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2
3 Hey Factors at theQ1 Crossroad of Tumorigenesis
4 and Clinical TherapeuticQ2 Modulation of Hey for
5 AnticancerQ3 Treatment
6 Zihao Liu1, Andrew J. Sanders2, Gehao Liang1, Erwei Song1,Wen G. Jiang2,
7 and Chang Gong1,2

8 Abstract

9 Hairy and Enhancer-of-split related with YRPW motif (Hey)
10 transcription factors are important regulators of stem cell embryo-
11 genesis. Clinical relevance shows that they are also highly
12 expressed inmalignant carcinoma. Recent studies have highlight-
13 ed functions for the Hey factors in tumor metastasis, the main-
14 tenance of cancer cell self-renewal, as well as proliferation and the
15 promotion of tumor angiogenesis. Pathways which regulate Hey
16 gene expression, such asNotch and TGFb signaling, are frequently
17 aberrant in numerous cancers. In addition, Hey factors control

19downstream targets via recruitment of histone deacetylases
20(HDAC). Targeting these signaling pathways or HDACs may
21reverse tumor progression and provide clinical benefit for cancer
22patients. Thus, some small molecular inhibitors or monoclonal
23antibodies of each of these signaling pathways have been studied
24in clinical trials. This review focuses on the involvement of
25Hey proteins in malignant carcinoma progression and pro-
26vides valuable therapeutic information for anticancer treatment.
27Mol Cancer Ther; 1–14. �2017 AACR.

28

29 Introduction
30 Hairy and Enhancer-of-split related with YRPW motif factors
31 (Hey1/2/L) belongQ6 to the basic helix-loop-helix Orange (bHLH-
32 O) family which is also known as Hairy and Enhancer-of-split
33 related protein (Hesr), Hairy-related transcriptional factor (HRT),
34 Hes-related repressor protein (HERP), and cardiovascular helix-
35 loop-helix factors (CHF; refs. 1–5). All three Hey genes have been
36 found in developmental tissue, and abnormal expression of these
37 proteins promotes abnormalities in stem cells, even leading to
38 organ defects. Hey proteins canmaintain an undifferentiated state
39 of precursor cells by transcriptionally repressing cell fate regula-
40 tors such as achaete-scute homolog 1 (6). In the developing heart,
41 Heyproteins regulate cardiomyocyte precursor cell differentiation
42 as well as epithelial–mesenchymal transition (EMT) of endocar-
43 dium cells (7, 8). Since we recognized that cancer cells can
44 monitor and utilize similar physiologic strategies to normal cells
45 and promote tumor progression, for instance, cancer cells can
46 initiate cellular plasticity and/or activate similar signaling path-
47 ways as mesenchymal cells, stem cells, or precursor cells do, we

49have started to realize the significant role played by Hey factors in
50tumor progression (9, 10). Hey proteins are found to be selec-
51tively expressed in malignant tumor tissues, and numerous stud-
52ies have been undertaken to explain the molecular mechanism
53governing the Hey proteins in tumorigenesis. The most outstand-
54ing feature is thatmany signaling pathways can potentially confer
55EMT via Hey factors in malignant carcinomas. In addition, Hey
56factors not only regulate differentiation, self-renewal, and prolif-
57eration of cancer cells, but contribute to tumor neovasculature as
58well. Accumulating evidence indicates Hey factors lay at the
59crossroad of tumor progression. However, there are currently very
60few review articles illustrating the roles of the Hey family in
61tumorigenesis. The current review explores the functional signif-
62icance of the Hey family in initiating these processes. We also
63describe the signaling pathways involved in the control of Hey
64expression. Smallmolecular inhibitors ormonoclonal antibodies
65to each of these signaling pathways show promising antitumor or
66antiangiogenic effect in clinical trials. Here, these promising
67avenues for cancer treatment are also discussed.

68Structure of the Hey family proteins
69Hey family members are highly conserved and resemble their
70homologs, the Hairy and Enhancer of Split (Hes) family, in the
71four domain structures: basic, helix-loop-helix (HLH), Orange,
72and twoC-terminalmotifs. Hey proteins are directly connected to
73the E-box DNA sequence (CANNTG) via the glycine-rich basic
74domain (11, 12). The bHLH-O domain serves as a platform for
75cofactor interaction (3, 13). Despite extensive homology with the
76Hes family, Hey proteins also have significant features that dis-
77tinguish them from Hes proteins, namely, the YRPW motif
78(YHSW for HeyL) and GTEIGAF (GTEVGAF for Hey2) peptides
79(ref. 1; Fig. 1). Hey proteins have been regarded as transcription
80inhibitors in the past. They have since been shown to act as
81transcription activators as well as inhibitors (Table 1). Strikingly,
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84 their function seems to be regulated at multiple levels. For
85 instance, nonsynonymous single-nucleotide polymorphism
86 (SNP) naturally occurs at codon 94 of Hey1, which leads to a
87 substitution of a leucine residue by methionine (L94M) in the
88 helix 2 domain. The L94M-mutant Hey1 transforms from an
89 androgen receptor corepressor to androgen receptor coactivator
90 without changing its intrinsic repressive domains (14). The phos-
91 phorylation of the Serine-68 residue ofHey1prevents its enhance-
92 ment of p53 transcriptional activation but confers p53-activating
93 chemotherapy resistance, whereas wild-type Hey1 stimulates p53
94 and alters the sensitivity to p53-activating chemotherapy drugs.
95 Interestingly, such posttranscriptional regulation is also observed
96 within Hey2 (15). The dynamic regulation of Hey proteins at
97 pretranscriptional levels, posttranscriptional levels, or their own
98 characteristic structure could partly explain why Hey proteins
99 eliminate one target molecule in certain cancers but activate the
100 same molecule or its analogues in others. It should be noted that
101 the specificity for protein interactions and target molecules of
102 different Hey variants is differential between certain cell types.
103 L94M Hey1 variant strongly interacts with Hey2, whereas Hey1
104 forms an unstable homodimer with Hey2 (14). There is a poten-
105 tial, unknownHey1 variant enhancingmatrixmetallopeptidase 9
106 (MMP9) expression in osteosarcoma, whereas wild-type Hey1 is
107 unable to bind to the MMP9 promoter itself (16).

