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ABSTRACT

In the wake of rapid maturing of Internet of Things (IoT) approaches and technologies in the commercial sector,
the IoT is increasingly seen as a key ‘disruptive’ technology in military environments. Future operational environ-
ments are expected to be characterized by a lower proportion of human participants and a higher proportion of
autonomous and semi-autonomous devices. This view is reflected in both US ‘third offset’ and UK ‘information
age’ thinking and is likely to have a profound effect on how multinational coalition operations are conducted
in the future. Much of the initial consideration of IoT adoption in the military domain has rightly focused
on security concerns, reflecting similar cautions in the early era of electronic commerce. As IoT approaches
mature, this initial technical focus is likely to shift to considerations of interactivity and policy. In this paper,
rather than considering the broader range of IoT applications in the military context, we focus on roles for IoT
concepts and devices in future intelligence, surveillance and reconnaissance (ISR) tasks, drawing on experience
in sensor-mission resourcing and human-computer collaboration (HCC) for ISR. We highlight the importance of
low training overheads in the adoption of IoT approaches, and the need to balance proactivity and interactivity
(push vs pull modes). As with sensing systems over the last decade, we emphasize that, to be valuable in ISR
tasks, IoT devices will need a degree of mission-awareness in addition to an ability to self-manage their limited
resources (power, memory, bandwidth, computation, etc). In coalition operations, the management and potential
sharing of IoT devices and systems among partners (e.g., in cross-coalition tactical-edge ISR teams) becomes a
key issue due heterogeneous factors such as language, policy, procedure and doctrine. Finally, we briefly outline a
platform that we have developed in order to experiment with human-IoT teaming on ISR tasks, in both physical
and virtual settings.
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1. INTRODUCTION

The Internet of things (IoT) is the inter-networking of physical objects embedded with computational capability
and network connectivity, enabling the objects to collect, process and disseminate data.1,2 IoT technologies are
expected to be transformative in a wide variety of domains including smart cities, health care, and smart homes.
Currently, there are significant concerns around security issues in the IoT context, reminiscent of the early period
of the Web and electronic commerce. However, it is reasonable to expect improved security approaches — as
with HTTPS and SSL in electronic commerce — will alleviate these problems, opening up a rapidly-growing
space of new applications.

Recently, attention has turned to prospects for IoT technology take-up in military domains.3 Many potential
applications can be extrapolated from analogous commercial and social domains, including personal sensing to
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monitor the health and wellbeing of military personnel, logistics management, and crowdsensing approaches.
However, a key domain for military IoT application is in supporting intelligence, surveillance and reconnaissance
(ISR) tasks. Internet-enabled objects intrinsically perform sensing, processing, and dissemination operations, so
are a natural paradigm for ISR support.

Moreover, in at least the U.S. and UK military contexts, IoT has been highlighted as a key element of future
operations. One driver for this is the desire to reduce the deployment of human personnel in front-line situations,
not least for cost reasons.4 Other drivers place IoT technologies in a central position in U.S. and UK military
strategy. For example, technologies including robotics and autonomous systems were identified in 2014 as key
enablers of the U.S. Department of Defence ‘Third Offset’ initiative∗ while, in the UK, IoT technologies are
highlighted as significant elements of ‘Warfare in the Information Age’ concept.5†

Modern military operations often feature coalitions in which multiple partners cooperate to achieve mission
objectives.6 The coalition operations environment is characterized by a high degree of dynamicity, a need for
effective information and ISR asset sharing among partners, especially at the tactical edge, and constraints
dictated by organizational and mission policies.7 The potential for deployment of IoT assets into this space
is high, but there are significant open questions on how to harness this potential in a highly heterogeneous
environment.

This paper is organized as follows: Section 2 considers the potential applications of IoT technology for ISR
tasks in terms of the affordances of things; Section 3 considers issues in harnessing IoT technology for ISR in the
coalition context; Section 4 takes account of human-computer collaboration (HCC) factors in IoT adoption for ISR
in coalition missions; Section 5 introduces a prototype platform for conducting human-in-the-loop experiments
with simulated ISR assets; Section 6 concludes the paper.

2. AFFORDANCES OF THINGS

The notion of affordances has been central to the human-computer interaction (HCI) field for many years,
referring to what an object ‘is for’, i.e., ‘the perceived and actual properties of the thing, primarily those
fundamental properties that determine just how the thing could possibly be used’.8 In the ISR context, it is
necessary to classify IoT devices in terms of their affordances to a range of ISR tasks. For example, previous
work has examined affordances in the scope of visual analytics, focusing on the following:9

• large-scale data manipulation;

• collection and storage of large data volumes;

• efficient data movement;

• bias-free analysis.

