results 

demonstrated that multiple mRNAs can be successfully targeted by designed amiRNAs, 

however, the level of down-regulation of different targets varied with no clear correlation 

of targeting effectiveness either with levels of target expression in the WT or level of 

complementarity between designed amiRNAs and their target mRNAs (Schwab et al. 

2006). Interestingly, while several amiRNAs can perform translational inhibition of their 

target gene, a small decrease in the abundance of target mRNA is produced (Yu and Pilot 

2014). Hence, testing the effectiveness of amiRNA at the level of the target protein 

accumulation is more suitable than at the level of target mRNA (Li et al. 2013a). 

Given their effectiveness in silencing other Arabidopsis genes, and as protein alignment 

of AtCuAOs (Figure 1-3) shows that the conservation of functional domains is almost 

high amongst different AtCuAOs which implies that there can be a functional redundancy 

between them, use of amiRNAs seemed a good tool to use to understand the role of 

different members of the AtCuAO gene family. Two specific artificial miRNAs 

(CSHL_058443 and CSHL_017399) were selected due to their homology to several 

members of this gene family. My hypothesis was that the two amiRNA constructs would 

generate transgenic plants with differing phenotypes that would provide useful insight 

into the functions of the AtCuAO family members during development and senescence. 



Chapter Five Silencing of AtCuAOs 

 

120 

 

5.2. Materials and Methods 

5.2.1. Artificial microRNA constructs 

Two artificial microRNA (amiRNA) clones (CSHL_017399 and CSHL_058443) were 

requested and received from the Arabidopsis Biological Resource Centre (ABRC). These 

amiRNAs were designed by WMD3 (http://wmd3.weigelworld.org/cgi-bin/webapp.cgi) 

(Schwab et al. 2006) to resemble natural plant miRNAs in the following criteria: (1) to 

start with uridine which is overrepresented in most plant miRNAs, (2) to include adenine 

as the 10th nucleotide which is most favourable for artificial siRNA, and (3) between one 

and three mismatches to the target genes were introduced in the 3`of the amiRNA to 

minimize the probability that the amiRNA works as a primer for RNA-dependent RNA 

polymerase and thereby trigger secondary RNAi.  

According to the PHANTOM Database (Hauser et al. 2013) (http://phantomdb.ucsd.edu/ 

amioverview/):  

amiRNA CSHL_058443 was specifically designed to match the AtAO1 (AT4G14940) 

gene sequence and targets the following genes: AtAO1 (AT4G14940), AtCuAO2 

(AT1G31710), AtCuAO4 (AT4G12290), AtCuAO5 (AT1G31670), AtCuAO7 

(AT3G43670), and AtCuAO9 (AT4G12280).  

amiRNA CSHL_017399, was specifically designed on the AtCuAO5 (AT1G31670) gene 

sequence and targets the following genes: AtAO1 (AT4G14940), AtCuAO2 

(AT1G31710), AtCuAO3 (AT2G42490), AtCuAO4 (AT4G12290), AtCuAO5 

(AT1G31670), AtCuAO8 (AT1G31690), and AtCuAO9 (AT4G12280). 

The amiRNAs received had been previously cloned into a pAmiR vector (derived from 

pGreenII, Appendix C) and transformed into Escherichia coli. On receipt, each clone was 

streaked onto LB medium (1 % tryptone, 0.5 % yeast extract, 1 % sodium chloride, 1.5% 

agar adjusted to pH 7) containing the antibiotic spectinomycin (Spec, 50 µg/ ml) for 

selection. Petri dishes were incubated overnight at 37° C in a Heratherm incubator 

(Thermo scientific). A single colony was used then to inoculate 5 ml of liquid LB medium 



Chapter Five Silencing of AtCuAOs 

 

121 

 

supplemented with antibiotic (50 µg/ ml Spec) in a 50 ml Falcon tube (2 tubes per clone) 

and incubated at 37° C, 200 rpm, overnight (14-16 h) in a Gallenkamp Orbital incubator. 

Glycerol stocks were prepared by centrifuging 1ml of the bacterial cultures at 8,000 rpm, 

at RT, for 3 min in an Eppendorf MiniSpin® microcentrifuge. The supernatant was then 

removed and the resulting pellet was re-suspended in 4:1 LB medium: sterile glycerol 

(800 µl LB and 200 µl glycerol), mixed gently and stored at -80° C.  

5.2.2. Plasmid DNA purification 

Purification of plasmid DNA was performed at room temperature using the QIAprep Spin 

miniprep kit (QIAGEN) following the manufacturer’s protocol. An LB overnight culture 

(2.5 ml of the bacterial host cell cultures, 3 replicates/ clone) was pelleted by 

centrifugation in a microcentrifuge tube at 13,000 rpm for 1 min in an Eppendorf 

MiniSpin® microcentrifuge. The cells were re-suspended in 250 µl of Buffer P1, 

followed by the addition of 250 µl of buffer P2 and mixed gently by inversion 4 to 6 

times. Buffer N3 (350 µl) was then added and the tube was immediately inverted gently 

4 to 6 times. The lysate was centrifuged at 13,000 rpm for 10 min as above and the 

supernatant was transferred to the QIAprep Spin column for further centrifugation for 30 

seconds. The flow-through was discarded and the column was washed with 750 µl of 

buffer PE with centrifugation at 13,000 rpm for 1 min as above. The centrifugation was 

repeated to remove any residual wash buffer and then the flow-through was discarded. 

The column was transferred to a clean microcentrifuge tube, 40 µl of sterile distilled water 

was added and left to stand for 2 min before centrifugation twice at 13,000 rpm for 1 min 

as above. The isolated DNA was stored at -20° C before further use. To increase the 

concentration of the plasmid, replicates of each clone were precipitated by adding 1:10 

(v/ v) sodium acetate and 2 volumes of 100 % ethanol. After overnight incubation at -

20°C, the mixture was then centrifuged at 4° C, 13,000 rpm for 20 min. The supernatant 

was then removed and pellet washed with 70 % cold ethanol. Following a further 

centrifugation at 13,000 rpm, 4° C for 10- 15 min as above, the supernatant was removed 

and the pellet dried at RT and finally dissolved in 20 µl sterile distilled water and stored 

at -20° C. All centrifugation steps at 4° C were performed using Heraeus Fresco 17 

centrifuge (Thermo scientific) (Figure 5-3). 



Chapter Five Silencing of AtCuAOs 

 

122 

 

 

Figure 5-3 Scheme to summarize steps followed in this work to transform Arabidopsis thaliana with 

amiRNA clones and to generate Arabidopsis plants containing homozygous amiRNA in their genome in 

the T3 generation.  

5.2.3. Plasmid DNA quantification 

Plasmid DNA concentration expressed as ng/ µl was determined as described in 

Section 2.11.2. In order to confirm the identity of both artificial microRNAs, 

CSHL_058443 and CSHL_017399, both clones, were subjected to different analysis 

prior to the transformation into Agrobacterium tumefaciens. 

To check the presence (integrity) and size of plasmids, 4 µl of the purified plasmid were 

mixed with 2 µl of 5x PCR green buffer and were then run on a 0.8 % [w/ v] agarose gel 

(Section 2.11.1). Subsequently, plasmids were amplified by the PCR reaction using 

Gateway primers (Table 2-2) as described in Section 2.9. PCR products were then 

electrophoresed on a 1% agarose gel (Section 2.11.1). PCR products were extracted from 

the gel and sequenced as described in Sections 2.12 and 2.13 respectively. Sequencing 

results were used to design primers as described in Section 2.14 and Table 2-2 to be used 

for insertion verification (Figure 5-3). 
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5.2.4. Preparation of the competent Agrobacterium tumefaciens cells 

Agrobacterium tumefaciens strain GV3101 from a -80° C glycerol stock was streaked 

onto LB medium supplemented with 100 μg/ ml rifampicin (Rif) and 25 μg/ ml 

gentamicin (Gent) (2 replicates). Following incubation at 28-30° C for 3 days in a Vindon 

scientific incubator (Diggle Oldham, England), a single antibiotic-resistant colony was 

selected to inoculate 5 ml of LB supplemented with the same antibiotics and incubated 

overnight at 28-30° C, in a Gallenkamp orbital incubator set at 200 rpm. Then 1 ml of the 

overnight culture was used to inoculate a 250 ml conical flask containing 100 ml LB 

medium with the same antibiotics (Rif and Gent), and incubated overnight at 28-30° C 

with shaking at 200 rpm for 1-2 days until high cell density was attained (~0.8 optical 

density). Cultures were then divided into 25 ml aliquots and cells were harvested by 

centrifugation at 4,000 rpm, 4° C for 10 min using JA-20 rotor at in a Beckman Coulter 

Avanti® J-E centrifuge. The supernatant was removed and the cells were gently re-

suspended in 1 ml of ice cold 20 mM CaCl2 (sterilized by filtration). Suspended cells 

were then divided into 100 µl aliquots in pre-cooled Eppendorf tubes which were frozen 

in liquid nitrogen and stored at -80° C. 

5.2.5. Transformation of Agrobacterium tumefaciens (GV3101) competent cells 

Competent Agrobacterium tumefaciens cells were transformed as follows: 0.3-1 µg of 

plasmid DNA were added to an aliquot (100 µl) of cells that had been thawed on ice prior 

to transformation, and mixed gently. The cells were then frozen in liquid nitrogen for 

several seconds, and then thawed again at 37° C for 5 min. LB medium (1 ml) was added 

and tubes were incubated at 28-30° C for 4 hours at 100 rpm in a Gallenkamp cooled 

orbital incubator.  

To harvest transformed cells, cultures were then centrifuged at 8,000 rpm for 1 min at RT 

using an Eppendorf MiniSpin plus® microcentrifuge. The supernatant was removed and 

100 µl of LB were added and gently flicked. The cells were spread onto LB agar dishes 

containing Rif (100 μg/ ml), Gent (25 μg/ ml), and Spec (50 μg/ ml), which were then 

incubated at 28-30° C for 3 days and the appearance of colonies was monitored. 
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5.2.6. Colony screening of Agrobacterium tumefaciens (GV3101) 

Single colonies were randomly selected from each clone and plated on LB agar in Petri 

dishes containing appropriate antibiotics (Rif 100 μg/ ml, Gent 25 μg/ ml, and Spec 50 

μg/ ml) and incubated at 28-30° C for 2 days in a Vindon scientific incubator (Diggle 

Oldham, England). The resulting colonies were used as template for PCR colony 

reactions (Section 2.9) with Gateway specific primers (ABB1 and ABB2, Table 2-2) to 

select colonies for Arabidopsis transformation. Of each clone, two positive colonies were 

used for glycerol stock preparation as described in Section 5.2.1 (Figure 5-3). 

5.2.7. Transformation of Arabidopsis 

Arabidopsis thaliana (Col-0) plants were transformed with Agrobacterium tumefaciens 

strain GV3101 harbouring the construct by the floral dip method (Clough and Bent 1998) 

as adapted by Logemann et al. (2006). For each clone of the amiRNA, 3-4 pots of soil-

grown Arabidopsis plants were prepared (4-6 plants/ pot). The primary inflorescence 

stems were removed in order to encourage proliferation of secondary stems, and plants 

were ready after approximately 10-15 days (7 weeks after germination) when they had 

only few fertilized siliques and many immature flower clusters.  

Positive colonies of transformed Agrobacterium (Section 5.2.6) were plated on LB agar 

dishes containing 100 μg/ ml Rif and 50 μg/ ml Spec and grown at 28-30° C until they 

formed a thick bacterial layer (for about 4 days). Using a glass spatula, bacteria were 

collected from dishes by scraping and then they were re-suspended in 20 ml LB in a 

sterile Falcon tube. Fresh LB media was further added to the tube of bacterial suspension 

until the optical density at OD600 reached 2. A solution containing sucrose 5 % [w/ v], 

and Silwett 77 (0.03 % [v/v], surfactant, Lehle Seeds) was prepared for each clone to be 

transformed and poured into an appropriate container. Immediately before transformation 

into the plants, bacteria were added to the Silwett mix and the inflorescences of 

Arabidopsis plants were dipped in the solution for 5-10 seconds with gentle agitation. 

Dipped plants were then laid on their sides in an appropriate tray, covered with a plastic 

bag to maintain humidity and placed away from excessive light overnight. Subsequently, 
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the transformed plants were watered and grown under optimal growth conditions for 

about 3 weeks until they set seeds. Plants were allowed to dry and T0 seeds were 

harvested (Figure 5-3). 

5.2.8. Screening transformed plants 

5.2.8.a) Screening on MS agar medium for resistance to BASTA 

Approximately 400-500 mg of T0 seeds were surface sterilized, along with positive 

control seeds (BASTA resistant), and negative control seeds (WT) in sterile 50 ml Falcon 

tubes using the following protocol: 5 min in 70 % ethanol followed by 5 min in sterilizing 

solution (2.1 % sodium hypochlorite, 0.05 % Tween-20) and then rinsed (3-5 times) with 

sterile distilled water for 5 min each. Remaining water was removed carefully and 25 ml 

of sterile 0.8 % agarose at 45° C was added and mixed with the seeds. Immediately, using 

a sterile pipette, 5 ml of the seed/ agarose suspension was spread onto the surface of ½ 

MS 1 % agar in each Petri dish, supplemented with BASTA (Glufosinate ammonium, 

Sigma Aldrich) at 5 µg/ ml for selection and segregation analysis. Dishes were tipped 

gently to spread agarose evenly across the surface of the medium, and they were then left 

in a laminar flow hood for ~20 min to solidify the 0.8 % agarose. Dishes with the seeds 

were then sealed carefully with micro-pore tape and stratified in the dark at 4° C for 48 h 

to promote uniform germination, and finally transferred to a controlled growth chamber 

with LD conditions (Section 2.1). Dishes were checked periodically, and each BASTA 

resistant seedling (T1 transformant) with 4- 6 leaves was transferred to a single pot filled 

with autoclaved soil, covered to control humidity until it adapted to the new conditions, 

and placed in controlled conditions to continue growth. 

5.2.8.b) Screening on soil for resistance to BASTA 

BASTA resistant seeds were also screened on soil which allows screening of larger 

numbers of seeds compared with MS screening. For an even distribution of Arabidopsis 

seeds, seeds were mixed with fine sand at a ratio of 0.5:10 gm and sprinkled using a sieve 

onto the surface of wet sterilized soil (Section 2.1) in planting trays. Trays were covered 

with transparent plastic lids, placed at 4° C for 72 h for stratification to synchronize 
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germination, and then moved to an incubator maintained at 22° C under a 16/ 8 h day/ 

night regime. As the germination of seeds started, lids were removed to prevent excessive 

humidity. 

For selection of Arabidopsis seedlings harbouring the BASTA resistance gene, the 

commercial herbicide BASTA (13.52 % w/w, Glufosinate-ammonium, Kaspar, Aventis 

CropScience, UK Limited) was sprayed onto plants in a fume hood at 120 µg/ ml three 

times, a week between each, started at seedling cotyledon stage. After approximately 3 

weeks of growth in the incubator, BASTA resistant seedlings were distinguished from 

untransformed plants by the presence of true green leaves, while untransformed plants 

presented bleaching leaves or failed to grow. Each positive T1 plant was transplanted to 

a single pot, picked out using a spatula with some soil surrounding the roots to avoid any 

damage to the root system of the seedling.  

Positive T1 Arabidopsis seedlings selected by either screening method were allowed to 

grow to maturity and produce seeds of the T2 generation. For PCR verification of 

insertions, a leaf of each positive plant was collected in an Eppendorf tube, snap frozen 

in liquid nitrogen and stored at -80° C until further use.  

5.2.9. Study of the segregation ratios (Mendelian ratio) in successive generations 

The segregation of T2 transgenic Arabidopsis progenies was tested by sowing ~100 seeds 

of each chosen line on soil and spraying them at cotyledon stage with BASTA as 

described in Section 5.2.8.b), while T3 segregation analysis was done by sowing ~100 

seeds of the studied lines on MS supplied with BASTA as described in Section 5.2.8.a); 

(Figure 5-3). 

5.2.10. Molecular analysis of transgenic plants 

Genomic PCR analysis of plants that presented resistance to BASTA treatment was 

performed as described in Section 2.9 as follows: total genomic DNA was isolated from 

the leaves of resistant plants as described in Section 2.5. The quality of the DNA was 

checked by amplifying the 18S rRNA using PUV2 and PUV4 primers (Table 2-2). Two 
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pairs of primers were chosen for PCR analysis to confirm the presence of the inserted 

gene, CSHL_058443-F or CSHL_017399-F with ABB2 and 35S with ABB2 (Table 2-2). 

The amplification products were electrophoresed on 1% agarose gels and then visualized 

as described in Section 2.11.1.  

5.2.11. Phenotypic characterization of transgenic Arabidopsis plants 

5.2.11.a) Measurement of growth parameters 

Plants were inspected every day starting from the day of bolting. Plant phenotyping for 

bolting time, number of leaves at bolting and day of first flower was performed as 

described in Section 2.4. Productivity rate was evaluated as described in Section 2.4. 

Mature siliques were harvested 2 weeks after the formation of the first silique to analyse 

silique length and seed number per silique. For this purpose, 10 siliques from each plant 

were fixed in ethanol with acetic acid (3:1 v/ v) overnight, then hydrated in 70 % [v/ v] 

aqueous ethanol. Seed number per silique and silique length were scored under the 

microscope as described in Section 2.15. 

5.2.11.b) Microscopy 

Stems of approximately 8 week old plants, ~15 cm in length, were hand sectioned using 

a razor blade at the base of the inflorescence and resulting cross sections were mounted 

in a drop of water on glass slides. Observations were carried out with a fluorescence 

microscope (BH-2 Olympus) under UV excitation, and fluorescent images were captured 

using a Tucsen Camera (Tucsen imaging technology Co, Ltd. TCA-5.0 C). Measurements 

of stem sections were carried out using ImageJ software.  

5.3. Results 

5.3.1. Plasmid and cloning verification 

In order to verify the identity of both clones (CSHL_058443 and CSHL_017399), they 

were subjected to various analyses prior to transformation into Agrobacterium 

tumefaciens. Following miniprep purification, both purified amiRNA-constructed 
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plasmids were checked by gel electrophoresis and results showed a band of 

approximately 5-6 kb as expected (Appendix C). Gel analysis showed a higher 

concentration of CSHL_017399 plasmid compared to CSHL_058443 plasmid 

(Figure 5-4.a) as expected from the concentrations measured by spectrophotometry 

(376.7 ng/ µl and 281.7 ng/ µl respectively). 

To identify the insert, 1 µl of each purified plasmid was used as a template for a PCR 

reaction using Gateway primers which resulted in a strong band from each template 

(Figure 5-4.b) of the correct size. PCR products were purified, run on an agarose gel to 

check their integrity (Figure 5-4.c), and sent for DNA sequencing. 

(a)  (b)  (c) 

 

 

 

Figure 5-4 Analysis of quality and integrity of extracted CSHL_017399 and CSHL_058443 plasmids and 

verification of amiRNA insertion. (a) Purified plasmids after isolation from the bacterial host E coli. (b) 

Identification of the amiRNA insertion in both plasmids using Gateway primers. (c) Gel electrophoresis of 

PCR purified products. Ethidium bromide (EtBr) stained agarose gels were used to separate DNA 

fragments.  

ClustalW analysis of the sequences from the PCR products and amiRNA sequences 

confirmed the presence of each designed amiRNA sequence in the purified plasmids 

(Figure 5-5). 
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(a) 

 

 

(b) 

 

Figure 5-5 Confirmation of the presence and sequence of amiRNAs. Both PCR amplicons were amplified 

using Gateway primers (Table 2-2), purified, sequenced and finally sequencing results were aligned with 

known sequences of amiRNAs. (a) CSHL_058443. (b) CSHL_017399. Red colour shows sequence of the 

amiRNA, green colour shows sequence of Gateway_ABB2 primer, blue colour shows sequence of the 

amiRNA*, and orange shows primers designed using the sequences.  

Alignment between the amiRNA CSHL_058443 and the CDS of the ten members of 

AtCuAO gene family revealed a homology of ~86 % with the gene it was designed from, 

AtAO1, and a homology which ranged between ~5 and ~62 % with the other members of 

the AtCuAO gene family (Figure 5-6.a). The amiRNA CSHL_017399 showed a high 

homology (between ~67 and ~91 %) with five members of the gene family (AtCuAO2, 

AtCuAO4, AtCuAO5, AtCuAO7, AtCuA8) including the gene used to design it, AtCuAO5. 

Homology ranged between ~14 and ~62 % with the other members of AtCuAO gene 

family (Figure 5-6.b). AtCuAO3-SP did not match either of the two amiRNA sequences. 

TAGGACGCATATTACACATGTTCATACACTTAATACTCGCTGTTTTGAATTCATGTTTTAG
GAATATATATGTAATAAAGGAGAACGTAAACGGTATACTCAGGTCGTGATATGATTCAAT
TAGCTTCCGACTCATTCATCCAAATACCGAGTCGCCAAAATTCAAACTAGACTCGTTAAA
TGAATGAATGATGCGGTAGACAAATTGGATCATTGATTCTCTTAGTTTACCGTATACGTTC
TCCCTTATTCTCTTTTGTATTCCAATTTTCTTGATTAAGCTTTCCTGCACAAAAACATGCTT
GATCCACTAAGTGACATATATGCTGCCTTCGTATATATAGTTCTGGTAAAATTAACATTTTG
GGTTTATCTTTATTTAAGGCATCGCCATGGACCCAGCTTTCTTGTACAAGGGGGCCCC

amiRNA_CSHL_058443 

Gateway primer, ABB2amiRNA_CSHL_058443* 

AGGACGCATATTACACATGTTCATACACTTAATACTCGCTGTTTTGAATTCATGTTTTAG
GAATATATATGTATTCGAGCAGCATTTAGCAACTATAATCAGGTCGTGATATGATTCAAT
TAGCTTCCGACTCATTCATCCAAATACCGAGTCGCCAAAATTCAAACTAGACTCGTTAAA
TGAATGAATGATGCGGTAGACAAATTGGATCATTGATTCTCTTATTTTAGTTGGTAAATG
CTGCGCGAATCTCTTTTGTATTCCAATTTTCTTGATTAAGCTTTCCTGCACAAAAACATG
CTTGATCCACTAAGTGACATATATGCTGCCTTCGTATATATAGTTCTGGTAAAATTAACA
TTTTGGGTTTATCTTTATTTAAGGCATCGCCATGGACCCAGCTTTCTTGTACAAGTTGGGT

amiRNA_CSHL_017399

Gateway primer, ABB2amiRNA_CSHL_017399*
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(a) 

 

(b) 

 

Figure 5-6 ClustalW alignment of AtCuAO CDS sequences with amiRNA sequences. Genes in bold are 

targets of the amiRNA used in the alignment as indicated in Section 5.2.1. Nucleotides on AtCuAO genes 

homologous to those of amiRNA are highlighted. Right panels show the percentage of homology between 

each gene and aligned amiRNA.  

5.3.2. Confirmation of the transformation into Agrobacterium tumefaciens 

Initially, the efficiency of competent Agrobacterium cells was confirmed by transforming 

a positive control plasmid pTA 7003. After transformation of each amiRNA clone into 

Agrobacterium tumefaciens, successful transformants were selected first through the use 

of appropriate antibiotics on Petri dishes, and then through PCR on 8- 10 colonies to 

confirm the presence of the insertion (Figure 5-7). A collection of 16 randomly selected 

colonies (8 each from either CSHL_058443 or CSHL_017399) were tested by PCR using 

GateWay primers (Table 2-2). PCR results showed that two of eight colonies of the 

 At4g12270_AtCuAO3-Sp    ----------------------------------------------------------------------    0 % 

At4g12290_AtCuAO4       CAAAACAAA------AACCAAGTGGAGAAAGATAAAGACGGTAATGAAGAAGAGCTTCACGGCACGCTTC    52.38 % 

At4g12280_AtCuAO9       GAGAACAAG------AACCAAGTGAAGAAAGACAAAGAAGGTAATGAAGAAGAGCTTTATGGCACGATTC    57.14 % 

At1g31670_AtCuAO5       TAACACATCCGAG--ATCAAAGAA---GACGATATCCATGGGAC---------------------AATCG    42.86 % 

At1g31710_AtCuAO2       TCACACATCCGAA--ATCAAACTAGGGGAAGACATACACGGGAC---------------------AATTG    61.91 % 

At1g31690_AtCuAO8       TCACACATCAGAG--ATCAAAGAA---GACGACATCTACGGGAC---------------------AATTG    52.38 % 

At2g42490_AtCuAO3       CCATGTCTTCAATACCTCTCC-TC-----------------TT----------------------CATTG    4.76 % 

At3g43670_AtCuAO7       GAAAACGTTGAAGA-----CT-TGGGTGAGAAAGAGGATGATTC---------------TGGACCGTTGA    42.86 % 

At1g62810_AtCuAO1       AAAGTCCTTCGAGTGGTCTCA-TAAAAT-------AATTGGTAG---------------TG----CCTTG    42.86 % 

At4g14940_AtAO1         CGTACACTTCAAACGATCAAA-TAACGGAGAACGTATACGGTAC---------------------ACTGG    85.71 % 

amiRNA_CSHL_058443      -----------------------AAAGGAGAACGTAAACGGTAT-------------------------- 

 At4g12270_AtCuAO3-Sp    ----------------------------------------------------------------------    0 % 

At4g12290_AtCuAO4       CGCCGCAGAAGAGAGGA--GCTT--TTACCAACAACCAAATTTGGGTCACTC------------------    71.43 %  

At4g12280_AtCuAO9       CACCGCAGAAGAGAGGA--GCTT--TTACTAATAACCAAATTTGGGTTACTC------------------    61.90 %  

At2g42490_AtCuAO3       GGCACCAGCTGCGCGAACAGTCGCCACAGCAACTGATATTTCTGCAGCAGAAAGAGGATCCAATGGGTGC    57.14 %  

At1g62810_AtCuAO1       TCCCTT--------------CTT--CCA-------------CTGGACGACAC------------------    14.29 %  

At4g14940_AtAO1         ACCCCGAGTTAAGAGCC--GGTT--ACACGAAATATCCGGTTTGGGTGACCG------------------    57.14 %  

At3g43670_AtCuAO7       CACCGCAAATGCGAGGC--GCTT--TCACAAACAATCAGATATGGGTGACTC------------------    66.67 %  

At1g31690_AtCuAO8       ACCCACAGATTCGGGCA--GCAT--TCACCAACTACAACGTGTGGATCACAC------------------    80.95 %  

At1g31710_AtCuAO2       TCCCGCAGATTCGAGCT--GCAT--TCACCAACTATAACGTGTGGATCACGC------------------    85.72 %  

At1g31670_AtCuAO5       ACCCACAAATTCGGGCA--GCAT--TTACCAACTATAATGTGTGGATCACGC------------------    90.48 %  

amiRNA_CSHL_017399      -----------CGAGCA--GCAT--TTAGCAACTAT---------------------------------- 
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amiRNA CSHL_058443 and four of eight colonies of the amiRNA CSHL_017399 were 

positive and amplified a fragment of 500 bp (Figure 5-7). 

