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Highlights

• A LES solver is equipped with an IB method to predict the performance

of VATTs.

• The method is validated with body-fitted models for a VATT in a laminar

flow.

• Simulations of a VATT under turbulent flow confirmed the method’s ac-

curacy.

• LES-IB method results overcome RANS predictions with a closer match

with experiments.

• Blade-vortex interaction visualisations highlight the complex flow around

VATTs.
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tidal turbines
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Abstract

Vertical axis tidal turbines (VATTs) are perceived to be an attractive alterna-

tive to their horizontal axis counterparts in tidal streams due to their omni-

directionality. The accurate prediction of VATTs demands a turbulence simula-

tion approach that is able to predict accurately flow separation and vortex shed-

ding and a numerical method that can cope with moving boundaries. Thus, in

this study an immersed boundary-based large-eddy simulation (LES-IB) method

is refined to allow accurate simulation of the blade vortex interaction of VATTs.

The method is first introduced and validated for a VATT subjected to laminar

flow. Comparisons with highly-accurate body-fitted numerical models results

demonstrate the method’s ability of reproducing accurately the performance

and fluid mechanics of the chosen VATT. Then, the simulation of a VATT un-

der turbulent flow is performed and comparisons with data from experiments

and results from RANS-based models demonstrate the accuracy of the method.

The vortex-blade interaction is visualised for various tip speed ratios and to-

gether with velocity spectra detailed insights into the fluid mechanics of VATTs

are provided.
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1. Introduction

The growing energy demand and the effects of carbon dioxide pollution from

fossil-fuel burning amplify the need for technologies that can harness carbon

free energy from natural resources. The interest in tidal stream energy has been

growing for the last years motivated mainly by two advantages (when com-5

pared to wind energy): (1) tidal streams are highly predictable and thus the

energy that can be extracted from these streams through tidal turbines [1, 2]

can be estimated until the end of their lifetime (say for the next 20-30 years);

and (2) the density of water is approx. 800 times greater than the density of

air and hence tidal turbines are relatively small in comparison to their wind10

turbine counterparts. An obvious disadvantage of tidal stream energy is the

harsh and challenging environment in which the turbines are operating in being

constantly subjected to strong intermittent fluid forces which calls into ques-

tion their survivability or implies substantial operation and maintenance costs,

respectively [3].15

Almost all tidal energy projects to date employ the horizontal axis tidal

turbine (HATT) concept, probably by importing some of the technology from

wind industry where horizontal axis turbines are dominating the (wind turbine)

landscape. However, in a tidal stream environment vertical axis tidal turbines

(VATTs) offer several advantages: (1) they are omni-directional, i.e. their op-20

eration and efficiency is independent of the flow direction; (2) they rotate at

lower Tip Speed Ratio (TSR) than HATTs, which is believed to be environ-

mentally more friendly reducing noise generation [4] and fish mortality [5], and

supposedly works better in low-to-medium tidal velocities as the cut in speed

is lower; and (3) they can make better use of shallow tidal stream flows as they25

maximise the use of the available cross-section. However, their efficiency is lower

than horizontal axis turbines and self-starting could be problematic [6].

Most of the current knowledge on the performance of VATTs has been ob-

tained from experimental work. Kiho et al. [7] tested a Darrieus-type turbine
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under different velocity conditions in order to study how its power generation30

capacity changes. Roa et al. [8] analysed the performance of a VATT in a con-

fined water tank with and without being ducted. The influence of the turbine’s

solidity was studied by McLaren [9] while Fiedler et al. [10] focused on turbine

parameters such as blade and shaft shapes, pitch angle or the location of blade

attachment to the shaft. Recent studies looked at the effects of blade rough-35

ness [11] or turbine helicity [12] on the performance of VATTs. A complete

review of recent tidal turbine technologies is provided in [6].

Experimental studies are costly and time-consuming and the available in-

formation from these tests is not enough to fully understand the complex fluid-

structure interaction of vertical axis tidal turbines. Numerical models, if ac-40

curate and trustworthy, can provide a more complete picture of the complex

flow-turbine-interplay. However, highly turbulent flows and the complex fluid-

structure interaction of a rotating device calls for advanced numerical models.

One of the simplest numerical methods is the vortex panel method [13] which

offers some understanding of the turbine’s hydrodynamics but has severe lim-45

itations such as assuming that lift and drag coefficients are constant over one

revolution or the omission of the effects of unsteadiness and turbulence.

Computational Fluid Dynamics (CFD) has become a powerful tool for pre-

dictions of the operation and performance of tidal turbines. Tidal turbine

CFD simulations are generally based on the Reynolds Averaged Navier-Stokes50

(RANS) equations as they are less demanding in terms of computational cost

than other CFD approaches. Maitre et al. [14] used a 2D RANS k-ω SST model

to reproduce the experimental results from Roa et al. [8] and they found that

this approach tends to overestimate the experimental results which was related

to the lack of consideration of 3D effects in the model. McNaughton et al. [15]55

reproduced the setup from [14] adding the Low-Reynolds number Effect (LRE)

correction to the 2D RANS k-ω SST model and improved results were obtained

with the change of the turbulence model although they still were unable to match

well the experimental data. Similar analysis was done by Howell et al. [16] using

2D and 3D RANS with the k-ε RNG turbulence model for a vertical axis wind60
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turbine (VAWT). The lack of accuracy of the 2D RANS model was shown again,

highlighted by a large overestimation of the power coefficient, whilst using the

3D model reduced the overestimation significantly demonstrating the impor-

tance of reproducing the 3D nature of the flow around vertical axis turbines.

Marsh et al. [17] analysed the influence of different helicolidal configurations on65

a VATT using 3D RANS which provided relevant outcomes to understand the

impact of this geometrical variation onto the device’s performance.

One reason for the lack of accuracy of RANS based approaches to predict

flow-turbine interaction is that flow-turbine interactions are governed by large-

scale turbulence. The method of LES is, in theory, more suited to simulate70

these interactions due its demonstrated higher accuracy compared to RANS

in predicting flows dominated by large-scale energetic vortices. However, the

computational requirements of LES are much higher than those of RANS and

this is a limitation to most researchers and practitioners [18, 19, 20]. Most LES

studies are in the area of vertical axis wind turbines (VAWTs): Iida et al. [21]75

compared results of momentum theory-based calculations with LES achieving

a good match between them although no comparison with experimental data

was performed. Li et al. [22] performed a more complete analysis comparing

outputs of 2D and 2.5D RANS and LES with performance data of a VAWT [9].