In this context it is usual to also consider the classic HABA-MABA (humans are better at vs machines
are better at) task characterization. While dated, this paradigm of human supervisory is still the dominant
approach to human-machine interaction, and the purpose of HCC systems is to aim for each party to exploit
their strengths and compensate for the weaknesses of the other.10 Complementary to the above examples,
which represent instances of MABA, the following HABA cases can be identified (based on current machine
capabilities):9

• visual and audiolinguistic perception;

• sociocultural awareness;

• creativity;

• broad background domain knowledge.

∗https://web.archive.org/web/*/https://www.defense.gov/News/Speeches/Speech-View/Article/606635
†Potential use of IoT by adversaries is also an important topic, but beyond the scope of this paper.



To be useful in an ISR context, IoT technologies need to offer affordances that sit comfortably within the
MABA domain, complementing and enhancing the abilities of human operatives (i.e., the focus is on HCC, not
human replacement by automation). A provocative alternative perspective views IoT devices kinds of ‘enchanted’
object, where the IoT-enablement of familiar objects affords their user additional ‘powers’.11 An ISR-relevant
example is Bilbo and Frodo Baggins’ sword, ‘Sting’, in J.R.R. Tolkein’s The Hobbit and The Lord of the Rings,
which is not only a weapon but is also, thanks to its ability to glow when enemies are nearby, a situation
awareness device. One significant point here for IoT design is that things may reveal their affordances in ways
very different to those typically expected from computers or robot systems, and this opens up a wide range of
possibilities for innovation in future ISR systems. A second significant point is that IoT approaches offer new
opportunities to overcome classic HCI issues and strive for what has been termed a ‘zero training overhead’‡ (see
also Section 4).

Given that ISR is intrinsically linked to sensemaking,12 the ISR affordances of things will also in many bases
relate to areas of human augmented cognition.13 The capabilities of IoT devices may be conceptualized as
enhancing human operatives’ cognitive abilities such as:

• memory, e.g., a database-connected heads-up display able to recall, Google Now-style§, context-aware
information from a mission knowledge base of both long term and short term intelligence;

• perception, e.g., a body-worn camera equipped with image processing sufficient to detect anomalous objects
that the wearer’s cognitive biases may tend to cause them to miss;

• reasoning, e.g., a tactical drone equipped with models of current and past missions, sufficient to perform
ISR proactively in anticipation of likely threats;

• communication, e.g., a smart watch able to alert both its wearer — via context-sensitive modalities such as
speech, haptics, or visual display — and also the wearer’s team members of essential elements of mission
information.

These new modalities of interaction between IoT devices and humans increase the opportunities for ambient
awareness where information is imparted in ways which can increase awareness without requiring explicit atten-
tion. From this perspective, viewed as cognitive aids, IoT devices need to be not merely context-aware as in
the case of commercial offerings like Google Now, but mission-aware in that they hold some knowledge of what
(ISR) tasks they are aiming to help the mission accomplish.

Returning to the above discussion of MABA-type machine affordances for ISR, we can summarize IoT-specific
capabilities as follows:

Large-scale data manipulation The key IoT characteristic here is how the increasing numbers of networked
objects in the field not only generate data with unprecedented volumes, velocity and variety,14 they also
provide new opportunities for processing and exploiting the data closer to the network edge.15

Collection and storage of large data volumes Increasing storage as well as data collection capabilities of
networked objects opens up an array of new distributed system architectures, particularly where (a) local
processing and storage is less constrained than network bandwidth, favouring local processing and com-
munication of (less) processed rather than (more) raw data; and (b) constraints on data sharing between
coalition partners entail preferences for decentralized information architectures.

Efficient data movement Following from the above discussion, the emphasis in ISR system design in an IoT
context will shift from a primary focus on processing (what products to derive from data) to a primary focus
on communication (what needs to be shared between things at various levels of locality and globality).16

‡http://web.archive.org/web/*/http://techcrunch.com/2012/10/05/building-for-the-enterprise-the-zero-overhead-
principle-2/
§https://web.archive.org/save/https://en.wikipedia.org/wiki/Google Now



Bias-free analysis This is arguably the most interesting and challenging area in which IoT approaches can
have an impact on ISR practice. Considerable work has been done in the area of supporting analysis and
mitigating human biases in the intelligence analysis process17 but most studies focus on analysis at higher
levels and over longer time frames than tactical intelligence. So more forecasting of future events months
or even years away.the focus tends to be on analysts near the centre of the network rather than supporting
tactical intelligence in field settings. As noted above, a growing prevalence of IoT devices in the field may
enhance operatives’ cognitive abilities in terms of memory, perception, attention, and communication.

