
Knight, V et al 2016 An Open Framework for the Reproducible Study of
the Iterated Prisoner’s Dilemma. Journal of Open Research Software,
4: e35, DOI: http://dx.doi.org/10.5334/jors.125

Journal of
open research software

SOFTWARE METAPAPER

An Open Framework for the Reproducible Study of the
Iterated Prisoner’s Dilemma
Vincent Knight1, Owen Campbell2, Marc Harper2, Karol M. Langner3, James Campbell1,
Thomas Campbell4, Alex Carney1, Martin Chorley1, Cameron Davidson-Pilon2, Kristian
Glass2, Nikoleta Glynatsi1, Tomáš Ehrlich2, Martin Jones2, Georgios Koutsovoulos5, Holly
Tibble2, Jochen Muller2, Geraint Palmer1, Piotr Petunov2, Paul Slavin6, Timothy Standen1,
Luis Visintini2 and Karl Molden2

1 Development; Cardiff University, GB
2 Development; Not affiliated
3 Development; Google Inc., Moun tain View, CA, US
4 Development; St. Nicholas Catholic High School, Hartford, GB
5 Development; The University of Edinburgh, GB
6 Development; The University of Manchester, GB
Corresponding author: Vincent Knight (knightva@cf.ac.uk)

The Axelrod library is an open source Python package that allows for reproducible game theoretic research
into the Iterated Prisoner’s Dilemma. This area of research began in the 1980s but suffers from a lack of
documentation and test code. The goal of the library is to provide such a resource, with facilities for the
design of new strategies and interactions between them, as well as conducting tournaments and ecologi-
cal simulations for populations of strategies.

With a growing collection of 139 strategies, the library is a also a platform for an original tournament
that, in itself, is of interest to the game theoretic community.

This paper describes the Iterated Prisoner’s Dilemma, the Axelrod library and its development, and
insights gained from some novel research.

Keywords: Game Theory; Prisoners Dilemma; Python

(1) Overview
Introduction
Several Iterated Prisoner’s Dilemma tournaments have
generated much interest; Axelrod’s original tournaments
[2, 3], two 2004 anniversary tournaments [20], and the
Stewart and Plotkin 2012 tournament [42], following
the discovery of zero-determinant strategies. Subsequent
research has spawned a number of papers (many of which
are referenced throughout this paper), but rarely are the
results repro ducible. Amongst well-known tournaments,
in only one case is the full original source code available
(Axelrod’s second tournament [3], in FORTRAN). In no
cases is the available code well-documented, easily modi-
fiable, or released with significant test suites.

To complicate matters further, a new strategy is often
studied in isolation with opponents chosen by the creator
of that strategy. Often such strategies are not sufficiently
described to enable reliable recreation (in the absence of
source code), with [40] being a notable counter-example.

In some cases, strategies are revised without updates to
their names or published implementations [25, 26]. As
such, the results cannot be reliably replicated and therefore
have not met the basic scientific criterion of falsifiability.

This paper introduces a software package: the Axelrod-
Python library. The Axelrod-Python project has the follow-
ing stated goals:

• To enable the reproduction of Iterated Prisoner’s
Dilemma research as easily as possible

• To produce the de-facto tool for any future Iterated
Prisoner’s Dilemma re search

• To provide as simple a means as possible for anyone to
define and contribute new and original Iterated Pris-
oner’s Dilemma strategies

The presented library is partly motivated by an ongoing
discussion in the academic community about reproduc-
ible research [9, 16, 37, 38], and is:

http://dx.doi.org/10.5334/jors.125

Knight et al: An Open Framework for the Reproducible Study of the
Iterated Prisoner’s Dilemma

Art. e35, p.  2 of 11

• Open: all code is released under an MIT license;
• Reproducible and well-tested: at the time of writ-

ing there is an excellent level of integrated tests
with 99.73% coverage (including property based
tests: [28])

• Well-documented: all features of the library are docu-
mented for ease of use and modification

• Extensive: 139 strategies are included, with infinitely-
many available in the case of parametrised strategies

• Extensible: easy to modify to include new strategies
and to run new tourna ments

Review of the literature
As stated in [6]: “few works in social science have had the gen-
eral impact of [Axel rod’s study of the evolution of cooperation]”.
In 1980, Axelrod wrote two papers: [2, 3] which describe a
computer tournament that has been a major influence on
sub sequent game theoretic work [5, 6, 7, 8, 10, 11, 12, 13, 15,
18, 23, 24, 27, 32, 33, 34, 36, 41, 42]. As described in [6] this
work has not only had impact in mathemat ics but has also
led to insights in biology (for example in [41], a real tourna-
ment where Blue Jays are the participants is described) and
in particular in the study of evolution.

