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ABSTRACT

We present a novel global registration method for deformable
objects captured using a single RGB-D camera. Our algo-
rithm allows objects to undergo large non-rigid deformations,
and achieves high quality results without constraining the ac-
tor’s pose or camera motion. We compute the deformations
of all the scans simultaneously by optimizing a global align-
ment problem to avoid the well-known loop closure prob-
lem, and use an as-rigid-as-possible constraint to eliminate
the shrinkage problem of the deformed model. To attack large
scale problems, we design a coarse-to-fine multi-resolution
scheme, which also avoids the optimization being trapped into
local minima. The proposed method is evaluated on public
datasets and real datasets captured by an RGB-D sensor. Ex-
perimental results demonstrate that the proposed method ob-
tains better results than the state-of-the-art methods.

Index Terms— 3D scanning, global non-rigid registra-
tion, large deformation, depth camera, surface reconstruction

1. INTRODUCTION

Dynamic 3D reconstruction is an active research topic in com-
puter graphics and computer vision [1, 2, 3], which tries to
recover dynamic scenes by capturing videos using multiple
cameras or a single camera. With the appearance of com-
modity depth cameras, e.g., Microsoft Kinect, it is easier and
cheaper to reconstruct the shape and texture of a 3D scene us-
ing a single RGB-D camera. This has wide applicability in
3D printing, gaming, and movie production. However, when
deformable objects are concerned, reconstruction results ob-
tained using KinectFusion [4] has serious drifting artifacts.
Moreover, the captured depth point clouds usually contain a
lot of noise and outliers. Hence, it remains a huge challenge
to reconstruct dynamic 3D scenes using a single RGB-D cam-
era.

To achieve dynamic 3D reconstruction, several groups
have set up multi-camera systems. Li et al. [2] at Tsinghua
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University build a dome system with 20 cameras to syn-
chronously capture and recover the dynamic shape and tex-
ture of arbitrary objects using a variational multi-view stereo
method and a volumetric deformation method. Aguiar et
al. [3] at MPI Informatik build a sparsely sampled system of 8
cameras to capture the shape and motion of 3D objects by ef-
fectively combining the power of surface- and volume-based
shape deformation techniques. However, high cost, complex
maintenance, and lack of portability limit the practical ap-
plications of such systems. The Microsoft Kinect camera
has been widely used due to its low-cost and multi-sensing.
Tong et al. [5] scan a 3D full human body model using three
Kinect cameras, but the captured person must keep still. Guo
et al. [1] achieve marker-less performance capture of inter-
acting humans using three hand-held Kinect cameras. To be
easier and more convenient, Li et al. [6] capture a complete
3D model using only a single Kinect sensor, but the poses of
the person in various viewpoints must keep the same. Dou
et al. [7] develop a 3D scanning system which allows con-
siderable amount of deformations during scanning, but the
deformation between two neighboring viewpoints (time in-
stances) cannot be large. To our knowledge, little work in the
literature allows large motions of the person between differ-
ent viewpoints, which is common for snapshot or high speed
motion capture.

In this paper, we propose a method for global non-rigid
registration and reconstruction of deformable objects with a
single RGB-D camera, building on a recent pairwise sparse
non-rigid registration framework [8, 9]. The motion of the
object between different viewpoints can be very large. Naive
solution of applying pairwise non-rigid registration in succes-
sion leads to error accumulation and the well-known loop clo-
sure problem. To address this, we compute the deformations
of all the scans simultaneously by optimizing a global align-
ment problem. We introduce an as-rigid-as-possible (ARAP)
constraint to the sparse non-rigid registration framework to
eliminate the shrinkage problem of the deformed models
when overlapping regions are small and the problem would
otherwise be underconstrained, and design a coarse-to-fine
multi-resolution scheme to improve efficiency and robustness.
The proposed method is evaluated on public datasets and real
datasets captured by an RGB-D sensor. The results demon-
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strate that the proposed method obtains better results than the
state-of-the-art methods.

The main contributions of this work are summarized as:

• We propose a global optimization method for recon-
struction of deformable objects with large motions,
which is robust to noise and outliers, and avoids the
loop closure problem.