109Hey proteins in malignant carcinomas
110The levels of Hey factors are strikingly elevated in high-grade
111glioma, malignant osteosarcoma, high-grade esophageal squa-
112mous cell carcinoma, aggressive pancreatic adenocarcinoma rhab-
113domyosarcoma, as well as colorectal carcinoma (17–23). In these
114malignant carcinomas, aberrant Hey expression has been associ-
115ated with poor prognosis, overall survival (OS), tumor grade,
116chemotherapy resistance, lymphatic metastasis, and vascular pro-
117liferative properties (17, 23–25). Taken together, these studies
118suggest that elevated levels of Hey proteins contribute to tumor
119progression, and to a certain extent, this is a result of their
120regulation of the behavior of cancer cells as well as remodeling
121of the tumor microenvironment (Fig. 2).

122The roles of Hey proteins in cancer metastasis
123It was first observed that Hey-induced EMT was required
124in the developing heart (26–29). Subsequently, Hey proteins
125were found to be involved in tumor metastasis progression.
126In vitro, Hey1 knockdown inhibited the invasive phenotype
127of osteosarcoma via downregulation of MMP9 (16). Further-
128more, the transfection of Hey1 antisense oligonucleotides
129blocked EMT through E-cadherin expression, and Smad3 inhi-
130bition repressed the Hey1-induced EMT phenotype even with
131the presence of TGFb (30). Strikingly, interaction between
132Hey1 and Smad3 has been observed in vitro (31), suggesting
133a Hey1–Smad3 complex transcriptionally represses E-cadherin.
134However, in the absence of activated Smad3, Hey1 does not
135influence EMT promotion, but only acts as a Snai1-initiated
136EMT marker (30, 32). On the other hand, Snai1, known as an
137E-cadherin repressor, potentially contributes to this repression
138process. Snai1 is reduced in Hey1/HeyL double knockouts and
139Hey2 knockout AV canals, and Snai1 can form a complex
140with Smad3 to occupy the E-cadherin promoter (26, 33). All
141these observations hint that Hey1 interacts with Smad3 and may
142inhibit E-cadherin directly or in a Snai1-Smad3-Hey1 manner. In
143other situations, Hey proteins promote mesenchymal–epithelial

Figure 1

Domain structuresQ7 with percentage identity of
Hey2 and HeyL with Hey1. The bHLH domains
show the highest conservation among other
domains. The Orange domain shows less
conservation. Individual Hey proteins
potentially recruit selective cofactors via
Orange domain and C-terminal motif.

Table 1. Summary of target genes, cytokinQ8 e, and transcriptional factors of Hey

Targets Hey proteins Comment References

P53 Hey1, Hey2, HeyL Activation 14, 15
MMP9 Hey1 Activation 16
Snai1 Hey1, Hey2, HeyL Activation 26, 30
IL6 Hey1 Activation 37
Twist1 Hey1, Hey2 Repression 34
Snai2 Hey1, Hey2 Repression 34
Runx2 Hey1 Repression 40, 41
Col2a1 Hey1 Repression 42
VEGFR2 Hey1, Hey2 Repression 51, 58, 60, 61
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146 transition (MET). Upon Notch4 induction, Hey proteins pro-
147 mote melanoma MET and are important in promoting meta-
148 static colonization because Hey1 and Hey2 can eliminate Snai2
149 as well as Twist1 expression via binding to their promoters
150 (34). The different stimuli have a potential influence on Hey
151 function, as TGFb-induced Hey1 promotes EMT and Notch-
152 induced Hey proteins regulate MET or transition irrelevant due
153 to lack of Smad3. However, it is more complex than first
154 thought. Forced expression of Hey proteins has no impact on
155 Snai2 or E-cadherin expression in other cell lines (35, 36). Does
156 the paradox happen in different cell types? Evidence from the
157 previous section indicates the nonsynonymous SNP of Hey
158 genes in different cell types will affect different Hey variants'
159 DNA-binding ability as well as protein-interaction specificity.
160 Based on this, we presume that Hey variants affect Snai1/Snai2
161 expression transcriptionally to mediate EMT/MET in different
162 cell lines. More intensive research is required to fully charac-
163 terize Hey variants and the posttranscriptional modification of
164 Hey. Also, Hey1 participates in metastatic microenvironment
165 remodeling. Tumor-derived Jagged1 enhances osteoblast secre-
166 tion of IL6 via Hey1 activation, and, in turn, IL6 confers a

168proliferative advantage to cancer cells (37). Epithelium-derived
169Jagged1 activates Hey1 which then promotes metastatic lym-
170phoma cell chemotherapy resistance as well as progression in
171the tumor perivascular niche (38).