 

Figure 5-7 Screening colonies using Gateway specific primers to select positive colonies from the 

transformation of the plasmids into Agrobacterium tumefaciens. Numbers 1-8 refer to colonies from the 

amiRNA CSHL_058443, while numbers 9-16 refer to amiRNA CSHL_017399 transformations. An EtBr 

stained agarose gel was used to separate PCR products.  

5.3.3. Strategy for screening transformed Arabidopsis lines 

In order to choose PCR primer sets appropriate for detection and amplification of the 

inserted amiRNAs in CSHL_058443 and CSHL_017399 constructs, five primer 

combinations were used (Figure 5-8.a). First, since the vector contains the Gateway® 

recombination sites, the universal primers ABB1 and ABB2 (Gateway F and R) were 

used to amplify a fragment of 500 bp that flanked the insertions. As the expression of the 

construct is driven by the cauliflower mosaic virus 35S promoter, another set was chosen 

including 35S and the ABB2 (Gateway R) primers which amplifies a fragment of 600 bp. 

A set of primers, spanning the amiRNA-guided cleavage site, was also designed based 

on sequencing results (Figure 5-5) to amplify a fragment of 158 bp. The fourth 

combination used the amiRNA sequence as a forward primer in combination with ABB2 

to amplify a fragment of 350 bp. Finally, because the used vector contains the bar gene 

that confers BASTA resistance for selection of transformants carrying the vector, 

amiRNA sequences were used also with 229Bar gene to amplify a fragment of 1,000 bp. 

All primer combinations produced the expected amplicon sizes with both amiRNAs, 

CSHL_058443 and CSHL_017399 (Figure 5-8.b), clearly confirming that both plasmids 

harboured the inserted amiRNA constructs.  
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(a) 

 

 
  
(b) 

  

Figure 5-8 PCR analysis of amiRNAs. (a) Scheme of the five primer combinations chosen for verification 

of the amiRNA insertions. (b) PCR products using different sets of primers confirmed the presence of 

amiRNA in both plasmids, CSHL_058443 on the left and CSHL_017399 on the right. 1 amiRNA plasmid 

used as a template and 2 H2O as a negative control. 

Three primer combinations were chosen for insertion verification of the Arabidopsis 

transgenic plants. These combinations of primers were first tested on the genomic DNA 

of WT plants using plasmids (CSHL_058443 or CSHL_017399) as positive controls. The 

first pair were amiRNA_F and amiRNA_R which give a PCR product of 158 bp. The 

second set included the amiRNA sequence as a forward primer (referred to -399_F or -

443_F) with the Gateway reverse primer (ABB2) that amplify a fragment of 350 bp. The 

third set comprised 35S, as a forward primer, and ABB2 as reverse primer which amplify 

a fragment of 600 bp. Results showed that primers designed on the PCR product were 

able to amplify a fragment from the WT gDNA represented in a 158 bp PCR product 

miRNA sequence +229 Bar_R (1000 bp)

miRNA sequence + GATEWAY_R (350 bp)

GATEWAY_F & R (500 bp)

35S + GATEWAY_R (600 bp)

Designed primers- amiRNA F&R (158 bp)

Gateway 

primers 

ABB1 & ABB2

22

2 2 21 11

11

35Sp 

& 

ABB2

amiRNA_F 

& 

amiRNA_R

-443_F

& 

ABB2

-443_F

& 

229 Bar_R

1
K

b
+

1
K

b
+

C
S

H
L

_
0

5
8

4
4

3

200 bp

650 bp

300 bp

1000 bp

Gateway 

primers 

ABB1 & ABB2

22

2 2 21 11

11

35Sp 

& 

ABB2

amiRNA_F 

& 

amiRNA_R

-399_F

& 

ABB2

-399_F

&

229 Bar_R

1
K

b
+

1
K

b
+

C
S

H
L

_
0

1
7

3
9

9

200 bp

650 bp

300 bp

1000 bp



Chapter Five Silencing of AtCuAOs 

 

133 

 

similar to the one using the positive control. None of the other two primer combinations 

(amiRNA sequence with ABB2 or 35S with ABB2) produced any PCR products when 

wild type gDNA was used as a template (Figure 5-9). 

  

Figure 5-9 PCR results using WT genomic DNA as template with three different combinations of primers. 

(a) amiRNA_F and amiRNA_R primers (targeting both amiRNAs). (b) amiRNA sequence as a forward 

primer with ABB2 as a reverse (specific for the amiRNA CSHL_017399). (c) 35S with ABB2 (spanning 

both amiRNAs). (d) amiRNA sequence as a forward primer with ABB2 as a reverse (specific for the 

amiRNA CSHL_058443). CSHL_017399 plasmid was used as a positive control (+ve) in (a), (b) and (c), 

CSHL_058443 plasmid was used as a positive control (+ve) in (d), while H2O was used as a negative 

control (-ve). An EtBr stained agarose gel (1 %) was used to separate the PCR products. 

5.3.4. Transformation into Arabidopsis thaliana plants 

Flowering Arabidopsis plants were dipped in the Agrobacterium tumefaciens suspensions 

carrying either amiRNA CSHL_058443 or CSHL_017399. The resulting T0 seeds were 

screened with the herbicide BASTA (Figure 5-10). At first, screening was performed on 

MS medium supplied with BASTA at 5 µg/ ml which produced seven positive T1 plants 

that should carry the amiRNA CSHL_017399. 

  (a) (b) 

  

Figure 5-10 Screening of T0 seeds of Arabidopsis thaliana (Col-0) transformed with amiRNA on MS 

medium containing 5 µg/ ml BASTA. (a) 24-day old T1 BASTA-resistant seedlings obtained from plants 

subjected to floral dip transformation using Agrobacterium tumefaciens strain GV3101 harbouring the 

binary plasmid pAmiR. (b) As controls, both BASTA-resistant and wild type plants were grown alongside 

on selection media under identical conditions. Size of bars = 1 cm. 
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To check that the selected plants were transgenic, genomic DNA was isolated from all 

surviving plants which were resistant to BASTA, and screened for the transgene 

CSHL_017399 by PCR using two sets of primers (35S with ABB2 and -399_F with 

ABB2, Table 2-2). Results revealed that only three of the seven positive plants (plants 2, 

4 and 5) were harbouring the transgene CSHL_017399 in their genome (Figure 5-11). 

Plants selected using BASTA which did not carry the transgene may have arisen from 

WT escaping through the BASTA screen or rearrangement of the construct. 

   

Figure 5-11 Identification of three positive plants carrying the amiRNA CSHL_017399. Verification of the 

seven positive plants produced from screening on MS medium supplied with the herbicide BASTA (5 µg/ 

ml) through PCR with two primer combinations (indicated on gel images). Numbers refer to plants resistant 

to the herbicide BASTA. CSHL_017399 plasmid was used as a positive control (+ ve) and H2O as a 

negative control (- ve). 

As shown in (Figure 5-10.a), screening on MS agar medium produced high level of 

contamination likely to be Agrobacterium tumefaciens. In addition, screening on MS 

produced only three lines of positive transformed plants carrying the amiRNA 

CSHL_017399 (Figure 5-11) while no plants carrying the amiRNA CSHL_058443 were 

identified. Therefore, an alternative method for screening was used (screening of 

transformed seeds on soil). Before screening T0 seeds on soil, the efficiency of 120 µg/ 

ml BASTA was tested on wild type and BASTA-resistant plants (Figure 5-12). Results 
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showed that BASTA resistant plants germinated and grew normally, whereas the growth 

of the wild type was repressed as a result of treatment with BASTA. This confirmed the 

effectiveness of both the concentration of BASTA used and the treatment of growing 

plants in soil by spraying. 

(a) (b) 

  

Figure 5-12 Testing the efficiency of the commercial BASTA at 120 µg/ ml on BASTA-tolerant and WT 

plants grown in soil. (a) Two week old plants before treatment. (b) Four week old plants post treatment 

with BASTA. BASTA tolerant plants on the left and WT on the right. 

  (a)   (b) 

  

Figure 5-13 Screening of T0 transformed seeds on soil using BASTA at 120 µg/ ml. (a) Seedlings at 

cotyledon stage before spraying with BASTA solution. (b) Four week old plants after the third spray. The 

insert in (b) shows the positive control BASTA resistant plants. 
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Screening of T0 seeds on soil resulted in the selection of 25 individuals of the amiRNA 

CSHL_017399 and 35 plants of the amiRNA CSHL_058443, all of which were resistant 

to BASTA treatment (Figure 5-13). To confirm the presence of the amiRNA insertion 

within the genome of resulting T1 plants, genomic DNA was isolated from all of them 

and the two combinations of PCR primers were used as described previously in 

Section 2.5 and Section 2.9. PCR results revealed that 23 lines of the amiRNA 

CSHL_017399 and 34 of the amiRNA CSHL_058443 contained the constructs 

(Figure 5-14 and Figure 5-15). 

 

Figure 5-14 Detection of positive plants produced from screening with BASTA at 120 µg/ ml on soil. 

Surviving plants were screened with two primer combinations (indicated on gel results). Numbers refer to 

plants resistant to the herbicide BASTA, numbers 4-10 in white refer to T1 plants screened for the amiRNA 

CSHL_017399, while numbers 1-6 in blue refer to T1 plants screened for the amiRNA CSHL_058443. 

The plasmids CSHL_017399 and CSHL_058443 were used as positive controls (+ ve) with 4-10 and 1-6 

respectively. Negative control (- ve) was H2O. Inserts show repeated PCR with plants number 9 and 10 of 

the amiRNA CSHL_017399.  
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(a) (b) 

  

(c) (d) 

  

Figure 5-15 PCR screening of positive plants treated with BASTA at 120 µg/ ml, using two primer 

combinations. Used primers are indicated on gel images. Numbers 10- 27 in white refer to T1 screened 

plants carrying the amiRNA CSHL_017399. Numbers 7- 35 in blue refer to T1 screened plants carrying 

the amiRNA CSHL_058443. The plasmids CSHL_017399 and CSHL_058443 were used as positive 

controls (+ ve) with 10- 27 and 7- 35 respectively. The insert in (d) shows repeated PCR of the positive 

plant number 19 from the CSHL_058443 transformation.  
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5.3.5. Phenotyping Arabidopsis transformed plants 

5.3.5.a) T1 generation phenotype 

Twenty eight of the amiRNA CSHL_058443 and 20 of the amiRNA CSHL_017399 

transformed T1 transgenic plants which were verified as positive by PCR were monitored 

for the presence of visible abnormal phenotypes compared with WT plants. Phenotyping 

T1 transformed plants from both constructs showed a wide range of phenotypes with both 

constructs showing the full range of phenotypes in various combinations across the 

different lines. These included misshapen rosette leaves mixed with normal ones, floppy 

stems, long or short siliques with more or fewer seeds respectively, more or fewer siliques 

(some plants produced mostly sterile siliques), early or late development (based on time 

of bolting), absence of the primary flowering stalk and presence of multiple stalks, and 

formation of a wide flat stem with enlarged inflorescence meristems (Figure 5-16). The 

phenotype of each selected line is detailed in Table 5-1 and Table 5-2. 
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Figure 5-16 The morphological phenotypes of T1 transgenic plants. (a and b) At four and five weeks 

respectively transgenic plants showed irregular growth of plant leaves. (c) The early arrested period in leaf 

development was followed by the restoration of leaf production in 6 week old plants. (d, e and f) Seven 

week old plants with multiple stalks and no clear primary stalk amongst them. (g and h) At four and five 

weeks respectively transgenic plants showed flattened inflorescence stalks. (i and j) Morphology of plants 

with more frequent siliques. (k) Top view of a developing inflorescence from a plant that produces more 

siliques. (l) Branches of sterile plants. (m) Transformed plants with floppy stems compared to WT. (n) A 

comparison between WT and transformant plants showing reduced height. Scale of images is shown.  
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Table 5-1 Phenotypic alterations in development of selected T1 Arabidopsis thaliana lines carrying the 

amiRNA CSHL_058443. 
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7  √  √       

8  √    √     

9           

10           

11           

12         √ 
was not able to set 

seeds 

13  √         

15        √   

16           

17     √ √  √ √  

18           

19           

20  √ √    √    

21    √ √  √    

22    √   √    

23     √     died before setting 

seeds at 8w 

24  √   √      

25           

26          normal fat siliques 

27  √         

28 √ √ √        

29  √ √        

30    √ √  √    

31  √ √  √  √    

32  √         

33  √  √       

34  √ (fat)   √      

35     √      
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Table 5-2 Phenotypic alterations in development of selected T1 Arabidopsis thaliana lines carrying the 

amiRNA CSHL_017399. 
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1 √ √      √   

2   √ √ √ √ √ √   

3 √ √         

10B   √     √ √  

11   √   √     

12           

13 √          

14   √ (fat)   √     

15      √   √  

16      √   √ 
normal fat 

silique 

17   √   √     

18  √ √     √ √  

19   √        

20 √  √   √     

21   √        

22   √        

23  √         

24         √  

25 √          
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As shown in Figure 5-17, both amiRNAs affected some important stages of plant growth 

and development. All lines of the amiRNA CSHL_058443 and most of amiRNA 

CSHL_017399 lines showed delay in the bolting day, day of first open flower and in 

production of the first silique. A clear change in plant productivity was represented by 

the number of siliques produced within one week. Four plants from each amiRNA 

transformation showed an extraordinary increase in the number of siliques produced, 

while the majority of lines showed a reduction in this respect (17 of the amiRNA 

CSHL_058443 and 10 of the amiRNA CSHL_017399). Transformed plants that were 

late in bolting day, flowering day and thus day of producing the first siliques also showed 

delayed senescence although this phenotype was not scored. 

(a) 

 

(b) 

 

Figure 5-17 Morphological and developmental alteration in T1 transgenic plants. (a) Phenotype of T1 

plants (single lines) transformed with the amiRNA CSHL_058443 compared with WT. (b) Phenotype of 

T1 plants (single lines) transformed with the amiRNA CSHL_017399 compared with WT. Number of 

siliques was scored on the primary inflorescence, secondary inflorescence branches, and inflorescence 

branches after one week following formation of the first silique. DAS; days after sowing. Since there were 

no replicates at this stage (T1 generation), no error bars are shown. 
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Silique length and number of seeds per silique in 17 randomly selected lines of both 

amiRNA transformants were strongly affected in different ways and to different extents 

(Figure 5-18). Seven of the nine (78 %) CSHL_058443 lines (line number 13, 15, 24, 29, 

32, 33, and 34) had longer siliques, six of them with an increased number of seeds 

although one plant (no. 24) had fewer seeds despite the longer siliques, one plant (no. 26) 

had normal silique length with increased number of seeds, and one line (no. 27) showed 

no differences to WT. CSHL_017399 lines showed similar silique phenotypes but in 

different proportions: five out of eight plants (63 %) had short siliques two of them (no. 

10 and 20) were with fewer seeds, one had long siliques with more seeds (no. 3), one had 

normal siliques with more seeds (no. 18) and one was not significantly different to WT 

(no. 23). 

 

Figure 5-18 Silique length and number of seeds per silique of randomly selected plants from the T1 

generation of both amiRNAs. (n = 10; means ± SE; asterisks indicate significant differences to WT (P ≤ 

0.05) based on T-test when data was normally distributed or Mann-Whitney test when data was not normal).  

When dissecting T1 transgenic shoots that showed flat wide stems either carrying the 

CSHL_058443 or CSHL_017399 transgene, unusual types of shoot development were 

noted. Hand sectioning showed that these shoots had more vascular bundles, but tissue 

organization appeared normal (Figure 5-19). 
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(a) 

 

(b) 

 

 (c) 

 

Figure 5-19 Abnormal stem phenotype observed in T1 transformed plants. (a) Flattened inflorescences 

observed in some individuals of transgenic plants. (b) Transverse sectioning in abnormal flattened stem. 

(c) Transverse sectioning in Wild type stem. Size of scale bars are shown on images. In (b) and (c) hand-

cut sections in the middle of the stem were observed with a fluorescence microscope under UV excitation. 

5.3.5.b) T2 generation phenotype 

Three T1 lines of the amiRNA CSHL_058443 (line 2, 4 and 6), and another three of the 

amiRNA CSHL_017399 (line 1, 2 and 3) were chosen for the study of the phenotype in 

the T2 generation. T1 seeds were initially screened to verify segregation ratios. Following 

BASTA treatment, the number of surviving seedlings was counted and statistically 

analyzed for a 3:1 alive: dead ratio using a Chi-square (χ2) test. The null hypothesis was 

that the observed alive: dead ratio would not deviate from the expected Mendelian ratio 

of 3: 1 (alive: dead, when selected with BASTA), predicted using the number of seedlings 

alive before BASTA treatment. The Chi-square value was not significant (P > 0.05) in 

one line of the amiRNA CSHL_058443 (line 2), and two lines of the amiRNA 

CSHL_017399 (lines 1 and 2) indicating that these lines were in fact hemizygous and 

probably carrying a single transgene insertion (Table 5-3). However, the Chi-square value 
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was significant (P < 0.05) in the remaining lines. Ten T2 individuals of each of the three 

selected T1 lines from each construct were transferred to single pots to phenotype them.  

Table 5-3 T2 Transformants segregated in a 3:1 alive: dead ratio following selection with BASTA at 120 

µg/ ml. Seeds of each T1 line were sown on soil and sprayed with BASTA as described in Section 5.2.8.b). 

The numbers of seeds were counted at sowing and number of surviving seedlings were counted after 

spraying. A χ2 statistical test was used to check whether these lines followed the expected 3:1 ratio for a 

stably-integrated single insert.  

Construct 
Line 

number 

Expected Observed 
χ2 p value 

T1  
phenotype 

Alive Dead Alive Dead 

am
iR

N
A

 
C

SH
L_

0
5

8

4
4

3
 

Line2 90 30 90 30 1.000 NT* 

Line4 90 30 77 43 0.006 NT* 

Line6 90 30 79 41 0.020 NT* 

am
iR

N
A

 
C

SH
L_

0
1

7

3
9

9
 

Line1 90 30 84 36 0.206 See Table 5-2 

Line2 90 30 88 32 0.673 See Table 5-2 

Line3 90 30 105 15 0.002 See Table 5-2 

           * NT; not tested 

 

  

Figure 5-20 Transgene segregation in T2 generation of line 3 of the amiRNA CSHL_017399 as a 

representative. Left tray shows one week old seedlings. Tray on the right shows surviving plants following 

the first spray with BASTA at 120 µg/ ml.  

The T2 generation plants from the three T1 lines of each construct showed a range of 

phenotypic abnormalities in plant development similar to those observed among 

transformants of the T1 generation (Figure 5-21). Four of the lines showed delayed 

production of siliques, accompanied by delayed bolting and flowering in most of them. 

Number of leaves at bolting was only affected in one line and number of siliques 

produced over a week was significantly lower in two lines compared to WT. 
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(a) 

 
(b) 

 

Figure 5-21 The effect of the transgene on the growth and morphology of T2 plants during different stages 

of development. (a) Transgene CSHL_058443. (b) Transgene CSHL_017399. Number of siliques was 

scored after one week following formation of the first silique on the primary inflorescence, secondary 

inflorescence branches, and inflorescence branches. (n = 10; means ± SE; asterisks indicate significant 

differences to WT (P ≤ 0.05) based on T-test when data was normally distributed or Mann-Whitney test 

when data was not normal). 

Silique length and number of seeds per siliques in T2 generation plants were also affected 

by both amiRNAs (Figure 5-22.a). Plants transformed with the amiRNA CSHL_058443 

(line 2, 4, and 6) showed a significant increase in silique length and number of seeds per 

silique in all studied lines, however, investigation of only one line carrying the amiRNA 

CSHL_017399 (line 3), which showed visible increase in silique length in T1, revealed a 

significant reduction in silique length but without affecting the number of seeds produced 

per silique. 

One line from each amiRNA was selected for more detailed investigation on the effect of 

the transgene on silique phenotype (Figure 5-22.b and c). The majority (70 %) of line 2 

plants carrying the amiRNA CSHL_058443 showed a significant increase in silique 

length while only one plant (2.4) showed a significant decrease in this trait. In addition, 

57 % of line 2 plants which produced significantly longer siliques also showed an increase 

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

amiRNA -443

Line2

amiRNA -443

Line4

amiRNA -443

Line6

WT

C
o

u
n
t

D
A

S

*

*

**

0

30

60

90

120

150

0

10

20

30

40

50

amiRNA -399

Line1

amiRNA -399

Line2

amiRNA -399

Line3

WT

C
o

u
n
t

D
A

S
 

Bolting day 1st flower day 1st silique day No. of leaves at bolting No. of siliques after 1 week

**

*

*
**

*

*
*

*

*



Chapter Five Silencing of AtCuAOs 

 

147 

 

in the number of seeds produced per silique (Figure 5-22.b). Line 3 plants carrying the 

artificial micro RNA CSHL_017399 showed more variation in these characters. Two 

plants (20 %) showed longer siliques with increased number of seeds produced compared 

with WT plants (3.1 and 3.2), while the rest (80 %) produced shorter siliques with no 

significant change in seed number per silique compared to WT (Figure 5-22.c). 

(a) 

 
(b) 

 

(c) 

 

Figure 5-22 Productivity assessment of the T2 generation plants by scoring silique length and number of 

seeds per silique. (a) Productivity of selected T2 transformed lines (n = 10-30 for WT and ~100 for other 

lines). (b) Productivity in individual T2 line 2 transformant plants carrying the amiRNA CSHL_058443. 

(c) Productivity in individual T2 line 3 transformants carrying the amiRNA CSHL_017399. Mature siliques 

were collected randomly from plant inflorescences at 56 DAS. Means ± SE; n = 10 in b and c; asterisks 

indicate significant differences to WT (P ≤ 0.05) based on T-test when data was normally distributed or 

Mann-Whitney test when data was not normal. 
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5.3.5.c) T3 generation phenotype 

Silique length and number of seeds per silique were one of the most interesting altered 

phenotypes observed in T1 and T2 generations of the amiRNA transgenic lines. Thus, 

one line of the amiRNA CSHL_058443 (line 2) that showed long silique and one of the 

amiRNA CSHL_017399 that showed short siliques in the T2 generation (line 3) were 

selected to be investigated in the subsequent generation (T3), in order to get better 

understanding of the heritability of this trait across the successive generations. Firstly, 

the Mendelian ratio of T3 seeds from three T2 CSHL_058443 line 2 and three 

CSHL_017399 line 3 individuals was checked and results showed that two of the three 

selected plants of each amiRNA were homozygous as indicated by the 100 % survival of 

seedlings under BASTA selection (Table 5-4) (CSHL_058443 plants 2.7 and 2.8, and 

CSHL_017399 plants 3.3 and 3.5). 

Table 5-4 T3 Transformant line segregation following selection with BASTA at 5 µg/ ml. Seeds were sown 

on MS medium containing BASTA as described in Section 5.2.8.a). The numbers of seeds were counted 

at sowing and number of survived seedlings were counted after 2 weeks.  

Construct Studied plant Alive Dead Percentage of survival 

am
iR

N
A

- 
C

SH
L_

0
5

8
4

4
3

 

2.7 142 0 100 % 

2.8 145 0 100 % 

2.9 110 35 75.86 % 

am
iR

N
A

 C
SH

L_
0

1
73

99
 

3.1 75 43 63.56 % 

3.3 123 0 100 % 

3.5 117 0 100 % 
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(a) 

 

(b) 

 

(c) 

 

Figure 5-23 Transgene segregation in T3 generation of selected amiRNA T2 individuals from two T1 lines: 

line 2 from the amiRNA CSHL_058443 and line 3 from the amiRNA CSHL_017399. (a) Homozygous 

plants, (b) hemizygous plants and (c) control plants; WT as a negative control on the left and BASTA 

resistant plants on the right, three weeks after sowing.  
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Ten plants from each T2 line (CSHL_058443 plants 2.7, 2.8 and 2.9; CSHL_017399 

plants 3.2, 3.3 and 3.5) were grown to maturity and growth parameters were recorded for 

the T3 generation from these lines. T3 progeny from the two heterozygous plants (2.9 

and 3.1 Table 5-4) were first genotyped by PCR as described previously in Section 02.9 

before including in the analysis of the phenotypes.  