• We design a coarse-to-fine multi-resolution scheme to
avoid the optimization being trapped into local minima,
which also helps to attack large scale problems that
would otherwise be prohibitively expensive (in terms
of computation and storage costs).

• We introduce an ARAP constraint to the sparse non-
rigid registration framework, which eliminates the
shrinkage problem of the deformed models.

2. RELATED WORK

We review recent relevant work in 3D object reconstruction.
Firstly, for multi-camera systems, drifting is not a concern
given that a relatively complete model is captured at each
frame. Starck et al. [10] design a system to reconstruct a full
human body using 16 cameras, which require careful posi-
tioning of cameras to obtain better raw data. Li et al. [2] and
Aguiar et al. [3] similarly obtain full objects using 20 cameras
and 8 cameras, respectively. Tong et al. [5] use a turntable to
turn a person around to reconstruct a full body, but the method
cannot handle large deformations. Other systems [1, 11, 12],
either require complex lighting or cannot generate high qual-
ity results. Ye et al. [12] use 3 handheld Kinects to reconstruct
human performance with deforming template models. Dou et
al. [11] scan and track deforming objects using fusion of dy-
namic inputs from 8 Kinects.

Considering the high cost of multi-camera systems, the
approach based on a single camera becomes more and more
popular. Many systems [5] focusing on scanning humans
require the person to stand still. However, even for rigid
alignment, the problem of drifting occurs when aligning a se-
quence of partial scans consecutively, where the alignment
error accumulates quickly and the scan does not close seam-
lessly. Drifting is more serious in the case of non-rigid align-
ment. To make the problem more tractable, some existing
systems rely on exploiting specific poses or using paramet-
ric models. Zollhöfer et al. [13] propose an approach based
on the template prior, which acquires a template of the ob-
ject using KinectFusion and registers the template to the non-
rigid sequences. Cui et al. [14] propose a method which limits
the user to keep a ‘T’ shape. Li et al. [6] adapt a more gen-
eral non-rigid registration framework which allows a wider
range of poses and multiple actors. This system demonstrates
compelling results, but it requires users to keep almost the
same pose and follow a specific sequence of scanning. Dou et

al. [7] develop a 3D scanning system which allows consider-
able amount of deformations during scanning and show fine
results, but the deformation between two neighboring view-
points (time instances) cannot be large, and the cost of com-
putation and storage are high. Alternative methods [1, 15]
are also based on tracking and fusion of RGB-D sequences of
non-rigidly deforming objects, although with different formu-
lations. They have similar limitations that neighboring views
can only have mild deformation.

Our work uses a single Kinect sensor to capture several
different noisy partial scans of a deformable object, and aligns
the scans in a global framework without the drifting problem.
Moreover, our method allows a large motions of the object
during scanning. To achieve this, we propose a global sparse
non-rigid registration iteration framework. Unlike most of ex-
isting non-rigid registration methods that are based on pair-
wise registration, we propose a global non-rigid framework
based on sparse priors [8, 9], as they are robust to noise
and outliers. We further introduce an ARAP constraint to
the sparse non-rigid registration framework to eliminate the
shrinking problem.

3. THE PROPOSED METHOD

3.1. Iterative Framework

The aim of global non-rigid registration is to find a set of non-
rigid transformations X that transform scans so that they are
consistently aligned while satisfying smoothness prior. For
this end, an iterative procedure is applied with the follow-
ing two alternating steps: 1) given the current transformations
(and hence the vertex positions after deformation), refine the
correspondences between each pair of scans as long as they
overlap. In practice, if the scans are circularly distributed,
it is sufficient to consider adjacent pairs. 2) given pairwise
corresponding mappings, find a set of local affine transforma-
tions by minimizing a global energy function (details given
later). Compared with straightforward successive pairwise
registration, the benefit of global registration is to avoid the
well-known loop closure problem where the misalignment ac-
cumulates and the surfaces do not match up when the last pair
is to be registered.

3.2. Global Registration

Assume that we have M scans to be registered
U (1),U (2), . . . ,U (M). For each scan, U (m) ,{

u
(m)
1 ,u

(m)
2 , . . . ,u

(m)
Nm

}
, where Nm is the number of

vertices in the scan U (m). u
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i , 1)

represents the homogeneous coordinates of vertex u
(m)
i .