They demonstrated the higher accuracy of LES compared to RANS but point80

out that the vertical extension of the domain may have an appreciable impact

on the final results. Elkhoury et al. [23] performed the LES of a full 3D VAWT

model including the analysis of the effects of blade shape and fixed or variable

pitch angle on the VAWT’s performance. Their LES results agreed well with

experimental data. Furthermore, complementary LES and experiments demon-85

strated that the power coefficient of the VAWT can be increased by employing

variable-pitch turbine blades. Recently, Posa et al. [24] performed a LES of

a VATT using the immersed boundary method. The numerical results were

well validated with experimental data in terms of wake velocity and turbulent

kinetic energy profiles, although they do not report the performance predicted90

with LES and compare it with the experimental data.
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In this paper, a large-eddy simulation approach is refined with a tailor-

made Immersed Boundary (IB) method with the goal to allow accurate blade-

resolved simulations of a vertical axis tidal turbine. The methodology couples

dynamically a Lagrangian-based solid turbine to the Eulerian-based fluid and95

avoids expensive computational processes that arise when using blade-resolved

methods, e.g. variable reallocation and/or interpolation at every time step [25].

The IB method was introduced by Peskin [26] for the simulation of heart valves.

Since then, the IB method has been used in a wide range of applications such as

particle laden flows [27], fluid-structure interaction [28], bluff bodies in depth-100

averaged shallow water models [29] or simulation of HATTs [30], and has proven

to work well for flows with moving boundaries.

The objective of this study reported here is to demonstrate the applicability

and accuracy of the chosen IB method-based LES to simulate a VATT and

to provide insights into the complex blade-vortex interactions of the VATT105

in operation. The paper is organised as follows: in Section 2 the method is

introduced with special emphasis on the chosen immersed boundary method in

Section 2.2. Then the model is thoroughly validated for a VATT subjected to

a 2D laminar approach flow in Section 3. Section 4 shows an in-depth study of

a VATT subjected to turbulent flow: error convergence of the LES-IB method,110

hydrodynamic coefficients and power performance compared to the results from

RANS-based approaches and experiments. The visualisation of the blade-vortex

interaction at different tip speed ratios and the power spectral density within

the turbine’s swept area are presented in Section 5 with the goal to shed light

on the complex flow-turbine interaction. The paper finishes with conclusions115

drawn from the outcomes of this study in Section 6.

2. Numerical method

2.1. Navier-Stokes equations solver

The well-validated in-house code Hydro3D ([31, 32, 33, 34, 35, 36, 37, 38, 39])

is used in the current research. The flow is solved using the spatially filtered

6
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Navier-Stokes equations for turbulent, incompressible, three-dimensional flow

which read,

∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u−∇ · τ + f (2)

where u=(u,v,w)T and p are the fluid velocities and pressure, τ is the subgrid

scale stress tensor, Re is the Reynolds number based on the chord length (Re =120

cU0/ν, where U0 is the inlet velocity, c is the hydrofoil’s chord length, and ν is

the fluid kinematic viscosity), and f=(fx,fy,fz)T is the volume force from the

IB method [27].

In Hydro3D the Eulerian fluid flow is solved through finite differences with

staggered storage of the velocity components on a Cartesian grid. Fourth-order125

central differences with a combination of a third-order low-storage Runge-Kutta

method for convective and diffusive terms respectively are used in the prediction

step of the fractional-step method [40, 41]. The solution of a Poisson pressure-

correction equation is achieved using the multi-grid technique in the final step

as a corrector of the predicted velocities. The subgrid scale stresses are approx-130

imated by the Wall-Adapting Local Eddy-viscosity (WALE) [42] subgrid scale

(sgs) model. WALE is particularly suitable when used in combination with the

immersed boundary method because it does not require explicit treatment of

the sgs-viscosity near solid boundaries [43]. In order to represent the moving

solid boundaries of the VATT in an Eulerian fluid domain, the direct forcing135

IB method [27] is used and detailed in-depth in the Section 2.2. Hydro3D runs

on massively parallel high performance computers and features a recently de-

veloped and validated local mesh refinement approach [43] that minimises the

computational cost of LES. The solution domain is decomposed via domain de-

composition into a certain number of sub-domains and their communication is140

accomplished using the Message Passing Interface (MPI) protocol.

The fractional-step method based on a three-step Runge-Kutta pressure-

7
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correction is formulated as follows:

ũ− ul−1

∆t
=

αl

Re
∇2ul−1 − αl∇pl−1 − αl[u(∇ · u)]l−1 − βl[u(∇ · u)]l−2 (3)

ũ∗ = ũ + f∆t (4)

∇2p̃ =
∇ · ũ∗

αl∆t
(5)

ut = ũ∗ − αl∆t∇p̃ (6)

pt = pt−1 + p̃− αl∆t

2Re
∇2p̃ (7)

Here l=1,2,3 denotes the Runge-Kutta sub-step for which l=1 denote values

from the previous time step t-1 and the Runge-Kutta coefficients are α1=β1=1/3,

α2=β2=1/6 and α3=β3=1/2. ũ and ũ∗ are the non-solenoidal predicted Eu-

lerian velocities before and after the immersed boundary method correction145

respectively, ut−1 and ut are the Eulerian velocity at the previous and present

time steps, p̃ is the pseudo-pressure, p is the pressure, and f is the source term

due to the IB method.

2.2. The immersed boundary method

There are two main types of IB approaches (and many variations of both [44])150

depending on how the immersed body is represented. The first type represents

the desired body shape as a continuous boundary, e.g. as in [45], while the

second type discretises the body shape through a set of regularly spaced La-

grangian markers, e.g. [27]. The discrete approach appears to deal well with

moving bodies which is why the IB method presented here builds on the dis-155

crete IB approach known as the direct forcing method introduced by Fadlun et

al. [46] and later improved by Uhlmann [27]. The direct forcing method utilises

solid (Lagrangian) markers that exert a force f on surrounding (Eulerian) fluid

nodes (or cells) with the goal to correct the Eulerian velocity and to enforce a de-

sired velocity at the marker’s location. Fig. 1 shows the staggered arrangement160

of the velocities and pressure cells together with the two-dimensional represen-

tation of the closest neighbours for a Lagrangian marker (represented by a solid

red circle) when using the φ kernel function from Roma et al. [47].

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Two-dimensional representation of the Cartesian grid neighbours used in the inter-

polation for a Lagrangian marker. x represents pressure nodes, � are x−velocity nodes, © are

y-velocity nodes, and red circles are the Lagrangian markers. ∆VL denotes the Lagrangian

marker volume.