The transgenic amiRNA plants from the T3 generation also showed a range of phenotypic 

deviations and abnormalities in plant growth and development similar to those observed 

among the transformants in T1 and T2 generations, in addition to some new phenotypes 

such as organ fusion in a few rare plants. Mean time of bolting was delayed in T3 progeny 

from one of the amiRNA CSHL_058443 T2 lines (2.9) (Figure 5-24.a), while bolting was 

significantly accelerated in T3 progeny from the two homozygous lines (3.3 and 3.5) of 

the amiRNA CSHL_017399 (Figure 5-24.b). T3 progeny from two of the amiRNA 

CSHL_058443 lines (2.8 and 2.9) were significantly late in their flowering while T3 

progeny from homozygous plants carrying the other amiRNA (CSHL_017399) flowered 

significantly earlier (lines 3.3 and 3.5). Alterations in flowering time, as a result of the 

amiRNA transgenes, in turn affected the day of producing the first silique which followed 

a similar pattern of differences compared with WT plants being delayed in T3 progeny 

of all three amiRNA CSHL_058443 T2 lines and accelerated in T3 progeny from two of 

the amiRNA CSHL_017399 lines (3.3 and 3.5). Number of rosette leaves at bolting was 

significantly less in T3 progeny of all three amiRNA CSHL_017399 and one of the 

amiRNA CSHL_058443 lines (2.7) compared to WT plants, the exception being the T3 

progeny from the heterozygous 2.9 line and the homozygous 2.8 line where there was no 

significant change or increased number of leaves respectively as compared to WT plants. 

Productivity of transformed plants, represented by rate of silique production in a week, 

was higher in T3 progeny from both homozygous T2 plants carrying the amiRNA 

CSHL_058443. One T2 line (3.1) transformed with the amiRNA CSHL_017399 showed 

a significant reduction in this parameter. In addition, around half (53.3 %) of plants 

carrying the amiRNA CSHL_017399 had the floppy stem phenotype, whereas flat wide 

stems and multi-stalks with no distinguished primary stalk phenotypes occurred at 10 % 

and 13.3% respectively within transformants carrying the amiRNA CSHL_058443. 
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(a) 

 
(b) 

 

Figure 5-24 Morphological and developmental alterations in T3 generation amiRNA plants during different 

stages of growth. (a) T3 plant phenotype affected by the amiRNA CSHL_058443. (b) Phenotype of T3 

plants transformed with the amiRNA CSHL_017399. Number of siliques was scored on the primary 

inflorescence, secondary inflorescence branches, and inflorescence branches after one week following 

formation of the first silique. (n = 10; means ± SE; asterisks indicate significant differences to WT (P ≤ 

0.05) based on T-test when data was normally distributed or Mann-Whitney test when data was not normal).  

The effect of the amiRNA transgenes on the silique length and number of seeds produced 

per silique in the T3 generation was also investigated. Although only one line 

(CSHL_058443, 2.9) showed a significant difference in silique length (shorter siliques), 

both homozygous T3 plants carrying the amiRNA CSHL_058443 (2.7 and 2.8) produced 

a significantly high number of seeds compared to seed number of WT plants 

(Figure 5-25). No clear differences in these parameters were observed in T3 progeny of 

the amiRNA CSHL_017399. 
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WT 

Figure 5-25 Productivity of transformed amiRNA plants in the T3 generation of three T2 plants from each 

amiRNA construct by scoring silique length and number of seeds per silique. Images show phenotype of 

mature siliques, scale = 5 mm. (n = 30; means ± SE; asterisks indicate significant differences to WT (P ≤ 

0.05) based on T-test when data was normally distributed or Mann-Whitney test when data was not normal).  

Since transformation with both amiRNAs resulted in floppy stem phenotypes, the 

vascular tissues were investigated in T3 generation plants (Figure 5-26) to determine 

whether the floppy stems could be explained by alterations in arrangement or size of the 

vascular tissues. All studied plants had abnormal vasculature. A significant reduction in 

the width of vascular bundles was observed in all studied plants, which was associated 

with a decrease in vascular bundle depth in all studied plants carrying the amiRNA 

CSHL_017399 (3.1, 3.3 and 3.5), and one plant carrying the amiRNA CSHL_058443 

(2.8). Interestingly, homozygous plants carrying the amiRNA CSHL_058443 (2.7 and 

2.8) showed a clear increase in the depth of the interfascicular fibre reaching almost 

double its thickness compared to WT stems, while other transformed plants did not. In 

contrast, interfascicular width was not affected in the majority of the transgenic lines 

tested. Alteration in cortex thickness was variable among plants of each amiRNA clone. 
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Area of stem was also reduced in some of the transformed plants but not always 

consistently. Bundle number did not show any statistically significant differences. 

(a) 

 

  
(b) 

 
  

(c) 

    
 WT amiRNA-443 (2.7) amiRNA-443 (2.8) amiRNA-443 (2.9) 

 

    
 amiRNA-399 (3.1) amiRNA-399 (3.3) amiRNA-399 (3.5) measurement 

dimensions 
Figure 5-26 Analysis of stem architecture and anatomy of stems in WT and selected T3 transformed plants 

carrying the amiRNAs CSHL_058443 or CSHL_017399. Stems of approximately 8 week old plants, ~15 

cm in length, were hand sectioned using a razor blade at the base of the inflorescence. (a and b) 

Measurements of vascular structure (n = 5 for number of bundles and area of stem section and 15 for the 

rest; means ± SE; asterisks indicate significant differences to WT (P ≤ 0.05) based on T-test when data was 

normally distributed or Mann-Whitney test when data was not normal). (c) Hand cut sections of the basal 

portion of the inflorescence stem of mature plants (8 weeks) observed under UV light. Scale of the 

microscopic images = 200 µm. Abbreviations on the bottom right hand image are interfascicular (IF), 

vascular bundle (VB), and cortex (Cr). 
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Plants from a single line showed a wide range of pleiotropic phenotypes. For example, 

progeny from line 2.9 of the amiRNA CSHL_058443, which was heterozygous, showed 

considerable variation in the deposition of phenolic compounds and in stem shape 

(Figure 5-27). 

 

Figure 5-27 Multiple phenotypes within plants of one line (2.9) of amiRNA CSHL_058443. Plant names 

are indicated. Scale of the microscopic images = 200 µm.  

5.4. Discussion 

Verification steps for the plasmids received, confirmed their integrity. Percentage of 

homology produced by alignment of both amiRNA sequencing results with the CDS 

sequences of all the ten members of the AtCuAO gene family confirmed the presence of 

homologous amiRNA-binding sites on the mRNA of target genes but with different levels 

of homology which may affect their activity in altering expression of target genes. 

However, note, importantly that verification of the down-regulation of the AtCuAO genes 

was not carried out and is needed for a full interpretation of the results. Although each 

amiRNA potentially down-regulates different members of the AtCuAO gene family, a 
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similar range of phenotype alterations were noted within transformed plants of both 

constructs. This might be attributed to the fact that in both amiRNAs AtAO1, AtCuAO2, 

AtCuAO4, AtCuAO5, and AtCuAO9 are target genes. These common targets might be 

involved in prevalent roles mediating regulatory processes in organs which showed the 

more frequent phenotypic changes among transformed plants. Moreover, AtCuAO1 

homology is low with both amiRNAs: 43 % with amiRNA CSHL_058443 and 14.3 % 

with the amiRNA CSHL_017399. Likewise, the percentage of AtCuAO3 homology is 

also low: 5 % with amiRNA CSHL_058443 and 57.14 % with the amiRNA 

CSHL_017399. Transcript levels of both genes, AtCuAO3 and AtCuAO1, progressively 

increased with Arabidopsis development and reaches the highest levels in 28 day old 

seedlings compared with younger ones (4 days old), suggesting a possible role in plant 

development (Planas-Portell et al. 2013). Since redundancy within gene family members 

is common (Kafri et al. 2009), one explanation for the similar range of phenotypic 

alterations shown early by both transgenes might be through a compensation of the down-

regulation of target genes by an increase in AtCuAO1 and AtCuAO3 activity, assuming 

that they are not able to completely complement the down-regulation of the other family 

members as redundancy can be partial or complete between genes (Zhang et al. 2012). 

miRNAs direct DNA methylation (Bao et al. 2004), or block mRNA translation when 

they bind imperfectly to it (Brodersen et al. 2008), this may provide another possible 

explanation for the anomalous phenotype in both amiRNA plants through perturbing 

mRNA of genes with low homology. 

Results showed that overexpression of both amiRNAs led to significant biological 

alterations in Arabidopsis vegetative and floral development represented in a wide range 

of phenotypic traits. Abnormalities observed during the development of Arabidopsis 

thaliana plants consisted in formation of multi-stalks, flat stems, floppy stems (fasciated 

stems), misshapen leaves, changes in number of leaves produced, number of siliques 

formed, size of siliques, time of bolting, time of flowering, time of first silique, and time 

of senescence.  

The wide range of phenotypic changes reflects perhaps the large numbers of functions 

that polyamines (PAs) perform during plant development. Although in this work levels 
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of the different PAs were not measured in the transgenic plants and nor was the 

expression of the AtCuAO gene family, the hypothesis is that the amiRNAs would down-

regulate some or all of the AtCuAO gene family at critical stages of plant development 

resulting in the perturbation of PA homeostasis and also potentially changes in the 

production of hydrogen peroxide (H2O2) necessary as a signalling molecule (Ghuge et al. 

2015c; Neill et al. 2002). 

The flat stem phenotype resembles the fully fasciated (Fuf) mutant in Arabidopsis that 

showed a dramatic increase in size of the vegetative apical meristem without causing any 

alteration in the meristem zonation or the shape and differentiation of vegetative organs 

but produced club-shaped siliques (Medford et al. 1992). The flattened stem phenotype 

in different Arabidopsis fasciation mutants has been attributed to allelism and different 

loci (Clark et al. 1993; Leyser and Furner 1992) this could be the case in the amiRNA 

plants which showed this phenomenon.  

The misshapen leaves shown by some of the amiRNA plants (Figure 5-16.b and c) could 

perhaps due to epinasty. Leaf epinasty is a differential cell growth in leaf surfaces as a 

result of a greater expansion in cells of the adaxial surface cells as compared to cells in 

the abaxial surface leading to the downward bending of the leaf (Pazmiño et al. 2014). 

The common substrate S-adenosylmethionine (SAM) acts as a precursor for the 

biosynthesis of ethylene and as a source of aminopropyl moiety in the synthesis of the 

higher polyamines spermidine (Spd) and spermine (Spm), see Figure 1-1 (Moschou et al. 

2012). High accumulation of Spd-Spm in transgenic tomato fruits led to higher rate of 

ethylene biosynthesis (Mehta et al. 2002). The epinastic phenotype observed in some 

amiRNA plant leaves might be due to accumulation of PAs as a result of manipulating 

the level of AtCuAO expressions which in turn would allow SAM to be available for 

ethylene biosynthesis, although further experimental evidence is needed. 

Both amiRNAs led to abnormalities in vascular system formation. These alterations in 

stem architectures affected the flexibility of stems and thus their consistency leading to 

floppy or straight stem phenotypes. Since effects on the stem rigidity may be attributable 

to effects of PAs on xylem differentiation (Tisi et al. 2011a) and PA-derived H2O2, via 
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AtAO1 activity, is involved in vascular tissue differentiation (Ghuge et al. 2015a), 

observed abnormalities in vascular tissue differentiation may attributed to perturbation of 

PA levels or their catabolite titres as a result of silencing some of the AtCuAOs in 

transformed plants.  

Lignin formation during vascular differentiation is associated with H2O2 (a product of PA 

catabolism) generation and cell wall bound peroxidases (de Marco and Roubelakis-

Angelakis 1996). ROS play a key role in vascular differentiation, lignin polymerization, 

and cell wall expansion and growth (Grant and Loake 2000). In plants, the high 

expression of AtCuAOs in vascular tissues, epidermis and wound periderm, where 

processes of lignification and cell wall stiffening are active, suggested their role in H2O2 

production for cell wall rigidity and strengthening (Cona et al. 2006; Ghuge 2014; 

Paschalidis and Roubelakis-Angelakis 2005a).  

The involvement of PAs in development of vascular tissues has been demonstrated (Vera-

Sirera et al. 2010), however, alterations in the formation of vasculature has been reported 

due to unbalanced levels of PAs. In this regard, the dwarf mutant bud2 defective in S-

adenosylmethionine decarboxylase (SAMDC4) affected PA biosynthesis leading to 

expanded vascular system, with increased bundle size and lignin content, in different 

parts of Arabidopsis plant (Ge et al. 2006). Likewise, loss of function of the xylem 

specific gene ACL5, which encodes a protein involved in the synthesis of the PA 

thermospermine, negatively affected the secondary growth of the vascular tissue leading 

to a dwarf phenotype due to abnormalities in the structure of stem’s vascular bundles 

such as lack of xylem fibres and morphologically altered vessel elements (Kakehi et al. 

2008). This could be the case in the present results (Figure 5-26), where stem anatomy 

showed clear changes in vascular differentiation that might be ascribed to changes in PA 

and/ or H2O2 levels.  

Another possibility for floppy stem might be changes in cellular turgor due to changes in 

lignin deposition. Lignin provides rigidity and mechanical strength to the tissues of the 

plant and renders the cell walls hydrophobic and impermeable (Campbell and Sederoff 

1996). As lignin reduces the water permeability of the secondary cell walls (Raven et al. 
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1999), tightening cell walls by lignin biosynthesis in response to stresses is often 

accompanied by a decrease in cell wall extensibility and/or turgor pressure (Le Gall et al. 

2015). Hence, alterations in lignin deposition in amiRNA plants may also affect turgor 

pressure of the cell through changes in water and solute permeability which in turn will 

affect the mechanical support of plant stems leading to straightness or floppiness.  

Notably, there was a transgenerational inheritance of the pleiotropic developmental 

defects caused by the two amiRNAs, however, they were not highly stable over 

subsequent generations of each line. Similar phenotypic alterations in plant development 

were consistently detected at different levels over generations of different lines. In 

addition, some new traits which were not scored in the parental generations were detected 

in the T3 generation. The wide range of pleiotropic phenotypes observed in stem sections 

of progeny from line 2.9 of the amiRNA CSHL_058443 (Figure 5-27) could be due to 

variations in the effectiveness of the amiRNA in reducing the expression of target genes 

which in turn will affect levels of PAs and their catabolic products. 

Transformation of Arabidopsis plants with either CSHL_017399 or CSHL_058443 also 

affected plant productivity. This effect displayed different degrees of altered flowering 

day, fruit setting time, and silique phenotype (silique length and number of seeds per 

silique) as compared to WT plants. Previous studies showed the requirement of PAs as 

essential factors during the reproductive stage of plant development as well as the 

importance of the balance in PAs distribution in different organs of the plant depending 

on the stage of development, for instance, putrescine (Put) and Spd biosynthesis is 

increase at early stages of Citrus sinensis flowering and during anthesis (Kushad et al. 

1990). Likewise, quantification of PA levels by HPLC in 6-week-old bolted Arabidopsis 

thaliana (Columbia ecotype) plants under normal conditions showed high levels of the 

PAs Put, Spd and Spm accumulated in reproductive organs, such as buds, flowers and 

siliques compared with their levels in leaves and roots (Urano et al. 2003). Furthermore, 

exogenous treatment of olive with different PAs accelerated floral initiation and fruit set 

(Rugini and Mencuccini 1985). However, exogenous treatment of the nonflowering 

cultivars of Spirudela with Spm or Spd did not induce flowering (de Cantú and Kandeler 

1989), indicating that PA on its own is not sufficient for flowering induction but 
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homeostasis in the floral PA levels along with other factors are critical for this process. 

Since CuAOs may act as modifiers of PA levels by influencing PA metabolism (Rea et 

al. 2004), the early flowering showed by plants transformed with the amiRNA 

CSHL_017399 and late flowering observed in plants transformed with the amiRNA 

CSHL_058443 might be due to unbalanced PA levels as a result of disturbing the 

expression of several members of the AtCuAO gene family which in turn affected 

different aspects of reproductive development. 

Previous reports indicated that overexpression of oat arginine decarboxylase (ADC) in 

tobacco plants resulted in high accumulation of Put which led to a 28- 55 fold increase in 

seeds and the severity of these alterations was correlated with putrescine concentration 

(Masgrau et al. 1997), however, unbalanced PA levels, low Spd and high Put, in the 

double mutant Arabidopsis plants affected in the expression of spermidine synthase, 

SPDS1 and SPDS2, led to abnormally shrunken seeds and arrested embryos at the heart-

torpedo transition stage (Imai et al. 2004b). Since germination of pollen and growth of 

their tubes are key events in the sexual reproduction of plants (Wu et al. 2008), another 

possible explanation for productivity alterations (fruit setting times and silique 

phenotypes) could be a defect in pollen grain germination and pollen tube growth that 

may occur due to irregular PA levels as a result of manipulating the expression of 

AtCuAOs. In this regard, high levels of PA contents and increased activity of the 

biosynthetic enzyme SAMDC have been reported in tomato pollen (Song et al. 2002). 

Treatment of pollen with SAMDC inhibitor prevented pollen germination (Antognoni 

and Bagni 2008), while non active SAMDC in the anther resulted in male sterility 

(Falasca et al. 2010). Furthermore, all WOX genes are involved in maintaining a balance 

between cell division and differentiation (Gallois et al. 2004). Mutation of WOX1 gene 

in wox1-D plants modulates the activity of SAMDC1 thus altering PA homeostasis which 

disturbed cell proliferation resulting in male sterility, and anther dehiscence failure 

(Zhang et al. 2011). Thus, these results highlight the importance of balance of the higher 

PAs, Spd and Spm, for plant fertility which might be affected by perturbing the 

expression of AtCuAOs as Put (the substrate of AtCuAOs) is a precursor of both Spd and 

Spm (Bhatnagar et al. 2002). 
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As catabolism of PAs via polyamine oxidases (PAOs) and CuAOs is essential for 

modulating pollen cell wall rigidity, through regulation of cell wall component 

deposition, (Aloisi et al. 2016) which is essential for normal growth of the pollen tube 

and thus successful fertilization (Tanaka et al. 2013), and the role of PAs in ovary 

development was proved (Alburquerque et al. 2006), another possible explanation for the 

changes in seed number that could be due to a defect in the fertilization process or in the 

generation of the ovules. Levels of PA catabolism products might be potential contributor 

to observed irregular reproductive phenotype. Oxidation of Put by CuAOs generates 1-

pyrroline which can be further catabolized into -aminobutyric acid (GABA) (Rea et al. 

2004). Variations in GABA levels have been observed during Arabidopsis development 

and high GABA levels were correlated with formation of siliques with reduced size 

resulting in production of significantly fewer seeds (Mirabella et al. 2008). Since GABA 

has been suggested as an agent that guides pollen tube growth in Arabidopsis via 

maintaining the concentration gradient along the pollen tube path in the pistil (Palanivelu 

et al. 2003), perturbing PA catabolism by manipulating AtCuAO expression may 

influence pistil GABA levels leading to defects in pollen tube growth and guidance. 

On the other hand, high activity of CuAO upon Put treatment in Vicia faba has been 

positively correlated with H2O2 production (An et al. 2008), while CuAO loss of function 

disrupted H2O2 generation (Qu et al. 2014), indicating the possibility of perturbing H2O2 

levels as a result of manipulating AtCuAO expression in amiRNA plants. Pollen tubes 

have a tip specific [Ca2+]cyt gradient which is fundamental for their elongation (Malho 

et al. 1995), and PA-derived H2O2 has been reported as an activator of Ca2+ current in the 

pollen tube plasma membrane (Wu et al. 2010). Exogenous treatment of pollen grains 

with high concentrations of Spd triggered a Ca2+ influx beyond the optimum which led 

to defect in the Ca2+ gradient and inhibition of pollen tube growth (Wu et al. 2010). In 

addition, loss of function of the other source of PA-derived H2O2, atpao3 mutant, 

disturbed H2O2 levels and led to decrease in fertility as a result of reduction in pollen tube 

growth (Wu et al. 2010).  

Collectively, these results indicate the critical role of PAs and their catabolites in plant 

fertility and may help to understand the wide range of alterations in the productivity of 
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transformed plants observed in the present work which again could be due to irregular 

levels of PAs and/ or their catabolites. However clearly effects on pollen and hence 

fertilization would only affect seed number and potentially silique length but not the 

number of siliques. This effect on productivity therefore must be due to other effects 

induced by the amiRNA presumably linked to changes in PA homeostasis. 

Both transgenes, CSHL_058443 and CSHL_017399, affected other obvious 

developmental aspects such as plant length and timing of leaf yellowing. This might be 

again due to perturbed levels of PAs or their catabolites. Results of previous studies may 

support this suggestion, for example, overexpression of ADC2 in A. thaliana resulted in 

elevated Put contents, the product of Arginine decarboxylation via ADC, which led to 

dwarfism and delayed flowering (Alcazar et al. 2005). Likewise, overexpression of oat 

ADC in tobacco plants showed phenotypic abnormalities, included short internodes, and 

this was attributed to the enhanced level of Put (Panicot et al. 2002). Changes in 

endogenous PA levels in the transgenic plants with engineered sense ADC (Masgrau et 

al. 1997) or antisense SAMDC genes (Kumar et al. 1996) affected leaf morphology and 

stem elongation. Furthermore, elevated levels of accumulated Put as a consequence of 

overexpressing ornithine decarboxylase (ODC) led to wrinkled leaves in tobacco plants 

(DeScenzo and Minocha 1993). In contrast, failure in PA homeostasis as a result of 

mutation in the Arabidopsis WOX1 gene led to a significant reduction in polyamine 

content which affected the natural progression of plant development and resulted in 

dwarfism (Zhang et al. 2011). Also, loss-of-function mutants of one of the two spermine 

synthases, ACL5, in Arabidopsis showed a severe defect in stem elongation (Hanzawa et 

al. 2000). These results indicate the fundamental role of balanced PAs in regulating plant 

development. On the other hand, H2O2 generated via polyamine catabolism in the cell 

wall has been suggested to be implicated in peroxidase-mediated processes such as 

suberization, lignification, and cross-linking of cell wall components (Moller and 

McPherson 1998; Rea et al. 2004). Taking into account these results, the wide range of 

phenotypes seen in transgenic plants carrying the two amiRNAs might be also 

attributable to variations in the severity of affecting the expression of target genes which 

in turn will affect levels of PAs and their catabolic products. The mechanism by which 
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AtCuAOs, which are targets of both amiRNAs, can affect plant development is still 

unclear, and this question merits further investigation.  

Based on findings in the present chapter, assuming that the amiRNAs are indeed down-

regulating one or more AtCuAO genes and that this is affecting PA homeostasis we can 

conclude that PA catabolism plays an important role in plant growth and development 

along with its indirect role in delaying plant senescence. Manipulation of expression of 

genes involved in PA catabolism pathways could indeed be utilized as a tool for 

generating interesting phenotypes such as increased seed production. In order to get better 

understanding of the observed phenotypes and to be able to draw a conclusion regarding 

the effectiveness of these two amiRNAs in altering AtCuAO expression, more 

investigations are required to analyse the expression of target genes of both amiRNAs at 

different stages of plant development, taking into consideration stages where AtCuAO 

were highly expressed (Figure 3-7), and to determine PA and their catabolic metabolite 

levels in transformed plants. 
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6. Discussion and final conclusion 

Polyamines (PAs) are implicated in almost all aspects of plant growth and development 

including cell division and elongation, embryogenesis, organogenesis, flowering, and are 

well known for their anti-stress and anti-senescence effects (Sagor et al. 2016). Some of 

PA’s physiological effects are related to regulation of PA homeostasis (Zhang et al. 

2011), and some others are linked to biologically-active reaction products that form as a 

downstream consequence of PA catabolism by amine oxidases (AOs) (Cona et al. 2006; 

Planas-Portell et al. 2013), which are also responsible, along with the biosynthetic 

enzymes, for maintaining cellular PA homeostasis (Angelini et al. 2010). One of the two 

AOs in plants are copper-containing amine oxidases and Arabidopsis thaliana contains a 

gene family of ten members (AtCuAOs) encoding these enzymes (see Chapter 1, 

Section 1.1.2). Owing to their dual function, participation in the production of key 

metabolites and preservation of PA cellular balance, the studies described in the present 

thesis were driven mainly by an attempt to understand roles of AtCuAOs as potential 

mediators of PA actions in plants and whether one or more members of the AtCuAO gene 

family might have a role in plant senescence. 

One aspect of the present work was aimed at tracking the temporal expression pattern of 

AtCuAOs in specific leaves during Arabidopsis thaliana development under optimal-

controlled conditions using two techniques (Chapter 3). Available information about the 

expression levels of the whole AtCuAO gene family was based on analysis of specific 

leaves using microarray analysis (TAIR eFP browser; http://bar.utoronto.ca/efp/cgi-

bin/efpWeb.cgi, and PRESTA; http://www2.warwick.ac.uk). However, quantitative real 

time PCR (qRT-PCR) has become the method of choice for accurate measurements of 

transcript abundance of genes (Gachon et al. 2004) with higher sensitivity when 

compared with microarray analysis (Lewis et al. 2013). The qRT-PCR technique was 

therefore adopted here to detect RNA expression of all AtCuAO family members in single 

leaves of wild type Arabidopsis plants at four critical time points (young leaf, before 

bolting, after bolting, senescent leaf) to confirm and extend the results from the 

microarrays. GUS staining was the other method used to confirm the qRT-PCR 

expression profiling of two selected AtCuAOs in transgenic plants allowing an analysis 

of both temporal and spatial expression in whole plants. 
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For further elucidation of mRNA functions in the AtCuAO gene family, the other aspect 

of this research was dedicated to study different physiological responses to the genetic 

manipulation of selected members of the AtCuAO family. First, a detailed functional 

analysis of one gene of the family was performed in plants knocked-out in the expression 

of AtCuAO4 by the insertion of T-DNA (Chapter 4). The second approach was by 

transforming Arabidopsis wild type plants with artificial microRNAs (amiRNAs) 

complement to selected genes of the family and tracking the resulted phenotypic changes 

as a response to alterations in their expression (Chapter 5). 