The tournament is based on an iterated game (see [29]
or similar for details) where two players repeatedly play
the normal form game of (1) in full knowledge of each oth-
er’s playing history to date. An excellent description of the
one shot game is given in [13] which is paraphrased below:

Two players must choose between Cooperate (C) and
Defect (D):

• If both choose C, they receive a payoff of R (Reward);
• If both choose D, they receive a payoff of P (Punish-

ment);
• If one chooses C and the other D, the defector receives

a payoff of T (Temptation) and the cooperator a payoff
of S (Sucker).

and the following reward matrix results from the Cartesian
product of two decision vectors 〈C, D〉,

, ,
such that and 2

, ,

R R S T
T R P S R T S

T S P P

æ ö÷ç ÷ > > > > +ç ÷ç ÷çè ø
 (1)

The game of (1) is called the Prisoner’s Dilemma. Specific
numerical values of (R, S, T, P) = (3, 0, 5, 1) are often used in
the literature [2, 3], although any sat isfying the conditions
in 1 will yield similar results. Axelrod’s tournaments (and
further implementations of these) are sometimes referred
to as Iterated Prisoner’s Dilemma (IPD) tournaments. An
incomplete representative overview of published tourna-
ments is given in Table 1.

In [32] a description is given of how incomplete infor-
mation can be used to enhance cooperation, in a similar
approach to the proof of the Folk theorem for repeated
games [29]. This aspect of incomplete information is also
considered in [6, 24, 33] where “noisy” tournaments ran-
domly flip the choice made by a given strategy. In [34],
incomplete information is considered in the sense of a
probabilistic termination of each round of the tournament.

As mentioned before, IPD tournaments have been stud-
ied in an evolutionary con text: [12, 24, 36, 42] consider
this in a traditional evolutionary game theory context.

These works investigate particular evolutionary con-
texts within which cooperation can evolve and persist.
This can be in the context of direct interactions between
strategies or population dynamics for populations of
many players using a variety of strategies, which can lead
to very different results. For example, in [24] a machine
learning algorithm in a population context outperforms
strategies described in [36] and [42] that are claimed to
dominate any evolutionary opponent in head-to-head
interactions.

Further to these evolutionary ideas, [8, 10] are examples
of using machine learning techniques to evolve particu-
lar strategies. In [4], Axelrod describes how similar tech-
niques are used to genetically evolve a high performing
strategy from a given set of strategies. Note that in his
original work, Axelrod only used a base strategy set of 12
strategies for this evolutionary study. This is noteworthy
as the library now boasts over 139 strategies that are read-
ily available for a similar analysis.

Implementation and architecture
Description of the Axelrod Python package
The library is written in Python (http://www.
python.org/) which is a popular language in the aca-
demic community with libraries developed for a variety of
uses including:

• Algorithmic Game Theory [30] (http://gambit.
sourceforge.net/).

• Astrophysics [1] (http://www.astropy.org/);
• Data manipulation [31] (http://pandas.
pydata.org/);

• Machine learning [35] (http://scikit-learn.
org/);

• Mathematics [43] (http://www.sagemath.
org/);

• Visualisation [17] (http://matplotlib.org/);

Furthermore, in [18] Python is described as an appropri-
ate language for the re production of Iterated Prisoner’s
Dilemma tournaments due to its object oriented nature
and readability.

The library itself is available at https://github.
com/Axelrod-Python/Axelrod.

This is a hosted git repository. Git is a version control
system which is one of the recommended aspects of
reproducible research [9, 38].

As stated in the Introduction, one of the main goals of
the library is to allow for the easy contribution of strate-
gies. Doing this requires the writing of a simple Python
class (which can inherit from other predefined classes).
All components of the library are automatically tested
using a combination of unit, property and integration
tests. These tests are run as new features are added to the
library to ensure compatibility (they are also run automat-
ically using travis-ci.org). When submitting a strat-
egy, a simple test is required which ensures the strategy

http://www.python.org/
http://www.python.org/
http://gambit.sourceforge.net/
http://gambit.sourceforge.net/
http://www.astropy.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://scikit-learn.org/
http://scikit-learn.org/
http://www.sagemath.org/
http://www.sagemath.org/
http://matplotlib.org/
https://github.com/Axelrod-Python/Axelrod
https://github.com/Axelrod-Python/Axelrod
https://travis-ci.org/

Knight et al: An Open Framework for the Reproducible Study of
the Iterated Prisoner’s Dilemma

Art. e35, p.  3 of 11

behaves as expected. Full contribution guidelines can be
found in the documentation, which is also part of the
library itself and is hosted using readthedocs.org.
As an example, Figures 1 and 2 show the source code
for the Grudger strategy as well as its corresponding test.

