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ABSTRACT

This paper addresses the challenge of 3-D skeleton recovery
by exploiting the spatio-temporal correlations of corrupted 3-
D skeleton sequences. A skeleton sequence is represented as a
matrix. We propose a novel low-rank solution that effectively
integrates both a low-rank model for robust skeleton recov-
ery based on temporal coherence, and an articulation-graph-
based isometric constraint for spatial coherence, namely con-
sistency of bone lengths. The proposed model is formulated
as a constrained optimization problem, which is efficiently
solved by the Augmented Lagrangian Method with a Gauss-
Newton solver for the subproblem of isometric optimization.
Experimental results on the CMU motion capture dataset and
a Kinect dataset show that the proposed approach achieves
better recovery accuracy over a state-of-the-art method. The
proposed method has wide applicability for skeleton tracking
devices, such as the Kinect, because these devices cannot pro-
vide accurate reconstructions of complex motions, especially
in the presence of occlusion.

Index Terms— skeleton, motion recovery, low rank,
graph, occlusion

1. INTRODUCTION

This paper addresses the challenge of recovering accurate
and smooth human motions from corrupted 3-D skeleton se-
quences, which is a fundamental problem in human motion
reconstruction. Traditional motion capture systems are diffi-
cult to set up and involve substantial manual effort, which re-
stricts their use. With the advent of Microsoft Kinect and sim-
ilar devices, significant effort and advances [1, 2] have been
made in recent years for low-cost, accessible human motion
tracking systems. However, skeletons captured by low-cost
devices such as Kinect often suffer from severe joint drifting
and motion jitter, especially in the presence of self-occlusion
or object occlusion [3].

∗Corresponding author: yjy@tju.edu.cn. This work was supported in part
by the National Natural Science Foundation of China (Grant 61571322 and
61372084).

Motion recovery is a critical problem in computer graph-
ics and computer vision, and thus has attracted more and more
interests. However, most work focuses on two main aspects,
namely pose estimation from RGB images and depth images,
and skeleton recovery from 2-D images. In the first aspect,
there have been numerous classical works. Menier et al. [4]
make use of foreground silhouette information to estimate
skeletal poses. With the rise of neural networks and deep
learning, increasing works use deep models to solve the hu-
man motion reconstruction problem. Ouyang et al. [5] fuse
multiple information sources, including appearance score,
mixture type and deformation into a deep model to estimate
human poses. Toshev et al. [6] estimate human poses from
RGB images by formulating it as a joint regression problem
and solving it with a Deep Neural Network. Ever since the ad-
vent of Kinect-type depth cameras, the pose estimation prob-
lem can be better addressed by incorporating depth informa-
tion. Wei et al. [7] develop an automatic motion capture sys-
tem by integrating depth data, full-body geometry, etc. to-
gether using a single depth camera. Shotton et al. [8] intro-
duce body part classification (BPC) and offset joint regres-
sion (OJR) algorithms to estimate human poses from a single
depth image with robustness and efficiency. As for the sec-
ond aspect, Bundle Adjustment (BA) has been a classical and
popular algorithm. Leonardos et al. [9] introduce spherical
tangent bundles and a Riemannian Extended Kalman Filter
(REKF) model into the human motion reconstruction prob-
lem, achieving accurate reconstruction from image sequences
with corrupted skeletons. Park et al. [10] reconstruct a 3-D
smooth articulated trajectory from a 2-D trajectory using a
monocular image sequence.

Little work focuses on straightforward recovery from cor-
rupted 3-D skeleton sequences that can be obtained from
Kinect. Wang et al. [11] achieve smooth 3-D skeleton recov-
ery via low-rank matrix recovery. However, their model does
not take spatial coherence into account, which can result in
large joint errors in challenging cases. Saito et al. [12] re-
cover corrupted skeletons by finding a subspace of valid mo-
tions, projecting corrupted skeletons onto the motion mani-
fold and finally rebuilding valid motions through inverse pro-
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jection. However, this method needs large amount of training
data and a time-consuming training procedure.