The main findings in the different chapters are summarized and discussed in the following 

sections, including future prospects. 

6.1. Expression patterns of the AtCuAO gene family during Arabidopsis 

thaliana leaf development 

One important clue to the possible functions of the AtCuAO gene family in leaves was 

their expression pattern (Chapter 3, Section 3.3.4). It is interesting to note that the 

expression of all seven detected AtCuAOs was persistent throughout various stages of 

Arabidopsis leaf life-span until early senescence, but with selectively variable mRNA 

levels and there was expression of at least four of the genes at all stages tested including 

mid/late-senescence (Figure 6-1) indicating a possible functional specialization of the 

respective enzymes. 

Several interesting insights on the regulation of AtCuAOs expression in Arabidopsis 

developing leaves were observed. The expression of three members of the family 

(AtCuAO3-SP, AtCuAO5 and AtCuAO9) was not detected in any of the studied leaf stages 

which is consistent with other bioinformatic sources, TAIR and PRESTA, for the silique-

specific gene AtCuAO5 (NCBI; http://ncbi.nlm.nih.gov/pubmed), but not for the other 

two genes, AtCuAO3-SP, AtCuAO9 (TAIR and PRESTA). As verification steps confirmed 

the efficiency of primers used (Chapter 3 Section 3.3.2), I concluded that these genes are 

not expressed in leaves, suggesting that their proteins might have more specialized 

functions in other plant organs at least under the growth conditions used in this study. 

Furthermore, recent reports indicate that only eight out of ten CuAO genes in Arabidopsis 
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thaliana encode putative functional CuAOs, and AtCuAO3-SP, and AtCuAO9 may have 

other functions (Tavladoraki et al. 2016) which reinforces the present findings. 

 

Figure 6-1 Leaf-specific expression of the AtCuAO gene family throughout the life of Arabidopsis leaves. 

Different levels of AtCuAO expression were detected at all stages of leaf development.  

The present qRT-PCR results revealed that leaf-specific AtCuAOs can be divided into 

two groups with a contrasting expression patterns: the first consists of three genes 

(AtAO1, AtCuAO2 and AtCuAO8) positively associated with total chlorophyll contents 

showing the highest level of expression at the earliest time point and that seem to be more 

specific for young leaves, whereas the second set includes four genes (AtCuAO1, 

AtCuAO4, AtCuAO7 and AtCuAO3) negatively correlated to the total chlorophyll 

concentrations reaching peak of up-regulation at the latest time point and seems to be 

more related to processes that happen during leaf senescence (Figure 6-1). Expression 

patterns of AtCuAO1, AtCuAO2, AtCuAO3, AtCuAO4 and AtCuAO7 is in full agreement 
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with previously documented qRT-PCR results either in the whole seedlings or rosette 

leaves (Ghuge 2014; Planas-Portell et al. 2013). Likewise, the expression of AtCuAO8 

with previously reported microarray data (TAIR eFP Browser; http://bar.utoronto.ca/efp 

/cgi-bin/efpWeb.cgi). Previous studies on AtAO1 did not show its expression in 

developing leaves, however, Moller and McPherson (1998) reported high AtAO1-GUS 

expression in the vascular tissue of young leaves which became irregular in the older ones 

of the same Arabidopsis rosette. Thus, all of the previous AtCuAO expression studies 

support qRT-PCR results displayed in the present work (discussed in details in Chapter 3 

Section 3.4). However, the data was fragmentary and expression patterns of all ten 

members of the gene family had not previously been analysed simultaneously to enable 

a direct comparison amongst them. 

What was perhaps most striking was the distinctive expression pattern of AtCuAO7 gene 

during leaf development in which the transcript of this gene accumulates dramatically 

just before bolting time (the floral transition) as compared with previous and following 

stages before it peaks at senescence. Recently, the role of hydrogen peroxide H2O2 as a 

potential flowering initiation factor has been highlighted and a distinct increment in its 

levels concomitant with bolting and flowering was reported in Arabidopsis (Bieker et al. 

2012; Miao et al. 2004; Zimmermann et al. 2006). Thus, based on the known role of 

AtCuAOs in PA degradation which yields H2O2, the hypothesis that AtCuAO7 might be 

implicated in this fundamental process can be proposed as its transcript increased 

dramatically just before bolting. This should be examined experimentally in future work 

by testing lines genetically modified in AtCuAO7 expression to determine bolting and 

flowering times and the related level of endogenous H2O2 in leaves at these three stages 

(before-, at- and after-bolting). 

The increased expression levels of the three AtCuAO genes (AtAO1, AtCuAO2 and 

AtCuAO8) observed at early stage in young leaves, where processes of cell division, cell 

expansion and cell differentiation into stomata, trichomes and vascular tissue are still in 

progress (Kalve et al. 2014), might be explained as an essential step for generating 

fundamental compounds such as H2O2 and γ-aminobutyric acid (GABA) that contribute 

to the regulation of these important processes. In plant cells, there are several pathways 
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of H2O2 production and amine oxidases (AOs), including CuAOs and polyamine oxidases 

(PAOs), are part of one of these pathways through PA catabolism (Niu and Liao 2016). 

H2O2 plays important roles in regulating lignin formation in plant cells (Kärkönen and 

Koutaniemi 2010), and in enhancing cell expansion by increasing the region of pectin 

synthesis and thus pectin content (Xiong et al. 2015). In particular, H2O2 produced under 

normal conditions by putrescine (Put) degradation, via the activity of cell-wall localized 

CuAOs, is suggested to be an important factor involved in lignification and cross-linking 

reactions (Gill and Tuteja 2010). The high expression of AtCuAOs in plant vascular 

tissues, epidermis and wound periderm, suggested their contribution to H2O2 production 

for cell wall rigidity and strengthening where processes of lignification are active (Cona 

et al. 2006; Ghuge 2014; Paschalidis and Roubelakis-Angelakis 2005a). Furthermore, the 

role of H2O2 generated by Put degradation via AtAO1 in vascular tissue differentiation 

of immature developing leaves was documented, and the high expression of AtAO1-GUS 

in vascular tissue preceding lignification led to the suggestion that AtAO1 is a good 

marker for vascular development (Moller and McPherson 1998). Another important 

signalling molecule, GABA, can be generated from the oxidation of 4-aminobutanal, the 

product of Put catabolism by CuAOs, via aminoaldehyde dehydrogenase (AMADH) 

activity (Xing et al. 2007). Several functions in plants have been attributed to GABA 

(Bouche and Fromm 2004). For instance, it enhances the morphological growth (Li et al. 

2016), functions of the photosynthetic machinery, chlorophyll biosynthesis, gas exchange 

capacities and membrane stabilization (Luo et al. 2011). 

Increased expression of AtCuAO genes during senescence suggests that these enzymes 

may have a role in the regulation of progression of senescence processes and these four 

AtCuAOs might be considered as senescence associated genes. Leaf senescence is under 

direct nuclear control: a considerable number of genes that are expressed in green leaves 

are down-regulated while genes known as senescence associated genes (SAGs) are up-

regulated (Gan and Amasino 1997). Through the tight temporal and spatial regulation of 

its generation and scavenging, H2O2 plays a role in regulating plant growth and 

morphogenesis (Nathues et al. 2004; Niu and Liao 2016; Wojtyla et al. 2016). However, 

at high levels, it contributes to cell degradation at late stages of senescence (Zimmermann 

et al. 2006). A peroxisomal localization has been reported for the AtCuAO3 (At2g42490) 
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protein, while AtCuAO1 (At1g62810) is predicted to be an extracellular (apoplastic) 

protein (Planas-Portell et al. 2013). AtCuAO4 (At4g12290) protein is located in vacuoles 

while AtCuAO7 (At3g43670) is an apoplastic protein (TAIR; https://www.arabidopsis 

.org/). Peroxisomes are important sites of H2O2 production (Rubinstein 2000), and the 

peroxisomal ROS have been involved in leaf senescence (Palma et al. 2002; Pastori and 

del Rio 1997). Autophagy, the important mechanism for chloroplast degradation during 

leaf senescence, takes place in vacuoles (Wada and Ishida 2013), and can be induced by 

H2O2 (Xiong et al. 2007). The leaf apoplast is involved in signal recognition and nutrient 

remobilization during senescence (Martínez and Guiamet 2014). Therefore, all the 

AtCuAO genes that are up-regulated in senescent leaves (AtCuAO1, AtCuAO4, AtCuAO7 

and AtCuAO3) encode proteins localized in cell compartments which are involved in 

senescence related processes. Thus an increase in their expression might be a mechanism 

of H2O2 production during developmental leaf senescence. 

The different expression pattern observed between the two gene groups in the present 

study reveals the different roles played by AtCuAOs during two fundamentally opposite 

processes in leaf development, active growth and death. However, their precise function 

in these processes is as yet largely unknown. More studies are required to understand the 

role of each encoded protein in these two crucial stages: generating plants in which single, 

double, or triple genes of each groups are knocked out would be helpful to discover 

effects on development and senescence. It would also be interesting to discover whether 

these mutants can be complemented by other members of the AtCuAO gene family or 

whether there is specificity at the protein level. Alternatively, CRISPR/Cas system also 

would be a useful tool here as it is highly efficient in silencing multiple genes (Feng et 

al. 2013; Li et al. 2013b).  

To confirm and extend results obtained by qRT-PCR, two available GUS lines were 

analysed (AtCuA7::GUS and AtCuA8::GUS), but comparison of the results from the 

promoter-GUS lines was not entirely consistent with expression data from transcriptional 

analysis. This might be due to the length of the promoter used in the construct or the point 

of insertion in the genome of the transgenic plant (Mertens 2008; Stafstrom 2008). Future 

work should be undertaken to examine more GUS-lines for each member of the AtCuAO 
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family and to use longer promoter fragments. GUS lines that reflect the expression pattern 

of the endogenous genes would be useful for exploring in more detail spatial and temporal 

expression of the genes as well as the effects of stresses on their induction. In addition, 

as these lines includes the two reporter genes, GUS and GFP (Appendix B,c), it would 

be interesting to investigate GFP activity as it could be more accurate in assessment of 

the spatial and temporal activity of promoters (Kavita and Burma 2008). 

6.2. The effect of knocking-out the expression of one member of AtCuAO 

gene family on Arabidopsis growth and development 

In order to better understand the regulatory function of AtCuAO genes during plant 

development and senescence, one of the highly expressed genes in senescent leaves 

(AtCuAO4) was selected to investigate in more detail the effect of the genetic modulation 

of AtCuAO expression on different aspects of growth, reproduction and senescence 

during various stages of Arabidopsis thaliana development under optimal growth 

conditions. Several phenotypic deviations from wild type (WT) plants were observed in 

plants knocked-out in the expression of AtCuAO4 by T-DNA insertion. These changes 

can be summarized as follows: 

- Significant delay in day of bolting and thus first open flower.  

- Early biomass enhancement represented by comparatively more rosette leaves at 

bolting time.  

- Reduction in the length of the inflorescence stems. 

- Marked increase in leaf contents of the total chlorophyll (a and b) and a clear 

retardation in leaf senescence. 

Repressing the expression of AtCuAO4 perturbed the catabolic pathway of PAs which 

resulted in Put accumulation in mutant leaves during the vegetative stage (pre-bolting). 

Accumulation of Put in AtCuAO4 mutants is consistent with the reported higher affinity 

of AtCuAO enzymes toward Put (Planas-Portell et al. 2013). However, no comparable 

changes in Put contents were recorded during the reproductive stage (post bolting), 

whereas leaves of both mutants showed a significant increase in the two higher PAs, 
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spermidine (Spd) and spermine (Spm), at this stage. Since balance of PAs is an important 

agent in regulating plant growth and development (Urano et al. 2003), and as turnover to 

higher PAs is one of the mechanisms employed by plants to achieve homeostasis of 

intracellular PA levels (Angelini et al. 2010; Kusano et al. 2008), the later increase in the 

higher PAs (Spd and Spm) might be attributed to the activity of enzymes involved in the 

conversion of excess Put to Spd and Spm as a regulatory mechanism to control Put levels 

within the non-toxic range for survival, however, analysing the transcript levels of genes 

encoding proteins involved in Spd and Spm synthesis, such as spermidine synthase 

(SPDS), spermine synthase (SPMS), and S-adenosylmethionine decarboxylase 

(SAMDC), is required to confirm this suggestion. Generally, high levels of Put are 

associated with active cell division, and enhancing shoot growth (Aragão et al. 2016; 

Parimalan et al. 2011) while increased Spd and Spm contents are more linked to cellular 

differentiation processes (Matilla 1996). Increased numbers of leaves in the mutant plants 

at bolting could perhaps therefore be related to the high Put levels. 

The phenotypic characteristics of both mutants (BIS#4 and C#4) include traits typical to 

known gibberellic acid (GA)-deficient (ga1–ga5) mutants (Koornneef and Van der Veen 

1980), namely shortened inflorescence stems and late-flowering. The effect of Put 

accumulation on perturbing GA metabolism was already documented (Alcazar et al. 

2005). Experiments were therefore undertaken to ascertain whether changes in AtCuAO4 

mutant phenotype were due to defects in GA metabolism, or were merely a consequence 

of unbalanced levels of PAs and their catabolites which are crucial in regulating several 

physiological and developmental processes in plants (Kusano et al. 2007; Martin-Tanguy 

2001; Paschalidis and Roubelakis-Angelakis 2005a). Mutants were treated with 

gibberellin and expression of selected dioxygenase genes involved in GA metabolism 

(Figure 1-6) was analysed in rosette leaves pre-bolting by qRT-PCR. The phenotypic 

deviations from WT in bolting day, first open flower day and number of leaves at bolting 

were counteracted by exogenously applied GA3 and plant stems elongated normally 

(Figure 4-24.b), indicating that the GA signalling pathway functions normally in the 

mutant lines and that the AtCuAO4 mutation is indeed affecting GA metabolic genes. The 

repression of GA biosynthetic genes AtKS1, AtGA20ox1 and AtGA3ox1 suggests that the 

effect of raised Put levels in the AtCuAO4 mutants is in repressing GA biosynthesis, with 
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consequent effects on shoot growth, a reduction in SOC1 expression and hence delayed 

flowering time (Moon et al. 2003). SOC1 loss-of-function mutation delays flowering 

significantly and shows increased rosette leaf number at flowering time, as well as 

increases in Arabidopsis lifespan which was suggested to be independent of flowering 

time (Melzer et al. 2008). In the AtCuAO4 mutants the effect on leaf senescence appears 

to be linked to the flowering time as dark induced senescence was not significantly 

different to WT. However, these results suggest SOC1 as one of the candidate genes that 

is involved in the AtCuAO4 mutant phenotype observed in the present study. 

Genetic alterations in expression of gibberellin metabolic genes can modulate flux of the 

intermediates in the later stages of the pathway (Hedden and Phillips 2000). To determine 

whether GA metabolism was altered as a result of modification in the expression of GA-

metabolic genes, the levels of selected endogenous GAs in both mutants and WT were 

quantified in 20 day old rosettes grown under control growth conditions by collaborators 

at the University of Pisa (Appendix D). GA1, GA3, GA4 and GA7 are the most biologically 

active gibberellins in plants (Randoux et al. 2012), and predominant presence of GA1 and 

GA4 in several plant species suggests that these two GAs are the functionally active forms 

of GAs in plants (Hedden and Thomas 2012; Nelson and Steber 2016), so production of 

active gibberellins will be discussed here. 

AtGA20ox catalyses the three consecutive oxidation steps of active-GA precursors, GA12 

and GA53, to produce GA9 and GA20 respectively as immediate precursors of active GAs 

(Lange 1997), and further activation of GA9 and GA20 by oxidation via GA3ox activity 

yields biologically active GAs (Figure 1-6) (Hedden and Phillips 2000). In both active-

GA biosynthesis pathways, starting with GA12 or GA53 as initial precursors, both mutants, 

C#4 and BIS#4, showed a significant decrease in the two immediate active-gibberellin 

precursors GA9 and GA20 (Appendix D), which is consistent with the reduced expression 

of AtGA20ox1 that was scored in both mutant lines (Figure 4-26).  

The level of AtGA3ox1 activity in C#4 and BIS#4 generated the two bioactive 

gibberellins GA4 and GA3, by GA9 and GA20 oxidation respectively, at similar levels as 

WT, however, contents of mutant plants of the other two active gibberellins GA7 and 
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GA1, via oxidation of the same immediate precursors respectively, were significantly 

reduced as compared to WT plant contents. AtGA3ox is encoded by a gene family 

consisting four members that are functionally redundant (Mitchum et al. 2006). 

Expression of only one member was analysed here so it is possible that all four members 

are not affected by the AtCuAO4 mutation (putatively mediated by the increase in Put) 

and hence the unaffected GA3 and GA4 contents in both mutants may be due to functional 

redundancy within AtGA3ox family members. It is also possible that GA7 and GA1 were 

decreased significantly due to low AtGA3ox gene expression and for the sake of forming 

optimal concentrations of the other active gibberellins, GA4 and GA3, in the relevant 

pathway (Figure 1-6).  

Active gibberellins play multiple roles in plant development: for example, GA1 is 

responsible for stem elongation by enhancing division and elongation of cells (Davies 

2012), while GA4 is the most biologically active gibberellin in regulating shoot extension 

and flower initiation (Eriksson et al. 2006) and in promoting the FLOWERING LOCUS 

T (FT) expression in wild-type (Col-0) Arabidopsis plants under long-day conditions thus 

promoting flowering (Hisamatsu and King 2008). Treatment of late flowering 

Arabidopsis mutant fca with GA7 accelerates flowering (Chandler and Dean 1994), and 

treatment of Arabidopsis WT grown in short-day conditions with GA3 reduces expression 

of SVP, the repressor of SOC1 gene expression, and thus activates expression of floral 

pathway integrators (Li et al. 2008).  

Decreased levels of GA1 and GA7 scored in both mutant lines here seem to be responsible 

for defects in their phenotype as alterations in GA contents influence plant growth 

(Biemelt et al. 2004) and GAs stimulate flowering through activating LFY and SOC1 

expressions (Blázquez et al. 1998; Moon et al. 2003). Both GA4 and GA7 are important 

in restoring WT phenotype in dwarf and late flowering Arabidopsis mutants defective in 

either starch synthesis or degradation (Paparelli et al. 2013). Accumulation of Put in 

Arabidopsis transgenic plants overexpressing ADC2, one of the two genes encoding 

arginine decarboxylase, led to severe dwarfism and late flowering which was a result of 

reduced contents of both bioactive gibberellins GA4 and GA1 as compared to wild type 

plants (Alcazar et al. 2005). This may imply that different active gibberellins have 
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complementary regulatory roles and act synergistically in controlling different processes 

during plant development. Severity of defects in mutant phenotype seen here was less 

pronounced and thus it is possible that perturbing concentrations of active GAs led to 

deviation of mutant plants from WT growth pattern. 

Content of GA4 increases dramatically in the Arabidopsis shoot apex shortly before floral 

initiation (Eriksson et al. 2006) and the delay in flowering seen here was only of a few 

days, thus it is also possible that significant changes in GA4 and GA3 in the mutants would 

be seen if shoot apices were analysed in isolation rather than whole seedlings. In addition 

because only AtGA3ox1 expression was analysed in this work, analysis of other family 

members may make a greater contribution to understanding the control of contents of 

active gibberellins GA1 and GA4. 

Dwarfism is the distinctive phenotype of Arabidopsis plants defective in either 

gibberellin synthesis or signalling (Hedden and Thomas 2012; Yamaguchi 2008), and 

lower differences in active GA4 content after bolting reported previously in dwarf 

Arabidopsis plants, which accumulated higher Put levels due to arginine decarboxylase 

(ADC2) overexpression, was suggested to be due to reduction in GA4 contents of WT 

with age (Alcazar et al. 2005). Verifying the growth of the primary stems of both 

AtCuAO4 mutants (Figure 4-19) showed only a minor delay in the extension of mutant 

stems which was sufficient to reduce the final stem length of both mutants significantly 

relative to WT stems. This indicates that the effect of Put accumulation on the gibberellin 

biosynthetic pathway possibly was transient. By controlling the excess Put levels 

observed before bolting through conversion to other forms of PAs, as it is evidenced in 

Figure 4-22, the defect in GA metabolism as a result of elevated Put was perhaps 

mitigated. Alternatively, gibberellins in WT plants are actually reduced with age 

explaining the late identical rate of stem extension in both WT and mutants 

(Figure 4-19.b). This can be verified experimentally in future work by estimating cell 

division rate in the pith rib meristem region where GAs promote cell division and cell 

expansion contributing to internode elongation (Achard et al. 2009; Cowling and Harberd 

1999), and altering endogenous gibberellin contents affects the size of the division zone 

leading to changes in rates of organ growth (Nelissen et al. 2012). 
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As shown by qRT-PCR results (Chapter 3, Section 3.3.4) which are in agreement with 

findings from other studies (Ghuge, 2014; TAIR; https://www.arabidopsis.org/), the 

transcript abundance of AtCuAO4 is high in senescent leaves. During age-dependent 

natural senescence under normal growth conditions, repression of the expression of 

AtCuAO4 gene resulted in delayed senescence symptoms in both mutant lines (C#4 and 

BIS#4) relative to WT plants by retaining higher chlorophyll contents and delaying the 

visible yellowing. However, the possibility of AtCuAO4 being directly involved in all 

types of leaf senescence was refuted by testing leaves of WT plants and mutants through 

dark treatment (Chapter 4, Section 4.3.4), indicating that the relation between AtCuAO4 

activity and leaf senescence is not straight forward. 

The most likely explanation is that the effect on leaf senescence is due to the delay in 

flowering. Arabidopsis is a monocarpic plant and leaf senescence is closely linked to the 

onset of flowering. The late flowering Arabidopsis mutant gigantea showed a long-lived 

phenotype (Kurepa et al. 1998), however in another late flowering mutant (co-2) leaf 

longevity was not affected (Hensel et al. 1993). The direct influence of flowering time 

on senescence in Arabidopsis still appears to be unresolved (Levey and Wingler 2005; 

Thomas 2013) although there is a clearly strong link between delayed flowering and 

delayed senescence. Nevertheless, it is possible that changes in PA metabolism in the 

AtCuAO4 mutants affect senescence processes directly as well as indirectly through an 

effect on flowering time. Although dark-induced senescence activates a shared pool of 

genes with developmental senescence, it is distinct (Buchanan-Wollaston et al. 2005). 

Senescence of the AtCuAO4 mutants under short day conditions where flowering is 

inhibited was not tested, this would be an important experiment to establish whether 

natural leaf senescence is affected by AtCuAO4 mutation in the absence of flowering. 

Using an in situ non-destructive assessment such as using the chlorophyll meter SPAD 

(Cerovic et al. 2012) would be useful here as indicator of changes in chlorophyll content 

and thus senescence progression. 

As discussed above the most likely effect on delayed senescence through delayed 

flowering is through the increased Put which affects, in some way as yet unknown, GA 

biosynthesis and hence the expression of key flowering genes. It could however also be 
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mediated by an effect on H2O2 generation. This might perturb the peak of H2O2 seen at 

bolting (Zimmermann et al. 2006) and which may play a regulatory role in promoting 

flowering. Elevation in the H2O2 production at this critical point was described as a 

communication mechanism between leaves and the floral meristem either for flowering 

induction or for alteration in leaf metabolism to recycle their contents supporting the 

newly developing reproductive organs leading ultimately to leaf senescence (Bañuelos et 

al. 2008). Since high H2O2 levels are required for Arabidopsis bolting and flowering 

(Bieker et al. 2012; Miao et al. 2004), blocking AtCuAO4 activity possibly affected H2O2 

production in both mutant lines which in turn delayed bolting and thus flowering and 

eventually retarded leaf senescence. Yet another route may be via changes in GABA 

generation which may affect the senescence programme through its effect on ethylene 

synthesis (Kathiresan et al. 1997). 

It is also possible that some aspects of senescence are affected directly by the changes in 

PA concentrations noted after bolting: specifically the increase in Spm and Spd. Spm has 

reported anti-senescence properties in plants (Del Duca et al. 2014; Moschou and 

Roubelakis-Angelakis 2014; Serafini-Fracassini et al. 2010), and exogenous Spd was 

able to inhibit RNase activity, chlorophyll decline and protein degradation from thylakoid 

membranes in barley leaf discs in the dark (Legocka and Zajchert 1999). This may be due 

to Spd and Spm exceeding Put in their efficiency in the elimination of reactive oxygen 

species (Kuznetsov and Shevyakova 2007). In accordance, it was found recently that 

inhibition of Spd and Spm catabolism via inactivation of PAO activity drastically delayed 

barley leaf senescence in the dark, and this was associated with reduced Put, increased 

Spd and Spm levels, decreased H2O2, and slowing down of the senescence-associated 

chlorophyll loss (Sobieszczuk-Nowicka et al. 2015). Whether increased levels of leaf Spd 

and Spm observed in leaves of both AtCuAO4 mutants after bolting contributed to the 

delayed senescence in these plants compared with WT leaves remains to be established 

though, since apparently they did not affect dark-induced senescence. 

According to the above explanations for the resulted BIS#4 and C#4 phenotype, a 

tentative model suggesting a potential involvement of different response pathways to 

AtCuAO4 inactivation in the regulation of different physiological processes in the plant 
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is proposed in Figure 6-2. Confirmation of H2O2 involvement with these candidates and 

quantification of its levels in mutant lines using cHyper reporter (Cheng et al. 2013; Costa 

et al. 2010) and DAB (3,30-diaminobenzidine) assay (Augeri et al. 1990) will contribute 

to a better understanding of its role in regulating several processes in the plants. 