Having considered affordances of IoT devices for ISR tasks, the following section focuses on IoT deployments
for ISR in a coalition operations context.

3. COALITIONS OF THINGS

Previous work in the area of managing ISR assets for coalition operations has extensively considered the problem
of assigning sensors to mission tasks in a highly dynamic context.18 Drawing on research in human-robot teams
and in particular multi-robot task allocation (MRTA),19 multi-sensor task allocation (MSTA) considers four
problem dimensions:20

Single-task (ST) vs multi-task (MT) sensors: differs in whether a sensor is exclusively assigned to a task
or can be shared between multiple tasks.

Single-sensor (SS) vs multi-sensor (MS) tasks: differs in whether the needs of a task can be fulfilled with
a single sensor or whether multiple sensors are required.

Instantaneous assignment (IA) vs time-extended assignment (TA): differs in whether the problem re-
quires consideration of the time dimension, i.e., scheduling of sensor-task assignment.

Homogeneous sensor network (HO) vs heterogeneous sensor network (HE): differs in whether the sen-
sor network is composed entirely of a single type of sensor or devices of multiple types.

IoT devices fit into this framework being essentially sensor-equipped objects. The difference is that the gran-
ularity of IoT devices will commonly be finer than robot systems (from where MSTA is derived) and ‘traditional’
sensor platforms such as aerial and ground vehicles or fixed deployments. Thus, combined IoT devices promise
to offer a wider range of capabilities and afford a broader range of potential uses. Current sensors and sensors
systems have more limited fixed functionality. Therefore it is reasonable to expect that instances of a ‘multi-thing
task allocation’ (MTTA) problem are more likely to be MS than SS (‘single thing tasks’ will not be common).
Moreover, an IoT-based ISR system is more likely to be HE than HO as the paradigm increases the variety of
networked objects in the field.

p = task priority   
d = utility demand   
e = joint utility
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Figure 1. MSTA problem instance ST-MS-IA-HE
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Figure 2. Matching tasks to IoT devices via affordances

MSTA (and hence MTTA) problems can be modelled as tripartite graphs and solved as integer programming
problems;20 Figure 1 shows the MSTA problem instance ST-MS-IA-HE. The salient features of this model are:

• each task, Ti, has both a priority, pi (to a mission), and a utility demand, di;

• sensors, Sk, are grouped into bundles, Bj , where each bundle has a joint utility, eij , derived from the fitness
of that group of sensors to a specific task.

In a coalition context, where assets are shared between partners, there will usually be sharing policies that
restrict how sensors can be assigned to bundles and tasks.6 Such policies need to be factored-in when defining
MSTA instance graphs.18 An important consideration is the extent to which knowledge of task assignment and
mission policies are pushed to the devices themselves. Giving a device an enhanced degree of mission-awareness,
e.g., of the relative priorities of tasks in an MT problem setting, allows a device to make intelligent decisions to
self-manage its limited resources such as power, memory, bandwidth, and computation.

Indeed, the key challenge here is not the solving of the graph problem but generating the graph instances,
which requires modelling ISR tasks and their requirements, sensors and their capabilities, and asset sharing
policies. Previous work approached this as a semantic knowledge representation and reasoning problem18 though
did not specifically consider sensor capabilities as kinds of affordance as in the previous section. Figure 2 shows
this abstract model. While previous work has instantiated this model in terms of ‘traditional’ sensing systems,
how to ground the model for IoT devices in an ISR context will require future work. Moreover, a significant
limitation of this model is that it assumes that the demands of ISR tasks are met entirely by sensing devices
whereas, as highlighted in the previous section, it is important to consider ISR as a HCC activity. This is the
focus of the next section.

4. HUMAN-THING COLLABORATION

The ‘zero overhead’ principle introduced in Section 2 derives from users’ growing experience with commercial
off-the-shelf (COTS) mobile computing products where software needs to effectively ‘introduce itself’ to users
rather than requiring instruction manuals or training. This has led to raised expectations among users, often
unmet by traditional enterprise software. It is reasonable to recognize the same issue in military and ISR systems
where users commonly do not possess high degrees of technical skill, training is costly and, especially in the field,
personnel are primarily focused on tasks other than operating software.