In this paper, we propose a new 3-D motion recovery
method from corrupted 3-D skeleton sequences. By exploit-
ing both spatial and temporal correlations, our method is able
to accurately recover clean and smooth skeleton motions. We
introduce a new articulation-graph-based constraint to the low
rank model, promoting isometry of bone lengths to ensure ac-
curate recovery of joint positions. We also develop an effi-
cient algorithm to solve the overall constrained optimization
problem, combining a Gauss-Newton Solver and the Aug-
mented Lagrangian Method. Through this method, the cor-
rupted skeleton matrix with high proportion of noise and er-
rors can be corrected. Experimental results on the CMU mo-
tion capture dataset [13] and a Kinect dataset show that the
proposed approach achieves better recovery accuracy over a
state-of-the-art method. Our code will be publicly available
on the project website.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed 3-D motion recovery method.
Experimental results on both the CMU dataset and Kinect
dataset are presented in Section 3, and finally the paper is
concluded in Section 4.

2. THE PROPOSED METHOD

2.1. Background and Motivations

Given a sequence of corrupted 3-D skeletons as input, the
aim of skeleton recovery is to produce a clean skeleton se-
quence without error. Let ni be the i-th joint of the skeleton.
ni = (nix, niy, niz)

T , where nix, niy and niz represent the
joint’s x, y and z coordinates, respectively. i ∈ {1, 2, · · · , S},
where S is the number of skeleton nodes. Denote as nti the
coordinates of the i-th joint in the t-th frame, and the total
number of skeletons in the input sequence is T . The corrupted
skeleton matrix D ∈ RT×3S is written as:

D =

 n1
1 . . . n1

S
...

. . .
...

nT1 · · · nTS

 , (1)

where each row contains all the coordinates of total S nodes
in one skeleton. We assume an additive observation model:

D = A + E, (2)

where A is the clean skeleton matrix, and E represents er-
ror matrix. Human motions, as existing work suggests, are
smooth and reasonable, and therefore should lie in a low-
dimensional subspace [11]. By exploiting the temporal co-
herence of skeleton sequences, we can conclude that the rank
of the motion matrix should be low. Skeleton corruption of-
ten happens in challenging scenarios such as occlusion, so the

error matrix should be sparse. Similar to [11], the 3-D skele-
ton recovery problem can be formulated as minimizing the
following:

min rank(A) + λ ‖E‖0
s.t. D = A + E, (3)

where rank(A) is the rank of matrix A, ‖E‖0 is the `0 norm
of matrix E, representing the number of non-zero entries in
the matrix and λ > 0 is a weighting parameter balancing the
two terms.

The problem in Eq. (3) is NP-hard. This is made tractable
by replacing rank(A) with its convex substitute known as
the nuclear norm ‖A‖∗ = tr((AAT)1/2) =

∑
i σi, where

σi is a singular value of matrix A, and replacing `0 norm of
matrix E with its `1 norm ‖E‖1 =

∑
ij |Eij |. We obtain a

semidefinite programming problem [14]:

min ‖A‖∗ + λ ‖E‖1
s.t. D = A + E. (4)

Proper selection of the parameter λ is crucial to recovery
accuracy [15]. Under our circumstance, λ should be small
enough to remove noise (by keeping the variance low to ob-
tain high stability), and large enough not to overshrink the
original matrix (by keeping the bias low for flexible motion).

The above low rank term implies linear dependence of
rows/columns of the matrix. However, the dependence is un-
structured, due to the intrinsic ambiguity of corrupted joints.
Articulated skeleton is usually described by a tree-structure,
where each node represents a single skeleton joint and each
edge between nodes represents a bone. This structure can be
described as an articulation graph. On the other hand, bones
have constant length for a specific person at all time instances.
Therefore, we consider such a constant distance constraint for
spatial coherence of skeleton sequences, and propose a low
rank matrix recovery model on articulation graphs.

2.2. Skeleton Recovery on Articulation Graphs

We use articulation graphs to exploit spatial coherence of
skeletons by promoting isometry (i.e. length preservation)
of bones. More formally, let G = (V, E) be an undirected
articulation graph, where V is the set of graph vertices rep-
resenting the skeleton joints, and E is the set of graph edges
corresponding to the bones. ek represents the k-th bone of the
skeleton, k ∈ {1, 2, · · · , H}, andH is the number of skeleton
bones. Since for a specific person, the length of every bone
remains the same over time, we introduce an energy term that
penalizes non-isometric deformation:

Eiso (N) =

T∑
t=1

∑
ek=(i,j)∈E

[
d2
(
nti,n

t
j

)
− l2ij

]2
, (5)

where ek connects the i-th and the j-th joints, and
lij is the bone length between these two joints.



d
(
nti,n

t
j

)
denotes the distance between joints nti

and ntj in the skeleton matrix, and d
(
nti,n

t
j

)
=√(

ntix − ntjx
)2

+
(
ntiy − ntjy

)2
+
(
ntiz − ntjz

)2
. Com-

bining the low-rank term with the isometry term, 3-D motion
recovery is formulated as:

min ‖A‖∗ + λ ‖E‖1 +
γ

2
Eiso (N)

s.t. D = A + E, N = A,
(6)

where N is a substitute of matrix A for the convenience dur-
ing computation procedure. γ > 0 is a weighting parameter
balancing the importance of the isometry term.