172Hey proteins can regulate the differentiation, self-renewal,
173and proliferation of cancer cells
174Hey proteins were identified as one of a few genes specifically
175expressed during embryogenesis (1, 39). Following this discovery,
176the potential capacity of the Hey family in sustaining cell quies-
177cence was recognized (6, 40–42). Cancersmonitor the quiescence
178strategy to keep their nondivide state and contribute to tumor
179progression (10, 43). The upregulation of Hey1 is likely to inhibit
180differentiation because rhabdomyosarcoma cells with an shRNA
181antagonizing Hey1 display differentiation morphology changes
182and the expression of differentiation marker myogenin (22). The
183introduction of Hey1 into proliferating osteosarcoma increases
184p53 expression and makes tumor cells stay in a nondividing state
185through p53-dependent reversible cell-cycle arrest (14). In the
186context of quiescence, elevated Hey family expression can reflect
187the undifferentiating property of malignant cancer cells. In

Figure 2

Hey proteins in tumorigenesis. Via
activating or inactivating cytokines and
other transcriptional factors, Hey
proteins show their regulation on tumor
progression including cancer
metastasis, cancer cells' quiescence
maintenance as well as cancer
neovasculature.
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190 addition, the ability of Hey proteins in maintaining self-renewal
191 was investigated. The expression of Hey1 and Hey2 is remarkably
192 higher in cancer stem cells (CSC), also referred as tumor-initiating
193 cells (TIC), than that in non-CSCs (44). Hey1 is supposed to
194 maintain CSCs self-renewal capacity as the silencing of Hey1
195 dampens malignant tumor-initiating ability as well as tumor
196 growth in vivo and reduces cancer cell sphere formation in vitro
197 (45, 46). In hepatocellular carcinoma, Hey1 upregulation upon
198 c-Met/FRA1 signaling increases the number and the size of
199 TICs spheroids which represent the self-renewal ability of these
200 cells (47). Furthermore, Hey proteins have an effect on cancer
201 proliferation. Hey2 overexpression increases hepatocellular car-
202 cinoma cell viability and proliferation (48). HeyL can promote
203 breast cancer initiation through interaction with TGFb-activated
204 Smad3 (31). Interestingly, HeyL promotes p53-induced
205 cell-cycle arrest which results in suppression of cancer cell pro-
206 liferation and induction of cancer cell apoptosis in hepatocellular
207 carcinoma (49). The same study also reported that 75% of
208 hepatocellular carcinoma tissues had inaction ofHeyL, suggesting
209 that HeyL is a potential tumor suppressor in hepatocellular
210 carcinoma. This is an interesting observation, despite that it
211 was a single study and demonstrated in a small cohort (n ¼
212 80), this will require further validation on a larger scale. How-
213 ever, the fact that HeyL differs in one of the key motifs, namely
214 the YHSW motif, from Hey1 and Hey2 which both have the
215 YRPW motif, may be one of the reasons why it acts differently
216 from other Hey proteins. While YRPW appears to be a good
217 target (16), YHSW, at least in hepatocellular carcinoma, may not
218 be the case. This is clearly a fascinating area to explore, both in
219 research and in clinical settings.

220 Balance between HeyL and Hey1/Hey2 regulates cancer
221 neovasculature
222 Genetic studies have highlighted the great influence of Hey
223 proteins in angiogenesis during development or pathologic
224 conditions (27, 50–52). Angiogenesis actively requires a strict
225 hierarchy between sprouting and vascular tubes (53). Previous
226 research suggests a factor acting upstream of Hey, Delta-like 4
227 (DLL4), is capable of controlling this hierarchy, as the inhibi-
228 tion of DLL4 leads to a hyper-sprouting phenotype following
229 exposure to proangiogenic factors (54–56). Much evidence,
230 however, supports that DLL4's control on vascular sprouting
231 is via its downstream factors, Hey1/2. It is acknowledged that
232 epithelium with higher VEGFR2 emerges at the tip position
233 and sustained VEGFR2 pathway activation results in excessive
234 sprouting (57–59). Strikingly, Hey1, as well as Hey2, can sup-
235 press VEGFR2 expression and eliminate the increased frequency
236 of epithelial cells at the tip position (58, 60, 61). When activated
237 by the bone morphogenetic protein (BMP)/Activin receptor-like
238 kinase (ALK) pathway, Hey1 as well as Hey2 abrogate the hyper-
239 sprouting phenotype and induces tube formation (58, 62).
240 In tumors, the coordinated balance between VEGFR2 and
241 DLL4/Hey is tightly required for tumor cell expansion (63).
242 DLL4/Hey2 overexpression leads to tumor growth by promoting
243 low-density and mature tumor vessels through downregulation
244 of VEGFR2 levels (64). DLL4/Hey blockage leads to VEGFR2
245 upregulation, which restrains tumor progression by producing
246 hyper-sprouting, thin, fragile, and nonfunctional tumor vessels
247 (56, 65–67). Interestingly, Jagged1-associated Hey upregulation
248 seems to have little effect on low-density and mature tumor
249 vessel phenotype, and Jagged1 promotes tumor-spouting angio-

251genesis through distinct mechanisms (54, 68, 69). In contrast,
252HeyL potentially promotes neovascularization. Studies reveal
253that breast tumor–derived vascular samples exhibit at least
25420-fold higher levels of HeyL than normal breast vasculature.
255The elevated level of HeyL potentially promotes neovasculature
256by forcing vascular endothelial cells to undergo proliferation
257and ceasing apoptosis (25). Taken together, this evidence high-
258lights the complexity of Hey in angiogenesis, and drugs targeting
259DLL4, Jagged1, and ALK1 are promising.

