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Pleiotropic Effects of Trait-Associated
Genetic Variation on DNA Methylation:
Utility for Refining GWAS Loci

Eilis Hannon,1 Mike Weedon,1 Nicholas Bray,2 Michael O’Donovan,2 and Jonathan Mill1,*

Most genetic variants identified in genome-wide association studies (GWASs) of complex traits are thought to act by affecting gene regu-

lation rather than directly altering the protein product. As a consequence, the actual genes involved in disease are not necessarily the

most proximal to the associated variants. By integrating data from GWAS analyses with those from genetic studies of regulatory varia-

tion, it is possible to identify variants pleiotropically associated with both a complex trait andmeasures of gene regulation. In this study,

we used summary-data-based Mendelian randomization (SMR), a method developed to identify variants pleiotropically associated with

both complex traits and gene expression, to identify variants associated with complex traits and DNA methylation. We used large DNA

methylation quantitative trait locus (mQTL) datasets generated from two different tissues (blood and fetal brain) to prioritize genes for

>40 complex traits with robust GWAS data and found considerable overlap with the results of SMR analyses performed with expression

QTL (eQTL) data. We identified multiple examples of variable DNA methylation associated with GWAS variants for a range of complex

traits, demonstrating the utility of this approach for refining genetic association signals.
There has been major progress in the identification of ge-

netic variants influencing a diverse range of complex hu-

man phenotypes, including anthropometric measures

(e.g., height and weight),1,2 cardiovascular disease,3,4 in-

flammatory disorders,5 neurological diseases,6,7 and psy-

chiatric illness.8–10 The challenge is now to improve our

understanding of the biological effects of these genetic

risk factors, especially because the actual genes involved

in mediating phenotypic variation are not necessarily the

most proximal to the lead SNPs identified in genome-

wide association studies (GWASs). Supported by the obser-

vation that GWAS variants are preferentially located in

enhancers and regions of open chromatin,11,12 the major-

ity of common genetic risk factors are predicted to influ-

ence gene regulation rather than directly affect the coding

sequences of transcribed proteins.13

Expression quantitative trait loci (eQTLs) have been

successfully used for investigating the functional con-

sequences of GWAS variants.14,15 The co-localization of

GWAS and eQTL variants, however, is not sufficient to

show that the overlapping association signals are causally

related, given that the association signals might be tagging

different causal variants in the same linkage disequilibrium

(LD) block. Recently, an approach called summary-data-

based Mendelian randomization (SMR) was proposed as a

strategy for identifying overlapping genetic signals associ-

ated with both phenotypic and transcriptional variation

and subsequently distinguishing pleiotropic effects (i.e.,

where the same variant influences both outcomes,

although not necessarily dependently) from those that

are artifacts of LD.16 Genetic effects on gene expression

can be mediated by epigenetic processes such as changes

in DNA methylation, a cytosine modification that has
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an essential role in mammalian development.17 We have

previously demonstrated the utility of DNA methylation

QTLs (mQTLs) for interpreting GWAS findings by identi-

fying specific examples where genetic polymorphisms

associated with schizophrenia (MIM: 181500) co-localize

with variants associated with DNA methylation.18,19 In

this study, we applied the SMR approach to test 35,263

DNA methylation sites against 43 complex phenotypes

with robust GWAS data (Table S1) by using mQTLs identi-

fied in our recent analysis of methylomic variation in

whole blood and imputed SNP genotypes (n ¼ 639;

mQTL p < 1 3 10�10; a full description of this dataset,

referred to as phase 1, can be found here19) in conjunction

with publicly available summary data from a series of well-

powered GWAS analyses.