For a neighboring pair of scans U (m) and U (m+1) (assum-
ing U (M+1) = U (1)), let fm→m+1 : {1, · · · , Nm} 7→
{1, · · · , Nm+1} be the index mapping from the points on
U (m) to the points on U (m+1) established by correspondence



computation: u
(m+1)
fm(i) ∈ U

(m+1) is the corresponding point

of u
(m)
i ∈ U (m). For non-rigid registration, we allow an

affine transformation for each point to cover a wide range of
non-rigid deformations. Denote the set of non-rigid trans-
formations for scan U (m) by X(m) ,

{
X

(m)
1 , · · · ,X(m)

Nm

}
,

where X
(m)
i is the 4×3 transformation matrix for point u

(m)
i .

For convenience, denote by X(m) ,
[
X

(m)
1 ; · · · ;X(m)

Nm

]
of size 4Nm × 3 the ensemble matrix containing Nm

transformation matrices to be estimated.

Energy Function Formulation: The overall function to be
minimized in Step 2 is given as follows:

E (X; f) = Edata (X; f) + αEsmooth (X)

+ λErig (X) + βEarap (X) , (1)
where Edata (X) is the data term to measure the registration
accuracy, Esmooth (X) is the smoothness term to measure the
smoothness of local transformations, Erig (X) is the orthog-
onality term to measure the rigidness of local transformations
and Earap (X) is the as-rigid-as-possible constraint to ensure
the length of each edge to be as close as possible before and
after transformation; α, λ and β are weights to balance the
relative importance of the terms. The four terms are defined
as follows.

Data Term: A similar strategy as the pairwise registration is
used to estimate the mapping between a neighboring pair of
overlapping scans U (m) and U (m+1): fm→m+1, noted as fm.
As neighboring surfaces only have partial overlaps, not ev-
ery point has a corresponding point, so we assume there are
Km corresponding points between U (m) and U (m+1), where
Km ≤min(Nm, Nm+1). Given the correspondence map-
ping fm where fm(i, 1) and fm(i, 2) are the indexes of corre-
sponding points on U (m) and U (m+1), respectively. The data
term is defined by summing over each neighboring pair of
overlapping scans U (m) and U (m+1):

Edata (X; f) ,
∑
m

∑
u

(m)

fm(i,1)
∈U(m)

∥∥∥u(m)
fm(i,1)X

(m)
fm(i,1) − u

(m+1)
fm(i,2)X

(m+1)
fm(i,2)

∥∥∥
1
.

(2)
where ‖ · ‖1 denotes `1 norm of a matrix considered as a long
vector. Data term (2) can be rewritten as

Edata (X; f) =
∑
m

∥∥∥(U(m)X(m) −U
(m+1)
fm

X(m+1)
)∥∥∥

1
,

(3)

U(m) and U
(m+1)
fm

areKm×4Nm andKm×4Nm+1 respec-

tively. The ith row of U(m) and U
(m+1)
fm

is associated with

the ith correspondence,with elements u
(m)
fm(i,1) and u

(m)
fm(i,2) in

relevant columns. Let X :=
[
X(1); . . . ;X(M)

]
, using matrix

notation, we have the following form of data term:
Edata (X; f) =

∥∥HX
∥∥
1
, (4)

where H is determined according to the overlapping relation-

ship:

H =



U(1) −U
(2)
f1

U(2) −U
(3)
f2

. . . . . .
U(M−1) −U

(M)
fM−1

−U
(1)
fM

U(M)


. (5)

Smoothness Term: Similar to the pairwise registration, we
use the edge set defined with a neighboring system. For
scan U (m), denote byN (m)

i the neighborhood of vertex u
(m)
i ,

and by e
(m)
ij the edge defined between each pair of neigh-

boring vertices u
(m)
j and u

(m)
i . So, we have the edge set

E(m) =
{
e
(m)
ij | u(m)

j ∈ N (m)
i ,u

(m)
i ∈ U (m)

}
. Similar to

the pairwise registration, the smoothness is regularized by the
`1 norm of transformation differences on the neighboring sys-
tem over all the scans U (m) [9]:

Esmooth (X) =
∑
m

∑
e
(m)
ij ∈E(m)

∥∥∥u(m)
j X

(m)
i − u

(m)
j X

(m)
j

∥∥∥
1
.