260Notch-Hey signaling pathway
261The mature heterodimeric Notch receptors are cleaved at
262two sites once the five ligands (Delta-like 1, 3 and 4, and Jagged
2631 and 2) bind to the four membrane-bound Notch receptors
264(Notch 1, 2, 3, and 4), firstly by a disintegrin and metallopro-
265teinase domain-containing protein 10/17 (ADAM10/17) and
266secondly by g-secretase to release the Notch intracellular domain
267(NICD). In the nucleus, NICD interacts with the CBF1/Suppressor
268of Hairless/Lag1 (CSL) and recruits coactivators, allowing for
269transcriptional activation of Hey genes (4, 70, 71). Intriguingly,
270Notch receptors or Notch ligands show little selectivity for the
271induction of individual Hey proteins. Aberrant Notch-Hey axis
272shows great relevance to cancer biology. The Notch-Hey1 signal-
273ing pathway is over activated in invasive breast cell lines. Upon
274Notch inhibition via g-secretase inhibitors (GSI), their migration
275and invasion capacity is reduced and this is accompanied by
276downregulation of Hey proteins (32, 72). The disruption of
277Notch-Hey1 in stroma bone cells decreases Jagged1-mediated
278breast tumor growth and bone metastasis (37). In osteosarcoma
279as well as rhabdomyosarcoma, Notch-Hey inhibition reverses
280tumor cell proliferative and relieves tumor burden (20, 22). GSI
281treatment also contributes to depletion of breast CSCs (44).
282Furthermore, a nonfunctional vascular network which results in
283tumor growth inhibition emerges when the DLL4-Notch-Hey1/2
284pathway is blocked by DLL4 antibodies (56, 67). Thus, because
285GSIs, anti-Notch receptors, as well as anti-DLL4 are effective in
286Notch-Hey pathway inhibition, they have been developed into
287promising preclinical drugs (as summarized in Table 2).

288g-secretase inhibitors
289Various preclinical trials show that GSIs have strong antitumor
290effects (73, 74). When treated with MK-0752 in phase I studies,
291clinical benefits such as complete response (CR) and prolonged
292stable disease (SD) were observed (75–78). However, patients
293present no objective responses to monotherapy of RO-4929097
294in phase II clinical trials of solid tumors (79–82). Clinical indi-
295cation of GSIs is still controversial, as a portion of cancer patients
296experienced SD during RO-4929097 or MK-0752 therapy, 1
297advanced thyroid cancer patient achieved CR, and 71.4% (5/7)
298desmoid tumor patients had a partial response (PR) when they
299received another GSI, PF-0308414 (83). Themost prominent and
300dose-limiting toxicity of GSIs is gastrointestinal (GI) events
301including diarrhea, vomiting, and nausea. This GI toxicity is likely
302based on the mechanism that inhibition of Notch signaling
303abrogates the undifferentiated state of intestinal crypt progenitor
304cells and results in differentiation into goblet cells (84). To reverse
305GI events, some investigators use glucocorticoid or tamoxifen
306therapy which potentially protects the intestine from goblet cell
307metaplasia (85, 86). Besides, the adverse events are scheduled
308dependent. Once-per-week dosing schedule of MK-0752 shows
309less severe GI events as well as fatigue than intermittent dosing for
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312 3 to 7 days or continuous daily dosing group and once-per-week
313 group also achieved substantial Notch signaling inhibition
314 (75). With glucocorticoid therapy and intermittent schedule,
315 cancer patients are more tolerant to higher GSIs exposure and
316 may associate with better outcomes. However, it is worth
317 considering that GSIs have an off-target effect as g-secretase
318 cleaves more than 90 substrates (87). Strikingly, two types of
319 GSIs reduce Notch1 but not Notch4 activity, suggesting some
320 GSIs are receptors specific (88). In addition, different GSIs enjoy
321 quite inequivalent pharmacokinetics. LY900009 is cleared by
322 oxidation and amide hydrolysis, and its renal clearance is low,
323 while semagacestat, an analogue of LY900009, mostly depends
324 on renal clearance (89, 90). RO4929097 is cleared by auto-
325 induction of cytochrome P450 family 3 subfamily A polypep-
326 tide 4 (CYP3A4), indicating that combination RO4929097
327 therapy with antitumor agents metabolized by CYP3A4 might
328 show limit clinical utility (91). Furthermore, intravenous GSIs
329 are under development (ref. 92; chemical structures of the
330 unproved GSIs are available in Supplementary Data: Supple-
331 mentary Figs. S1–S4).