Widespread familiarity with commercial products such as Apple’s Siri¶, Amazon’s Alexa‖, Google Now∗∗, and
IBM’s Watson†† serve to raise user expectation even further in terms of affordances of enterprise systems. This
has led to envisioning of data analytics and ISR data-to-decision chains in terms of ‘conversations’ among humans,
devices, and services with communication abilities — Figure 3.16 Going even further, recent work has considered
the smart home environment in similar terms, but where representations based on natural language (NL) are
uniformly used for both human-machine and machine-machine communications.21 This provides an environment

¶https://web.archive.org/web/20160628202009/http://www.apple.com/ios/siri/
‖http://web.archive.org/web/20170208020449/https://developer.amazon.com/alexa
∗∗https://web.archive.org/save/https://en.wikipedia.org/wiki/Google Now
††https://web.archive.org/web/20160628201902/http://www.ibm.com/watson/



where humans and machines can share mission-awareness, e.g., via exchange of tasking requests. Moreover, a
conversational approach also naturally allows for push and pull modalities in human-machine communication,
e.g., a device will be capable of responding to queries as well as proactively initiating interactions by asking or
telling a human or another device. Returning to the notion of ‘enchanted’ objects from Section 2, it is notable
that many such objects in fiction tend to be equipped with NL processing capabilities, e.g., the Queen’s mirror
in Snow White, and the castle servants in Beauty and the Beast.

A key difference between home and field environments, however, is a relative lack of reliable network (and
hence cloud) connectivity in the latter, so current commercial models for intelligent assistants where NL requests
are processed in the cloud cannot be directly applied to field settings. Recent work has addressed this problem
in terms of lightweight NL processing on mobile devices in ‘offline’ settings.22

Analytic services Decision makerData sources
Figure 3. ‘Conversational’ things in an ISR context

In the ISR context, previous work has examined a number of use cases where such conversational interaction
can support HCC, e.g., handling spot reports from patrols, information fusion, and tasking ISR assets.16 This
work has also experimented with a range of devices including smart phones,20 Google augmented reality heads-up
displays23 (involving the generation of pictorial output as well as language), and smart watches.24 While spoken
NL input and output is powerful and reduces training overhead, the range of modalities offered by IoT devices
presents wider design opportunities. For example, the haptic output common in smart watches allows the device
to alert its user silently when this is more appropriate than generating an audible signal.

A further key aspect in communication and collaboration among humans and machines in a coalition context
is consideration of information and asset sharing policies.6 An advantage of a NL-based approach here is that
policies can be expressed in a human-understandable and machine-computable form25 and can be pushed to the
network edge so that the IoT devices have the necessary policy knowledge as part of their mission-awareness.

Drawing on the asset-task matching approach in Section 3 and the NL-based HCC approach described above,
the next section introduces a platform for HCC experiments in the ISR context.

5. EXPERIMENTAL PLATFORM

Building on previous research using a crowdsourcing game to simulate tactical intelligence tasks,22 this section
proposes a simple platform to support online experiments in simulated HCC settings. The platform — Simple
Human Experiments Regarding Locally Observed Collective Knowledge (Sherlock) — provides an elementary
game world consisting of sets of: persons of interest (POIs), locations, objects, sensors (human and machine),
and attributes of all of these entities. In a specific instance of a Sherlock experiment, participants are provided
with a subset of information about the world, for example, a map of locations, ‘mugshots’ of POIs, and a list of
attributes of interest. Their task is to collect specified information, e.g., to discover the location of POIs and the
values for their particular attributes, or just to gather as much information as possible. The world is modelled in
an NL representation, making it relatively straightforward to define sets of instances for a particular experiment
setup.

Worlds have information that is synthetic, natural, or some combination of both. For example, human actors
may portray fictional POIs inhabiting real-world locations, or cartoon characters may inhabit synthetic virtual
locations. Participants may be tasked to report on natural real-world objects or distinctive objects placed in



Figure 4. The Sherlock+sam game

locations for the purposes of creating artificial scenes. To avoid challenges with processing NL, synthetic elements
are often easier for participants to describe to the agent (with lower complexity and potential for ambiguity).
For example, it is easier to describe the location of an object in cases where that location has a label, such as a
room number, than it is to describe an ‘unlabelled’ location, such as a corridor or public space. Highly distinctive
objects, such as pieces of fruit or sporting equipment, are also relatively easy to describe.