(6)
Esmooth can be rewritten in the matrix form as:

Esmooth (X) =
∑
m

∥∥B(m)X(m)
∥∥
1
. (7)

Let B = diag
(
B(1), . . . ,B(n)

)
, and we have the following

form of the smoothness term:
Esmooth (X) =

∥∥BX
∥∥
1
. (8)

Orthogonality Term: In non-rigid registration, each node
is assigned an affine transformation, which provides suffi-
cient flexibility to capture non-rigidness of deformable ob-
jects. However, even with smoothness regularization, the high
degrees of freedom may also result in unreasonable deforma-
tion. Since the deformation of usual objects such as human
bodies and animals are locally rigid, a local rigidness term is
used to reduce the flexibility of the transformations. Specif-
ically, the transformation X

(m)
i is assumed to be rigid, con-

sisting of a rotation and a translation where the rotation is
represented by an orthonormal matrix. To this end, the or-
thogonality term is defined as follows [9]:

Erig (X) =
∑
m

∑
i

∥∥∥DiX
(m)
i −R

(m)
i

∥∥∥2
F
,

s.t. R
(m)T

i R
(m)
i = I3,det(R

(m)
i ) > 0,

(9)

where Di is a constant 3 × 4 matrix which is used to extract
the rotation transformation from X

(m)
i . To eliminate the case

of reflection, we enforce a positive determinant of R
(m)
i . If

det(R
(m)
i ) < 0, we multiply R

(m)
i with −1.

ARAP Term: We observe that some nodes of the registered
surfaces may have inwards shrinking, especially when neigh-
boring scans have less overlap. To avoid this artifact, we in-
troduce an as-rigid-as-possible term to the sparse non-rigid



registration framework to maintain the lengths of all the edges
before and after transformations as much as possible. In the
following, we denote the edge e

(m)
ij = p

(m)
i −p

(m)
j , and sim-

ilarly the transformed edge e
′(m)
ij = p

′(m)
i − p

′(m)
j for the

deformed model, where the p
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i ) is the

vertex position of U (m) . We define the ARAP term as fol-
lows, similar to [16, 13]:

Earap (X) = min
T

(m)
i

∑
m

∑
i

w
(m)
i

∑
j∈N (i)

w
(m)
ij

∥∥∥e′(m)
ij − e

(m)
ij Ti

(m)
∥∥∥2.

(10)
where w(m)

i = 1 for vertices with known correspondence and
0 otherwise, and w(m)

ij is defined by cotangent weights:

w
(m)
ij =

1

2
(cotαij + cotβij), (11)

where αij and βij are the angles opposite to the mesh edge
(i, j) (for a boundary edge, only one such angle exists).
Ti

(m) ∈ R3×3 is a rotation matrix. Given the positions of
deformed vertices, Ti

(m) can be explicitly obtained using the
singular value decomposition (SVD) of S

(m)
i , where S

(m)
i is

defined as
S
(m)
i =

∑
m

∑
j∈N (i)

w
(m)
ij e

(m)T

ij e
′(m)
ij . (12)

Using SVD, we can obtain S
(m)
i = Vm

i Σ
(m)
i U

(m)T

i , and
T

(m)
i is solved as:

T
(m)
i = Vm

i U
(m)T

i . (13)

To minimize Earap w.r.t. X
(m)
i , we first work out ∂Earap

∂p
′(m)
i

where p
′(m)
i = u

(m)
i X

(m)
i is the transformed vertex position:∑

j∈N (i)

w
(m)
ij (p

′(m)
i −p

′(m)
j ) =

∑
j∈N (i)

w
(m)
ij

2
(p

(m)
i −p

(m)
j )(T

(m)
i +T

(m)
j ).

(14)
Using matrix-vector notation, Earap can be rewritten as

Earap (X) =
∑
m

∥∥L(m)X(m) − b(m)
∥∥2
F
, (15)

where L(m) represents the linear combination on the left-hand
side, which is the discrete Laplace-Beltrami operator. b(m) is
an n-vector whose ith row contains the right-hand side ex-
pression. In our setting, the deformed edges have positions
determined by transformations X, which are optimized as a
whole, so when defining Earap, only T

(m)
i ’s are optimized.