332 Anti-Notch receptor antibodies
333 As GSIs are pan-Notch inhibitors, several antibodies were
334 launched to block Notch receptors more specifically by binding
335 with their extracellular-negative regulator region or ligand-
336 binding domain. Preclinical data show antitumor, antiangio-
337 genesis effects and decreasing CSCs frequency following treat-
338 ment with these receptor-specific antibodies (93–95). Based on
339 the success of Notch-specific antibodies, OMP-52M51 (anti-
340 Notch1) and OMP-59R5 (anti-Notch2/3) have been studied in
341 clinical trials. In a phase I study in solid tumors, the best
342 response to OMP-52M51 was 2 patients with adenoid cystic
343 carcinomas: one achieved PR; the other had SD for 290 days

345and SD was also observed in other tumors (96). Untreated
346metastatic pancreatic cancer patients only present SD, whereas
34775% (6/8) of untreated extensive-stage small-cell lung cancer
348patients achieve PR to OMP-59R5 monotherapy (97, 98). Anti-
349Notch receptor antibodies are attractive, as they still function
350even in Notch receptors carrying mutations, and some of these
351tumors carrying mutations may be highly sensitive to these
352antibodies (93).

353Anti-DLL4 monoclonal antibodies
354Considering the great importance that DLL4 exerts on tumor
355vessel formation, targeting DLL4 was used to target tumor angio-
356genesis in preclinical studies, and several DLL4-blocking mono-
357clonal antibodies have also been used to target Notch-mediated
358tumor angiogenesis in clinical trials (64, 99). SD and PR were
359noted in 41% of patients with advanced solid tumors when
360treated with REGN421 (Enoticumab), a DLL4 monoclonal anti-
361body, in a phase I trial (100). OMP-21M18 (Demcizumab),
362another anti-DLL4 monoclonal antibody, showed antitumor
363effect, and 40% of patients with solid tumors responded with a
364reduction in tumor size (101). Although promising and well
365tolerated, severe adverse events, including hemangiomas, bleed-
366ing episodes, increased levels of troponin I, and ventricular
367dysfunction, were observed. In addition, targeting Jagged1 seems
368to exhibit an alternative therapeutic strategy which requires fur-
369ther clinical data (102, 103).

370Agents in preclinical stage
371Other agents blocking Notch signaling are also under
372development. Soluble decoys, which are Notch receptor extra-
373cellular domains or Notch ligands fused with or without
374human IgG, compete with endogenous ligands and inhibit
375Notch signaling activation. Notch1 decoys consisting of certain

Table 2. Selected therapeutic inhibitors of Notch signaling, TGFb signaling, and HDACs

Mechanism of actionQ9 Agent Biology targeted Clinical benefits Disease Stage NCT number

Notch
Pan-Notch inhibitor RO-4929097 Antitumor SD, PD Metastatic colorectal cancer Phase II NCT01116687

SD, PD Recurrent ovarian cancer Phase II NCT01175343
SD Pretreated pancreatic adenocarcinoma Phase II NCT01232829
PR, SD Metastatic melanoma Phase II NCT01120275

MK-0752 Antitumor CR, SD Advanced solid tumors Phase I NCT00106145
SD Children CNS malignancies Phase I NCT00572182

LY900009 Antitumor SD Advanced cancers Phase I NCT01158404
PF-0308414 Antitumor CR, PR, SD Advanced solid tumors Phase I NCT00878189

Notch1-specific antibody OMP-52M51 Antitumor PR, SD Solid tumors Phase I NCT01778439
Notch2/3-specific antibody OMP-59R5 Antitumor SD, PD Untreated metastatic pancreatic cancer Phase I NCT01647828

PR, SD Untreated small-cell lung cancer Phase I NCT01859741
DLL4-specific antibody REGN421 Angiogenesis targeting PR, SD Advanced solid tumors Phase I NCT00871559

OMP-21M18 Angiogenesis targeting PR Pretreated solid tumors Phase I NCT00744562
TGFb
ALK1-specific antibody ACE-041 Angiogenesis targeting PR, SD Advanced solid tumors Phase I NCT00996957

PF-03446962 Angiogenesis targeting PR, SD Pretreated advanced solid tumors Phase I NCT00557856
SD Pretreated urothelial cancer Phase II NCT01620970
SD Advanced solid tumors Phase I NCT01337050

ALK4/5/7 antibody LY2157299 Antitumor CR, PR, SD Advanced cancer and glioma Phase I Unavailablea

SD Advanced solid tumors Phase I NCT01722825
HDAC
Pan-HDAC inhibitors Vorinostat Antitumor Cutaneous T-cell lymphoma Approved

Belinostat Antitumor Peripheral T-cell lymphoma Approved
Panobinostat Antitumor Multiple myeloma Approved
Romidepsin Antitumor Cutaneous T-cell lymphoma Approved

Abbreviation: CNS, central nervous system
aReference 121.
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378 EGF-like repeats can interrupt Jagged-class–induced Notch
379 uniquely and show antiangiogenesis as well as antitumor
380 effects with limited adverse events in vivo (68). Soluble DLL1
381 or Jagged1 decoys can also block Notch signaling successfully
382 (104, 105). Also, cell-permeable peptides interact with NICD-
383 CSL and form a transcriptionally repressive complex which
384 halts leukemia cell proliferation (106, 107).