The Sherlock platform includes as a core capability a conversational machine agent that allows human
users to impart information (tell a machine agent something), pose queries (ask a machine something), and task
assets (delegate some ISR function to a human or machine agent).

Figure 4 shows a screenshot from an online Sherlock setting called Sherlock+sam (‘Sherlock + Sensor
Assignment to Missions’) designed to support HCC experiments in an ISR context. The game world here involves
a number of locations, six of which — the Amber, Gold, Emerald, Ruby, Sapphire and Silver Rooms — can
be viewed via simulated cameras. Each room can be viewed via feeds from a colour (RGB) or black and white
(B&W) camera. There are six POIs, each represented by a cartoon animal: a key to identifying them is at the
bottom of the screen. Each POI eats one unique type of fruit, plays one unique sport, and occasionally wears a
hat of a unique colour. The centre of the screen provides the user — playing the role of a tactical intelligence
operator — with four panels in which they can access a camera feed. Bandwidth limitations mean that there
is a limit on how many RGB and B&W camera feeds that can be accessed simultaneously in a game turn. On
the right of the screenshot is the ‘chat’ interface to the conversational agent, via which the user can report what
they see in the feeds during each game turn.

This environment allows a number of variant settings and experimental manipulations:

• The feeds on the left can be chosen automatically by machine using an algorithm similar to the one
described in Section 3 (where the machine is aware of what pieces of information are currently unknown
and attempts to select feeds that are likely to allow the user to discover that missing information) or
manually, or some combination of manual and automatic selection‡‡. Experiments that vary these degrees
of control in conjunction with an analysis of the apparent impact on task performance can be used to
ascertain the HABA vs MABA position for the camera-selection aspect of this experiment.

• The ‘bandwidth’ can be varied, allowing different combinations of RGB and B&W feeds, affecting the
relative difficulty of the task; e.g., a B&W feed is adequate for determining the fruit or sport associated
with a POI but not the colour of their hat, as shown in the Amber Room example in the figure (it’s striped
pink).

‡‡i.e., allowing experimentation with alternative levels-of-automation where the ISR system and devices have greater
or lesser autonomy.10



• The number of turns and turn duration can be varied (see the indicators at the top right).

• The game can be played in single-player or multi-player mode (the latter usually with a shared knowledge
base and a means to allow human players to communicate with each other as well as with the machine
agents22).

Thus far, the core Sherlock platform has been extensively tested with over 200 players in crowdsourcing
settings22 (human sensors only) while the simulated IoT Sherlock+sam setting shown in Figure 4 has been
playtested with small groups. Future work will see this environment used for more extensive trials with a range
of experimental manipulations, a wider array of simulated IoT devices besides cameras, and more complex sets
of network and policy constraints besides simple ‘bandwidth’ limitations.

6. CONCLUSION AND FUTURE WORK

This paper has attempted to look beyond current considerations of the prospects for widespread adoption of
IoT approaches in operational environments that tend to focus predominantly on security considerations. The
intention has not been to downplay the importance of such considerations but to seek to understand some of
the opportunities that such technologies may afford ISR operations in the future, particularly in a coalition
context where dynamic allocation of things to mission tasks can yield enormous advantages in mission agility
and information availability and performance of human team members within these hybrid teams. Consequently,
the focus has been on HCC and human-machine teaming with an emphasis on human-machine teaming and
technologies with low training overheads.

The ultimate goal of exploiting IoT approaches in ISR will be to aid situational understanding defined as
the ‘product of applying analysis and judgment to the unit’s situation awareness to determine the relationships
of the factors present and form logical conclusions concerning threats to the force or mission accomplishment,
opportunities for mission accomplishment, and gaps in information’.26 Situational understanding is intrinsically
linked to information fusion in that it involves the collection and processing of data from multiple (coalition)
sources as input, spanning multiple modalities. Achieving understanding highlights the importance of knowledge
representation and reasoning — and the human user — in the information fusion process; i.e., it is an HCC
task. Moreover, users’ requirements for situational understanding place constraints on all levels of the fusion
process, e.g., prioritizing and valuing of particular kinds of data, objects, contexts and intents.27 Dynamically
and flexibly supporting these user requirements in an information fusion system for situational understanding
requires a means for the user to interact with elements of the system at both relatively high and low levels.

The challenges involved in introducing IoT elements in such a system are enormous, suggesting that a new
kind of ‘cognitive thing’ will be required, but the potential gains for future coalition operations are enormous.
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