You can see an overview of the structure of the source
code in Figure 3. This shows the parallel collection of
strategies and their tests. Furthermore the underly-
ing engine for the library is a class for tournaments
which lives in the tournament.py module. This class
is responsible for coordinating the play of generated
matches (from the match.py module). This genera-
tion of matches is the responsibility of a match generator
class (in the match_generator.py module) which is
designed in such a way as to be easily modifiable to create
new types of tournaments. This is described further in a
tutorial in the documentation which shows how to easily
create a tournament where players only play each other

with probability 0.5. This will be discussed further in the
reuse section of this paper.

To date the library has had contributions from 26 con-
tributors from a variety of backgrounds which are not
solely academic. These contributions have been mostly
in terms of strategies. One strategy is the creation of an
undergraduate mathematics student with little prior
knowledge of programming. Multiple other strategies
were written by a 15 year old secondary school stu-
dent. Both of these students are authors of this paper.
As well as these strategy contributions, vital architec-
tural improvements to the library itself have also been
contributed.

(2) Availability
Operating system
The Axelrod library runs on all major operating systems:
Linux, Mac OS X and Windows.

Year Reference Number of Strategies Type Source Code

1979 [2] 13 Standard Not immediately available

1979 [3] 64 Standard Available in FORTRAN

1991 [6] 13 Noisy Not immediately available

2002 [41] 16 Wildlife Not a computer based tournament

2005 [20] 223 Varied Not available

2012 [42] 13 Standard Not fully available

Table 1: An overview of a selection of published tournaments. Not all tournaments were ‘standard’ round robins; for
more details see the indicated references.

Figure 1: Source code for the Grudger strategy.

class Grudger(Player):

"""A player starts by cooperating however will defect if

at any point the opponent has defected."""

name = ’Grudger’

classifier = {

’memory_depth’: float(’inf’), # Long memory

’stochastic’: False,

’inspects_source’: False,

’manipulates_source’: False,

’manipulates_state’: False

}

def strategy(self, opponent):

"""Begins by playing C, then plays D for the remaining

rounds if the opponent ever plays D."""

if opponent.defections:

return D

return C

http://www.readthedocs.org

Knight et al: An Open Framework for the Reproducible Study of the
Iterated Prisoner’s Dilemma

Art. e35, p.  4 of 11

Figure 2: Test code for the Grudger strategy.

class TestGrudger(TestPlayer):

name = "Grudger"

player = axelrod.Grudger

expected_classifier = {

’memory_depth’: float(’inf’), # Long memory

’stochastic’: False,

’inspects_source’: False,

’manipulates_source’: False,

’manipulates_state’: False

}

def test_initial_strategy(self):

"""

Starts by cooperating

"""

self.first_play_test(C)

def test_strategy(self):

"""

If opponent defects at any point then the player will defect forever

"""

self.responses_test([C, D, D, D], [C, C, C, C], [C])

self.responses_test([C, C, D, D, D], [C, D, C, C, C], [D])

Figure 3: An overview of the source code.

tournament.py player.py strategies/

Cooperator.py Defector.py

TitForTat.py
......

tests/unit/

TestCoop... TestDef...

TestTitFor...
...

travis.ci

doc/

readthedocs.org

match.py

match_generatory.py

Knight et al: An Open Framework for the Reproducible Study of
the Iterated Prisoner’s Dilemma

Art. e35, p.  5 of 11

Programming language
The library is continuously tested for compatibility with
Python 2.7 and the two most recent python 3 releases.

Additional system requirements
There are no specific additional system requirements.

Support
Support is readily available in multiple forms:

• An online chat channel: https://gitter.im/
Axelrod-Python/Axelrod.

• An email group: https://groups.google.
com/forum/#!topic/axelrod-python.

Dependencies
The following Python libraries are required dependencies:

List of contributors
The names of all the contributors are not known: as these
were mainly done through Github and some have not
provided their name or responded to a request for further
details. Here is an incomplete list:

Software location
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.55509
Licence: MIT
Publisher: Vincent Knight
Version published: Axelrod: 1.2.0
Date published: 2016-06-13

Code repository
Name: Github
Identifier: https://github.com/

Axelrod-Python/Axelrod
Licence: MIT
Date published: 2015-02-16

Reuse potential
The Axelrod library has been designed with sustain-
able software practices in mind. There is an extensive
documentation suite: axelrod.readthedocs.
org/en/latest/. Furthermore, there is a grow-
ing set of example Jupyter notebooks available here:
https://github.com/Axelrod-Python/
Axelrod-notebooks.

The availability of a large number of strategies makes
this tool an excellent and obvious example of the benefits
of open research which should positively impact the game
theory community. This is evidently true already as the
library has been used to study and create interesting and
powerful new strategies.

Installation of the library is straightforward via stand-
ard python installation repositories (https://pypi.
python.org/pypi). The package name is axelrod
and can thus be installed by calling: pip install
 axelrod on all major operating systems (Windows, OS
X and Linux).