385 TGFb-Hey signaling pathway
386 Recent evidence has documented that TGFb signaling induces
387 Hey protein in a Notch-independent manner or through canon-
388 ical Notch. Upon TGFb1 activation, initiation of Hey is con-
389 ducted by Smad3/Smad4 complex binding to Hey promoters at
390 Smad-binding element core repeat (SCR) positions, and Hey
391 gene activation is still observed when canonical Notch is abro-
392 gated by GSI (30). BMP9 protein activates Smad1/5/8 and
393 directly stimulates Hey expression via a noncanonical Notch
394 signaling pathway when it binds to TGFb type I receptor-ALK1
395 receptor (58, 62, 108). On the other hand, activation of the Hey
396 family can be enhanced by synergy between TGF-b/BMP and
397 Notch signaling. Smads physically interact with Notch-depen-
398 dent NICD and synergistically activate transcription of Hey1,
399 Hey2, and HeyL, when Smads are activated by BMP-ALK5/6 or
400 TGFb1 treatment (30, 109, 110). As with the Notch pathway,
401 TGFb signaling is often elevated in tumors and contributes to
402 tumor progression. Subsequent studies have indicated a crucial
403 role for TGFb in EMT initiation, and tumors break free from
404 their neighboring tissue to undergo metastasis through TGFb-
405 induced EMT (111). Smad3 is of significant importance for
406 Hey1-induced EMT as Smad3 is an integral molecule for repres-
407 sing E-cadherin. In addition to metastasis, TGFb pathway acti-
408 vation has been linked to tumor angiogenesis. Upon BMP9
409 treatment, the ALK1-Hey signaling pathway forces epithelial
410 cells to remain in a stalk cell state, resulting in tube induction
411 and mature vessel phenotype (58). If the ALK1-Hey signaling
412 pathway is abrogated through addition of the ALK1 inhibitor,
413 K02288, a hyper-sprouting phenotype is induced in vitro and
414 angiogenesis is disrupted in vivo (112). Thus, TGFb receptor
415 inhibitors, which are potentially antitumor as well as antian-
416 giogenesis drugs, have been applied in preclinical trials (as
417 summarized in Table 2).

418 ALK1 blockers
419 Several ALK1 inhibitors have been studied in clinical trials.
420 ACE-041 (Dalantercept), another ALK1 blocker, was tested in
421 squamous cell carcinoma, non–small cell lung cancer, and
422 intestinal adenocarcinoma and displayed antitumor activity in
423 phase II clinical trial (113). No responses or PR to PF-
424 03446962, an antibody targeting ALK1, was observed in hepa-
425 tocellular carcinoma, urothelial cancer, colorectal cancer, malig-
426 nant pleural mesothelioma, and other solid tumors (114–116).
427 Three patients with metastatic hepatocellular carcinoma, met-
428 astatic clear cell renal carcinoma, and KRAS-mutant non–small
429 cell lung cancer showed PR to PF-03446962 in another phase I
430 trial (117). SD was observed among these four studies.
431 Although only a very small part of patients have PR to anti-
432 ALK1, further research is required into anti-ALK1. PR and SD
433 were observed in portions of patients who still had lesions and
434 cancer progression following VEGFR tyrosine kinase inhibitor
435 (TKI) treatment. The combination of VEGFR TKI and ACE-041

437results in a promising antiangiogenesis effect with marked
438tumor vascular disruption in xenograft models (118).

439ALK5 inhibitor
440LY2157299 (galunisertib), a small molecular inhibitor tar-
441geting the TGFb receptor I, was originally developed as an ALK5
442inhibitor and proved to complement ALK4/7 inhibitors (119).
443LY2157299 exerts an anti-invasive effect rather than antiproli-
444ferative effect on hepatocellular carcinoma cells via repression
445of Smad2 and Smad3 phosphorylation (120). A total of 24.3%
446of patients with glioma had either CR or PR to LY2157299, and
44726.7% showed SD to LY2157299 in a phase I trial (121).
448Interestingly, 80% of low-grade glioma patients with isocitrate
449dehydrogenase mutation received clinical benefits in this study,
450when given LY2157299 treatment. In addition, LY2157299 is
451well tolerated and safe without adverse cardiac events. How-
452ever, LY2157299 shows limited antitumor effects in pancreatic
453tumors (122).