These results emphasize the physiological importance of PA catabolism as modulated by 

the AtCuAO4 enzyme and thus the significant impacts of perturbing the expression of 

AtCuAO4 (At4g12290) on different aspects of plant growth and development as well as 

plant longevity, and led to the suggestion that the catabolic activities played by this gene 

are fundamental throughout plant life as its mutation perturbed the endogenous levels of 

PAs and deviated the plant from the normal pattern of growth. 

 

Figure 6-2 Proposed regulation of phenotype of the mutant lines BIS#4 and C#4 by different pathways 

upon inactivation of AtCuAO4 gene by T-DNA insertion mutagenesis. Dotted arrows indicate possible 

regulation based on other studies stated above, while solid arrows are based on analysis performed in this 

work and correlations between changes seen in gene expression, PA content and changes in growth and 

development. Colour of arrows varies depending on the observed phenotype. 

Spd &Spm 

Post bolting

Put

Pre bolting

GA metabolic 
genes SOC1

Increased

leaves

Late flowering & 

bolting

Short 

inflorescence

Extended 

lifespan

Total 

chlorophyll

ROS ?
???



Chapter Six General Discussion 

 

178 

 

Based on the analysis of the transcription levels of AtCuAOs in developing leaves 

conducted in this work by qRT-PCR, the AtCuAO gene family is expressed in leaves 

concurrently with critical processes in plant life: maturation of young leaves, at the 

transition to flowering, at reproduction stage and at senescence. In Arabidopsis, evidence 

for the functional diversity of the AtCuAO genes was provided based on the expression 

of three AtCuAOs in response to different exogenous treatments together with the 

different cellular localization of their corresponding proteins (Planas-Portell et al. 2013). 

Bearing in mind that the enzymes encoded are all performing a similar function, 

catabolizing PAs, such diversified expression pattern of AtCuAO family members during 

undisturbed development in leaves suggests functional diversity between AtCuAO genes. 

Hence, it will be interesting to dissect in detail the effects of insertional mutants in each 

individual AtCuAO family member on regulation of PA levels and the influence of 

repressing their activity on different aspects of plant growth and development and plant 

senescence as well as their influence on GA metabolism. This work is in progress in the 

Rogers lab and elsewhere and its results may give further information about the exact 

role played by each AtCuAO gene and thus the function performed by the whole family.  

In addition, as roles orchestrated by AtCuAOs are triggered mainly by catabolising PAs 

and releasing metabolites that are important in different physiological processes in plant 

life (Martin-Tanguy 2001; Paschalidis and Roubelakis-Angelakis 2005a), it is worth 

detecting product formation as a result of their activity, notably H2O2 that plays important 

roles during different processes of plant growth and development (Carucci et al. 2014). 

Histochemical staining and quantitative assays using DAB (3,30-diaminobenzidine) 

which reveals levels of H2O2 accumulation (Augeri et al. 1990) could be used to assess 

whether perturbation of AtCuAO expression affects H2O2 at critical points in plant 

development. 

6.3. Effects of perturbing expression of selected AtCuAO gene family 

members by artificial microRNA on growth and development in 

Arabidopsis thaliana 

In the presence of the functional redundancy amongst phylogenetically related genes in 

Arabidopsis (Wang et al. 2004), defective genes might be compensated by other family 
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members (Kafri et al. 2009) which may affect results obtained using single knock-out 

mutation. Manipulating the expression levels of plant genes using target-specific an 

artificial microRNA (amiRNA) approach is an effective tool to create transgenic plants 

silenced in a single or more genes of interest (Sablok et al. 2011). For deeper 

understanding of the functional role of AtCuAO genes and to avoid functional redundancy 

amongst AtCuAO members, two amiRNA lines of Arabidopsis thaliana plants 

transformed with amiRNAs targeting against multiple AtCuAO family members were 

generated. 

The phenotype of transgenic lines derived from the two amiRNA constructs deviated 

from the normal growth and development patterns seen in WT plants (Figure 6-3). A 

range of significant alterations in plant vegetative and floral development was observed 

in amiRNA plants grown under optimum controlled conditions, perhaps the most 

important phenotypic traits were: 

- Changes in the timing of flowering and fruiting which subsequently affected other 

reproductive traits and plant longevity. 

- Alterations in the presence of phenolic compounds in the secondary cell walls 

which in turn affected stem flexibility and phenotype. 

The most striking feature of these transgenic plants was the range of phenotypes, 

sometimes contradictory, and the apparent instability of particular phenotypic traits 

across generations. For example, flowering time was affected in several lines but 

transformation with the amiRNAs led to early flowering in plants transformed with the 

amiRNA CSHL_017399 and late flowering in plants transformed with the amiRNA 

CSHL_058443. It is possible that this difference is due to different specificities of the 

two amiRNAs. For example, AtCuAO7 is one of the amiRNA CSHL_058443 targets 

while it is not targeted by the amiRNA CSHL_017399 (Figure 6-3). Results displayed in 

Section 3.3.4 show that expression level of AtCuAO7 increased suddenly at the floral 

transition. It is possible that if expression of this gene is down-regulated at this crucial 

stage in development it reduces the peak of H2O2 required for flowering as was 

hypothesized for the AtCuAO4 mutants. In order to test the hypothesis that AtCuAO7 

might be implicated in flowering process, further investigations in future work using 
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AtCuAO7 knock-out mutants or overexpression lines might be helpful in verifying this 

hypothesis via determination of bolting and flowering times and the related levels of 

endogenous hydrogen peroxide (H2O2) in leaves. 

 

Figure 6-3 A schematic flow chart showing putative manipulated and unaffected AtCuAO genes in each 

amiRNA line and the resulting phenotypic alterations. Genes in red are common targets of both amiRNA 

constructs.  
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Another hypothesis to explain the present findings in relation to effects of the amiRNA 

constructs on flowering time is that defects in the AtCuAO catabolism pathway disturbed 

PA homeostasis, since catabolising PAs via copper amine oxidases modifies their levels 

(Rea et al. 2004). Concentrations of polyamines together with a balance in their 

distribution are critical factors in flowering and reproduction success in various plants 

(Kushad et al. 1990; Rugini and Mencuccini 1985; Urano et al. 2003). However, 

conflicting results for the effect of PAs in this regard were reported. For example, 

overexpression of oat ADC (arginine decarboxylase which catalyses Put biosynthesis) in 

transgenic tobacco plants resulted in accumulation of Put and plants showed an early-

flowering phenotype in one line while the rest of transgenic plants which showed higher 

or lower Put concentrations did not exhibit any changes in flowering from control plants 

(Masgrau et al. 1997). In contrast, high Put levels in Arabidopsis plants overexpressing 

ADC2 delayed flowering time (Alcazar et al. 2005). Recently, it was found that 

simultaneous silencing of the two ADC genes in Arabidopsis by amiRNA:ADC reduced 

PA levels and delayed flowering rate under long day conditions (Sánchez-Rangel et al. 

2016). These results highlight the importance of the balance in PA levels in regulating 

flowering time. Accordingly, alterations observed in the flowering time with both 

amiRNA constructs is presumably due to perturbing PA homeostasis in response to 

manipulating one or more AtCuAO members. Quantitative analysis of the endogenous 

PAs in the future work is needed in both amiRNA plants to clarify the link between 

flowering time and PA levels. 

The regulatory network controlling transition to flowering and reproduction in general is 

complicated and perhaps PA on its own is not sufficient for flowering induction but may 

be its homeostasis along with other factors are critical for these important processes as 

was indicated previously (de Cantú and Kandeler 1989). Given the results presented in 

Section 4.3.8, and in accordance with previously reported results (Alcazar et al. 2005), a 

hypothesis for effects on flowering could be that the amiRNA affects AtCuAO expression 

which in turn results in Put accumulation and affects gibberellin metabolism. However, 

this can only be proposed in case of the amiRNA CSHL_058443 which showed late 

flowering. For the amiRNA CSHL_017399 early flowering refutes this hypothesis. A 

possible explanation for this effect is that the FUL gene which acts redundantly with 
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SOC1 to promote flowering (Albani and Coupland 2010) possibly compensated for SOC1 

loss which is positively regulated by gibberellin (Moon et al. 2003). This would need to 

be tested through an analysis of the expression of these genes, and indeed if this is the 

case, why was the same effect not seen in the other amiRNA line? This needs further 

investigation in future work by measuring active GAs and analysing the transcript levels 

of GA metabolic genes along with the floral integrators for a better understanding of the 

role played by AtCuAOs in regulating this critical process in plant life. 

Investigation of the phenotypic characteristics of amiRNA siliques also showed clear 

alterations in fruit length and number of seeds, which might also be a result of unbalanced 

PAs. Accumulated evidence demonstrates the critical importance of PA homeostasis in 

seed production and that perturbation of PA levels may lead to male sterility (Falasca et 

al. 2010; Zhang et al. 2011), or defects in seed production through affecting pollen 

germination (Antognoni and Bagni 2008; Biasi et al. 2001; Imai et al. 2004b; Song et al. 

2002), or in some cases to increased seeds (Masgrau et al. 1997). Metabolites of PA 

catabolism by CuAOs such as H2O2 are another possible contributor to alteration in 

reproduction observed in amiRNA plants, since activity of CuAOs is correlated to H2O2 

production (An et al. 2008; Qu et al. 2014) and PA-derived H2O2 has a documented role 

in controlling plant fertility (Wu et al. 2010). In addition, GABA, another PA catabolic 

product, was suggested as an important factor in guiding pollen tubes (Palanivelu et al. 

2003), and their high levels were correlated with formation of short siliques with fewer 

seeds (Mirabella et al. 2008). 

Although the overall organization of vascular bundles and interfascicular fibers was not 

altered, a remarkable modification in the deposition of phenolic compounds was detected 

in almost all amiRNA mutant lines. Auto-fluorescence under UV light was more intense 

in CSHL_058443 plants than in controls especially in the interfascicular regions, 

indicating an increased deposition of phenolic compounds (McLusky et al. 1999), and 

probably lignification (Oliveira et al. 2013). In some cases, plants of this line 

(CSHL_058443) showed extra-layers of cells, with more intense auto-fluorescence, 

outside of the usual areas which was detected in the cortex parenchyma and phloem caps. 

Plants of the other amiRNA line (CSHL_017399) did not show clear differences in the 
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intensity of auto-fluorescence under UV light, but a clear reduction in the size of vascular 

bundles was noted. These alterations in stem architecture possibly affected stem 

flexibility and resulted in the floppy stems seen in the amiRNA CSHL_017399 lines and 

straight and sometimes wider stems seen in the amiRNA CSHL_058443 lines. 

In Arabidopsis, AtAO1 is expressed during early stages of vascular tissue differentiation 

in roots and leaves (Møller et al. 1998; Moller and McPherson 1998). The contribution 

of both AtAO1 and AtCuAO1 to vascular tissue differentiation was reported (Cona et al. 

2006; Paschalidis and Roubelakis-Angelakis 2005a), and the involvement of H2O2 

derived from PA catabolism via both amine oxidases, CuAO and/or PAOs, in plant cell-

wall maturation in differentiating xylem was suggested (Moschou et al. 2012). In both 

amiRNA lines, AtAO1 is a target gene while AtCuAO1 is not (Figure 6-3). According to 

TAIR (https://apps.araport.org/thalemine/portal.do?externalids=AT4G14940.1), the best 

Arabidopsis thaliana protein match to AtAO1 (At4g14940) is AtCuAO8 (At1g31690). 

Hence, along with the activity of AtCuAO1 in both amiRNAs, it is possibly that defective 

AtAO1 in the amiRNA CSHL_058443 was covered by the untargeted gene AtCuAO8 

through functional redundancy, and while AtCuAO8 is manipulated in the amiRNA 

CSHL_017399, may be the tight coordination between the two catabolic enzyme 

machineries, CuAO and PAO, (Planas-Portell et al. 2013), compensated the defect in 

H2O2 production.  

Confirmation of these suggestions in the future work may reinforce the role of AtAO1 

during vasculature differentiation. A first step would be to measure the transcript levels 

of AtCuAO genes which are known to be involved in vascular tissue differentiation, such 

as AtAO1 and AtCuAO2, along with AtCuAO8 in the amiRNA lines. In addition, 

measuring levels of PAs and H2O2 production might be helpful in explaining these 

observations as their roles in regulating vascular tissue differentiation are well 

documented (Clay and Nelson 2005; Cona et al. 2006; de Marco and Roubelakis-

Angelakis 1996; Ge et al. 2006; Ghuge 2014; Kakehi et al. 2008; Vera-Sirera et al. 2010). 

Studying lignification of secondary cell walls using phloroglucinol staining in stems 

might also be useful to understand in more detail lignin deposition in secondary cell walls 

in response to simultaneous silencing of several AtCuAO members. 



Chapter Six General Discussion 

 

184 

 

Previously, it was suggested that flowering transition and the secondary growth are under 

shared genetic control (Sibout et al. 2008). Loss of function of both flowering time genes, 

SOC1 and FUL, in Arabidopsis showed late flowering with an extensive secondary 

growth (Melzer et al. 2008). This suggests another possible explanation for the highly 

intense auto-florescence observed in stem sections of the amiRNA CSHL_058443 which 

might be related to their late flowering. 

Overall, transformation with the amiRNA constructs has a clear effect on almost all 

aspects of plant growth and development including transition from vegetative to 

flowering stage, productivity and plant longevity. However, there is no clear explanation 

for the pleiotropic developmental defects caused by the presumed simultaneous 

manipulation of multiple AtCuAO family members. Since these observations were 

focusing on phenotype changes, other methods of analysis should be applied to 

understand AtCuAO functions in these fundamental events since some of the phenotypes 

observed could contribute to improvement of some agriculturally important traits such as 

increased seed production or high lignification. In order to get better understanding of the 

observed phenotypes and to be able to draw a conclusion regarding the effectiveness of 

these two amiRNAs in altering AtCuAO expression, more investigations are required to 

analyse the expression levels of target genes of both amiRNAs by qRT-PCR at critical 

stages of plant development. Of particular importance are the two critical stages where 

leaf-specific AtCuAOs peaked but also the expression of the AtCuAO gene family during 

xylogenesis, floral meristem development, pollen germination and early seed 

development. It is also important to determine PA and H2O2 concentrations using DAB 

assay (Augeri et al. 1990) in transformed plants which may shed light on the action of 

specific polyamines in different plant developmental processes. In addition, since 

inflorescence stalks of some individuals lost their apical dominance and produced 

numerous of lateral branches, testing the pith rib meristem region might be useful in 

understanding this phenomenon. It is also interesting to discover the interplay between 

AtCuAOs and flowering processes and the role AtCuAOs play in floral morphogenesis. 

Due to redundancy within gene family members, may be it worth also trying 

simultaneous transformation with both amiRNA constructs, or crossing lines carrying the 

two different constructs which may extend the number of target genes or, alternatively, 
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using CRISPR/Cas system to silence multiple AtCuAO genes (Feng et al. 2013; Li et al. 

2013b). 

In conclusion, this work represents a contribution to the understanding of the temporal 

expression of AtCuAO genes in relation to changes in development and senescence, and 

other fundamental processes in the plant’s life. Different approaches used in this thesis 

support the role played by PAs during vegetative and reproductive stages, and the crucial 

involvement of the catabolic enzymes AtCuAOs in controlling these functions either 

directly by regulating PA levels or indirectly by influencing other important pathways 

which have roles in different physiological processes. Hence, in spite of the pivotal roles 

PAs play in regulating wide range of plant physiological and developmental processes, 

their catabolism by AtCuAO is crucial during plant growth and development.  

The main things to do next is to understand the effect of other AtCuAOs on the whole 

plant growth and development and the functional diversity expected by their expression 

pattern by phenotyping plant response to mutation of other AtCuAO genes mimicking 

experiment performed in Chapter 4, in addition to, understanding the mechanism 

underlying amiRNA effects, by analysing the expression level of AtCuAO genes as well 

as the impact of manipulating the expression of AtCuAOs in amiRNA lines on PA content 

and generation of the catabolic metabolites such as H2O2 as a result of PA degradation. 
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Appendix A 

                 10        20        30        40        50        60     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      TTGCATTGAAGGTCTTCGTAACTGGAATAGATATCACAACTAAAAAACACCAAAGGAGCT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ------------------------------------------------------------  

AtCuAO5      ------------------------------------------------------------  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      ------------------------------------------------------------  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      ------------------------------------------------------------  

 

                 70        80        90       100       110       120     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      TCTATCAGTCGTCAGAAGAGATGATAGTCTTCTTACCGCAGAACAGGGATTTTATCTGCT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ------------------------------------------------------------  

AtCuAO5      ------------------------------------------------------ATGGTG  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      ------------------------------------------------------------  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      ------------------AAACACGAAAATAAAAGATTCAAATATGAAATTTTAATAGAA  

 

                130       140       150       160       170       180     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      GTCTTTCCG-GTCTTTCTTGTTGAAAGTCTTGGTAACAAAGCTTCTTTACAAGGTTGTAC  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ------------------------------------CAAAGAACCAAAACAAAAAAAAAG  

AtCuAO5      AACCGTGAT-AATTCTATTGTGGCTTTATCCTTTTTTATGCTCTTCTTGCTTGTGTTACA  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      ------------------------------------------------------------  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      ATATTCCAATGACAAAGGTCTTTTTAGTCTTGCAAACACACACACCAAACACGAAAATAA  

 

                190       200       210       220       230       240     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      TTGAGTCGGAAAGGGTCTGGAGCCATCTCAGCCACGTCAAGAATAATCTTACGACTGTAA  

AtCuAO3_(SP) -----ATGGAGCCAAAACTCTCCTCTCGTTTGTTTCTTCTCATCACCACGGCTTGTTTCA  

AtCuAO4      TTGACATGGACCAAAAAAGCTTTTTCCGGTTGATTTTTCTCATAGTCACAGCTGGTTTCA  

AtCuAO5      TCTGCATTTTGAAACTACAACAGCTGCGCGAAAACCAGTTAGAGTGTTTGGTCCGCCAAG  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      -----------------------------------------------------------A  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      AAGATTCAAATATGAAATTGTTCTTAACCAACAGCAACGCCTCCAATTTTTTAAGAGATC  

 

                250       260       270       280       290       300     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      AAAGTTTCACCCTTCTTCGTTTCCAACGCCTTCTCTGCTTCGTTAAGAGAAGCAAACTCA  

AtCuAO3_(SP) TCCTCTTATTCACTTCCACTAACTTCTCTCAAGCGCCATCATCCACGGCGAAGCTTTTCG  

AtCuAO4      TCATCTCCTTCACTTCCACTAACTTCCCTCACGCGC---------CGACGAGGCTTCTTG  

AtCuAO5      TTCTATCGAGTGGTCACCACCATCACCACCAAAGGATGACTTTGAATGGTTCGAGATCAA  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      TAATGTTACTTATCTTCTGATCTTCCCAAAAAAAGCAACTAACAATGGTGGAACTTTC--  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      AAAGAAAGAAAACAAATGATATTCATATTCTTCAAAGCTTT------GAAAGTAAACCAG  

 

                310       320       330       340       350       360     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      ACAAAGCAACAGCCCGTATGCTGGCTCTACAATAACTCGAACACGAACAACTTCTCTCTG  

AtCuAO3_(SP) ACTGCACAAAATCTTCGTCTTCACCTTTTTGTGCGTCAAGAAACTTCCTCTTTAACAAA-  

AtCuAO4      ATTGCACCGACTCTTCTTCTTCACCTCTTTGCGCTTCGAGAAACTTTCTTTTCAACAAAC  

AtCuAO5      TATATACAAGAACATTGAACAAACTGCATTCCGACCCACTGGTCAAGGTCCTAGCCAAGG  

AtCuAO2      --------------------------------------CTCACAAAGAACAATATGGCTC  

AtCuAO7      GTTCTCTCAGCTCCTTGTCTTA---CTTTTAAGCTT----ACTCTTTCTCTTCA------  

AtCuAO8      -----------------------------------------------------ATGGCTC  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TCTGAAGAGCTTTCGGTG--------CTACAACCTCTTTGACTTCACTCTCCTTAGTCTC  
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                370       380       390       400       410       420     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        --ATGAACACATCAATACTTGCCATACTTTTTCTCATA--CA--ATGTGTTTTCACTCTT  

AtCuAO1      AAGAAACTGAAGATTTTTGGTATTATGTTACGTCGGGGATTA--CAGATATTGGACGTTT  

AtCuAO3_(SP) AACA--CTCGGCCCATTTCTAAAAACATTCCCAAAACAAAAC--CCAAAAACCATGACCA  

AtCuAO4      AACAACCACGACCTATTCCTAAACATGATCCTAAACCAAATA--CCAAAAACCATGATCA  

AtCuAO5      CATCGGACACAAGGATCCACCTGTATTT-TCTTCCGT---TT--TTGTAATCGGATCCTT  

AtCuAO2      CACTTCACTTCACCATTCTCATCCTTTTCTCTTTCGT---TA--TCGTAGTCTCATCCTC  

AtCuAO7      ------------CTACTCTCGCGTCAAGTTCCAAGAC----C--CCCCGATTCAAGTATT  

AtCuAO8      AAGTTCACTTAACCATTTTTATATTTT---CTTCCAT---TT--TCGTAATCTCATCATC  

AtCuAO9      ------------------ATGGAAACACCGTTAAGGGAAG-----TGAGACCAAAGGTGA  

AtCuAO3      CAATTCGCATGGATTCGGTGGCACATCTACTGCCGGTGAGCAGTTGAAAAATCCATGTGG  

 

                430       440       450       460       470       480     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GGTCTCCATTTC--------CACCCACTTGATCCCTTAACTCCC--CAAGAAATCAACA-  

AtCuAO1      TGTTATTATTGCAAAAAC-CGGCAAATAAACTTCAACAAGTGTTTGGCTACACCGGATAT  

AtCuAO3_(SP) CGTTTCCGATACACCGAA-CCACCCTCTTGACCCACTTACCGTC--ATGGAGATCAACA-  

AtCuAO4      CGTGTCCGATACACCAAA-CCATCCTCTAGACCCACTCACGGTG--TCGGAGATTAACA-  

AtCuAO5      AAGCTTCATCCCACCGCC-TCACCCATTTGATCCCTTGACTGAG--ATCGAACTCAATC-  

AtCuAO2      AAGCTTTACTCCACCGCG-TCACCCATTTGATCCCTTAACCGAG--ACCGAACTCAAAC-  

AtCuAO7      CGTT--AGAGAAGCCTCA-CCACCCACTTGACCCACTAACGACA--CCTGAAATAAAGA-  

AtCuAO8      TAGCTTCATCCCACCTCC-TCACCCCTTCGATCCCTTGACCGAG--ACTGAACTCAAAC-  

AtCuAO9      CACTTGTGGTACGAATGG-TAGCTTCAGTGGGTAACT-ACGATT--ACATCATTGATTAT  

AtCuAO3      CATTAGTGTGAAACCAATATGTTCGACGGGCATAACCGGCCAATCTTCAAGTCTAGGAAC  

 

                490       500       510       520       530       540     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AAACAAGCTTTATCGTCAAGAAATCTCATCT-AGGCAACCTCAAAGAT---CTCACATTT  

AtCuAO1      TTGATCTTCTCTACTTGTAT-ACTATTAGAG-TATTAGTCAGAACAGA---ACCGGTCAA  

AtCuAO3_(SP) AAGTCCGATCAATCCTCTCCTCCCACGCGCT-CTTCGCCTCACGTGTACCCCACTTGCTT  

AtCuAO4      AAATCCGATCAATACTCTCTTCTCACGCGCT-ATTCACTTCCGGTACACCACACGCGCTC  

AtCuAO5      TCGTCCGTAACATCATCAACGAAAGGTACCC-CATTGGTCTGGAACATAGGTTCACTTTC  

AtCuAO2      TCGTCCGAACCATCATCAACAAGTCGTACCC-CGTTGGTCCGAATCATAAGTTCACTTTC  

AtCuAO7      GAGTCCAAACCATCCTCTCGGGTCATGATCC-GGGTTTCGGGTCCGGGTCAACCATCATT  

AtCuAO8      TTGTCCGTAACATCATCAACAAGTCGTACCC-TATTGGTCATAACCATAAGTTCACGTTC  

AtCuAO9      GAGTTC---CAAACTGATGGGGTTATGAGAG-CAAAGGTTGGGCTTAGTGGAATGTTGAT NEW_9F 
AtCuAO3      ATGTGTGATCCCAAACACGTACCAAAGAACGACGTCAGATTCTTCCAAGGAGCGATTCTG  

 

                550       560       570       580       590       600     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        CATTATCTCGACCTCGAAGAACCAAACAAGAGCCACGTCCTCCAATGG---CTATCACCA  

AtCuAO1      GATGAAGCAAATGGTCTACAGACCGGTAAGTCTTTTTCGAAGAAAGGAGCAGACCCAAGA  

AtCuAO3_(SP) AACTCCGTCGTTCTTGAAGAGCCAGACAAGAATCTAGTCAGACAATGG------------  

AtCuAO4      CACACCGTCGTTCTTGAAGAGCCTGAGAAGAATCTTGTCCGTCACTGG------------  

AtCuAO5      CAGTACGTGGGTCTCAACGAACCCGACAAGTCCCTAGTCTTATCCTGGGTTTCATCACAA  

AtCuAO2      CAATACGTTGGTCTCAACGAACCCAACAAGTCTCTAGTCTTGTCTTGGTACTCATCACCG  

AtCuAO7      CACGCCATGGCTCTCGACGAGCCGGATAAGCAACGTGTCATCCGGTGG------------  

AtCuAO8      CAATATGTGGGTCTCAACGAGCCTGAAAAGTCCCTAGTCTTGTCGTGGCACTCATCACCA  

AtCuAO9      GGTGAAAGGGACAACGTACGA--GAACAAGAACCAAGTGAAGAAAGAC------------  

AtCuAO3      TTTCACCCATGTGGCAAGACCTTCACCAGCCCGTGGGTTTTGGTTTGGGAATTCTCCTCC  

 