Figure 4 shows a very simple example of using the
library to create a basic tournament giving the graphical
output shown in Figure 5.

New strategies, tournaments and implications
Due to the open nature of the library the number of strat-
egies included has grown at a fast pace, as can be seen in
Figure 6.

Nevertheless, due to previous research being done in an
irreproducible manner with, for example, no source code
and/or vaguely described strategies, not all previous tour-
naments can yet be reproduced. In fact, some of the early
tournaments might be impossible to reproduce as the
source code is apparently forever lost. This library aims to
ensure reproducibility in the future.

One tournament that is possible to reproduce is that of
[42]. The strategies used in that tournament are the following:

This can be reproduced as shown in Figure 8, which gives the
plot of Figure 7. Note that slight differences with the results
of [42] are due to stochastic behaviour of some strategies.

In parallel to the Python library, a tournament is being
kept up to date that pits all available strategies against
each other. Figure 9 shows the results from the full
tour nament which can also be seen (in full detail) here:
http://axelrod-tournament.readthedocs.
org/. Data sets are also available showing the plays of
every match that takes place. Note that to recreate this

• Numpy 1.9.2 • Tqdm 3.4.0
• Matplotlib 1.4.2 (only a

requirement if graphi-
cal output is required)

• Hypothesis 3.0 (only
a requirement for
development)

• Owen Campbell • Alex Carney
• Marc Harper • Martin Chorley
• Vincent Knight • Cameron Davidson-

Pilon
• Karol M. Langner • Kristian Glass
• James Campbell • Nikoleta Glynatsi
• Thomas Campbell • Tomáš Ehrlich
• Martin Jones • Timothy Standen
• Georgios Koutsovoulos • Luis Visintini
• Holly Tibble • Karl Molden
• Jochen Müller • Jason Young
• Geraint Palmer • Andy Boot
• Paul Slavin • Anna Barriscale

01. Cooperator 11. Random: 0.5
02. Defector 12. ZD-GTFT-2
03. ZD-Extort-2 13. GTFT: 0.33
04. Joss: 0.9 14. Hard Prober
05. Hard Tit For Tat 15. Prober
06. Hard Tit For 2 Tats 16. Prober 2
07. Tit For Tat 17. Prober 3
08. Grudger 18. Calculator
09. Tit For 2 Tats 19. Hard Go By Majority
10. Win-Stay Lose-Shift

https://gitter.im/Axelrod-Python/Axelrod
https://gitter.im/Axelrod-Python/Axelrod
https://groups.google.com/forum/#!topic/axelrod-python
https://groups.google.com/forum/#!topic/axelrod-python
http://dx.doi.org/10.5281/zenodo.55509
https://github.com/Axelrod-Python/Axelrod
https://github.com/Axelrod-Python/Axelrod
axelrod.readthedocs.org/en/latest/
axelrod.readthedocs.org/en/latest/
https://github.com/Axelrod-Python/Axelrod-notebooks
https://github.com/Axelrod-Python/Axelrod-notebooks
https://pypi.python.org/pypi
https://pypi.python.org/pypi
http://axelrod-tournament.readthedocs.org/
http://axelrod-tournament.readthedocs.org/

Knight et al: An Open Framework for the Reproducible Study of the
Iterated Prisoner’s Dilemma

Art. e35, p.  6 of 11

tournament simply requires changing a single line of the
code shown in Figure 4, changing:

>>> strategies = [s() for s in axelrod.
demo_strategies]}

to:

>>> strategies = [s() for s in axelrod.
ordinary_strategies]}.

The current winning strategy is new to the research litera-
ture: Looker Up. This is a strategy that maps a given set of
states to actions. The state space is defined generically by m,
n so as to map states to actions as shown in (2).

last pairs of actions

first actions by opponent

((, , , , , , ,) ((,),,)(,))

n

m

C D D D C D D C C C C C D®

(2)

The example of (2) is an incomplete illustration of the map-
ping for m = 8, n = 2. Intuitively, this state space uses the
initial plays of the opponent to gain some information
about its intentions whilst still taking into account the

recent play. The actual winning strategy is an instance of
the framework for m = n = 2 for which a particle swarm
algorithm has been used to train it. The second placed strat-
egy was trained with an evolutionary algorithm [19]. In [21]
experiments are described that evaluate how the second
placed strategy behaves in environments other than those
in which it was trained and it continues to perform strongly.

There are various other insights that have been gained
from ongoing open research on the library, details can be
found in [14]. These include:

• A closer look at zero determinant strategies, showing
that extortionate strate gies obtain a large number of
wins: the number of times they outscore an opponent
during a given match. However these do not perform
particularly well from the overall tournament ranking
point of view. This is relevant given the findings of
[42] in which zero determinant strategies are shown
to be able to perform better than any other strategy.
This finding extends to noisy tournaments (which are
also implemented in the library).