The multi-step procedure of the direct forcing IB method is adapted as

follows: First, the predicted Eulerian velocities (ũ) calculated from Eq. 3 are

interpolated to the Lagrangian grid using delta functions (δ), which transfer the

information from Lagrangian marker L to its closest ne Eulerian neighbours.

The three-dimensional delta function is calculated from one-dimensional kernel

functions as:

δ(xijk −XL) =
1

∆xijk
φ

(
xijk −XL

∆x

)
φ

(
yijk − YL

∆y

)
φ

(
zijk − ZL

∆z

)
(8)

Here xijk is the location of the Eulerian cell ijk, XL is the location of the

Lagrangian marker L, ∆xijk=∆x ·∆y ·∆z is the Eulerian cell volume, and φ

is the one-dimensional kernel function from [47]. The interpolated velocity at

the Lagrangian points (UL) is calculated from a selected number of neighbour

Eulerian nodes, ne, determined by the kernel function width, as:

UL =

ne∑

ijk=1

ũijk · δ(xijk −XL) ·∆xijk (9)

The force the Lagrangian marker L needs to exert onto the fluid (FL) in order

to satisfy the no-slip condition on the immersed boundary is calculated as the

difference between the desired (or forced) velocity at the marker (U∗
L, explained

9
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in Section 2.3), and the previously interpolated velocity from the fluid UL [27]

as:

FL =
U∗

L −UL

∆t
(10)

In the backwards step, the closest nL Lagrangian markers to each Eulerian cell

transfer back the force FL to obtain the Eulerian force f as:

f(xijk) =

nL∑

L=1

FL · δ(XL − xijk) ·∆VL (11)

The volume assigned to each Lagrangian marker ∆VL is calculated as the total

area/volume of the submerged body divided by the total number of Lagrangian165

markers [48]. The value of ∆VL is approximately equal to that of ∆xijk in order

to ensure the forces interpolated during the forwards and backwards step are

equal, i.e.
∑

f(xijk)∆xijk =
∑

FL∆VL. In the final step the predicted Eulerian

velocity (ũ) is updated in Eq. 4 to obtain the corrected Eulerian velocity after

the IB method correction (ũ∗).170

2.3. Application of the IB method to vertical axis tidal turbines

For the present application of the IB method to vertical axis tidal turbines,

the turbine blade geometry is discretised into a set of Lagrangian markers.

A front-tracking algorithm [49] is developed to generate the desired hydrofoil

shape, e.g. a NACA airfoil profile, as an unstructured mesh, and also provides

geometrical properties such as plan area or centre of gravity. Fig. 2 shows the

main geometrical parameters used for the description of the blade’s circular

movement, e.g. reference axis and angles. The blades rotate at a prescribed

constant rotational velocity, Ω, about the turbine’s central shaft denoted by Cx

that reads,

Cx = (Cx, Cy, Cz)T (12)

For the time advancement of the blades a fixed time step is employed, which

avoids spurious oscillations on the immersed boundary forces triggered when

using a variable time step, as reported in [50]. The turbine rotates about the

10
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Figure 2: Graphical description of the main parameters to be considered for the rotational

movement of the turbine.

z-axis (into the paper) as depicted in Fig. 2 and for the calculation of velocities

and coordinates the rotation matrix Rz is employed:

Rz(θL) =




cos(θL) sin(θL) 0

−sin(θL) cos(θL) 0

0 0 1


 (13)

Here θL stands for the rotated angle by the Lagrangian marker L. At the

initial position of the turbine, i.e. θ=0◦, the local Cartesian coordinates (XL0),

the initial rotated angle (θL0
), and the radius (RL) of each Lagrangian marker

comprising the three turbine blades are calculated, as:

XL0 = (XL0 , YL0 , ZL0)T (14)

R0 =
√

(XL0
)2 + (YL0

)2 (15)

θL0 = atan(YL0/XL0) (16)

The rotated angle at time t is θL(t) = θ0L + Ωt and hence the position of the

11
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Lagrangian markers (XL) at a given time step can be calculated as:

XL = (XL, YL, ZL)T (17)

XL = Cx + Rz(θL)×XL0
(18)

The direct forcing IB method algorithm requires the forced boundary velocity

(U∗
L) to calculate the reaction force FL from Eq. 10, and is computed as the

temporal rate of change of the marker position as:

U∗
L = (U∗

L, V
∗
L ,W

∗
L)T =

∂XL

∂t
=

(
∂XL

∂t
,
∂YL
∂t

,
∂ZL

∂t

)T

(19)

However, due to the rotational motion of the blades which are describing a

circular movement, the use of polar coordinates alternatively to the Cartesian

coordinates eases the notation of the variables representing the VATT. Hence,

Eq. 20 is employed to compute the Lagrangian marker coordinates in polar coor-

dinates while Eq. 21 is used to compute the forced Lagrangian marker velocity.

XL =




XL

YL

ZL


 =




Cx

Cy

Cz


+




−RL · sin(θL)

RL · cos(θL)

ZL0


 (20)

U∗
L =




U∗
L

V ∗
L

W ∗
L


 =




−RL · Ω · cos(θL)

−RL · Ω · sin(θL)

0


 (21)

Fig. 2 sketches the blades of the VATT together with the two coordinate systems

used, all relevant geometrical variables as well as acting fluid forces (lift L and

drag D) and the normal n and tangential t vectors to the blade movement used

to determine the normal N and torque Q forces respectively. The solid reaction

force (F = (Fx, Fy, Fz)) acting on each blade is determined as the sum of the

forces from Eq. 10 of all NL markers comprising each blade as:

F =

∫

blade

ρFLdVL =

NL∑

L=1

ρFL∆VL (22)

where ρ is the fluid density. The turbines presented here are considered infinitely

long (i.e. assuming geometrical two-dimensionality of the system) and hence

12
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forces in the vertical are irrelevant and are not reported. The local angle of

attack, α, is calculated according to [9] as:

α = atan

( −sin(θ)

λ+ cos(θ)

)
(23)

where λ (=ΩR/U0) is known as the tip speed ratio. The effective angle of attack,

β, is computed as:

β = θ − α (24)

Drag and lift forces on the blades are calculated using the x- and y- components

of F projected on the reference frame (l, d) using the angle β as follows:


D
L


 =


 cos(β) sin(β)

−sin(β) cos(β)




Fx

Fy


 (25)

The drag (CD) and lift (CL) coefficients are normalised by the tangential rota-

tional velocity ΩR as (e.g. [14], [15]):

CL =
L

1/2ρ(ΩR)2cH
(26)

CD =
D

1/2ρ(ΩR)2cH
(27)

The torque and normal forces are then obtained by projecting the lift and drag

over the local angle of attack, α, representing the effective parallel and perpen-

dicular directions according to the effective local velocity. Eq. 28 shows how the

torque and normal forces are calculated and their coefficients (Eq. 29 and 30)

are normalised by the free-stream velocity (U0) instead of the tangential speed.