                610       620       630       640       650       660     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AATCCCTCCAAGAAACCACCACCCCCACGTCGTCGCTCATTCGTCGTGGTTCGAGCCGGT  

AtCuAO1      ATCGGATTGGATTCAAAGAAATTTGCTGGTTTAAGTTCAAAGCTAGCCGCAACGGTTGGC  

AtCuAO3_(SP) GAGAAAGGAGACCAACTACCACCAA------GAAAGGCCTCAGTGATCGCACGTGTTGGC  

AtCuAO4      GAAAAAGGGAACCCACTTCCTCCGA------GGAAAGCTTCCGTCATCGCACGTGTTGGC  

AtCuAO5      TACCACAATGTCAAGTCACCACCAC------GTCAGGCATTCGTCATCGCTCGAGATCAC  

AtCuAO2      AATCATACCATCAAACCACCACCAC------GCCAAGCGTTCGTCATTGCTCGAGACAAC  

AtCuAO7      AAGAAAGGTGATCGTCTCCCGCCGC------GAAGAGCGGAGATTCTTGCTATGTCTAAC  

AtCuAO8      GACCGCAACGTCAAACCACCACCAC------GTCAAGCTTTTGTCATCGCCCGAGATAAG  

AtCuAO9      AAAGAAGGTAATGAAGAAGAGCTTT------ATGGCACGATTCTGTCCGAAAATGTAATT NEW_9R 
AtCuAO3      AGGAAACTTCTCGTCTGGGGCGTAACGG---GTAACCCAGAGATTATGCTTCAGGAAAGC  

 

                670       680       690       700       710       720     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GGTCAAACCTACGAGCTCATCATCGACCTAACCACGAGCAAGATTGCATC---CTCCCGC  

AtCuAO1      ATAACTGG--ATAATCTTCTTGACAAGGTACGTGATGGAACCCTAGTGTGTACCACAGTA  

AtCuAO3_(SP) GGCAACTCGCACTTGCTCATCGTTGACTTATCTACAAGTCGTGTTGATCAAGCGGATAGT  

AtCuAO4      GCGGACACGCACGTGCTCACCGTTGATATCTCTACGGGTCGGGTAGATTCAGAGAATAGC  

AtCuAO5      GGAAAGACCCGAGAGATCGTCGTGGACTTTGCCTCTCAAGCCATTGTTTC---GGAAAAG  

AtCuAO2      GGAAAGACCAGAGAGATAGTCCTTGACTTTTCCTCTCGTGCCATCGTCTC---GGACAAA  

AtCuAO7      GGCGAGAGTCACGTGCTCACGGTGGATCTTAAATCCGGTCGGGTTGTTTC--TGATTTGG  

AtCuAO8      GGCATGAGCCGAGAGATCGTTATTGACTTTTCCACTCGAGCAATTGTCTC---GAACAAG  

AtCuAO9      GGAGTTATTCACGACCACTACGTCACTTTTTACCTTGACCTCGATGTCGA--TGGCCCGG  

AtCuAO3      GGCTCTTCTTAGAAACTTCGCCTCGGGTCGAGCTAATGGCAAACAATTTGAACCCGGAAC  
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                730       740       750       760       770       780     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ATCTACACAGGCCATGGTT-TCCCCTCATTCACATTCATAGAGCTTTTCAAAGCAAG--C  

AtCuAO1      CTATGTCCTTGTTTTCGATCGAACGGTCCCGGTCTGACCAAACTTGTAGTGTGTCATCAC  

AtCuAO3_(SP) CCGGTTCCTGAATCCGGTT-ACCCGATTGTGACGTCGGAGGAGATGGACAGTGCCGCG-T  

AtCuAO4      CCGGTTCGTGTTTCTGGTT-ACCCGATGATGACTATAGAAGAGATGAACGATATCACT-G  

AtCuAO5      ATTCACGTAGGAAATGGTT-ACCCTATGCTTACAATTGACGAGCAACAAGCAACCAG--C  

AtCuAO2      ATTCACGTAGGAAATGGTT-ACCCTATGCTCTCAAACGACGAGCAAGAAGCATCCAC--C  

AtCuAO7      TCAAC-CCGACTTTTGGAT-ACCCGATTCTTACTATGAAGGATATCATCGCAGTCTCA-C  

AtCuAO8      ATCCATGTAGGCAATGGTA-ACCCAATGCTAACTATTGACGAGCAGCAAGCAGCCAC--C  

AtCuAO9      ACAATTCCTTTGTTAAAGTGAACCTCAAGAGGCAAGAGACGGCGCCAGGTGAGTCACC-T  

AtCuAO3      AAGTTTGTATCCCGTTAATTGGCCCGTCCTGTTTACAGTCCTTGTGTTCCTTACAATC--  

 

                790       800       810       820       830       840     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AAGCTTCCTCTAACTTACCCACCTTTCAAGAAATCGATTCTCGATCGATCCCTAAACATC  

AtCuAO1      CTTGGCTCTGGTAAATTAGAACTCCTCCGGCATATTGTTCTGACCGGTTATATGGAGTCA  

AtCuAO3_(SP) CTGCACCGTT-CTCAAACGCAGATTTCAACCGTACGATCAACTCTCGTGGAGTTAATCTA  

AtCuAO4      TTGTACCATT-TTCAAACGCGGATTTCAACCGTACGATCATCTCTCGTGGAGTTAATCTA  

AtCuAO5      GAGCTTGTTCTCAAGTTCAAGCCGTTCCGTGACTCAATCAGGAGACGTGGCTTGAACGTG  

AtCuAO2      GAGCTTGTTGTCAAGTTCAAGCCGTTTATTGACTCGGTCGCGAAACGTGGCTTAAACGTT  

AtCuAO7      AGGTTCCTTA-CAAGAGCGTGGAGTTCAATCGCTCAATCGAAGCGCGTGGGATTCCGTTC  

AtCuAO8      GCGGTTGTTCAAAAGTACAAGCCGTTCTGTGACTCGATAATAAAACGCGGCTTGAACTTG  

AtCuAO9      AGGAAAAGTTACATGAAAGCAGTTAGGAACATTGTGA--AAACCGAAAAAGACGGTCAGA  

AtCuAO3      --CAATGGCGAGCAGAAAGAGGGTCACAGTCACGCATCGCCACTGCCTCAGATTTAAGTA  

 

                850       860       870       880       890       900     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TCCGAGGTTTCTTGCATCCCTTTCACCGTTGGTTGGTACGGAGAAACCACCAC-------  

AtCuAO1      CCCATATCTGATTATTAGTGAATGCACCTCGAATTTGAGGAGGATCATCGTGATCAAGCA  

AtCuAO3_(SP) ACGGACGTGATTTGTATCCCAATCTCTAGTGGCTGGTTTGGTAATAAAGACGACAACAC-  

AtCuAO4      ACGGACGTGATTTGTTTCCCAATCTCTTGTGGTTGGTTTGGTAATAAAGAAGAAAACGC-  

AtCuAO5      TCCGAGGTTGTTGTCACGACCTCAACGATGGGATGGTTTGGTGAGGCGAAGCC-------  

AtCuAO2      TCGGAGATCGTGTTCACGACGTCAACGATTGGATGGTACGGTGAGACTAAGGCCGAGGC-  

AtCuAO7      TCCGGTTTGATTTGTATTACACCGTTCGCCGGTTGGTATGGACCGGACGAAGA-AGGAC-  

AtCuAO8      TCGGAAGTTGTGGTCACCTCCTCAACGATGGGATGGTTTGGTGAGACAAAGAC-------  

AtCuAO9      TCAAGCTTAGCTTGTA---CGATCCATCA-GAATACCACGTCATTAATCCTGGTAAAAC-  

AtCuAO3      ACTTCTCTTCCGCATAAAACGCATTGTTGTGGACATTGTTCTCACCTCGCTCGTCAACTC  

 

                910       920       930       940       950       960     

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        -GAGACGTGAACTCAAAGCCTCTTGCT----TTTACAGAGA--CGGATCAGTCAACGTCT  

AtCuAO1      -AACTCGCTGCATTACCACCCGGTACGATCCTGTAACCAGC--CGGGTTTCCTACCCGAG  

AtCuAO3_(SP) -CAAAAGGGTTACTAAAATTCAGTGTT----TCTCAACTCA--AGATACCCCTAATTTCT  

AtCuAO4      ----GAGGGTAATTAAAAGTCAGTGTT----TCATGACACA--AGGAACACCTAACTTCT  

AtCuAO5      -GGAGAGGCTTATAAAAAAGAGACCGT----TTTATCTGAA--TGGGTCGGTGAACACTT  

AtCuAO2      -GGAGCGAGTTATTAGATTGATGCCGT----TTTATCTTGA--CGGCACCGTTAATATGT  

AtCuAO7      ---GACGAGTCATAAAGATCCAATGTT----TCTCAAAGCA--AGACACTGTCAATTTCT  

AtCuAO8      -GAAGAGGTTTATAAGAACGATACCCT----TTTATCTAAA--CGGATCGGTGAACACGT  

AtCuAO9      -AACTCGAGTTGGTA--ACCCGACGGG----TT-----ACA--AGGTTGTCCCTAGAGCC  

AtCuAO3      TAACATTTACCTCAACTACCTGATTAAAAGCTTCAGCAGGTTTACAGTCAACAGACATAT  

 

                970       980       990       1000      1010      1020    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TCACAAGACC--CATCGAAGGAATCA---CCGTAACTATAGACGTCGACTCAATGCAAGT  

AtCuAO1      ATTTTCGGTTCGGGTTCACAATGTGGAATTCATATGGGTCATAGAGGCTCAACTTGATCT  

AtCuAO3_(SP) ACATGCGACC--TATCGAAGGTTTGA---CTCTGCTTTTTGATTTAGACACGAAGCGAAT  

AtCuAO4      ACATGCGTCC--TATCGAAGGTTTAA---CCATTCTCATCGATTTAGATACAAAGCAAGT  

AtCuAO5      ACCTTAGACC--TATAGAAGGAATGA---CGATAATCGTTAACCTTGACCAGATGAAAGT  

AtCuAO2      ATCTTAGACC--TATTGAAGGAATGA---CGATAATCGTTAATCTTGATGAGATGAAGGT  

AtCuAO7      ACATGAGACC--TATCGAAGGACTTT---ATTTAACCGTCGATATGGATAAATTAGAGAT  

AtCuAO8      ATCTTAGACC--AATTGAAGGAATGA---CGATAATCGTTAACCTTGACCAGATGAAAGT  

AtCuAO9      ACA-GCAGCT--AGTCTA---CTTGA---CCATGATGATCCACCGCAGAAGAGAGGAGCT  

AtCuAO3      CCATGCGAGCGATAAAGAAATGTTGATGGACTGGTGCATACAACCCAGGAGCAATAGTAG  

 

                1030      1040      1050      1060      1070      1080    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        CATCAAGTACTCCGACA------GATT-CCGAAAGCCTA--TCCCTGA-----------T  

AtCuAO1      GAGCATCTTTCTCAGTCT----TGGCTATATATTTCTTGACCTTCAAGTAACTCTTCCTT  

AtCuAO3_(SP) ACTTGAGATAACAGATAC----CGGTCAATCAATACCCA--TACCCGGT--------TCA  

AtCuAO4      GATCGAGATAACCGATAC----AGGTCGGGCTATACCCA--TACCCGGT--------TCA  

AtCuAO5      AACGAAGTTTAGAGATA------GGTT-TACGAGTCCTT--TGCCTAAT--------GCT  

AtCuAO2      ATCGGAGTTTAAGGACA------GGTC-AGTGGTTACTA--TGCCCATA--------GCT  

AtCuAO7      CATCAAGATTGTAGACAA----TGG---ACCGGTTCCGG--TTCCCAAG--------TCT  

AtCuAO8      AACGGGGTTCAAGGACA------GGTT-CACGGGTCCTA--TGCCGAAG--------GCT  

AtCuAO9      TTTACTAATAACCAAATT----TGG---GTTACTCCCTA--CAATAAGT--------CCG  

AtCuAO3      TACCGTACTTTCGAGTTTCACCTGGCTGCAGAGCTCCTAAACTGAGGAT--------ACC  
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                1090      1100      1110      1120      1130      1140    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AAAGAA---------GGTAACGACTTTAGGACTAAAC--AC--AGACCCTT------CCC  

AtCuAO1      GGCGATTTTCCTGTTGGAACTCTCTGCTTCTCTAGATGAACCTTAACCAAAGAATTATTC  

AtCuAO3_(SP) ACTAAT---------ACCGATTATCGATATTCTACTC--TTCCAAACCATGACAAAACCA  

AtCuAO4      ACCAAT---------ACCGATTACCGCTTCCAAAAGC--TCGCAACCACCGACAAAACTC  

AtCuAO5      AAGGGA---------ACCGAGTTCCGTATCTCGAAGC--TA--AAACCGCCGTTTGGCCC  

AtCuAO2      AACGGA---------ACGGAGTACCGTATCTCGAAGC--TT--AACCCACCCTTTGGACC  

AtCuAO7      ACCGGT---------ACGGAATATAGATATGGGTTTC--TTA-ATGAAACGGTATATATG  

AtCuAO8      AACGGG---------AGAGAGTACCGTATCTCAAAGC--TC--AAGCCGCCGTTTGGCCC  

AtCuAO9      AGCAAT---------G-GGCTAGTGGTTTATTCACTT--ACCAAAGCCATGGTGATGATA OLD_9F(unspecific) 
AtCuAO3      AGTAAGTTTTAC---TTCAGCTTCGATTTTCCCATCCTGGTAGAAGTGCCAGTAAAACCC  

 

                1150      1160      1170      1180      1190      1200    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GT-TC-TTTTGCAACGTCTCC-------------------GACAC---AGGCTTCAAGAT  

AtCuAO1      AT-CGGTCCATCAATATCCATGTCTAGA---TGAA-ACGTTATGA---AATGATCATGAA  

AtCuAO3_(SP) GA-CC-CCTCAATACAATATCACTCGAG---CAGCCACGTGGACC---AAGCTTCGTTAT  

AtCuAO4      GG-CC-TCTAAACCCGATATCCATTGAG---CAGCCACGTGGTCC---AAGCTTCGTGAT  

AtCuAO5      GT-CG-CTTCAAAACGCCGTCCTTTTT----CAGTCGGAGGGGCC---TGGGTTTAAAAT  

AtCuAO2      GA-CG-CTTCATAACGCCGTCCTTTTG----CAGCCGGATGGTCC---GGGCTTCAAGGT  

AtCuAO7      GA-CCGTGTCAACCCAATGTCGATGGAG---CAACCGGACGGTCC---AAGTTTTCAAGT  

AtCuAO8      GT-CG-CTTCGAAGTGCCGTCGTTTTC----CAGCCGGACGGTCC---AGGGTTTAAGAT  

AtCuAO9      CT-CT-------TGCGGTTTGGTCCGA----CAG--AGATAGA------------GATAT  

AtCuAO3      ATACTCGTAGTTGGCAACAGTACATAGAAAAGAGACAGTTAGTCTCCTAGATCTTCGCAC  

 

                1210      1220      1230      1240      1250      1260    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ACT---CGGCAATAGAGTCAAGTGGGCTAACTGGAA----ATTCCACGTCGGATTTACCG  

AtCuAO1      CGACTCCAATCACATTCTCAGA-GATCAACGGTCCA----GCATCATCCTCCCTATCACC  

AtCuAO3_(SP) CGAAGATAACCATTTAGTAAAATGGGCAAATTGGGA----ATTTCATTTAAAACCAGACC  

AtCuAO4      AGAGGACAACCATCTAGTGAAATGGGCAAATTGGGA----ATTTCATCTAAAACCTGACC  

AtCuAO5      CGA---TGGACACACGAATAGATGGGCAAATTGGGA----ATTCCACATGTCATTTGACG  

AtCuAO2      CGA---TGGACACATCGTGAGGTGGGCAAATTGGGA----ATTTCACATATCGTTCGATG  

AtCuAO7      TGAGGATGGATACTTGGTTAAGTGGGCGAATTGGAA----ATTTCATATTAAACCGGATC  

AtCuAO8      CGA---TGGACACGTCGTGAGATGGGCAAATTGGGA----GTTTCACATGTCATTTGACG  

AtCuAO9      AGAGAATAAGGACATTGTGGTGTGGTACACGCTTGG----GTTCCATCACATTCCATGTC OLD_9R(unspecific) 
AtCuAO3      TTCGGCTAATCCTGTTCTCCAGTCCTGATGTTTCCACAAAATCCCATGATCTTCTTCATG  

 

                1270      1280      1290      1300      1310      1320    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        CAAG------AGCGGGAGTAACTATATCGACGGCTTCGGTTCTTGACCCGAG--AACCAA  

AtCuAO1      TAAGTCATCTACATTATCGTAAGGTGTCCCTTTCACCATTAACATTCCCGAAGCCGCGAC  

AtCuAO3_(SP) CGAG------AGCCGGTCTGATTATGTCCCAGGTCAAAATACACGACCCGGA--TACACA  

AtCuAO4      CGAG------AGCAGGTGTGGTAATATCACGGGTAAGAGTACACGACCCGGA--TACTCA  

AtCuAO5      TACG------AGCTGGTCTTGTTATCTCTCTTGCGTCCATTTTCGACATGGA--CGTTAA  

AtCuAO2      TTCG------AGCTGGCATCGTCATATCTCTCGCATCCCTTTTCGACACGGA--CGTGAA  

AtCuAO7      AACG------TGCCGGTATGATTATCTCACAGGCTACAGTTCGTGATTCCAA--GACAGG  

AtCuAO8      TTCG------AGCCGGTCTTGTCATCTCTCTCGCGTCCATTTTCGACATGGA--CATGAA  

AtCuAO9      AAGA------AGATTTTCCGATAATGCCCACTGTTTC--TTCAAGTTTCGAT--T-----  

AtCuAO3      CAAG-CAAACACAGTTCTCAATTGTTTCAACTCCTCCAGTGAAATTTGTGAAATGGGCAT  

 

                1330      1340      1350      1360      1370      1380    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AAGGTTTCG--ACGAGTGATGTATAGAGGGCACGTGTCAGAGACTTTTGTTCCGTACATG  

AtCuAO1      CGTAACACGGATCAAACCATCAGTCTGAAACTCCCAATCGAAAATATAGTCGTAATTTCC  

AtCuAO3_(SP) AGAAACACG--TGAAGTGATGTACAAAGGTTTCGTGTCGGAGCTTTTTGTTCCGTACATG  

AtCuAO4      TGAGACACG--TGACGTGATGTACAAAGGTTTCGTGTCTGAACTTTTTGTTCCGTACATG  

AtCuAO5      CAAATACCG--TCAAGTCCTATACAAAGGCCATTTGTCGGAAATATTTGTACCTTATATG  

AtCuAO2      CAAATACCG--GCAAGTCCTATATAAAGGTCACTTATCGGAAATGTTCATACCTTACATG  

AtCuAO7      TGAAGCAAG--AAGTGTAATGTACAAAGGTTTTGCGTCGGAGTTGTTCGTACCGAATATG  

AtCuAO8      CAGATACCG--GCAAGTCCTATACAAAGGTCATTTGTCGGAGATGTTCGTACCTTACATG  

AtCuAO9      TGAAGCCCG--TAAATTTTTTCGAGCGCAATCCAATCCTTAA--GGCCGCTCCAAACTTT  

AtCuAO3      CGAAGTACTTGATAGATCCCAGACAGTCACACCCCTTCTTAAGCGAATGTGCGTTTTTCC  

 

                1390      1400      1410      1420      1430      1440    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GACCCAACCTACGAATGGTACTACCGTACGTTCATG-G-ACATTGGAGAGTTTGGTTTCG  

AtCuAO1      AACCGAAGTTGCCATTCGAGCTACCAATGTAACTTTTG-GCCTTGACTCTCTTATATCGG  

AtCuAO3_(SP) GATCCATCGGAAGCTTGGTACTTTAAGACTTACATG-G-ACGCAGGAGAGTACGGGTTCG  

AtCuAO4      GATCCATCGGACGCGTGGTACTTTAAGACTTACATG-G-ACGCAGGGGAATACGGGTTCG  

AtCuAO5      GATCCAAGTGAAGATTGGTACTTCAGAACTTTTTTT-G-ACTGTGGTGAATTTGGTTGCG  

AtCuAO2      GACCCAAGTGATGATTGGTATTTCATTACTTATCTT-G-ATTGTGGCGATTTTGGCTGCG  

AtCuAO7      GATCCAGGGGAAGGTTGGTATTCAAAAGCTTACATG-G-ATGCTGGAGAGTTTGGTTTAG  

AtCuAO8      GACCCAAATGACGACTGGTACTTCATTAGTTACCTA-G-ACTGTGGTGAATTTGGCTGCG  

AtCuAO9      GA---ATATGACCTTCCGGTTTGCGGAGCCAAATCT-G-ATTCTGCTTGA----------  

AtCuAO3      CGAGACCATCCTCCCCTGCATCAAAAGCATTTTTCCTGTAATGTGGCTCATTAGGATCGC  
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                1450      1460      1470      1480      1490      1500    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GGAGATCCGCCGTGAATCT---------------------------------GCAGCCAC  

AtCuAO1      CATTGGCAAAAAGGATCTCAGAAT---------GTCGCCAGCTGATATCGCCTGCATAGC  

AtCuAO3_(SP) GGTTACAAGCCATGCCGCTGGAGCCAGTGGCGGAGCCAAAAAACTTATTCATCGGGCCGC  

AtCuAO4      GGTTACAAGCCATGCCACT---------------------------------CGTACCGC  

AtCuAO5      GCCAATATGCTGTGTCTCT---------------------------------TGAACCTT  

AtCuAO2      GTCAATGCGCCGTATCTCT---------------------------------TCAACCGT  

AtCuAO7      GACCTTCTTCAATGCCACT---------------------------------TGTGCCAC  

AtCuAO8      GCCAAACTGCCGTATCCCT---------------------------------TGAGCCGT  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CATAAGGCACAACCATTTCCACAAAACT--TAGCCTGTGTGCAACAGGCCTTCGACCTCG  

 

                1510      1520      1530      1540      1550      1560    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TCATTGACTGCCCGCAAAACGCTGCGTTTTTAGATGGGCACGTGGCCGGACCAGATGGGA  

AtCuAO1      GTTCAAACAAGCATATCATATTAGGTTGAACAATGGGTTTGCCGTCTGGAGAGGCGAAAA  

AtCuAO3_(SP) TTAATGATTGTCCAAGAAACGCCGTTTATATGGACGGAACATTCGCGGCGGCTGACGGAA  

AtCuAO4      TTAATGATTGTCCACGAAACGCAGCCTATATGGACGGAGTTTTCGCCGCAGCCGATGGAA  

AtCuAO5      ACACCGATTGTCCCGGTAACGCTGCCTTCATGGACGGCGTCTTTGCAAGCCAAGACGGAA  

AtCuAO2      ACACTGATTGTCCAGCGGGTGCAGTTTTTATGGATGGTATTTTTGCTGGTCAAGATGGAA  

AtCuAO7      TCAACGACTGTCCTCGAAACGCTTACTACATTGATGGTTTCTTCGCTTCTCCTGAAGGCA  

AtCuAO8      ATACTGATTGTCCCCCGAATGCCGCTTTCATGGATGGCATCTTCCCGGGACAAGATGGAA  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      ACTGCCATCAACATATGCTACC-GAATGTATGACTAAACCTTCCCTTGGAGTGAATCCAA  

 

                1570      1580      1590      1600      1610      1620    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        CAGC---TCAGAAGATGACCAATGTGATGTGTGTATTCGAGAAAAACGGTTACGGTGCTT  

AtCuAO1      CACC---GTCTATATAGTAAGAATTTCGAGGGCAATCGTTGAGAGGCACGAGCGGCATTG  

AtCuAO3_(SP) CGCC---ATATGTGAGAGAGAATATGATTTGTGTGTTTGAGAGTTATGCCGGAGATATTG  3_SPF 
AtCuAO4      CACC---GTTCGTGAGAGAAAACATGGTTTGTATCTTTGAGAGTTACGCCGGAGATATTG  

AtCuAO5      CTCC---GATAAAAATCACAAATGTTATGTGCATCTTCGAGAAATATGCCGGAGACATTA  

AtCuAO2      CTCC---CGCAAAAATCCCAAAAGTTATGTGCATTTTTGAAAAATATGCTGGAGATATCA  

AtCuAO7      TTCC---AATACTTCAACCTAACATGATCTGCTTGTTCGAACGCTACGCGGGTGACACTA  

AtCuAO8      CTCC---TACAAAAATATCGAATGTTATGTGCATTTTCGAAAAATATGCTGGAGACATTA  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TACGAAAGTTCCACTTCTGCCACTCGACAAAGTAACCCCTTACACGAAAACTTGGACCTT  

 

                1630      1640      1650      1660      1670      1680    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        CTTTTAGACACACCGAGATTAATGTTCCAGGACAAGTGATAACAAGTGGGGAAGCTGAAA  