Denote by L = diag
(
L(1), . . . ,L(M)

)
, and by b =

[b(1), . . . ,b(M)]>, we have the following form of ARAP
term:

Earap (X) =
∥∥LX− b

∥∥2
F
. (16)

Boundary Conditions: For the optimization to have a unique
solution, some boundary conditions need to be set. One way
is to set a scan e.g. U (1) to be fixed, i.e. with X

(1)
i to be

identity transformation for each vertex of the scan.
With all these terms, we have the following minimization

problem:

min
X,C,A

∥∥C∥∥
1
+ α

∥∥A∥∥
1
+ λ

∑
m

∑
i

∥∥∥DiX
(m)
i −R

(m)
i

∥∥∥2
F

+ β
∥∥LX− b

∥∥2
F
,

s.t. C = HX,A = BX,R
(m)T

i R
(m)
i = I3,det(R

(m)
i ) > 0,

(17)
where A and C are auxiliary variables to facilitate optimiza-
tion. Then, we solve the constrained minimization (17) using
the augmented Lagrangian method (ALM). The ALM method
converts the original problem (17) to iterative minimization of
its augmented Lagrangian function:
L(X,C,A,Y1,Y2, µ1, µ2) =

∥∥C∥∥
1
+ α

∥∥A∥∥
1

+ 〈Y1,C−HX〉+ µ1

2

∥∥C−HX
∥∥2
F

+ 〈Y2,A−BX〉+ µ2

2

∥∥A−BX
∥∥2
F

+ λ
∑
m

∑
i

∥∥∥DiX
(m)
i −R

(m)
i

∥∥∥2
F
+ β

∥∥LX− b
∥∥2
F
,

s.t. R
(m)T

i R
(m)
i = I3,det(R

(m)
i ) > 0,

(18)

we resort to the alternate direction method (ADM) [17] to
optimize A, C and X separately at each iteration.

Multi-Resolution Approach: Considering the transformation
Xi of each point i has a rotation Ri ∈ R3×3 and a transla-
tion ti ∈ R3, hence, there are 12 degrees of freedom (DoFs)
in total for each Xi. However, if a scan m has Nm vertices,
there are Nm transformations and 12Nm DoFs, which is not
enough to identify a unique solution with Nm constraints.
One way of addressing this is to rely on regularization, but
the high complexity remains. We further use a coarse-to-fine
approach, which can not only provide a promising solution,
but also deal with the large scale problems efficiently.

Suppose that we decompose the shapes up to S scales.
For any shape U (m), denote by U (m)(s) the sth scale of the
shape via standard downsampling [18]. We obtain S multi-
resolution shapes, U (m)(S),U (m)(S−1), · · · ,U (m)(0), where
U (m)(S) is the shape at the coarsest resolution and U (m)(0) ≡
U (m) is at the full resolution. The optimization Eq. (17) at
scale s can be rewritten as:

min
X,C,A

∥∥C∥∥
1
+ α

∥∥A∥∥
1
+ λ

∑
m

∑
i

∥∥∥DiX
(m)(s)
i −R

(m)(s)
i

∥∥∥2
F

+ β
∥∥LMX(s) − b

∥∥2
F
,

s.t. C = HMX(s),A = BMX(s),

R
(m)(s)T

i R
(m)(s)
i = I3,det(R

(m)(s)
i ) > 0,

(19)

where M contains the mapping transformations from U (m)(s)

to U (m)(s−1) for all scans, and X(s) contains the transforma-
tions on all the U (m)(s).
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Fig. 1. Results on Jumping dataset: (a) original models, (b)
results of [8], (c) results of [9] and (d) our results.

4. EXPERIMENTAL RESULTS

We evaluate the performance of our method on public datasets
(Section 4.1), and real scans (Section 4.2).