Figure 4: A simple set of commands to create a demonstration tournament. The output is shown in Figure 5.

>>> import axelrod

>>> strategies = [s() for s in axelrod.demo_strategies]

>>> tournament = axelrod.Tournament(strategies)

>>> results = tournament.play()

>>> plot = axelrod.Plot(results)

>>> p = plot.boxplot()

>>> p.show()

Figure 5: The results from a simple tournament.

Knight et al: An Open Framework for the Reproducible Study of
the Iterated Prisoner’s Dilemma

Art. e35, p.  7 of 11

• This negative relationship between wins and perfor-
mance does not generalise. There are some strategies
that perform well, both in terms of matches won and

overall performance: Back stabber, Double crosser,
Looker Up, and Fool Me Once. These strategies con-
tinue to perform well in noisy tournaments, however

Figure 6: The number of strategies included in the library.

Figure 7: The results from [42], reproduced with the Axelrod library.

Knight et al: An Open Framework for the Reproducible Study of the
Iterated Prisoner’s Dilemma

Art. e35, p.  8 of 11

some of these have knowledge of the length of the
game (Back stabber and Double crosser). This is not
necessary to rank well in both wins and score as dem-
onstrated by Looker Up and Fool Me Once.

• Strategies like Looker Up and Meta Hunter seem to
be generally cooperative yet still exploit naive strate-
gies. The Meta Hunter strategy is a particular type of
Meta strategy which uses a variety of other strategy
behaviours to choose a best action. These strategies
perform very well in general and continue to do so in
noisy tournaments.

Conclusion
This paper has presented a game theoretic software pack-
age that aims to address reproducibility of research into
the Iterated Prisoner’s Dilemma. The open nature of the
development of the library has lead rapidly to the inclu-
sion of many well known strategies, many novel strate-
gies, and new and recapitulated insights.

The capabilities of the library mentioned above are not
at all comprehensive, a list of the current abilities include:

• Noisy tournaments.
• Tournaments with probabilistic ending of interactions.
• Ecological analysis of tournaments.
• Moran processes.

• Morality metrics based on [39].
• Transformation of strategies (in effect giving an infi-

nite number of strategies).
• Classification of strategies according to multiple

dimensions.
• Gathering of full interaction history for all interac-

tions.
• Parallelization of computations for tournaments with

a high computational cost.

These capabilities are constantly being updated.

Acknowledgements
The authors would like to thank all contributors. Also,
they thank Robert Axelrod himself for his well wishes with
the library.

Competing Interests
The authors declare that they have no competing interests.

References
1. Astropy Collaboration, et al. “Astropy: A community

Python package for as tronomy”. In: Astronomy and
Astrophysics 558, A33 (Oct. 2013), A33. DOI: http://
dx.doi.org/10.1051/0004-6361/201322068. arXiv:
1307.6212 [astro-ph.IM]

Figure 8: Source code for reproducing the tournament of [42].

>>> import axelrod

>>> strategies = [axelrod.Cooperator(),

... axelrod.Defector(),

... axelrod.ZDExtort2(),

... axelrod.Joss(),

... axelrod.HardTitForTat(),

... axelrod.HardTitFor2Tats(),

... axelrod.TitForTat(),

... axelrod.Grudger(),

... axelrod.TitFor2Tats(),

... axelrod.WinStayLoseShift(),

... axelrod.Random(),

... axelrod.ZDGTFT2(),

... axelrod.GTFT(),

... axelrod.HardProber(),

... axelrod.Prober(),

... axelrod.Prober2(),

... axelrod.Prober3(),

... axelrod.Calculator(),

... axelrod.HardGoByMajority()]

>>> tournament = axelrod.Tournament(strategies)

>>> results = tournament.play()

>>> plot = axelrod.Plot(results)

>>> p = plot.boxplot()

>>> p.show()

http://arxiv.org/abs/1307.6212
http://arxiv.org/abs/1307.6212

Knight et al: An Open Framework for the Reproducible Study of
the Iterated Prisoner’s Dilemma

Art. e35, p.  9 of 11

Fi
gu

re
 9

: R
es

ul
ts

 fr
om

 th
e

lib
ra

ry
 to

ur
na

m
en

t (
20

16
-0

6-
13

).