Q
N


 =


 cos(α) sin(α)

−sin(α) cos(α)




D
L


 (28)

CQ =
Q

1/2ρU2
0A

(29)

CN =
N

1/2ρU2
0A

(30)

Here A = 2RH is the turbine’s projected area. The resultant power coefficient,

CP , is calculated as the ratio between the power generated by the turbine (PT ),

13
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i.e. summing the individual contribution from the number of blades, Nb, that

comprises the device, and the available in the water (PW ) as:

CP =
PT

PW
=
Nb · Ω ·Q ·R

1/2ρU3
0A

(31)

3. VATT subjected to laminar flow

The first validation test of the IB-based LES approach is a three-bladed

Darrieus turbine subjected to laminar flow. This VATT has been simulated175

previously with sophisticated body-fitted CFD models by Ferrer et al. [51] and

Ramirez et al. [25] who employed a high-accuracy Galerkin method and a high-

order finite volumes method, respectively, and their results are used for model

comparison. The chosen test case allows quantitative assessment of the accuracy

of the predictions of normal and tangential forces and the method’s ability to180

resolve the fluid-structure interaction which generates the torque at the turbine

shaft. Further, the absence of the effects of turbulence eliminates uncertainties

regarding the accurate representation of laminar-to-turbulent boundary layer

transition or the impact of large- and small-scale turbulence.

The setup and boundary conditions of a 3-bladed VATT driven by laminar185

flow are chosen analogue to the ones of Ferrer et al.[51] and Ramirez et al. [25].

All dimensions are normalised by the chord length of the turbine blade, c. The

radius of the VATT is R=2c, the prescribed rotational velocity is Ω=0.5 rad/s

and the inlet velocity is set to U0=0.5. The resulting chord-based Reynolds

number (Rec) is 100 and the tip speed ratio is 2. The numerical domain extends190

24c in the streamwise and 18c in the spanwise direction. The turbine centre is

placed at 9c from the inlet and in the middle of the channel with regards to the

spanwise direction. The mesh resolution is similar to the two reference cases

and is approximately ∆x=∆y=0.02c. For the simulations a fixed time-step

is employed which avoids artificial force peaks [50]. Three different time step195

values are used, i.e. CFL=0.8, 0.45 and 0.2 (where CFL=λ · U0 ·∆t/∆x), with

the goal to assess the effect of time step value on the accuracy of the simulation.

14
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Figure 3: Streamwise velocity contours at θ=720◦ for the VATT under laminar flow.

Fig. 3 presents streamwise velocity contours at the instant in time when

the turbine rotates θ=720◦. The velocity contours near the blades are smooth

and are comparable with the ones presented in Ramirez et al. [25]. Noteworthy200

are the distinct features of VATTs, which are the formation of high-velocity

wakes behind the blades and the blade-wake interaction of the following blade

as well as the significantly varying near-field hydrodynamics around the turbine.

Regarding the latter, for instance a blade experiences low flow velocities on

the upstroke side (270◦ < θ < 90◦) and significantly higher velocities on the205

downstroke side (90◦ < θ < 270◦).

A quantitative validation of the simulation outputs is obtained through Fig. 4

which shows the normal and torque coefficients for 360◦ ≤ θ ≤ 1080◦. A

remarkably good agreement of the coefficients predicted by the present IB-based

simulation with the ones from the body-fitted models is achieved. There is some210

sensitivity of the results to the time step value wherein the smallest time step

size gives the best agreement of predictions with the data from the reference

calculations. In terms of the torque coefficient predictions there appears to be

a better agreement with Ramirez et al. [25] on the upstream side of the cycle

while the present results match better with Ferrer et al. [51] on the downstream215
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Figure 4: Hydrodynamic coefficients comparison of the VATT under a laminar flow between

the present and blade resolved models from [51, 25]. (a) Torque coefficient; (b) Normal

coefficient.

side. Regarding the normal coefficient, the solution with the smallest time-

step shows a good agreement with the referenced data both in maximum and

minimum values as well as in the general distribution. Overall, the IB-based

method reproduces well the flow-turbine interactions as well as the resulting

hydrodynamic coefficients.220

4. VATT subjected to turbulent flow

A more complex test case is the simulation of a VATT comprised of three

cambered NACA 0018 blades subjected to a turbulent approach flow. This chal-

lenging test case is chosen because experimental data of Roa et al. [8] and numer-

ical results of Maitre et al. [14] and McNaughton et al. [15] are available to assess225
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the accuracy of the present method. Both Maitre et al. [14] and McNaughton

et al. [15] employed body-fitted meshes and their calculations were performed

with two-dimensional Reynolds Averaged Navier-Stokes (RANS) models with

k-ω SST turbulence closures. The present VATT simulations are carried out in

a quasi-3D domain, i.e. using a finite 3D domain without considering turbine230

end-effects.

The geometrical dimensions of the test case are similar to [14] with a domain

size of 30c x 22c in x- and y-directions respectively. The turbine centre is placed

9c away from the inlet and in the middle of the domain regarding the lateral

direction. The computational domain is extruded in the vertical by H=2c,235

which is expected to provide accurate results. Posa et al. [24] demonstrated in

their VATT simulations that using a vertical extension of 2c and 4c provided

similar results. The radius of the turbine is R=2.73c so the resulting turbine’s

solidity (σ=Nbc/(2πR)) is 0.175, and the Reynolds number based on the chord

length isRec=73,600. An uniform velocity distribution of U0=2.3m/s is imposed240

at the inlet and a convective outlet condition is set at the domain’s outlet.