454Hey mediates histone deacetylases
455The mechanisms through which Hey factors regulate their
456downstream effectors might also provide promising strategies
457for anticancer treatment. Hey factors are known to repress the
458expression of their target genes through recruitment of cofactors
459(123). Through Hey-mediated transcriptional repression, cancer
460cells maintain their undifferentiation state. Hey1 transcriptional-
461ly represses myogenin expression to sustain embryonal rhabdo-
462myosarcoma cells in an immature state (22). Heterodimers
463between Hes1 and Hey factors potentially silence achaete-scute
464homolog 1, which results in the maintenance of an undifferen-
465tiated state of tumors (124–126). Histone deacetylases (HDAC)
466are potentially involved in the repressive effects of Hey factors,
467as treatment with trichostatin A, a pan class I and II HDAC
468inhibitor, partially abrogates the repressive effect of Hey factors
469(127–129). It has been suggested that Hey factors can use their
470bHLH domain to recruit the mSin3-NCoR-HDAC1 complex or
471associatewith SIRT1, amember ofNADþ-dependentHDACs, and
472induce transcriptional repression (11, 127). Further research
473indicates that Hey-HDACs complexes reduced target gene expres-
474sion by downregulation of histone H3 lysine 27 acetylation
475(H3K27ac), which represents active transcription (130). Con-
476versely, the inhibition of HDACs can lead to accumulation of
477acetylated histones and results in active transcription of target
478genes which are expected to cause tumor differentiation and
479induction of apoptosis (131, 132). Because the expression of
480HDACs is required for tumor cell survival and maintenance of an
481undifferentiated state, HDAC inhibitors might provide a new
482antitumor strategy. However, the application of HDAC inhibitors
483remains paradoxical and should be studied in different types of
484cancer. The silencing of HDAC1 and/or HDAC2 can give rise to
485hematologic malignancy initiation (133). Knockout of HDAC3
486impairs genome stability as well as integrity and results in hepa-
487tocellular cancer (134).

488HDAC inhibitors
489FiveHDAC inhibitors have been approved for T-cell lymphoma
490treatment, vorinostat (MK0683), belinostat (PXD-101), panobi-
491nostat (LBH-589), and romidepsin (FK-228), by the FDA, and
492chidamide (CS055/HBI-8000) approved in China (ref. 135; as
493summarized in Table 2). These highlight the impact of HDAC
494inhibitors as antitumor agents. A great number of HDAC
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497 inhibitors are currently in testing in different phases of trials,
498 either combined with other antitumor chemotherapeutics or as
499 monotherapies. A phase II study indicates that entinostat (SNDX-
500 275/MS-275), an inhibitor of HDAC 1 and 3, brings clinical
501 benefits (PR,CR, and SD) to 24%ofHodgkin lymphomapatients,
502 and the median progression-free survival (PFS) as well as OS of
503 these patients was 5.5 months and 25.1 months, respectively
504 (136). Entinostat also shows antitumor effect in several clinical
505 trials (137, 138). In estrogen receptor–positive breast cancer, the
506 combinationof exemestanewith entinostat improvesmedianPFS
507 to 4.3 months and median OS to 28.1 months, whereas median
508 PFS and OS is 2.3 and 19.8 months, respectively, in the exemes-
509 tane plus placebo group (139). Other HDAC inhibitors, such as
510 ITF2357, CHR-3996, and JNJ-26481585, have been studied and
511 show promising antitumor effect (140–142).

512 Combination of therapies
513 The combination of therapies targeting TGFb, HDACs, and
514 Notch pathways requires thorough investigation regarding their
515 cross-talk in specific cancer settings. For example, Notch and
516 TGFb have synergetic carcinogenic effects in lung carcinoma,
517 head and neck squamous, esophageal adenocarcinoma, renal
518 cell carcinoma, thyroid carcinoma, and breast cancer (31, 143–
519 146). Because both TGFb and Notch signaling can activate Hey,
520 the simultaneous inhibition of both pathways might result in
521 better outcomes than blockade of either individually. Interest-
522 ingly, inhibition of both Notch and TGFb cannot increase the
523 synergetic effects on inhibition of cancer cell migration, but
524 additional blockage of Notch attenuates cancer cell prolifera-
525 tion in TGFb-treated cells (145). This highlights that combina-
526 tion therapies may affect more than one angle. Besides, com-
527 bination of ALK1 inhibitors and GSI shows promise in targeting
528 tumor angiogenesis, as inhibition of both signaling pathways
529 further abolishes angiogenesis when compared with the inhi-
530 bition of each alone (58). However, there is little clinical trial
531 data about the combination of Notch and TGFb inhibitors, and
532 further insightful studies are required. In another instance,
533 targeting both Hey levels and Hey activity concomitantly might
534 prove advantageous in cancer treatment. As an example, Hey
535 proteins exert their influence on tumor cells by recruiting
536 HDACs; when combining GSI and vorinostat, glioma and
537 melanoma cells show a decreased viability (147).
538 Another strategy is to combine molecular-targeted drugs with
539 classical chemotherapies. The combination of GSIs, HDAC
540 inhibitors, or TGFb inhibitors with cytotoxic agents results in
541 a more effective therapy since the inhibition of these pathways
542 has been observed to enhance cancer cell lines sensitive to
543 chemotherapy (148–150). Some clinical trials have also estab-
544 lished the efficacy of combination therapies. For example, when
545 combined GSIs with cytotoxic chemotherapy, clinical benefits,
546 such as PR and prolonged SD, are observed in solid cancer
547 patients (73, 151, 152). Encouraging antitumor activity is
548 noticed in a Notch2/3-specific antibody study. Treatment
549 OMP-59R5 with etoposide/cisplatin or nab-paclitaxel/gemci-
550 tabine shows 100% (3/3) PR in small cell lung cancer and 35%
551 (9/26) PR and 35% (9/26) SD in untreated metastasis pancre-
552 atic cancer, respectively (97, 98). HDAC inhibitors in combi-
553 nation with classical chemotherapy also lead to a stronger
554 antitumor effect. For instance, 64% thymoma and thymic
555 carcinoma patients show objectiveQ10 response to belinostat in
556 combination with cisplatin, doxorubicin and cyclophospha-

558mide and vorinostat combined with fludarabine, mitoxan-
559trone, and dexamethasone results in a 77.8% overall response
560rate in relapsed or refractory mantle cell lymphoma (153, 154).
561However, the combination of HDAC inhibitors with chemo-
562therapy may lead to unacceptable toxicity and on times is less
563efficient (155–157).