Knight et al: An Open Framework for the Reproducible Study of the
Iterated Prisoner’s Dilemma

Art. e35, p.  10 of 11

2. Axelrod, R 1980 “Effective Choice in the Pris-
oner’s Dilemma”. In: Journal of Conflict Reso-
lution 24.1, pp. 3–25. DOI: http://dx.doi.
org/10.1177/002200278002400301

3. Axelrod, R 1980 “More Effective Choice in the Pris-
oner’s Dilemma”. In: Journal of Conflict Resolution 24.3,
pp. 379–403. ISSN: 0022-0027. DOI: http://dx.doi.
org/10.1177/002200278002400301

4. Axelrod, R M 2006 The Evolution of Cooperation. Basic
books.

5. Banks, J S and Sundaram, R K 1990 “Repeated games,
finite automata, and complexity”. In: Games and Eco-
nomic Behavior 2.2, pp. 97–117. ISSN: 08998256. DOI:
http://dx.doi.org/10.1016/0899-8256(90)90024-O

6. Bendor, J, Kramer, R M and Stout, S 1991 “When
in doubt . . .: Cooperation in a noisy prisoner’s di-
lemma”. In: Journal of Conflict Resolution 35.4, pp.
691–719. ISSN: 0022-0027. DOI: http://dx.doi.
org/10.1177/0022002791035004007

7. Boyd, R and Lorberbaum, J P 1987 “No pure strategy
is evolutionarily stable in the repeated Prisoner’s Di-
lemma game”. In: Nature 327, pp. 58–59. ISSN: 0028-
0836. DOI: http://dx.doi.org/10.1038/327058a0

8. Chellapilla, K and Fogel, D B 1999 “Evolution, neural
networks, games, and intelli gence”. In: Proceedings of
the IEEE 87.9, pp. 1471–1496. ISSN: 00189219. DOI:
http://dx.doi.org/10.1109/5.784222

9. Crick, T, et al 2014 “Share and Enjoy”: Publishing Use-
ful and Usable Scientific Models”. arXiv: 1409.0367.

10. David, B F 1993 “Evolving Behaviors in the Iterated
Prisoner’s Dilemma”. In: Evol. Comput. 1.1, pp. 77–97.
ISSN: 1063-6560. DOI: http://dx.doi.org/10.1162/
evco.1993.1.1.77

11. Doebeli, M and Hauert, C 2005 “Models of coopera-
tion based on the Prisoner’s Dilemma and the Snow-
drift game”. In: Ecology Letters 8.7, pp. 748–766. ISSN:
1461023X. DOI: http://dx.doi.org/10.1111/j.1461-
0248.2005.00773.x

12. Ellison, G 1994 “Cooperation in the prisoner’s dilem-
ma with anonymous random matching”. In: Review of
Economic Studies 61.3, pp. 567–588. ISSN: 00346527.
DOI: http://dx.doi.org/10.2307/2297904

13. Gotts, N, Polhill, J and Law, A 2003 “Agent-based
simulation in the study of social dilemmas”. In: Artifi-
cial Intelligence Review 19, pp. 3–92. ISSN: 0269-2821.
DOI: http://dx.doi.org/10.1023/A:1022120928602

14. Harper, M 2015 Marc Harper Codes. http://marcharp-
er.codes/2015-11-17/ipd2.html

15. Hilbe, C, Nowak, M A and Traulsen, A 2013 “Adap-
tive Dynamics of Extortion and Compliance”. In: PLoS
ONE 8.11, e77886. ISSN: 1932-6203. DOI: http://
dx.doi.org/10.1371/journal.pone.0077886

16. Hong, N P C, et al 2015 “Top Tips to Make Your Re-
search Irreproducible”. pp. 5–6. arXiv: 1504.00062.

17. Hunter, J D 2007 “Matplotlib: A 2D graphics environ-
ment”. In: Computing In Science & Engineering 9.3, pp.
90–95. DOI: http://dx.doi.org/10.1109/MCSE.2007.55

18. Isaac, A 2008 “Simulating Evolutionary Games: A Py-
thon-Based Introduction”. In: Journal of Artificial Socie-
ties and Social Simulation 11.3, p. 8. ISSN: 14607425.

19. Jones, M 2015 Evolving strategies for an Iterated Pris-
oner’s Dilemma tournament. http://mojones.net/
evolving-strategies-for-an-iterated-prisoners-dilemma-
tournament.html

20. Kendall, G, Yao, X and Chong, S Y 2007 The iterated
prisoners’ dilemma: 20 years on. World Scientific Pub-
lishing Co., Inc.

21. Knight, V 2015 http://vknight.org/unpeudemath/
gametheory/2015/11/28/Experimenting-with-a-high-
performing-evolved-strategy-in-other-environments.html.