Low rank promoted by the nuclear norm implies sparsity
in the space of outer products of the singular vectors, which
means the skeleton matrix A can be expressed as linear com-
binations of some key poses. Similarly, the isometry term as
a constraint of skeleton bone lengths, can be seen as the guar-
antee of recovered positions of skeleton joints. Overall, the
whole model promotes simultaneous sparsity of the skeleton
matrix both in the singular vectors’ outer product space and
isometry space.
2.3. Augmented Lagrangian Algorithm Combined with a
Gauss-Newton Solver

The proposed model Eq. (6) is a minimization function with
equality constraints. Many practical algorithms can solve this
kind of minimization problems, and we choose the augmented
Lagrangian method [16] to handle the problem under an itera-
tive framework due to its high efficiency and accuracy. How-
ever, the isometry term Eq. (5) is a non-linear least squares
problem. In this paper, we use Gauss-Newton solver to alter-
natively optimize the isometry term with other terms fixed at
each ALM iteration. The augmented Lagrangian of Eq. (6) is

L (A,E,N,Z1,Z2, ρ1, ρ2) = ‖A‖∗ + λ ‖E‖1 +
γ

2
Eiso (N)

+ 〈Z1,E−D + A〉+ ρ1
2
‖E−D + A‖2F

+ 〈Z2,N−A〉+ ρ2
2
‖N−A‖2F , (7)

where ‖M‖F represents the Frobenious norm of a ma-
trix M, Z1 and Z2 are Lagrangian multipliers, and 〈·, ·〉
denotes the inner product of two matrices considered as
long vectors. Then, we iteratively solve three subprob-
lems: min

A
L (A,E,N,Z1,Z2), min

E
L (A,E,N,Z1,Z2)

and min
N

L (A,E,N,Z1,Z2), respectively. The former two

problems can be solved by pre-demonstrated methods [14]:

argmin
A

L(A,E,N,Z1,Z2) = S λ
ρ1

(
D−A− 1

ρ1
Z1

)
,

argmin
E
L(A,E,N,Z1,Z2) =

M 1
ρ1+ρ2

(
ρ1D− ρ1E− Z1 + ρ2N + Z2

ρ1 + ρ2

)
, (8)

where Sδ(x) = sgn(x)max(|x|−δ, 0) is a shrinkage operator
and Mδ(X) = USδ(Λ)V is a singular value thresholding
operator.

The third problem is nonlinear and cannot be solved by
the same strategy. Assuming δk is the update of N at step k:

Nk+1 = Nk + δk. (9)

MinimizingEiso (N) w.r.t. the unknown parameters is a non-
linear least squares problem that can be rewritten as:

Eiso (N) =

T∑
t=1

H∑
h=1

rth (N)
2
, (10)

where rth(·) is the energy term related to the h-th bone of the
t-th frame. We reformulate our objective Eiso (N) in terms
of its residual vector F to obtain the classical Gauss-Newton
form:

Eiso (N) = ‖F (N)‖2 ,F (N) = [r11 (N) , · · · , rTH (N)]
T
.

Linearizing F(N) using Taylor expansion yields:

F
(
Nk+1

)
≈ F

(
Nk
)
+ J

(
Nk
)
δ, δ = Nk+1 −Nk, (11)

where J
(
Nk
)

is the Jacobian of F evaluated at the solution
after k iterations, and δ is the iteration step. The resulting
optimization problem is a linear least squares problem:

δ∗ = argmin
δ

∥∥F (Nk
)
+ J

(
Nk
)
δ
∥∥2 . (12)

We compute the optimal update step δ∗ as the solution of the
corresponding normal equation:

J
(
Nk
)T

J
(
Nk
)
δ = −J

(
Nk
)T
F
(
Nk
)
, (13)

which can be solved jointly on the complete domain us-
ing iterative solution techniques like preconditioned conju-
gate gradient (PCG). Previous works [17, 18] demonstrate
the feasibility of this strategy in a GPU optimization frame-
work for dynamics simulation and non-rigid registration, re-
spectively. For our problem, we can use the ideology of
Gauss-Newton solver as an iteration step in the augmented
Lagrangian method.