4.1. Results on Public Datasets

Firstly, we evaluate the proposed method on the Jumping
dataset [19], which are complete models and contain dra-
matic deformations. They have known correspondences to
allow quantitative evaluation. Fig. 1 shows the alignment re-
sults, compared with the pairwise registration methods [8, 9].
Considering that these methods only register two models, we
register all the models in sequence with the previous registra-
tion result used as the next target model. Besides, we select
the first partial model as the reference pose model for all the
methods. We select 10 complete models shown in Fig. 1(a),
which have different motions. The results show the registered
models and the average fitting errors between the deformed
model and the reference model. The fitting errors are color-
coded on the reference model for visual inspection. It can be
seen that the method [8] has large average fitting errors, while
the sum of average fitting errors over all the vertices of the
method [9] and our method are 1.0757 and 0.4425, respec-
tively. Our global registration method suppresses error accu-
mulation and produces more accurate registration results.

We also evaluate our method on a clean partial dataset
extracted from the Bouncing dataset [19]. Since the original
models are complete, we extract the visible part of each com-
plete model with a virtual camera rotating around the model.
Here, we select 35 partial models and allow large deforma-
tions for the selected models. We use a multi-resolution ap-
proach. First, we get low-resolution models form the original
partial models by downsampling them to 1/10 of the full res-
olution. There are about 3,000-5,000 vertices for the original
partial models and 300-500 vertices for low-resolution mod-
els. Then, we find the corresponding points between neigh-
boring scans through the approach in [20]. Finally, we solve
the global registration problem from coarse to fine (Eq. (19)).

Fig. 2 illustrates the results when scans are accumulated
gradually, using the first 4 scans, the first 20 scans, and all
the scans for registration. We use standard Poisson recon-
struction [21] to obtain watertight meshes. It can be seen that

(a) (b) (c) (d)

Fig. 2. Comparative results on gradually accumulated partial
scans using the method [8] (top row), the method [9] (middle
row), and our method (bottom row): (a) results of scans 1-4,
(b) results of scans 1-20, (c) results of all the scans and (d)
Poisson reconstruction results based on (c).

the shrinkage problem becomes more and more severe for the
right hand and right leg using the method [8]. Due to the
accumulation of registration errors, the results of method [9]
have clearly visible misalignment even after Poisson recon-
struction, especially for the arms. The results of our method
shown in Fig. 2 are smoother and better aligned, such as
the left arm and the head. By using global registration, our
method does not suffer from error accumulation, and the use
of ARAP constraint avoids shrinking.

4.2. Results on Real Scans

We test our method on real scans, which are very challenging,
because they have much noise and a large number of outliers.
There is a dataset scanned using a Kinect v2.0: Waving. Fig.
3 illustrates the results for Waving dataset when scans are ac-
cumulated gradually. The results of [8] (top row) not only
have serious shrinkage but also become more and more flat.
With the the accumulation of registration error, the misalign-
ment problem for the method [9] also becomes unacceptable,
especially in the head and arms. Our method generates sig-
nificantly better results, such as the head and arms.

5. CONCLUSIONS

This paper proposes a novel global sparse non-rigid alignment
method which registers a sequence of scans with dramatic de-
formations simultaneously to reconstruct a complete object
with a single RGB-D camera. We formulate the energy func-
tion with dual sparsity on both data term and smooth term,
along with the local rigidity constraint and the ARAP (as-
rigid-as-possible) constraint. It is solved by the alternating
direction method under the augmented Lagrangian multiplier
(ADM-ALM) framework which has exact solutions and guar-
anteed convergence. Experimental results on public datasets
and real scanned datasets show that our method is effective
and robust for challenging deformations, such as the large-
scale movement of arms and legs. In addition, our method



(a) (b) (c) (d)

Fig. 3. Comparative results with scans accumulated gradually
on the scanned Waving dataset using the method [8] (top row),
the method [9] (middle row), and our method (bottom row):
(a) results of scans 1-12 , (b) results of scans 1-20, (c) results
of all the scans and (d) Poisson reconstruction results.

allows fewer partial scans to reconstruct a full object.
Our method has some limitations. Firstly, although our

method can handle a wide range of deformations, it becomes
more difficult with fewer scans, since neighboring scans have
less overlap. Our current global registration implementa-
tion only considers neighboring scans. The results may not
be ideal if some scans do not have sufficient overlap with
adjacent scans. In the future, we will investigate more ro-
bust schemes by exploiting potential overlaps between non-
adjacent scans.
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