AtCuAO1      CCGTGGGTCCTAAACCGAGCTCGCCTGCATCCATATAACCTTTGTAGTACCATCCTTCCT  

AtCuAO3_(SP) CGTGGCGTCACACCGAGTATCCCGTCAACGGTATGCCGA-ACTGAGAGTCATTCTTTAAA  

AtCuAO4      GGTGGCGTCACTCCGAAAGCCCCATCACCGGTATACCGATAAGGGAAGTGAGACCAAAAG  

AtCuAO5      TGTGGCGGCATACCGAAATTGAAATTCCCGGCTTAAAA---------GTAAGACCGGACG  

AtCuAO2      TGTGGCGACATACAGAAGCTGAAATTCCAAACTTAGAAATTACGGAGGTTAGACCGGACG  

AtCuAO7      GCTGGCGACACTCTGAGATTCTTCTCCCTGGTGTAGATATAAGAGAGTCAAGGGCAAAGG  

AtCuAO8      TGTGGCGACATACCGAAGCTGAAGTACCCGGCTTAAAAATCACAGAGGTTAGACCAGATG  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CAGGCTGAATAATCTGGAGAGGCTTAACATCACTTCTATCAACACCCCCTCTACTTTCAC  

 

                1690      1700      1710      1720      1730      1740    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TAAGTTTAGTGGTTAGAATGGTGGCCACACTTGGAAACTATGATTACATAGTGGATTGGG  

AtCuAO1      CAGGGTCCATGTACGGTACAAACAACTCTGATGGGAATCCTTTGTACATCAC--ACTTCT  

AtCuAO3_(SP) TCAG---AATGAATTAAAAGTTGGCTCCGGATACCAGA----------------------  3_SPR 
AtCuAO4      TGACGCTAGTGGTACGAATGGCAGCTTCGGTAGGTAACTATGATTACATCATTGATTACG  

AtCuAO5      TAAGTCTTGTGGTCCGGATGGTGACGACCGTGGGGAACTACGACTATATAGTTGATTACG  

AtCuAO2      TAAGTCTTGTAGCCCGGATTGTGACGACCGTGGGAAACTATGACTACATAGTTGATTATG  

AtCuAO7      TTACACTGGTAGCTAGAATGGCATGTTCTGTTGGGAACTATGATTATATTTTTGATTGGG  

AtCuAO8      TAAGTCTTGTAGCCCGGATGGTGACGACAGTGGGGAACTACGACTACATCATCGAGTATG  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CTGGGGTATAATTCCTCAAAGGGTCAGGTGGGGGGAGTGGCACAAAC-TTACGGTCTTCA  

 

                1750      1760      1770      1780      1790      1800    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AATTTAA--AAAGAATGGAGCCATCAGAGTTGGGGTGGATTTGACTGGAGTTTTAGAAGT  

AtCuAO1      TGGTTCA--CCTGTCTCGGAGTCACGAACCGTGGCCTGAGATATGATCATACCGGCTCGT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      AGTTCCA--AACTGATGGGCTTATAAAAGCTAAGGTCGGGCTAAGTGGAATACTAATGGT  

AtCuAO5      AGTTCAA--ACCTAGTGGTTCCATCAAAATTGGGGTCGGTTTAACAGGTGTTTTAGAAGT  

AtCuAO2      AGTTCAA--GCCTAGTGGTTCCATCAAAATGGGGGTCGGCTTAACCGGTGTTTTAGAAGT  

AtCuAO7      AGTTTCA--AATGGATGGTGTGATTCGTGTTACGGTCGCGGCCTCGGGGATGTTGATGGT  

AtCuAO8      AGTTCAA--ACCAAGTGGTTCCATCAAAATGGGGGTCGGTTTAACCGGTGTTTTAGAAGT  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      AATTCAATCACCACCATGTTTTGCATGTCTACAAGTACATAAATGCCCTCAACTGGACGA  
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                1810      1820      1830      1840      1850      1860    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ---AAAAGCGACATCGTACACTT-CAAAC----GATC---------------AAA-TAAC  

AtCuAO1      ---TGGTCAGCTTTAACATGGAAAACCCAATTAGCCCACTTAACCAAATGCCCAT--CTT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ---GAAAGGGACAACATATCAAAACAAAAACCAAGTGGAGAAAGATAAAGACGGTAATGA  

AtCuAO5      ---TAAACCGGTGAAATATGTTAACACATCCGAGATC---------------AAA---GA  

AtCuAO2      ---GAAACCGGTAGAATATATTCACACATCCGAAATC---------------AAACTAGG  

AtCuAO7      ---GAAAGGAACGGCTTACGAAAACGTTGAAGACTTG---------------GGTGAGAA  

AtCuAO8      ---TAAACCTGTGGAATATGTTCACACATCAGAGATC---------------AAA---GA  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      GCATATCCATTTTCCATAGGGGAATCACTATCAGTCCGAC--AGTATATAAGGGGCTTTG  

 

                1870      1880      1890      1900      1910      1920    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GGAGAACGTATACGGTACACTGGTGGCGAAGAACACTATCGCCGTTAACCACGACCATTA  

AtCuAO1      CGACCCTAAAACTGGGACCGTCAGGTTGCTCCATCGAAATCGGGTTAA-TACGATCCATA  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      AGAAGAGCTTCACGGCACGCTTCTGTCTGAAAATGTAATTGGAGTAATACACGATCACTA  

AtCuAO5      AGACGATATCCATGGGACAATCGTCGCGGACAACACCATTGGAGTTAACCACGACCATTT  

AtCuAO2      GGAAGACATACACGGGACAATTGTCGCCGACAACACCGTCGGTGTTAACCACGACCATTT  

AtCuAO7      AGAGGATGATTCTGGACCGTTGATCTCAGAAAACGTTATAGGAGTCGTCCATGATCATTT  

AtCuAO8      AGACGACATCTACGGGACAATTGTTGCTGACAACACCGTCGGAGTTAACCACGATCACTT  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CAAGCCTACGACTAGGAGCGTCA-GCCTCACTGTGATAACCCACACACCAGGGATCAACC  

 

                1930      1940      1950      1960      1970      1980    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        CCTAACGTACTACTTGGACCTCGACGTTGACGGTAACGG--CAATTCCTTGGTGAAAGCC  

AtCuAO1      TGCACCGGTTTATTCTGAACACCAAACCGGTATTCTGTACCGGAGGCTTTGGGAATTGGA  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      CGTCACTTTTTACCTTGACCTTGACGTCGATGGCCCGG-----ACAACTCATTTGTTAAA  

AtCuAO5      CGTGACATACCGTCTTGATCTTGACATTGATGGCACGGA--TAATTCTTTTGTCCGTAGT  

AtCuAO2      CGTGACATTCCGTCTTCATCTTGACATCGACGGTACCGA--AAATTCCTTTGTTCGTAAC  

AtCuAO7      CATATCGTTTCATCTAGACATGGACATTGATGGGTCAGC--CAACAACTCCTTCGTTAAG  

AtCuAO8      CGTGACATTCCGTCTTGATCTTGATATAGATGGTACGGA--AAATTCATTTGTTCGTACC  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      ATCACTAGATC--CATGTCTTCAATACCTCTCCTCTTCA----TTGCCTCTATGAATGGT  

 

                1990      2000      2010      2020      2030      2040    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AAACTCAAAACGGTAAGAGTAACGGAAGTTAACAAAACGTCTTCTCGGAGGAAGAGTTAC  

AtCuAO1      ATTGGGCCTTTATCGATGATCTTGATAACCTCCAATTTGTCTAGATCGACCGTTACATAA  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      GTGAATCTCAAGAGGCAAGAGACCGAGCCAGGCGAGTCACC------GAGGAAAAGTTAC  

AtCuAO5      GAACTTGTGACCAAGAGGACACCAAAATCTGTTAACACGCC------TAGGAAGAGCTAT  

AtCuAO2      GAACTTGTGACCACGAGGTCTCCAAAATCTGTTAACACACC------GAGAAAAACCTAT  

AtCuAO7      GTTCATCTAGAGAAGCAGAGACTTCCACCTGGAGAATCAAG------GAGAAAGAGTTAC  

AtCuAO8      GAACTCGTGACCAAGAGGACTCCAAAATCTGTTAACACACC------GAGAAAAAGCTAT  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      GGGAAGTCTTTGACAATCGCTTCACATTCAGCATATTCAGCCGCATCCATGGGTGGCTGA  

 

                2050      2060      2070      2080      2090      2100    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TGGACGGTCGTTAAAGAGACGGCGAAAACGGAAGCTGACGGTAGAGTTCGACTCGGCTCG  

AtCuAO1      AGTCCTTCGAGTGGTCTCATAAAATAATTGGTAGTGCCTTGTAACGTGAAACATTGAACT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      CTAAAAGCTGTTAGGAACATTGCGAAAACCGAAAAGGATGGTCAGATCAAGCTTAGCTTG  

AtCuAO5      TGGACAACGAAAC------------------------------------------GGCTG  

AtCuAO2      TGGACAACGAAGCCAAAGACGGCCAAGACCGAGGCAGAGGCTCGGGTGAAACTAGGTTTG  

AtCuAO7      TTGAAGGTCAAGAAATATGTAGCCAAGACTGAGAAAGATGCTCAGATCAAGATGAGCCTG  

AtCuAO8      TGGACAACAAAACGAAACACAGCAAAAACCGAGGCAGACGCTCGGGTGAAACTAGGCTTG  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      ACATCAGGTATAACTTGTGAGGAAACAACTCTTCCCCTGTGATGTCCACCCCGAGTGACA  

 

                2110      2120      2130      2140      2150      2160    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ---GATCCGGTTGAGCTGTTAATAGTAAACCCGAACAAGAAGACGAAAATAGGAAATACA  

AtCuAO1      CTTATGACTCTACGTCCTTCTTCCTCCGATCCAAACCATCCGGCAAACGGTGTGATGCAA  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      TACGATCCATCAGAATTCCACGTCATCAACTCTGGTAAAACCACTCGGGTCGGAAACCCG  

AtCuAO5      ---AAAGCAGAGGAGTTGTTGGTGGTTAACCCTAGTAGGAAAACAAAGCACGGTAATGAG  

AtCuAO2      ---AAGGCGGAGGAGTTAGTTGTGGTTAACCCTAACCGAAAGACGAAGCATGGCAATGAG  

AtCuAO7      TACGACCCCTACGAGTTCCATCTTGTGAACCCTAACCGACTTTCTCGGTTAGGGAACCCG  

AtCuAO8      ---AGAGCGGAGGAGTTGGTGGTCGTTAACCCTACCAAAAAAACTAAGCATGGCAATGAG  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      GCATGAACTTCAGACAATGCCACAATCCATACACTTGTCTCATTAGACTTTTGGTTGTAA  
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                2170      2180      2190      2200      2210      2220    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GTTG-GTTACCGGCTGATACCGGAACATTTACAAGCCACTTCGCTTTTAACCGATGATGA  

AtCuAO1      GCTA-AATCGGAAAACTTAACCCCACGAGCTTCAATGGAGCGGTTAAATTCCAAGCTCTT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ACGG-GTTATAAGGTCGTTCCTAGAACGACGGC---AGCTAGTCTACTTGACCATGATGA  

AtCuAO5      GTTG-GATACCGTTTACTTCATGGGCCGGCTTCTGAAGGTCCACTTCTGGCTCAAGATGA  

AtCuAO2      GTTG-GATACCGTTTACTTCATGGATCCGCTGC---AGGCCCACTCCTGGCCCAAGATGA  

AtCuAO7      GCTG-GTTACAAGCTTGTACCTGGTGGTAATGC---TGCAAGTTTGCTCGATCATGATGA  

AtCuAO8      GTTG-GATACCGTCTACTTCCTGGGCCGGCTTC---AAGCCCACTTCTTGTCCAAGATGA  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      ACAACAAGTCTAGCTCGCCTTGGAGGGAGCTTCATCGGAATCAC--AGGTCCAGATTTAG  

 

                2230      2240      2250      2260      2270      2280    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TTACCCCGAGTTAAGAGCCGGTTACACGAAATATCCGGTTTGGGTGACCGCCTATGACCG  

AtCuAO1      CAAAGGAACCTGCGAAGCAGCGAAGACGTCGTTCAAGGTGAGAATCGGATACCCTGAAGT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      TCCGCCGCAGAAGAGAGGAGCTTTTACCAACAACCAAATTTGGGTCACTCCGTACAATAA  

AtCuAO5      TTACCCACAAATTCGGGCAGCATTTACCAACTATAATGTGTGGATCACGCCGTACAACAA  

AtCuAO2      TTTCCCGCAGATTCGAGCTGCATTCACCAACTATAACGTGTGGATCACGCCGTATAACAG  

AtCuAO7      TCCACCGCAAATGCGAGGCGCTTTCACAAACAATCAGATATGGGTGACTCGGTATAACCG  

AtCuAO8      CTACCCACAGATTCGGGCAGCATTCACCAACTACAACGTGTGGATCACACCGTATAACAA  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TTCTTGGAAGTAGTGATGGCTGGAACGGTGGGAAAAAGTAAGCATCAGCGAGCGCCACAA  

 

                2290      2300      2310      2320      2330      2340    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GTCCGAGAGATGGG----CCGGTGGGTTTTATAGTGATCGGAGCCGTGGCGATGACGGTT  

AtCuAO1      CCGGTTAATCACAT----CAGAAACTACCCGACCCGAATCAAGATCCACCGTTATCTCAT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      GTCGGAGCAATGGG----CTGGTGGCTTGTTCACTTACCAAAGCCATGGTGATGACACTC  

AtCuAO5      CACGGAGGTTTGGG----CCAGCGGTTTGTACGCTGACCGGAGCCAAGGCGACGACACGT  

AtCuAO2      GTCAGAGGTTTGGG----CAGGTGGTTTGTACGCTGACAGGAGCCAAGGCGACGATACGT  

AtCuAO7      GTCAGAGCAATGGG----CTGGAGGGCTTTTGATGTACCAGAGCCGTGGTGAAGACACAC  

AtCuAO8      ATCGGAGGTTTGGG----CTAGCGGTTTGTACGCTGATCGGAGCCAAGGTGACGACACAT  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CTTGTTTATCTGGTTCCACTGATGCCACCTCAATGAAACGCATGCCATCCCTAACCTCAG  

 

                2350      2360      2370      2380      2390      2400    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TAGCTGTATGGAGTAGTAGGAACAGAGAGATAGAGAACAAAG----------ACATAGTG  

AtCuAO1      GTGTTTGACCACCCCAATAAGCTACGACCGCAGCTCTTCGTG----------ACAGAAGC  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      TTGCAGTTTGGTCAGACAGGGATAGAGACATAGAGAACAAGG----------ATATAGTT  

AtCuAO5      TAGCCGTTTGGTCCCAAAGGAATAGGAAAATAGAGAAGACAG----------ATATAGTG  

AtCuAO2      TGGCAGTGTGGTCTCAAAGGAATAGAAAAATAGAGAAGGAAG----------ATATAGTG  

AtCuAO7      TACAAGTTTGGTCCGACAGAGATCGGTCCATTGAGAACAAGG----------ACATAGTG  

AtCuAO8      TAGCCGTATGGTCCCAAAGAGATAGGGAAATAGAGAACAAAG----------ATATAGTG  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      GATTGGCACCAGCTGCGCGAACAGTCGCCACAGCAACTGATATTTCTGCAGCAGAAAGAG  

 

                2410      2420      2430      2440      2450      2460    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ATGTGGTACAACGTTGGGTTTCATCACATTCCATACCAAGAGGATTTTCCGGTTATGCCA  

AtCuAO1      TTAT------TTCCCTTCTTCCACTGGACGACACGTGACTTCTCCGGCTCATCGAGAGCC  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      GTGTGGTATACACTTGGTTTCCATCACATTCCATGTCAAGAAGATTTTCCGATAATGCCC  

AtCuAO5      ATGTGGTACACTGTCGGATTCCACCATGTCCCTTGCCAGGAAGATTTTCCGACGATGCCT    5F 
AtCuAO2      ATGTGGTACACCGTCGGTTTCCACCATGTTCCTAGCCAGGAAGATTACCCGACGATGCCT  

AtCuAO7      TTGTGGTATACACTAGGGTTCCATCACGTACCGTGCCAAGAAGATTTTCCAGTGATGCCA    7F 
AtCuAO8      ATGTGGTACACCGTTGGATTCCACCATGTCCCATGCCAAGAAGATTTTCCGACGATGCCT  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      GATCCAATGGGTGCTTGGTTTCAGTCCTTGGCATCACAGAAATCCCTTTGTTGGCAGGTT  

 

                2470      2480      2490      2500      2510      2520    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ACTCTTCACGGTGGTTTTACTCTTCGGCCTTCAAATTTCTTCGAT-AACGATCCTTTGAT  

AtCuAO1      ATGGAGTGAATCGTGGCCGACCCGGAACCAAAACCCGGGTCATGG-TTCGAGAGTATTGT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ACGGTTTCTTCGAGTTTCGATTTGAAGCCCGTAAACTTTTTCGAG-CGCAATCCAATCCT  

AtCuAO5      ACTTTGTTTGGTGGCTTTGAACTCCGACCGACCAACTTTTTCGAG-CAAAATCCTGACCT  

AtCuAO2      ACTTTATCCGGTGGCTTTGAGCTCCGACCGACCAACTTTTTCGAG-CGAAACCCTGTCCT    6F 
AtCuAO7      ACAATAGCATCTAGCTTTGAACTTAAACCGGTCAATTTCTTCGAA-TCGAACCCGGTACT  

AtCuAO8      ACTATGTTTGGCGGCTTTGAACTTCGGCCAACCAACTTTTTCGAG-CAAAATCCTGTTCT  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TCTTGGCAGTATTATCAGGAAACGAATCGACAGGGCGGATAACGGATTCCAAAGAAACTT  
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                2530      2540      2550      2560      2570      2580    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TG-GGTAAATACGGTCTTAGACA--AACAAACTGATGGCTTATGTATTGATTGACTTATG  

AtCuAO1      TCTGACTCTATTGATTTCTCGCACCGTTAGTGGATCAAGTGGATGATGAGGCTTTTCTAA  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      CAGTGCCGCTCCAAACTTTGAACATGATCTCCCGGTTTGTGGAGTTCAATCTGTTTCTGC    4F 

AtCuAO5      TAAGACCAAACCCATCAAACTCAACACCACACCAACGTGCACTGCCAGGAACGATTAA--    5R 
AtCuAO2      CAAGACCAAACCCGTCAAAGTTACCACCGCTCGAAAGTGCACTCCTAAAAACGATTAATA  

AtCuAO7      TGGGATTTCACCTTTCTTCGAGAAAGACTTACCAGTCTGTTAAACCAGATGCTTCATCTT  

AtCuAO8      CAAGGCTAAACCTTTCAATCTCACCACCATTCCAAAGTGTACTACGAAGAACGAATAATA    8F 
AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TAGAGGCTCGCTGATCGTCAGCGTCGGACCATACAGCAACGGTATCGGGAGCAGCGGAGA  

 

                2590      2600      2610      2620      2630      2640    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        -TTACGTCAAACATATGATCATTGAAAAAACAATTTTTAGCCTTGTGACTAAGTTATT--    1F 
AtCuAO1      AGAGTGGTCAACGTGGACTTGACGATTCGAGCCGAGAGTTTTCCGGACACGAGTACCGAA  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      TTGAGAAGAGTAAAGTACGAAATAAAGAAATAGCAACTTTTGTATATTTGTGTTACTC--  

AtCuAO5      ------------------------------------------------------------  

AtCuAO2      AACAGCTTAATCATATCATTGATGAATTTGTTCTACTTGATGATGGACTGTAACGATT--    6R 

AtCuAO7      ATTCGACACTGTGCATTTTCAAATGTCATGTGTAGACTTTTCTGATTATAAATGTTGT--    7R 
AtCuAO8      ACCAGCTCA-TCAT----TCGATGAAT--GGCATTCATGATT-TGATCTTTA--------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CGAGTTTGGGAGGCGGAAGAGAGCCACCGTGGTGAGGACATGCCGACGTCTTT-------  

 

                2650      2660      2670      2680      2690      2700    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        AATTTGATTTTGAT-TATTATGTCTTGAATGTATTAATTTCTTATGTTTTGAATGGTTTA  

AtCuAO1      CAAGAAGCCTGAGTCGGGTCCAAAGACCCAAGAGTAGGTGGCAAAGATAAGGAGAAAGCT    2F 
AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      TCAAGGTACACAATGTAATTTGTGGCCTTAAAACTGGTAATTAGATGTATAAATGTAAAT  

AtCuAO5      ------------------------------------------------------------  

AtCuAO2      CGAGAAATAATGATGTGGTTTTAAATAAGTTGGTTTTGTTTGTATAATCATCATGTCTTT  

AtCuAO7      GCATATTCTATTGATATATGTATATCAGTATATGAAATCAACATGCTCTTGATATTCAAT  

AtCuAO8      TGAGGAATTGTAAAGAGATTCCAAGA----------------------------------    8R 
AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TTCGAAGCTGAGGCCATTGAATAGGGTTCACAAGTTCTCCAAATCCACCAAAATCAGTTT  

 

                2710      2720      2730      2740      2750      2760    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        GTTAATTAGCTTTGATGCTTTTTTTGGTTCAATACTTGTGATTCACTTATTTCTCAATTT  

AtCuAO1      GAAGAACAAGAGAAACAGACGAGCAAAAGATGGTTCTGCCATCGATTGAGTGAGAGTTTT    2R 
AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      GCTAATGTATATGTGTTTAAACGAGAATCCATATATTCATGCGGATTATGG---------    4R 
AtCuAO5      ------------------------------------------------------------  

AtCuAO2      GTTGATCAATTAATTTTTCGTTTTCTC---------------------------------  

AtCuAO7      TATTTATCTGCAACAGTATATGAGTATCATCT----------------------------  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CAACACAATCCACTGACATACAGCAAAACCTATCACTATCCGTCGCTTGATCTTCCCCCT  

 

                2770      2780      2790      2800      2810      2820    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        TCAAGTTGGTCGTGCCATCGGCAAAATCCTTTCATT------------------------    1R 
AtCuAO1      TGACTATCTTTTGGAAAGTTACTTATAAAAGCTGAGATAAATAATTACTTAGTCCAGTTA  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ------------------------------------------------------------  

AtCuAO5      ------------------------------------------------------------  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      ------------------------------------------------------------  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TCTCTCCACTTCTAGAAGCTCCAAGAAGAAGAAGAAGAAGAAGATTCCGATCTCCGATGA    3F 
 

                2830      2840      2850      2860      2870      2880    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      AACAACATGTTAAATAAGAAATAAACAATAATTAACGCTTTTCAAAGTCC-TGTACGCTT  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ------------------------------------------------------------  

AtCuAO5      ------------------------------------------------------------  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      ------------------------------------------------------------  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      TGACACAAAAATCCACAGCTACTACTACTAGTACAGTCTTCTCTCTCTCGACTTGAGCTC  
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cDNA alignment of Arabidopsis thaliana CuAO gene family. Gene codes (TAIR; 

https://www.arabidopsis.org/): AtAO1 (At4g14940), AtCuAO1 (At1g62810), AtCuAO3-SP (At4g12270), 

AtCuAO4 (At4g12290), AtCuAO5 (At1g31670), AtCuAO2 (At1g31710), AtCuAO7 (At3g43670), 

AtCuAO8 (At1g31690), AtCuAO9 (At4g12280), AtCuAO3 (At2g42490). Identical nucleotides are 

indicated by black boxes when they exist in 5 or more genes. The location of each gene primer pair is 

shown. Start and stop codons are high-lighted in red. 

 

                2890      2900      2910      2920      2930      2940    

             ....|....|....|....|....|....|....|....|....|....|....|....| 

AtAO1        ------------------------------------------------------------  

AtCuAO1      GATCGCATCTA-TGAGATATTTTACTAATTTATTCTAACCATGCAATTGGTTTAGGTT--  

AtCuAO3_(SP) ------------------------------------------------------------  

AtCuAO4      ------------------------------------------------------------  

AtCuAO5      ------------------------------------------------------------  

AtCuAO2      ------------------------------------------------------------  

AtCuAO7      ------------------------------------------------------------  

AtCuAO8      ------------------------------------------------------------  

AtCuAO9      ------------------------------------------------------------  

AtCuAO3      CGTCACAAGAAGTTGGATTCGTCACCGGATCTTGAGTTCTCCGTGATCGTATAATCGCTC    3R 
 

                2950      2960      2970      2980        

             ....|....|....|....|....|....|....|....|.... 