Periodic boundary conditions are set at the top and bottom boundaries while no-

slip conditions are imposed on the domain sides representing the experimental

hydraulic flume walls. VATT simulations are performed for λ=1.0, 1.5, 2.0, 2.5,

and 3.0, to obtain the performance curve and to compare in detail the present245

LES with the experimental results [8] and other 2D numerical data [14, 15]. The

fluid domain is divided into 504 sub-domains as depicted in Fig. 5 where the

sub-domain divisions pattern is drawn. Three levels of local mesh refinement are

used and the simulations run on the HPC Wales supercomputer using 171 Intel

Xeon E5-2670 (Sandy Bridge) at 2.60GHz processors with 8 cores per socket.250

Each node has a total of 16 cores and 64GB RAM, and are interconnected with

an Infiniband 4x QDR/PCIe gen2 16x network infrastructure (40Gbps HS/LL

QDR, 1.2ms latency). The simulations on the finest mesh require approximately

24,000 CPU hours. The simulations are run initially for a period of two turbine

revolutions to develop fully the flow around the turbine and power coefficients255

are computed and averaged over four additional revolutions.
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Figure 5: Sketch of the domain used for the current LES with the sub-domain divisions

represented by solid lines.

4.1. Grid size and time step sensitivity

A grid size and time step sensitivity study is carried out for the turbine ro-

tating at λ=2.0. Table 1 lists the details of the grid spacing normalised by the

chord length, the number of solid markers distributed over each section of the260

blades’ boundary, NL, and the predicted power coefficient. These values refer

to the horizontal plane where the mesh is uniform in x- and y-directions, i.e.

∆x=∆y, while the resolution in the vertical direction is set as ∆z=2∆x. The

effect of the time step on the prediction of CP is quantified using the finer mesh

with constant time steps of ∆t∗=∆tU0/c=7.2·10−4, 4.0·10−4, 1.0·10−4, corre-265

sponding to CFL=0.046, 0.026, 0.006, respectively, where CFL=Utip∆t/∆x, for

which Utip = ΩR is the tangential velocity of the blade. It is found that the

impact of the time step size on the coefficient of power is negligible small (less

than 1%) in comparison to the sensitivity to the mesh size.

Fig. 6 presents the instantaneous values of the power coefficient (CP ) ob-270

tained for one blade over one revolution for the three different meshes using

∆t∗=4.0·10−4. A notable variation of CP is observed with each refinement of

the mesh, i.e. meshes ∆x1 and ∆x2 show a larger and sharp CP peak during

the blade upstroke movement with a maximum of CP ≈ 0.55 while the finest

mesh ∆x3 achieves a maximum of CP ≈ 0.48. The latter also shows a smoother275

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Mesh ∆x/c NL CP

∆x1 0.025 82 0.252

∆x2 0.0125 162 0.313

∆x3 0.010 202 0.328

Table 1: Details of the mesh resolutions tested, the number of divisions along the airfoil’s

surface, NL, and the generated power coefficient.

curve around the maximum CP in comparison to the pointy peaks predicted by

the coarser meshes, which can be attributed to a more accurate representation

of dynamic stall by the fine grid simulation, as explained later in Section 5. Ta-

ble 1 shows that with successive mesh refinement the predicted power coefficient

achieves a closer match to the experimental value of CP = 0.336 reported in280

Maitre et al. [14], with ∆x3 showing only a 2.5% error.

Figure 6: Comparison of the computed power coefficient using different mesh resolutions.

The numerical simulation of a rotating turbine blade using an IB method

is a challenging task. An important measure to the stability and accuracy of

any immersed boundary method is to eliminate/minimise artificial residual ve-

locities inside the moving immersed boundary [52, 28]. These can be quantified285

with the L2 norm error, calculated as L2=
√∑NL

L=1(U∗
L −UL)2/NL, where NL

indicates the total number of Lagrangian markers comprising one blade, UL is
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the interpolated Lagrangian velocity, and U∗
L is the forced Lagrangian velocity.

The lower the L2 norm error, the better is the achievement of the no-slip condi-

tion at the solid boundary [52]. Hence the residual velocities inside the blades290

are quantified through the L2 norm error for different spatial resolutions using a

fixed time step of ∆t∗=4.0 ·10−4. Fig. 7a) plots the L2 norm error as a function

of grid spacing (solid line) together with sloped (dashed) lines indicating the or-

der of the scheme. The data line is parallel to the 1st-order slope, and hence the

method is 1st-order accurate in space. Simulations to investigate the effect of295

temporal resolution on the L2 norm error are carried on the ∆x2 grid. Fig. 7b)

plots the L2 norm error as a function of time step (solid line) and it demonstrates

that the method is 2nd-order accurate in time. Noteworthy is the fact that for

a rotating VATT the accuracy in space is only linear whereas both [27] and [52]

demonstrated 2nd-order accuracy of the direct forcing method, however, those300

were for non-turbulent flows around fixed immersed bodies such as the Taylor-

Green vortex problem. Similar error convergence rates to the present ones were

found by Taira et al. [53] or Li et al. [54], who attributed this deviation to the

interpolation procedures or to the effects of turbulence, respectively.

Figure 7: L2 error norm as a function of (a) grid spacing and (b) time step size.

4.2. Turbine Performance305

A blade resolved high-resolution numerical simulation of a VATT operating

in fully turbulent conditions is able to reveal important flow-turbine physics and
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can aid in improving their design or help in understanding why some VATT

designs perform better than others. A crucial step in this process is to validate

the numerical approach and to assess its credibility. Thus, the present LES310

method [55] is first validated with data from experiments and previous numerical

simulations from Maitre et al. [14] and McNaughton et al. [15].

A time-averaged coefficient of power, CP , is first obtained from averaging

CP over four revolutions after the turbine has initially rotated 720◦. Fig. 8

presents the time history of the power coefficient of the first blade over six315

full revolutions, i.e. 2160◦. During the first two revolutions the generated CP

appears to be affected by the fact the flow field is not yet fully developed,

whereas the power coefficient curve described over the following revolutions is

very consistent.

Figure 8: Time history of the power coefficient of one blade over six revolutions.

Fig. 9 presents the power curve, i.e. mean coefficient of power as a function320

of tip speed ratio, obtained from the experiments of [8], the RANS simulations

from [14, 15], and the present LES. It is observed that overall LES provides

an accurate prediction of the mean power coefficient. In particular, the LES is

able to predict the behaviour of the turbine during all phases of the operation,

whereas RANS predictions show significant overestimation of the power coeffi-325

cient for tip speed ratios greater than 2.0, i.e. in the transition and secondary

effects regions.