Combining Eq. (7) with the Gauss-Newton solver, the
unknown update δk can be solved by:

δk =
(
γJTJ + ρk2I

)−1 [−Zk2 − ρk2
(
Nk −Ak

)
− γJT r

(
Nk
)]
,

(14)
where I is the identity matrix. The overall ALM algorithm is
summarized in Algorithm 1.



Algorithm 1: ALM Combined with Gauss-Newton Solver

1: Input: observed skeleton matrix D ∈ Rm×n

2: Initialize: A0 = 0, E0 = 0, N0 = D, Z0
1 = 0, Z0

2 = 0

ρ1, ρ2 > 0, η1, η2 > 1, maxIter = 1000

3: while not converged do

4: δk =
(
γJTJ+ ρk2I

)−1

×
[
−Zk2 − ρk2

(
Nk −Ak

)
− γJT r

(
Nk

)]
5: Nk+1 = Nk + δk

6: Ek+1 = S λ

ρk1

(
D−Ak − 1

ρk1
Zk1

)
7: Ak+1 =M 1

ρk1+ρk2

(
ρk1D−ρk1E

k+1−Zk1+ρ
k
2N

k+1+Zk2
ρk1+ρ

k
2

)
8: Zk+1

1 = Zk1 + ρk1
(
Ek+1 −D+Ak+1

)
9: Zk+1

2 = Zk2 + ρk2
(
Nk+1 −Ak+1

)
10: ρk+1

1 = η1ρ
k
1 , η1 > 1

11: ρk+1
2 = η2ρ

k
2 , η2 > 1

12: End while

13: Output: A, E

3. EXPERIMENTAL RESULTS

In this section, our method is evaluated on both the CMU mo-
cap dataset [13] and a real captured Kinect v2.0 dataset. Each
skeleton in the CMU dataset contains 25 skeleton joints (with
finger joints removed) and 24 bones, while the Kinect dataset
has 21 joints (also without finger joints) and 20 bones. We set
λ = 0.04 and γ = 10 in the experiments. Both quantitative
and qualitative results are presented. We apply our method to
the corrupted skeleton sequence and compare the recovery re-
sult with the method in [11] which also does not require prior
data for training. For quantitative evaluation, the metric of

recovery error is formulated as: ω = 1
ST

T∑
t=1

S∑
p=1

d
(
ñtp,n

t
p

)
,

where ñtp and ntp are the ground truth and reconstructed joint
positions. ω represents the average absolute difference over
joints in all the frames, known as Average Joint Error (AJE).

3.1. CMU Dataset

We present quantitative results on the CMU dataset as the
skeleton data can be used as ground truth for evaluation.
To this end, we simulate corruptions into the skeleton data.
Specifically, random noise is added to a fraction of entities in
the ground truth skeleton matrix Ã, obtaining the observed
skeleton matrix D. Five different percentages of polluted en-
tities in D, i.e., 5%, 10%, 15%, 20%, 80%, are tested. The last
set is tested to validate our efficiency in large corrupted per-
centage situation, and the former four sets are tested for situ-
ations similar to real captured data. The noise in the polluted
joints is uniformly distributed in the range of [-25 25] cm in
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Fig. 1. Average joint error in meters of different sequences of
subject 09.
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Fig. 2. Average bone length error in centimeters of subject 09
motion sequences with corruption percentages of (a) 5%, (b)
10%, (c) 15%, and (d) 20%.

each spatial dimension. This range is selected according to
the average length of arms and legs as noisy joints are un-
likely to go beyond this range. Recovery errors are presented
in Fig. 1. We observe that, for different motion sequences of
the same subject, our method can achieve consistent recovery
errors with the same proportion of corruption. When 5% of
the skeleton matrix is corrupted, our method can recover the
motion sequence within 0.01 m AJE.

We also test recovery performance of several skeleton
sequences from different subjects with various motions and
frame lengths. Specifically, we use sequences from subject 05
to subject 140, including a variety of actions such as running,
bending, dancing, etc. Table 1 presents comparative results
and the overall AJE for all the sequences tested. Our method
can reconstruct much more accurate motions compared with
the method in [11] for the entire range of corruption lev-
els. Even when 80% of the skeleton matrix is corrupted, our
method can still reconstruct reasonable motion within 0.08 m
AJE. Apart from the AJE, we also measure the average bone
length error in centimeters for both methods. As Fig. 2 shows,



Table 1. Average joint error (m) comparison for skeleton re-
covery on CMU dataset with different corruption percentages.