22. Koutsovoulos, G 2016 Optimising the LookerUp strat-
egy for an Iterated Prisoner’s Dilemma tournament.

23. Kraines, D and Kraines, V 1989 “Pavlov and the pris-
oner’s dilemma”. In: The ory and Decision 26.1, pp. 47–
79. ISSN: 00405833. DOI: http://dx.doi.org/10.1007/
BF00134056

24. Lee, C, Harper, M and Fryer, D 2015 “The Art of War:
Beyond Memory-one Strategies in Population Games”.
In: Plos One 10.3, e0120625. ISSN: 1932-6203. DOI:
http://dx.doi.org/10.1371/journal.pone.0120625

25. Li, J 2007 “How to design a strategy to win an IPD tourna-
ment”. In: The iterated prisoners dilemma 20, pp. 89–104.
DOI: http://dx.doi.org/10.1142/9789812770684_0004

26. Li, J, Hingston, P and Kendall, G 2011 “Engineer-
ing design of strategies for win ning iterated pris-
oner’s dilemma competitions”. In: Computational
Intelli gence and AI in Games, IEEE Transactions on
3.4, pp. 348–360. DOI: http://dx.doi.org/10.1109/
tciaig.2011.2166268

27. Lorberbaum, J P 1994 “No strategy is evolutionarily
stable in the repeated Pris oner’s Dilemma game”. In:
Journal of Theoretical Biology 168.2, pp. 117—130. DOI:
http://dx.doi.org/10.1006/jtbi.1994.1092

28. Maclver, D R 2016 Hypothesis 3.0.3. https://github.
com/DRMacIver/hypothesis.

29. Maschler, M, Solan, E and Zamir, S 2013 Game
theory. Cambridge University Press, p. 1003. ISBN:
9781107005488. DOI: http://dx.doi.org/10.1017/
CBO9780511794216

30. Mckelvey, R, et al 2006 Gambit: Software tools for
game theory. Tech. rep.

31. McKinney, W 2010 “Data Structures for Statistical
Computing in Python”. In: Proceedings of the 9th Py-
thon in Science Conference. Ed. by S. van der Walt and J.
Millman. pp. 51–56.

32. Milgrom, P, Roberts, J and Wilson, R 1982 “Rational
Cooperation in the Finitely Repeated Prisoners’ Dilem-
ma”. In: Journal of Economic Theory 252, pp. 245–252.

33. Molander, P 1985 “The optimal level of gen-
erosity in a selfish, uncertain environ ment”.
In: The Journal of Conflict Resolution 29.4, pp.
611–618. ISSN: 0022-0027. DOI: http://dx.doi.
org/10.1177/0022002785029004004

34. Murnighan, J K, et al 1983 “Expecting Continued Play
in Prisoner ’ s Dilemma Games”. 27.2, pp. 279–300.

35. Pedregosa, F, et al 2011 “Scikit-learn: Machine Learn-
ing in Python”. In: Journal of Machine Learning Re-
search 12, pp. 2825–2830.

36. Press, W H and Dyson, F J 2012 “Iterated Prison-
er’s Dilemma contains strategies that dominate any

http://dx.doi.org/10.1177/002200278002400301
http://dx.doi.org/10.1177/002200278002400301
http://dx.doi.org/10.1177/002200278002400301
http://dx.doi.org/10.1177/002200278002400301
http://dx.doi.org/10.1177/002200278002400301
http://dx.doi.org/10.1016/0899-8256(90)90024-O
http://dx.doi.org/10.1177/0022002791035004007
http://dx.doi.org/10.1177/0022002791035004007
http://dx.doi.org/10.1177/0022002791035004007
http://dx.doi.org/10.1006/jtbi.1994.1092
http://dx.doi.org/10.1038/327058a0
http://dx.doi.org/10.1109/5.784222
http://arxiv.org/abs/1409.0367
http://dx.doi.org/10.1162/evco.1993.1.1.77
http://dx.doi.org/10.1162/evco.1993.1.1.77
http://dx.doi.org/10.1162/evco.1993.1.1.77
http://dx.doi.org/10.1111/j.1461-0248.2005.00773.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00773.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00773.x
http://dx.doi.org/10.2307/2297904
http://dx.doi.org/10.2307/2297904
http://dx.doi.org/10.1023/A:1022120928602
http://dx.doi.org/10.1023/A:1022120928602
http://marcharper.codes/2015-11-17/ipd2.html
http://marcharper.codes/2015-11-17/ipd2.html
http://dx.doi.org/10.1371/journal.pone.0077886
http://dx.doi.org/10.1371/journal.pone.0077886
http://arxiv.org/abs/1504.00062
http://dx.doi.org/10.1109/MCSE.2007.55
http://mojones.net/evolving-strategies-for-an-iterated-prisoners-dilemma-tournament.html
http://mojones.net/evolving-strategies-for-an-iterated-prisoners-dilemma-tournament.html
http://mojones.net/evolving-strategies-for-an-iterated-prisoners-dilemma-tournament.html
http://vknight.org/unpeudemath/gametheory/2015/11/28/Experimenting-with-a-high-performing-evolved-strategy-in-other-environments.html
http://vknight.org/unpeudemath/gametheory/2015/11/28/Experimenting-with-a-high-performing-evolved-strategy-in-other-environments.html
http://vknight.org/unpeudemath/gametheory/2015/11/28/Experimenting-with-a-high-performing-evolved-strategy-in-other-environments.html
http://dx.doi.org/10.1007/BF00134056
http://dx.doi.org/10.1007/BF00134056
http://dx.doi.org/10.1007/BF00134056
http://dx.doi.org/10.1371/journal.pone.0120625
http://dx.doi.org/10.1371/journal.pone.0120625
http://dx.doi.org/10.1142/9789812770684_0004
http://dx.doi.org/10.1109/tciaig.2011.2166268
http://dx.doi.org/10.1109/tciaig.2011.2166268
http://dx.doi.org/10.1006/jtbi.1994.1092
https://github.com/DRMacIver/hypothesis
https://github.com/DRMacIver/hypothesis
http://dx.doi.org/10.1017/CBO9780511794216
http://dx.doi.org/10.1017/CBO9780511794216
http://dx.doi.org/10.1177/0022002785029004004
http://dx.doi.org/10.1177/0022002785029004004
http://dx.doi.org/10.1177/0022002785029004004