564Perspective in selectively targeting Hey proteins and bHLH
565factors
566Because different tumors tend to upregulate Hey proteins via
567distinct pathways, targetingHeyproteins directlymay bring about
568a higher response rate than blocking these pathways individually.
569Besides, targeting Hey proteins themselves may result in fewer
570side effects because the target genes of Notch, TGFb, and HDAC
571signaling pathways will be unaffected. To target Hey, we have to
572understand the mechanism of action of Hey. There are two
573possible mechanisms of transcriptional regulation mediated by
574Hey proteins. The first mechanism is E-box–dependent transcrip-
575tional regulation. Hey proteins bind to E-box via basic domain
576and form functional complex with other cofactors via HLH
577domain. A domain located between amino acids 47 and 122 is
578necessary (11, 158). The second mechanism is E-box indepen-
579dent. Hey interacts with DNA-binding proteins via HLH-O
580domain and performs as a cofactor. The critical domains locate
581in amino acids 47 to 76 and 111 to 291, which stride over bHLH
582and Orange domains (61, 159). Based on these, some small
583molecular inhibitors to antagonize Hey–DNA interaction and
584Hey–cofactor interaction might be promising. Dimer inhibitors
585fromnatural compounds were reported to disrupt theHey homo-
586log Hes1 dimerization (160). It is still possible to isolate small-
587molecule inhibitors targeting Hey. In addition, mutagenesis of
588Hes1 amino acid sequence in the basic domain does not decrease
589its dimerization-forming ability, but abrogates its transcriptional
590function (161, 162). Thus, we may construct high structural
591compatible Hey-dominant–negative peptides which can form
592inert complexes with Hey and block the three critical functional
593domains of Hey to disrupt their protein–protein and DNA–
594protein interfaces. The most successful example is designing
595stabilized, cell-permeable peptides which bind with NICD–CSL
596complex andpreventmastermind-like-1 interfacing to antagonize
597leukemia proliferation (107).
598Human bHLH transcription factors contain over 200 mem-
599bers and can be divided into five classes based on phylogenetic
600analysis (163). Hey transcriptional factors belong to clade B,
601and other transcriptional factors, such as Twist1-2 (clade A),
602MyoD (clade C), Max (clade D), Myc (clade E), and hypoxia-
603induced factor (HIF, clade E), are also bHLH factors. From
604the mechanistic inhibitory action of bHLH, the bHLH inhibi-
605tors can be summarized into the following groups: preventing
606dimerization, preventing DNA binding, and preventing bHLH
607factors expression (164). For example, some small-molecule
608inhibitors were isolated to specifically inhibit Myc-Max dimer-
609ization and block the binding of Myc-Max to DNA without
610affecting other structure-like bHLH factors dimerization
611(165, 166). By using Myc bHLH-Zip domain fragments,
612researchers also discovered local conformational changes and
613formation of hydrophobic cavities at the specific peptide
614sequences of the fragments upon binding with these small-
615molecule inhibitors (167). This makes it possible to design
616specific inhibitors simply through protein sequence analysis
617because the small-molecule binding sites have certain peptide
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620 sequence criteria. Also, HIF dimer inhibitors as well as HIF
621 DNA-binding inhibitors have been reported (168, 169). In
622 addition, dominant negative peptides mimicking the HLH
623 domain show a significant impact on E2A dimerization
624 (170). Peptides of MyoD which have a high affinity for Id1
625 can interrupt MyoD–Id1 interaction and exhibit antitumor
626 effects in vitro (171).

627 Conclusion
628 Hey proteins, a subfamily of mammalian bHLH-O transcrip-
629 tional factors, have been highly investigated in several research
630 studies since they have been found to be overexpressed in aggres-
631 sive tumors. Previous work has focused on their transcriptional
632 repressive roles in the maintenance of the undifferentiated state.
633 More recently, studies reveal novel characteristics of Hey proteins
634 in the regulation of cancer metastasis and their influence on
635 angiogenesis. This article offers insight into the significant roles
636 ofHeyproteins in tumorigenesis. Alternatively, therapeutic agents
637 able to reverse aberrantNotch, TGFb, andHDACs levels havebeen
638 evaluated in clinical trials, but treatment-associated toxicities are
639 also observed. Targeting Hey factors may represent an opportu-
640 nity for higher response rates but fewer side effects than treatment
641 withGSIs, TGFbblockers, andHDAC inhibitors. Attention should
642 be drawn to the Hey family in drug design, and studies must be
643 carried out to analyze outcomes using Hey-specific inhibitors in
644 the future.
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Q10: Page: 7: Author: Please check the sentence " For instance, 64% thymoma and thymic
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Q11: Page: 8: AU:/PE: The conflict-of-interest disclosure statement that appears in the proof
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individual author. No factual changes can be made to disclosure information at the
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Q15: Page: 10: Author: Ref. 92 has been updated as per PubMed. Please verify.
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The First Name and the Surname data will be provided to PubMed when the article is indexed
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