A better understanding of power generation of a VATT is provided with the
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Figure 9: Mean power coefficient versus λ comparison: Experimental [8], RANS [14, 15] and

the present LES results.

help of Fig. 10, which presents the distribution of the phase-averaged power

coefficient over one full turbine revolution for one blade (upper row) and for330

the sum of the three blades (lower row) at different tip speed ratios. Fig. 10

demonstrates the inherent peculiarity of a vertical axis turbine in that the power

generation is very uneven over one revolution. The majority of power is gen-

erated on the upstream side of the VATT’s revolution, i.e. 0◦ ≤ θ ≤180◦, and

there are phases where CP drops below zero or is close to zero, which means335

that one blade opposes the power generation of the two other blades. Hence,

and as seen from the lower row of Fig. 10, the power generation of a three-

bladed VATT takes on a sinusoidal pattern per revolution with three peaks and

three troughs. The overall distribution of CP of the single blade is quite similar

amongst all numerical approaches irrespective of tip speed ratio, particularly on340

the upstream side of the turbine (0◦ ≤ θ ≤180◦). Noteworthy is that the maxi-

mum CP value predicted by LES and the k-ω SST LRE [15] is quite similar for

λ=1.5 and 2.0, while k-ω SST features a notable overestimation at all rotational

speeds. More pronounced differences between the numerical approaches are ob-

served for 180◦ ≤ θ ≤270◦, i.e. during the downstream side of the rotation, for345

which only LES predicts a rather significant secondary CP peak (with approx.

60% of the magnitude of the primary peak). This secondary peak is due to
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the lift overshoot experienced by the blade on the outer side as a result of the

onset of a secondary trailing edge vortex, and this was also found for vertical

axis wind turbines [9]. This particular blade-vortex interaction is visualised and350

discussed later in Section 5. The RANS models also predict secondary peaks,

however they are smaller in magnitude than the LES predictions and occur at

a later stage in the revolution, i.e. θ ≈330◦.

The power coefficient of the 3-bladed VATT is shown in Fig. 10d) to f) as

predicted by the two RANS models, LES and measured experimentally. The355

LES predictions for λ=1.5 match the experimental values both in phase and

extreme values. At maximum efficiency, i.e. λ=2.0, LES slightly overestimates

the maximum CP and similarly underestimates the troughs of the curve. The

LES predicted CP curve also features a slight shift in the location of the peaks

and troughs, possibly due a slight shift of the θ=0◦ position in the experiments.360

At a higher tip speed ratio of λ=2.5, LES predicts well the mean value but

fails in the prediction of the maxima and minima values, which is probably due

to the omission of end-effects, which have a greater effect at higher rotational

velocities.

The accurate prediction of the lift coefficient of individual blades by the365

numerical model is of great importance and essential for geometry-resolved

Darrieus-type VATT simulations, because they are lift driven devices. A de-

tailed analysis of hydrodynamic lift forces is enabled by Fig. 11, which presents

the lift coefficient, CL, as a function of angle of attack, α, for tip speed ratios of

λ=1.5, 2.0 and 2.5. Significant differences between LES and RANS are found370

along the CL curve irrespective of the rotational speed. The most relevant dif-

ferences concern the lift generated during the first half of the blade’s upstroke

movement (0 < α < αmax and 0◦ ≤ θ ≤90◦), where LES predicts a higher

generation than RANS approaches at all λ with differences up to a 20%.

Fig 11a) shows the lift hysteresis loop for λ=1.5 and suggests large differences375

among the different numerical approaches. The LES predicts the transition

of power generation to loss of lift to occur at θ ≈ 70◦ while this is delayed

until θ ≈ 80◦ in the RANS predictions. Consequently, the LES predicts that
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Figure 10: Coefficient of power, CP , as a function of rotated angle, θ, of one turbine blade

for λ=1.5 (a), 2.0 (b) and 2.5 (c), and CP of the entire turbine for λ=1.5 (d), 2.0 (e) and 2.5

(f). Experimental and RANS k-ω SST data from [14], RANS k-ω SST LRE from [15], and

present LES.

at θ=90◦ (blade is perpendicular to the oncoming flow) CL ≈ 1.8 whereas the

RANS models predict CL ≈ 2.8, reflecting the differences between approaches in380

predicting the energetic flow structures that dominate the flow over the blade.

Nonetheless, at the maximum effective angle of attack (α=40◦, θ=130◦) the

three approaches converge to the same value of CL. At this angle, the blade

suffers from detachment of the dominating large-scale structure (as shown later

in Section 5) causing the lift to drop dramatically. The considerable differences385

between numerical approaches are due to their different prediction of dynamic

stall that dominates the VATT physics at low tip speed ratios, λ <1.7 [14]. In

the last quarter of rotation (270◦ ≤ θ ≤360◦), the generated lift is negative as
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the large-scale vortices are formed on the blade’s outer surface, and where LES

predicts less generation of lift in comparison to RANS models.

Figure 11: Coefficient of lift, CL, as a function of effective angle of attack, α, of one turbine

blade for λ=1.5 (a), λ=2.0 (b) and λ=2.5 (c). Comparison of the present LES results with

RANS results [14, 15].

390

The hysteresis lift curves for λ=2.0 and 2.5 are presented in Fig. 11b) and c),

respectively. The difference in the predictions of lift during α > 0, where LES

consistently exceeds the magnitude of CL compared to that of RANS, exists for

almost the entire upstream rotation for both rotational speeds. However, the

peak of CL is predicted to occur at θ ≈ 90◦ for λ=2.0 and 2.5 irrespective of the395

numerical approach. Larger differences are again observed for the downstream

side of the revolution especially for 270◦ ≤ θ ≤360◦. The source of the differ-

ences is the resolution of the blade-vortex interaction as RANS approaches tend

to underestimate the formation of leading and trailing edge vortices which are

the principal factors affecting the generation of lift on the blades.400

Fig. 12 presents the drag coefficient curves for tip speed ratios of 1.5, 2.0 and

2.5. At λ=1.5, two regions of high CD values are predicted by LES and the peaks

are located at θ ≈ 90◦, i.e. coinciding with maximum power generation, and

at θ ≈ 210◦ in the third quarter of the rotation. The first LES-predicted peak

is about 30% larger than the maximum values of CD from RANS simulations.405
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These differences are due to a better resolution of the dynamic stall on the blades

(as explained later in Section 5) by the LES, which becomes more evident in the

prediction of the secondary peak. For λ=2.0 and 2.5, predicted magnitudes of

the coefficient of drag are similar among the numerical approaches, however the

secondary peak predicted by LES is located between 180◦ ≤ θ ≤270◦ whereas410

RANS models estimate it to occur at 270◦ ≤ θ ≤360◦. This is consistent with

the findings for the CP curves of Fig. 10a) to c).

Figure 12: Coefficient of drag, CD, as a function of rotated angle, θ, of one turbine blade

for λ=1.5 (a), λ=2.0 (b) and λ=2.5 (c). Comparison of the present LES results with RANS

results [14, 15].