Sub. Method 5% 10% 15% 20% 80%

05
[11] 0.066 0.070 0.073 0.075 0.093
Ours 0.002 0.005 0.008 0.011 0.074

09
[11] 0.076 0.079 0.083 0.085 0.122
Ours 0.005 0.007 0.010 0.014 0.073

13
[11] 0.073 0.076 0.078 0.085 0.105
Ours 0.008 0.011 0.012 0.016 0.072

24
[11] 0.069 0.075 0.078 0.082 0.114
Ours 0.004 0.007 0.008 0.013 0.075

56
[11] 0.068 0.073 0.077 0.080 0.118
Ours 0.003 0.006 0.009 0.013 0.074

86
[11] 0.072 0.075 0.077 0.083 0.121
Ours 0.003 0.006 0.008 0.012 0.076

93
[11] 0.068 0.071 0.075 0.081 0.098
Ours 0.003 0.008 0.010 0.011 0.081

115
[11] 0.072 0.076 0.078 0.085 0.130
Ours 0.007 0.005 0.012 0.015 0.062

140
[11] 0.061 0.063 0.070 0.080 0.108
Ours 0.003 0.005 0.010 0.012 0.053

Total
[11] 0.068 0.073 0.079 0.081 0.104
Ours 0.005 0.007 0.009 0.012 0.073

our method generates the recovered skeletons with more ac-
curate bone lengths due to the isometry constraint.

For qualitative evaluation, the visual performance of our
method against [11] is tested with 5%, 10%, 15%, 20% and
80% of the skeleton matrix being corrupted. As shown in
Fig. 3, the method in [11] recovers reasonable skeleton mo-
tions by sacrificing certain motion details. The recovered mo-
tions are more rigid compared with ground truth due to the
low-rank constraint. On the contrary, our method can achieve
more accurate and smooth reconstruction of corrupted skele-
ton motions with substantial details thanks to the isometry
term. See also the video demo for dynamic results.

The running times for the CMU dataset are given in Table
2. All the experiments are performed on a desktop computer
with Intel i5-4690K 3.5GHz CPU and 8GB RAM.

Table 2. The running times on the CMU dataset
Skeleton Sequence Number of Frames Running Time (s)

Sub.21 Seq.03 274 22.7150
Sub.115 Seq.05 585 47.5670
Sub.140 Seq.04 1103 96.0281
Sub.56 Seq.06 6784 478.3740

3.2. Kinect Dataset

In realistic circumstances, human motions captured by most
low-cost mocap devices such as Kinect can suffer from severe
joint drifting and motion jitter. To validate the applicability of
our method, we also conduct experiments on a real captured
Kinect dataset. In this case, no ground-truth data is available,
so we estimate the median of the bone lengths using the first
several frames as the credible bone length. Because the ac-
tor starts from the “T” pose, and the motions in these initial

(a)          (b)          (c)           (d)       

 

 

 

         

                      

 

                                                     

 

 

 

                                                                              

Fig. 3. Comparison results for frame 54, 648, 2046, 3071,
and 4290 of subject 05 (from top to bottom): (a) ground-
truth skeleton, (b) damaged skeleton, (c) recovered skeleton
by [11], and (d) recovered skeleton by our method.

frames are very small. As shown in Fig. 4, the method in [11]
reconstructs reasonable motions from the corrupted skeletons
but the results are too rigid and lose some details, similar to
Fig. 3. Our method recovers reasonable and detailed motions.
Dynamic results are presented in our demo video.

4. CONCLUSION

This paper proposes a novel skeleton recovery method from
corrupted 3-D skeleton sequences by utilizing both temporal
and spatial constraints, which achieves accurate and smooth
recovery of damaged motions. We introduce an isometry con-
straint based on articulation graphs to ensure consistent bone
length, and a Gauss-Newton solver for the nonlinear least
squares subproblem. Experimental results demonstrate the
effectiveness of our method compared with a state-of-the-art



 

 

 

 

 

 

 

(a)               (b)               (c)               (d) 

Fig. 4. Comparison results for frame 803 of sequence 1, frame
155 of sequence 3 and frame 458 of sequence 3 (from top to
bottom): (a) captured color image, (b) captured Kinect skele-
ton, (c) recovered skeleton by [11], and (d) recovered skeleton
by our method.

method, and also show its usefulness for improving skeletons
obtained from Kinect-type motion capture devices. We will
improve the slight motion jitter existing in some cases in our
future work.
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