AtAO1        --------------------------------------------  

AtCuAO1      --------------------------------------------  

AtCuAO3_(SP) --------------------------------------------  

AtCuAO4      --------------------------------------------  

AtCuAO5      --------------------------------------------  

AtCuAO2      --------------------------------------------  

AtCuAO7      --------------------------------------------  

AtCuAO8      --------------------------------------------  

AtCuAO9      --------------------------------------------  

AtCuAO3      TTCAATTTGTTTGTTTTTTTAAAGAGTTTGATTTTTGTTGGAGA  
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Appendix B 

(a) 

 
  
  

  

  

(b) 

 

  

(c) 

 
  

 

 

Characterization of AtCuAO4 over-expressing plants. (a) Western blot analysis of crude extract from WT 

and over-AtCuAO4 plants using a rabbit anti-His tag antibody (Anti-6X His tag® antibody conjugated to 

horseradish peroxidase, Abcam), after SDS-PAGE loaded on the basis of total protein content. Red arrows 

show lines used in the present work. (b) Overexpression level of AtCuAO4 in overexpression lines relative 

to its level in WT plants assessed by quantitative real-time RT-PCR. Amongst different independent lines 

analyzed by both methods, line 17 showed the highest level of AtCuAO4 expression. Presented data are 

provided by Prof. Alessandra Cona of Roma Tre University where these lines were generated (Ghuge 

2014). (c) Schematic representation of the construct used for generating AtCuAO7::GUS and 

AtCuAO8::GUS lines. Promoter regions upstream of ATG were amplified from A. thaliana (Col-0) 

genomic DNA by PCR using sequence-specific primers and cloned initially into the pDONR221 vector, 

sequenced by using either a pair of external primers (M13-for/rev) or internal primers (prom-int-AtCuAO 

for/rev) to check possible error/ mutation. After confirmation by restriction digestion and colony PCR, 

promoter regions were then cloned into the pKGWFS7 destination vector upstream of the GFP-GUS fusion 

gene through the GATEWAY recombination system (Ghuge 2014). 
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Appendix C 

(a) 

 

 

 

(b) 

 

(a) pAmiR™ vector (Left Border for T-DNA boundary; 35S is a promoter for amiRNA expression in 

plants; AttB are Gateway® cloning sites; 3’ocs is Octopine synthase terminator; BASTA® resistance is a 

plant selection marker; pSa ori is origin of replication for E.coli and Agrobacterium tumefaciens; Right 

Border for T-DNA boundary; Spectinomycin resistance is a bacterial selection marker; and pUC ori is 

origin of replication for E.coli. (b) Detailed vector map of pAmiR™ vector (http://www.biocat.com/bc/pdf/ 

Arabidopsis_manual.pdf).
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Appendix D 

 

Quantitative analysis of endogenous gibberellins by GC-MS/MS. Data represent the average of two 

biological replicates. Asterisks indicate significant differences to WT. (n = 6-7; means ± SE; asterisks 

indicate significant differences to WT (P ≤ 0.05) based on T-test where data were normally distributed or 

Mann-Whitney test where data were not). The analysis has been done by Lorenzo Mariotti group, 

Department of Biology, University of Pisa, Italy. 
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Appendix E 

The effect of senescence related hormones and abiotic stresses on 
dark-induced senescence of detached leaves and rosettes of WT 
Arabidopsis plants 

 Introduction 

Leaf senescence is regulated by several internal and external factors such as leaf age, 

nutrient supply, light intensity and can be hastened via various biotic and abiotic stress 

factors (Smart 1994). As discussed in the General Introduction (Chapter 1), plant 

hormones influence the initiation and progression of leaf senescence. Some hormones, 

such as auxin, cytokinin, and gibberellic acid, have been reported as leaf senescence 

suppressors (Gan and Amasino 1995; Kim et al. 2011; Yu et al. 2009). In contrast, 

ethylene, abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) are considered 

as senescence promoting hormones (Breeze et al. 2011; Cutler et al. 2010; He et al. 2002; 

Reid and Wu 1992). 

Exogenous application of various plant hormones also accelerates senescence (Weaver 

et al. 1998). ABA, methyl jasmonate (MeJA), and salicylic acid (SA) are well known as 

senescence-inducing hormones that regulate leaf senescence by mediating the response 

to environmental signals (Jibran et al. 2013). In fact, MeJA and its precursor JA were first 

described as senescence promoters in detached oat leaves and were then shown to be a 

class of plant growth regulators that have a wide range of important roles (Holbrook et 

al. 1997). Treating either detached or attached leaves of WT Arabidopsis exogenously 

with JA resulted in an increase in its level in senescing leaves and premature senescence 

due to the up-regulation of senescence enhanced genes, while no obvious alteration in the 

senescence phenotype was exhibited in plants defective in JA signalling (He et al. 2002).  

ABA is a hormonal promoter of leaf senescence and exogenous treatment of plant with 

ABA stimulates this phenomenon (Quiles et al. 1995), however, the mechanism by which 

ABA regulates senescence is still not well understood (Zhang et al. 2012). Weatherwax 

et al. (1996) indicated that ABA concentration increases upon dark treatment in 
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Arabidopsis. Under stress conditions and during senescence ABA titres are dramatically 

increased in many plant species including Arabidopsis which suggested a central role of 

ABA in plant response to both processes (Buchanan-Wollaston et al. 2005; Guo and Gan 

2005; Zhao et al. 2010). It has long been known that treatment of detached leaves with 

ABA induces several SAGs and reduces chlorophyll content (Weaver et al. 1998; Yang 

et al. 2002). Expression profiles of Arabidopsis senescent leaves indicate that some ABA 

biosynthesis and signalling genes are up-regulated during developmental leaf senescence 

which led to the suggestion that ABA may be part of a mechanism connecting both 

pathways (leaf senescence and ABA biosynthesis) and thus ABA is an important 

regulator of plant senescence (Buchanan-Wollaston et al. 2005). 

The phenolic compound SA plays a key role in numerous plant responses to stress both 

biotic and abiotic, while during developmental senescence the SA-signalling pathway can 

control the change in gene expression (Morris et al. 2000). It has been reported that many 

SAGs are dependent on the SA-signalling pathway as revealed by the transcriptome 

analysis in senescing leaves of wild type Arabidopsis and SA-deficient mutants. Plants 

defective in SA signalling showed retardation in developmental senescence while the 

progression of plant senescence in the dark was normal (Buchanan-Wollaston et al. 

2005). These findings suggest that the expression of one or more of senescence associated 

SA-dependent genes during senescence has an important function in developmental 

senescence while in dark-induced senescence the SA pathway is not required (Buchanan-

Wollaston et al. 2005; van der Graaff et al. 2006). 

On the other hand, a large number of developmental and environmental factors can 

stimulate leaf senescence (Lee et al. 2011) including environmental stresses such as 

detachment, drought and darkness (Munné-Bosch and Alegre 2004; Oh et al. 1996; 

Weaver et al. 1998). SAGs, chlorophyll loss, and yellowing in detached leaves are all 

induced by incubation in darkness (Weaver and Amasino 2001). Previous studies 

investigated the possibility of PA involvement in regulating dark induced senescence. In 

this regard, Legocka and Zajchert (1999) reported that incubation of barley leaf discs in 

the dark led to a massive accumulation of the polyamine Put, but this was associated with 

chlorophyll decline, increase in RNase activity and a rapid senescence. These reactions 
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to darkness were reversible by exogenous Spd treatment which prevented the degradation 

of thylakoid membranes during senescence by enhancing their stabilization through the 

direct interaction with them (Legocka and Zajchert 1999). The concentration of 

exogenous PA applied also appears to influence the result. Spm at low concentrations (1-

10 mM) was more active than other PAs in preventing chlorophyll degradation in 

detached leaves of oat in darkness (Kaur‐Sawhney and Galston 1979). 

The role of PAs in leaf senescence retardation might be through blocking the conversion 

of SAM to ACC (aminocyclopropane carboxylic acid) and of ACC to ethylene, a 

promoter of leaf senescence (Kaur-Sawhney et al. 2003), or by inducing the synthesis of 

the DNA and mitotic activity as well as inhibiting the rise in proteases, peroxidases, and 

RNases (Dumbroff 1990). However, quantitation of levels of various PAs during dark 

induced senescence of detached rice leaves suggested that the endogenous PAs may not 

play an important role in the control of dark-induced leaf senescence (Chen and Kao 

1991). Recently, Sobieszczuk-Nowicka et al. (2015) investigated the involvement of PA 

metabolism in dark-induced senescence in barley Hordeum vulgare L leaves and they 

reported an up-regulation in the expression of genes implicated in both pathways of PA 

metabolism, the anabolic and the catabolic, as well as an increase in the activity of 

enzymes implicated in the two pathways, indicating that the internal PA pool is subjected 

to regulation during senescence in barley. These results underline the contradictory 

effects of PAs in different plants. 

In this section, the effect of selected stress hormones and abiotic stresses were examined 

on dark-induced senescence of Arabidopsis thaliana (Col-0) detached leaves or rosettes 

grown under different conditions and on different media in order to: (a) Verify effects of 

these treatments on the progression of the dark-induced senescence. (b) Define treatments 

that affect the progression of dark-induced leaf senescence which can then be used to 

investigate the role of AtCuAOs in this process through examining effects of over-

expression and mutagenesis of AtCuAO genes. 
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 Materials and Methods 

II.1. Plant materials and growth conditions 

Seeds of Arabidopsis thaliana (L.) Heynh. ecotype Columbia (Col-0) were used in all 

experiments in this Section. In general, unless stated otherwise in the main text, seed 

sterilization, stratification, sowing and growth were as described in Sections 2.1 and 2.2 

in the General Materials and Methods (Chapter 1). 

II.2. Dark-induction protocol for Arabidopsis leaves and rosettes 

Soil grown Arabidopsis plant material (leaves or rosettes with at least nine leaves) were 

harvested before bolting then rinsed briefly using sterile water. Plant materials were 

placed on a 9 cm wet filter paper in the lid of a Petri dish ensuring that rosettes or leaves 

would not interfere with each other or the side of the dish. Dishes were then incubated at 

22° C in complete darkness inside a thick walled plastic box for quantification of dark-

induced senescence of the plant materials. Growing Arabidopsis plants on soil was the 

best way of producing large rosettes suitable for studying dark-induced leaf senescence 

(Figure 1). 

II.3. Quantitation of senescence by image analysis 

Plants were photographed every day using a web-cam (Microsoft LifeCam) attached to a 

computer until the rosettes became completely yellow. Photographs were analysed using 

the colour histogram function in Image J software to obtain the RGB score for a defined 

rectangle from the centre of leaf number 5. RGB intensities were normalized using a 

white-background reference point (Figure 1), and average green/ red ratios provided a 

quantitative measure of leaf yellowing where a ratio of around 0.8 indicates the initiation 

of senescence. Data were further analysed using an R script programme to produce values 

which could be then analysed statistically by SPSS. 
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(a) 

 
  

(b) 

 

Figure 1. Comparison between plants grown on different media. (a); Rosettes of plants grown on MS 

medium under short days. (b); Rosettes of plants grown on soil under short days.

II.4. Treatments of Arabidopsis rosettes grown in soil under long days 

Rosettes were harvested 32 days after sowing (before bolting) at the base along the level 

of the soil then rinsed briefly in sterile water. For the hormonal treatment, rosettes (8 

rosettes/ treatment; 2 per dish) were placed on a 9 cm filter paper in the lid of a Petri dish 

soaked with 50 µM MeJA (He et al. 2002), 500 µM Spm (Zheng et al. 2005), or water as 

a control. The MeJA was first dissolved in ethanol and then diluted in H2O to a final 
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concentration of 0.005 % ethanol which was included in the water of controls of MeJA-

treated plants. Dishes were then incubated at 22° C under a 16 h photoperiod of 

illumination at ~68.4 µmol m-2 s-1 for 72 h. After the incubation period, filter papers were 

replaced with fresh filter papers saturated with sterile distilled water for assessment of 

the rosettes’ response to dark induced senescence as described above in Section II.2 and 

II.3. 

II.5. Treatment of detached leaves of plants grown in soil under long days 

After sowing and growing plants on soil under long day conditions as described in Section 

II.1, leaf numbers 5 and 6 were detached from 38 d old plants. The leaves were then 

rinsed briefly using sterile water and placed adaxial side up in Petri dishes containing 100 

µM SA (Morris et al. 2000), 50 µM ABA (Fan et al. 1997), MeJA as described in Section 

II.4, Spm as described in Section II.4, or water as a control (10 leaves/ treatment). Leaves 

were then incubated as described in Section II.4 for 48 h with SA and ABA, and with 

Spm and MeJA for 72 h. The hormones SA, ABA, and MeJA were first dissolved in 

different concentrations of ethanol and then diluted in H2O to a final concentration of 1 

%, 0.5 %, and 0.005 % ethanol respectively, therefore, these concentrations of ethanol 

were included in all of the treatments, including the water controls. After the hormonal 

treatments, the response of leaves was quantified as described in Section II.3. 

II.6. Treatment of rosettes grown in soil under short-days 

Plants were grown in soil for 28 days under short days as described in Section 2.1 in the 

General Materials and Methods (Chapter 2). Rosettes were then harvested and treated 

with hormones as described in Section II.5 except for Spm where 350 µM (Mirza and 

Iqbal 1997) was used rather than 500 µM. Petri dishes containing rosettes were then 

incubated as described in Section II.4 for 48 h with SA and ABA, 24 h with Spm, and 

with MeJA for 72 h. After the hormonal treatments, rosettes were treated as described in 

Section II.2 and II.3 to test the effect of the hormonal treatment on dark-induced leaf 

senescence. Leaves 5 and 6 were sampled (6 leaves/ time point) at 0 and 6 days of dark 

treatment for chlorophyll analysis as represented in Section 2.15 in the General Materials 

and Methods (Chapter 2). 
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II.7 Induction of senescence by darkness in rosettes grown under short-days on MS 
medium after pre- and post-harvest treatment with plant growth regulators  

Arabidopsis seeds were surface sterilized and stratified as described in Section 2.2 in the 

General Materials and Methods (Chapter 2). Seeds were then sown onto Petri dishes 

containing MS medium as described in Section 2.1 in the General Materials and Methods 

(Chapter 2). For pre-harvest treatment, 500 µM Spm (Zheng et al. 2005) or 50 µM MeJA 

(He et al. 2002) were added to the MS medium and seedlings were left to grow in short 

days as described in Section 2.1 in the General Materials and Methods (Chapter 2). 

Rosettes were harvested 40 d after sowing and hormone treated rosettes placed onto wet 

filter papers as described in Section II.2 for dark induced senescence (6 rosettes/ 

treatment; 3 per dish). Alongside these, some rosettes were grown on MS without any 

hormonal supplements to be used as controls or to be treated after harvest with MeJA or 

Spm at concentrations similar to those used pre-harvest for 72 h in the dark as described 

in Section II.4. Following the post-harvest treatment with hormones, filter papers were 

replaced and rosettes treated as described in Section II.2. In both cases, senescence 

induced by darkness was quantified as described in Section II.3. 

II.8. Treatment of rosettes grown under short-days on MS medium after abiotic 
stresses 

Arabidopsis seeds were sterilized and stratified as described in Section 2.2 in the General 

Materials and Methods (Chapter 2). Seeds were then sown onto MS medium and 

seedlings were left to grow under short day conditions as described in Section 2.1 in the 

General Materials and Methods (Chapter 2). Rosettes were harvested 29 d after sowing 

and divided into 4 groups (9 rosettes/ treatment; 3 per dish). The first group was placed 

onto wet filter papers and stored in complete darkness at 21° C as a control, the second 

was treated for 24 h with cold in the dark at 7° C as a short-term cold treatment, the third 

was placed on dry filter papers for 24 h in the dark then filter papers were wetted for a 

dehydration treatment, while the last group was stored on wet filter papers in complete 

darkness at 7° C throughout the duration of the experiment for long-term cold treatment. 

For dark-induced senescence assessment, rosettes were treated as described in Section 

II.2 and II.3. 
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 Results 

III.1. Effect of stress-related hormones on senescence of WT Arabidopsis rosettes 
grown on soil in long day conditions 

Results indicated that treatment of wild type Arabidopsis rosettes grown in soil under 

long days after harvest with plant hormones such as MeJA and Spm was not effective in 

modulating the progression of dark-induced leaf senescence in treated rosettes compared 

with control plants (Figure 2) as no significant differences were seen in the progression 

of senescence during the experiment. 

 

Figure 2. Dark-induced senescence in Arabidopsis rosettes grown in soil under short days after treatment 

with 500 µM Spm or 50 µM MeJA. Data represent mean values ± SE (n=8).

III.2. Effect of senescence related hormones on senescence of detached WT 
Arabidopsis leaves 

The response of detached leaves to the senescence hormones ABA, SA, and MeJA as 

well as the anti-senescence hormone Spm was evaluated in detached leaves (Figure 3). 

ABA and Spm accelerated senescence significantly as indicated by the higher RGB 

values. Yellowing following MeJA treatment for 72 h was also slightly higher, but this 
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induction was not statistically significant relative to the wild type. SA on the other hand 

had no effect on the progression of dark-induced leaf senescence. 

 

Figure 3. Dark-induced senescence of detached leaves after treatment with senescence-related hormones, 

500 µM Spm for 72 h, 50 µM MeJA for 72 h, 50 µM ABA for 48 h, and 100 µM SA for 48 h, at 22° C 

under a 16 h photoperiod of illumination. Pre-treatment refers to pre-incubation with different hormones. 

Data represent mean values ± SE (n=10). * P ≤ 0.05 compared to the respective control. 

III.3. Effect of stress-related plant hormones on dark-induced senescence of WT 
Arabidopsis rosettes grown in soil under short days 

The response of rosettes grown on soil in short days to post-harvest treatments with 

senescence-promoting hormones, MeJA, ABA and SA, and anti-senescence hormone 

Spm was evaluated (Figure 4). Exposing rosettes to MeJA accelerated yellowing and this 

acceleration was significant at several time points (Figure 4.a). On the other hand, ABA 

and Spm retarded senescence, although this delay was only significant at the sixth and 

the eighth day respectively of the dark period (Figure 4.b and c). In contrast, SA treatment 

did not significantly affect the progression of rosette senescence (Figure 4.d). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4. Dark-induced yellowing in rosettes of Arabidopsis upon post-harvest treatment with senescence 

related hormones. (a) 50 µM MeJA for 72 h, (b) 50 µM ABA for 48 h, (c) 350 µM Spm for 24 h, and (d) 

100 µM SA for 48 h. Plants were imaged every 2 days during dark incubation to obtain RGB values until 

leaves became completely yellow. Data represent mean values ± SE (n=9). * P ≤ 0.05.
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Chlorophyll content as a senescence parameter was determined at the beginning and 6 

days after incubation in the dark (Figure 5). At the beginning of dark induction no 

significant differences in chlorophyll levels were observed between hormone-treated 

plants and their controls (Figure 5.a). On the sixth day of the dark period, plants treated 

with ABA and Spm retained higher levels of chlorophyll a, b and the total chlorophyll 

compared with control plants. In contrast, treatments with either MeJA or SA reduced 

leaf contents of chlorophyll slightly but this reduction was statistically not significant 

compared to the control plants (Figure 5.b). 

(a) 

 
(b) 

 

Figure 5. Comparison of chlorophyll content in hormone-treated and untreated plants during dark induced 

senescence. (a) Chlorophyll levels in leaves at the onset of darkness period. (b) Chlorophyll contents in 

treated and untreated leaves after 6 days of incubation in the dark. Data represent mean values ± SE (n=6). 

* P ≤ 0.05.
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III.4. Effect of pre- and post-harvest treatment with senescence related plant 
hormones on dark-induced senescence of WT Arabidopsis rosettes grown under 
short-days on MS medium 

Treatment with MeJA during growth produced very small rosettes. They were therefore 

excluded from the rest of the experiment. Treating rosettes grown in short days with 

MeJA after harvest accelerated senescence as shown in (Figure 6.a) where it is clearly 

seen that after day 3 the RGB value increased and at day 5 was significantly higher in the 

MeJA treated rosettes compared with the control rosettes. Growing seeds on MS medium 

containing Spm caused a marked retardation in leaf senescence (Figure 6.b) which was 

obvious early during the dark period (day 1, 3 and 5), however later, the RGB values of 

Spm-pre-harvest treated rosettes were slightly higher than those of untreated ones 

(although not significantly). There was possibly a very small delay in yellowing observed 

as a result of post-harvest treatment with Spm relative to control throughout the dark 

treatment but this reduction was not significant. 

(a) 

 
(b) 

 

Figure 6. The effects of pre- and post-harvest treatment with senescence related hormones on the 

progression of dark-induced senescence. Wild type Arabidopsis rosettes grown on MS medium under short-

days were treated post-harvest with 50 µM MeJA (a), or pre- and post-harvest with 500 µM Spm (b). Data 

represent mean values ± SE (n=6). * P ≤ 0.05.
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III.5. Effects of abiotic stresses on dark-induced senescence of WT Arabidopsis rosettes 
grown under short-days on MS medium 

There was an acceleration in leaf yellowing due to short-term cold and 24 h dehydration 

treatments compared to the control which was significant only with the drought at 23, 29 

and 31 d during the dark period (Figure 7). In contrast, long-term cold treatment abolished 

the dark-induced senescence in rosettes which remained green until the end of the 

experiment (41 days). 

 

Figure 7. Effects of abiotic stresses (short-term cold, dehydration, and long-term cold) on dark-induced 

senescence of wild type Arabidopsis rosettes grown on MS medium under short-days. Data represent mean 

values ± SE (n=9). * P ≤ 0.05.

 Discussion 

The process of senescence can be recognized by a visible leaf yellowing, chlorophyll 

degradation, sharp decline in photosynthesis capacity, and a decline in total protein and 

RNA contents (Mishina et al. 2007). In the present work, the effect of selected plant 

hormones and environmental stresses on dark-induced leaf senescence was examined via 

changes in leaf colour and in some cases by measuring the variation in chlorophyll, using 

Arabidopsis plants grown on different media under different growth conditions. In 

addition, role of AtCuAO4 in the progression of dark-induced leaf senescence was 

investigated. 
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Photoperiod is one of the most important factors which affect the onset of plant flowering. 

Arabidopsis thaliana is a long day plant that flowers rapidly in long days (16 h light, 8 h 

dark), while short days (8 h light, 16 h dark) postpone flowering in this plant (Martinez-

Zapater and Somerville 1990). In many species of annual plants, the reproductive phase 

is accompanied by the onset of leaf senescence (Hinderhofer and Zentgraf 2001; Ye et 

al. 2000). In general, results of hormone treatments of plants grown under long day 

conditions were contradictory and disagreed with results of previous studies where PAs 

are known to be inhibitors of leaf senescence (Kaur-Sawhney et al. 1982), while MeJA 

is a promoter of senescence in Arabidopsis attached and detached leaves (He et al. 2002). 

This could be due to a potential confounding influence of other hormonal pathways 

induced as a result of the transition to flowering. Growing plants under short day 

conditions, on the other hand, either on soil or MS media showed more consistent results 

which is better for understanding the effect of different hormonal treatments on the 

progression of dark-induced leaf senescence. The medium used to grow plants prior to 

senescence-induction was also found here to be critical. Growing Arabidopsis plants on 

soil under short days was more effective in producing rosettes of larger size which were 

more suitable for studying the progression of dark-induced leaf senescence by measuring 

the degreening or yellowing using ImageJ analysis. 

In general, results of the present experiments indicated that the polyamine Spm has a 

variable influence on dark-induced Arabidopsis leaf senescence ranging between 

retardation and stimulation or has no clear effect. A retardation effect would be in 

agreement with a previous report on the application of Spm to detached oat leaves (e.g. 

Kaur-Sawhney and Galston 1979). The variation in Spm effects seen here might be 

attributed to its concentration or to plant growth conditions. Plants grown under short 

days either in soil or on MS media exhibited delayed dark-induced leaf senescence 

following treatment with 350 or 500 µM Spm which was characterized by measuring 

chlorophyll content (Figure 5) and colour change (progression of yellowing) (Figure 4.c 

and Figure 6.b). Hence, plant growth conditions that affect bolting time and thus 

flowering is the most probable reason for variations in the effect of Spm treatments in the 

present experiments.  
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In all the experiments described here, MeJA hastened leaf senescence and this effect was 

statistically significant when plants were grown under short day conditions prior to 

treatment with the MeJA. This effect of MeJA in hastening leaf senescence is consistent 

with the previous studies (He et al. 2002). On the other hand SA had no clear influence 

on senescence under any of conditions used here, again in agreement with the lack of an 

SA regulated pathway in dark-induced senescence (Buchanan-Wollaston et al. 2005; van 

der Graaff et al. 2006). Investigating the effect of treatments with ABA on leaf senescence 

revealed a complex pattern that depended on whether plants were grown under long or 

short days. Leaf senescence was accelerated upon ABA application when treated leaves 

were from plants grown in long days which is consistent with previous findings 

(Buchanan-Wollaston et al. 2005; Oh et al. 1996; Sharabi-Schwager et al. 2010), while, 

treatment of short-day rosette leaves showed late senescence in the dark. 

Experiments studying the response of leaf senescence to various environmental stresses 

during dark incubation of rosettes revealed that dehydration was the only treatment that 

markedly accelerated senescence. Water stress is a major environmental factor that 

affects plant growth and development and causes physiological and developmental 

changes in plants by inducing their genes which in their turn contribute to stress tolerance 

(Bray 1997; Ingram and Bartels 1996; Shinozaki and Yamaguchi-Shinozaki 2000; 

Simpson et al. 2003). Likewise, dehydration treatment of Arabidopsis detached rosettes 

in dim light induced the expression of about half the SAGs surveyed (Weaver et al. 1998). 

Exposing rosettes to short term cold (24 h) did appear to accelerate leaf senescence, but 

the effect was too small to be significant, whereas, long-term cold (throughout the 

experiment) showed a considerable delaying of leaf senescence during dark incubation. 

Retardation of leaf senescence by long-term cold is in agreement with several previous 

studies which confirmed the importance of storage of leafy vegetables at low temperature 

in reducing chlorophyll loss which contributes to extending the shelf life of produce 

(Bergquist et al. 2007; Ferrante and Maggiore 2007; Kramchote et al. 2012; Prabhu and 

Barrett 2009). 
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Appendix F 

List of Symbols 

Symbol Name in full 

cm Centimetre  

g Gram or relative centrifugal force (context specific) 

GC-MS/MS Gas chromatography/ mass spectrometry 

h Hour  

L Litre  

M Molar  

µAU Micro-absorption units 

mg Milligram  

µg Microgram 

min Minutes  

ml Millilitre 

µl Microliter 

µm Micrometre  

mM Millimolar  

µM Micromolar 

mm Millimetre  

µmol m-2 s-1 Micromoles per square meter per second 

nmol Nanomole  

nM Nanomolar  

pH Potential of hydrogen (The molar concentration of hydrogen ions in the solution) 

s Second  

v/ v Volume to volume 

w/ v Weight to volume 

° C Degree Celsius 

χ2 Chi-squared 
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