5. Blade-vortex interaction

An inherent fluid-structure interaction phenomenon of Darrieus-type VATTs

is dynamic stall. This is characterised by the shedding of leading and trailing415

edge vortices from the blade in motion, which is more pronounced on the up-

stream side of the circumference that the blade describes. These vortices are

consequently convected through the swept area of the rotor and hence they

may interact again with the blade during its rotation on the downstream half

of the circumference. The complex vortex shedding and blade-vortex interac-420

tion is sketched in Fig. 13, as proposed by Brochier et al. [56] who investigated

experimentally dynamic stall characteristics of a three-bladed VATT rotating
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at λ=2.14. From their observations, various vortex shedding mechanisms take

place, mainly in the form of leading and trailing edge vortices, denoted as a and

b respectively. Fig. 13 illustrates their loci of generation, growth and pathways425

of travel through the rotor’s swept area.

Figure 13: Schematic of the vortex shedding sequence of a VATT at λ=2.14 described by

Brochier et al. [56].

Dynamic stall characteristics depend on the tip speed ratio the turbine is

operating at. Fig. 14 shows the effective angle of attack α (Eq. 23) of the

blade during its upstream rotation at different tip speed ratios. The static and

dynamic stall angles, denoted as αss and αds respectively, determine whether430

the blade experiences light or deep dynamic stall, and hence whether partial or

full flow separation takes place and at which angle it is occurring. The lower

the tip speed ratio, the larger is the region the blade operates under deep stall

conditions (see Fig. 14b)) and this results in premature flow separation. At

higher rotational speeds, the blade motion is dominated by inertial effects and435

the flow separation on the inner side of the blade is notably reduced. In the

latter, α is less than αds so light stall occurs instead of deep stall.

The ability of LES to resolve the large-scale structures in the instantaneous

velocity field together with a geometry-resolved approach permits studying in

detail dynamic stall and vortex-blade interactions of a VATT, which vary no-440
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Figure 14: a) Effective angle of attack (α) developed by the VATT blade during the first half

of the revolution for different tip speed ratios, where αss and αds are the stall angles under

static and dynamic airfoil motion conditions. b) The shaded grey areas indicate where the

VATT blade undergoes deep stall when rotating at λ=1.5.

tably depending on the tip speed ratio. Three different scenarios are analysed:

λ=1.0, 2.0 and 3.0. At λ=1.0 and 1.5 deep dynamic stall occurs and the tur-

bine stops operating or experiences a severe drop in performance, respectively.

At higher tip speed ratios, e.g. λ=2.5 and 3.0, the inertia of the blades dom-

inates over viscous effects and the chosen turbine ”overspins”, in other words445

it does not operate at its peak. For the turbine under investigation the peak

performance is at λ ≈2.0, see Fig. 9, which appears to be the best compromise

between maximum lift on the upstream portion of the revolution and minimum

negative lift on the downstream portion of the revolution.

Fig. 15 visualises coherent vortices through iso-surfaces of the vertical vor-450

ticity for λ=2.0 illustrating the blade-vortex interaction and vortex evolution at

9 different rotated angles. The iso-surfaces are coloured in blue and orange in-

dicating whether their rotation is clockwise and counter-clockwise, respectively.

At position I (θ ≈ 30◦), the blade does not experience any vortex shedding

and only minor trailing edge turbulence is observed. Once the blade passes the455

dynamic stall angle, i.e. at position II, onset of dynamic stall occurs with the

generation of an energetic Leading Edge Vortex (LEV) denoted a and at the

instant depicted it already occupies most of the blade’s suction side. The blade

generates the maximum torque at θ ≈ 90◦ (see Fig. 10b) despite or probably

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

because of the LEV a . At position III, vortex a is considerably larger but has460

been already advected away from the suction side of the blade and is replaced

by a Trailing Edge Vortex (TEV) b, which is rotating in the opposite direction

to the LEV. The TEV is growing as the blade continues its motion and smaller

LEVs are generated such as vortex a’ . At position IV, the primary LEV a is

fully detached from the blade and is now being advected through the inside of465

the rotor whereas the TEV b grows and dominates the blade’s hydrodynamics.

The TEV b is eventually shed from the blade at θ ≈ 180◦, as is observed at

position V. At the tip speed ratio of 2.0, vortices shed during the upstream side

of the motion interact with the blades mostly within the third quarter of the

rotation, i.e. 180◦ < θ < 270◦. This is visible at position V, θ ≈ 230◦, where the470

blade interacts with the advected TEV from the previous blade, whilst its own

TEV b has detached completely. At position VI the blade starts to generate a

secondary LEV c on the blade’s outside and the blade now interacts with the

LEV of the previous blade a . Once the blade reaches position VII, no more

blade vortex interaction takes place and only small leading and trailing edge475

vortices form, detach and are transported into the downstream area of the tur-

bine. In the fourth quarter, there is no influence of upstream turbulence and the

blades at positions VIII and IX experience only vortex shedding at the trailing

edge and in absence of any relevant flow separation. The dotted lines indicate

the path described by the centre of the vortices a and b, and all of the findings480

and observations agree remarkably well with Brochier et al.’s [56] sketch.

Significant dynamic stall is observed when the turbine is rotating at λ=1.0

and this is appreciated with help of Fig. 16. At position I, only laminar shear

layers on both sides of the blades are visible. The rapid onset of dynamic stall,

massive flow separation in the form of a LEV a is appreciated already at position485

II and a TEV b is starting to form as well. Both vortices, a and b, are being

shed even before the blade approaches θ ≈90◦. From flow visualisations it is

observed that this vortex shedding mechanism does not always follow the same

pattern, sometimes vortex b is shed, some other times it stays attached to the

blade, and this appears to depend on the strength of the LEV a , whose size490
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Figure 15: Blade-vortex interaction of the VATT at λ=2.0.

and motion affects the shedding of the TEV. A secondary LEV a’ is generated

at position III, and is shed before the blade advances to position IV whilst the

secondary TEV b’ remains attached. Note that at a tip speed ratio of 1.0 at

an angle of θ=180◦ the relative velocity between the blade and free-stream is

zero. This provokes that at position V the vortex b’ travels close to the blade495

at a similar velocity but is physically detached. The vortex b’ quickly loses

coherence due to its interaction with vortex a’ which rotates in the opposite

direction. The same is true for the main vortices a and b, they interact with

each other on their way through the turbine and for the scenario depicted here

the TEV has lost its coherence almost entirely by the time it exits the rotor on500

the downstream side.