Knight et al: An Open Framework for the Reproducible Study of
the Iterated Prisoner’s Dilemma

Art. e35, p.  11 of 11

How to cite this article: Knight, V, Campbell, O, Harper, M, Langner, K M, Campbell, J, Campbell, T, Carney, A, Chorley, M,
Davidson-Pilon, C, Glass, K, Glynatsi, N, Ehrlich, T, Jones, M, Koutsovoulos, G, Tibble, H, Muller, J, Palmer, G, Petunov, P, Slavin, P,
Standen, T, Visintini, L and Molden, K 2016 An Open Framework for the Reproducible Study of the Iterated Prisoner’s Dilemma.
Journal of Open Research Software, 4: e35, DOI: http://dx.doi.org/10.5334/jors.125

Submitted: 05 April 2016 Accepted: 01 July 2016 Published: 31 August 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

evolutionary opponent”. In: Proceedings of the Na-
tional Academy of Sciences 109.26, pp. 10409–10413.
ISSN: 0027-8424. DOI: http://dx.doi.org/10.1073/
pnas.1206569109

37. Prlić, A and Procter, J B 2012 “Ten Simple Rules for
the Open Development of Scientific Software”. In:
PLoS Computational Biology 8.12, e1002802. ISSN:
1553-7358. DOI: http://dx.doi.org/10.1371/journal.
pcbi.1002802

38. Sandve, G K, et al 2013 “Ten Simple Rules for Repro-
ducible Computational Re search”. In: PLoS Compu-
tational Biology 9.10, pp. 1–4. ISSN: 1553734X. DOI:
http://dx.doi.org/10.1371/journal.pcbi.1003285

39. Singer-Clark, T 2014 “Morality Metrics On Iterated
Prisoners Dilemma Players”.

40. Slany, W and Kienreich, W 2007 “On some winning
strategies for the iterated prisoners dilemma”. In: The
iterated prisoners dilemma, pp. 171–204.

41. Stephens, D W, McLinn, C M and Stevens, J R 2002
“Discounting and reci procity in an Iterated Prisoner’s
Dilemma.” In: Science (New York, N.Y.) 298.5601, pp.
2216–2218. ISSN: 00368075. DOI: http://dx.doi.
org/10.1126/science.1078498

42. Stewart, A J and Plotkin, J B 2012 “Extortion and
cooperation in the Prisoner’s Dilemma”. In: Proceed-
ings of the National Academy of Sciences 109.26, pp.
10134–10135. ISSN: 0027-8424. DOI: http://dx.doi.
org/10.1073/pnas.1208087109

43. The Sage Developers. Sage Mathematics Software
(Version 7.0). http://www.sagemath.org. 7.0.

http://dx.doi.org/10.5334/jors.125
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1073/pnas.1206569109
http://dx.doi.org/10.1073/pnas.1206569109
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1126/science.1078498
http://dx.doi.org/10.1126/science.1078498
http://dx.doi.org/10.1126/science.1078498
http://dx.doi.org/10.1073/pnas.1208087109
http://dx.doi.org/10.1073/pnas.1208087109
http://dx.doi.org/10.1073/pnas.1208087109
http://www.sagemath.org

	(1) Overview
	Introduction
	Review of the literature
	Implementation and architecture
	Description of the Axelrod Python package

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Support
	Dependencies
	List of contributors
	Software location:
	Archive

	Code repository
	Reuse potential
	New strategies, tournaments and implications

	Conclusion
	Acknowledgements
	Competing Interests
	References
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