Significant a” and TEV b” are being generated and shed at position VI.

At position VII, the blade experiences interaction with vortices a and b, shed
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Figure 16: Blade-vortex interaction of the VATT at λ=1.0.

during the first quarter of the revolution and another trailing edge vortex ap-

pears (a”’ ). The interaction continues until position VIII, and appear to affect505

the shedding of a”’ . Leading edge flow separation is still observed at position

VIII and also clearly at position IX and the full recovery of the boundary layer

on the outer side of the blade is not achieved until the blade passes θ=0◦.

Fig. 17 visualises blade-vortex-interactions when the turbine rotates at λ=3.0,

and this is when the turbine overspins and operates below its peak efficiency.510

The turbine does not undergo deep dynamic stall at positions I and II at which

only minor trailing edge vortices form and the shear layers on both sides are still

attached to the blade. The LEV a is generated at position III and shed shortly

afterwards because of the fast motion of the blade. At position IV the blade

is under light stall with a short region of flow separation closer to the trailing515

edge, which generates small-scale flow structures. This behaviour is expected

as Fig. 14a) shows that α is never larger than αds for λ=3.0. Note that light
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Figure 17: Blade-vortex interaction of the VATT at λ=3.0.

or deep stall conditions are differentiated by the extension of the separated flow

region, extending only over a short portion of the blade’s surface or over the

entire length of the blade, respectively.520

The region of flow separation region near the inner side of the blade is

already reduced at position V and gone entirely by position VI. In contrast,

there is no flow separation at the outside of the blade at position V, while at

VI a secondary LEV a’ is generated and is already located close to the trailing

edge. The vortex a (shed at the position III) interacts with the following blade525

somewhere between position V and VI. At position VII, vortex a” is already

detached and advected downstream of the turbine. Minor but not insignificant

vortex formation and shedding is observed for the remainder of the revolution

and until position I.

Visualised by Fig. 15 to 17 the blade-vortex interaction depends strongly530

on the tip speed ratio λ. Noteworthy is the difference in the pathways described
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by the vortices shed on the upstream side of the revolution. For λ=1.0, the

vortices travel in the direction of the main flow as the low rotational velocity

allows for a larger entrainment of fluid into the turbine’s swept area. The swept

area is more isolated from the approach flow in the cases of λ=2.0 and 3.0 and535

consequently the vortices are deflected to the right, e.g. in the case of λ=3.0 by

approx. 45◦.

5.1. Power spectral density

Signals of instantaneous u- and v-velocity are collected at a point located

at x/R=0.80 and y/R=-0.60, and denoted as ”P” in Fig. 15 for the case of540

the turbine rotating at λ=2.0. This point is placed within the pathway of the

LEV a vortices that are shed during dynamic stall around θ=90◦. The angular

velocity of the turbine is Ω=52.57rad/s, which results in a blade frequency

of fb=(Ω/2π)*Nb=25.1s−1, or blade period of Tb = 0.04s which is used to

normalise the time values of the velocity signals from Fig. 18a). The Power545

Spectral Density (PSD) from the velocity signals is presented in Fig. 18b). A

large energy peak associated with the passing blade is identified at fb in both

PSDs together with another distinct peak at a lower frequency of fr=3.8s−1.

The latter is the frequency of the circular flow motion inside the turbine swept

area induced by the rotation of the turbine’s rotor, which was also observed550

by Brochier et al. [56] from transversal velocity spectra. A secondary, high-

frequency peak is also present in the spectra and this is due to the fact that

previously shed vortices are convected through the rotor’s swept area and hence

are out of sync with the blade movement, showing up as additional energetic

spikes in the spectra.555

The low-frequency peak of the circular fluid motion and the blade-vortex

PSD peaks are found in the production range of the spectrum. As Fig. 18b)

shows the energy cascade of the u and v spectra exhibit a certain range of

isotropic turbulence decay following the expected -5/3 decay and from approx-

imately 103 Hz onwards energy dissipation takes place, mainly induced by the560

SGS model. The selected mesh resolves approx. three frequency decades of the
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Figure 18: a) Time series of u- and v-velocities and their b) Power Spectral Density (PSD) at

x/R=0.80, y/R=-0.60.

flow, between the production of energetic large-scale vortices and dissipation

of small-scale turbulence, further demonstrating the adequacy of the chosen

mesh [57].

6. Conclusions565

In this paper an immersed boundary-based large-eddy simulation for the

simulation of Darrieus-type vertical axis tidal turbines has been introduced,

validated and applied. In the first instance, a 3-bladed turbine subjected to

laminar flow has been simulated and results have been compared with two

highly-accurate body-fitted methods. Predicted torque and normal coefficients570

are generally in good agreement with the outputs of the two methods used

for comparison, and this has demonstrated the stability and accuracy of the

large-eddy simulation based immersed boundary (LES-IB) method in absence

of turbulence.

Then the LES-IB method has undergone detailed performance assessment by575

comparing simulation results with experimental and RANS-based model data
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for a 3-bladed VATT subjected to turbulent flow. A mesh resolution and time

step sensibility study has been carried out first to assess optimal grid and time

step sizes for this case. The turbine performance curve has been reproduced

with the predicted power predictions, which agree very well with the ones ob-580

tained from experiments. Further, it demonstrates that the LES-IB method has

outperformed the two RANS-based models, in particular when the turbine spins

at tip speed ratios above the optimum tip speed ratio. The detailed analysis of

generated power and acting lift forces over a single revolution has revealed sig-

nificant differences in terms of when power/lift is generated during the rotation585

and this analysis has highlighted that important blade-vortex interaction takes

place. In particular, the largest differences between LES and RANS predictions

in the lift coefficient have been found at a tip speed ratio of 1.5, which is when

dynamic stall dominates the VATT’s hydrodynamics and RANS model appear

to struggle to reproduce this phenomenon accurately.590

The visualisation of the blade-vortex interaction at three different tip speed

ratios has outlined that the generation and transport of energetic large-scale flow

structures depends strongly on the rotational speed of the turbine. At low to

moderate rotational speeds, the blades undergo deep dynamic stall, i.e. massive

flow separation from the leading edge of the blade and formation of leading595

edge vortices that are approximately the size of the blade chord length. On the

contrary, at high rotational velocities the blades experience light dynamic stall

and vortices are less significant. The analysis of power density spectra together

with the visualisations have confirmed the presence of deep stall vortices. The

spectra allowed quantification of their dominating frequency and have provided600

evidence of the complex blade-vortex interaction mechanisms.
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