The first stage of the SMR analysis identifies the most

significantly associated SNP for a DNA methylation site

(that is also present in the GWAS dataset) as an instru-

mental variable for testing for an association with a pheno-

type by the two-step least-squares (2SLS) approach, which

uses the same SNP to compare the mQTL coefficients with

those from a GWAS of the phenotype (Figure S1A). This

approach identified1,932 associations (p<1.42310�6 cor-

rected for 35,263 DNAmethylation sites) between 31 com-

plex traits and 1,354 individual DNA methylation sites

(Table S2 and Figure S2). Because these associations can be

drivenby twohighly correlated but different causal variants

for the GWAS trait and DNAmethylation, the second stage

of the SMR approach repeats the analysis with alternative

SNPs associated with DNA methylation as the instrument

and performs a HEIDI (heterogeneity in dependent instru-

ments) test for heterogeneity in the resulting association

statistics. If a single causal variant is associated with both
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the phenotype and DNA methylation, the association sta-

tistics will be identical regardless of the selected instrument

(Figure S1B), and the HEIDI p value will be non-significant.

In contrast, if two separate causal variants are each corre-

lated with the instrument, there will be variation in the re-

sults from different instruments (Figure S1C), as indicated

by a significant HEIDI p value. It should be noted that

this approach is unable to distinguish these two scenarios

if the two causal variants are in perfect LD and power is

inversely proportional to the strength of the correlation be-

tween the two causal variants. Furthermore, the assump-

tions underlying Mendelian randomization20 also apply

to SMR, and it is possible for variants to act through mech-

anisms such as horizontal pleiotropy.

By identifying non-significant heterogeneity (HEIDI

p> 0.05), we identified a refined set of 625 associations be-

tween 28 complex traits and 440 DNA methylation sites

(Table S2), which can be described as pleiotropic. We

were able to test 581 of these associations with mQTLs

generated from a second independent whole-blood dataset

(n ¼ 665; a description of this cohort, referred to as phase

2, can be found here19). A highly significant proportion

(99.2%; sign test p¼ 1.473 10�172) had the same direction

of association across the two datasets (Figure S3), and a

large proportion (n ¼ 337; 58.0%) satisfied the criteria for

a pleiotropic association (p < 1.04 3 10�6 and HEIDI

p > 0.05) in the replication dataset as well. Out of the

GWAS traits tested, height was characterized by the most

associations (n ¼ 193), an unsurprising observation given

that this was the most highly powered GWAS with the

largest number of GWAS-significant loci (n ¼ 423). Power

for SMR analysis is influenced by the power of the

GWAS, which differs for each trait considered, making

comparisons between traits relatively difficult.

As demonstrated in its original implementation for

eQTLs, the SMR approach based on mQTLs has the poten-

tial to nominate loci that currently do not have sufficient

statistical power to obtain genome-wide significance on

the basis of GWAS data alone but that represent candidates

for future genetic studies (Table S3). Our SMR analysis of

Tanner staging of puberty, for example, identified DNA

methylation sites in nine independent loci (annotated to

APEH [MIM: 102645], SYNJ2 [MIM: 609410], IDO2 [MIM:

612129], PDZRN4 [MIM: 609730], HTR2A [MIM:

182135], CTDP1 [MIM: 604927], RAE1 [MIM: 603343],

and non-genic regions on chromosomes 4 and 16) that

do not have a genome-wide-significant (p < 5 3 10�8)

variant within 0.5 Mb in the GWAS21 (Figure S4). In

some genomic regions, DNA methylation sites annotated

to different genes are associated with the same phenotype;

for example, on chromosome 15, sites annotated to

CHRNA5 (MIM: 118505) and PSMA4 (MIM: 176846) are

associated with the number of cigarettes smoked per day

(Figure S5), and on chromosome 17, sites annotated to

ERBB2 (MIM: 164870) and PGAP3 (MIM: 611801) are asso-

ciated with total cholesterol (Figure S6). Furthermore, 130

DNA methylation sites were found to be associated with
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multiple complex traits (ranging from two to six traits; Ta-

ble S4). In many cases, these overlaps are consistent with

either reported phenotypic correlations (e.g., cg24631222

and cg04140906 annotated to CHRNA5 are associated

with both schizophrenia and the number of cigarettes

smoked per day [Figure S7], two traits that are epidemiolog-

ically linked22,23) or shared genetic architecture (e.g.,

cg10583485, annotated to DOCK7 [MIM: 615730]

[Figure S8], is associated with LDL, triglycerides, and total

cholesterol, three traits characterized by a strong genetic

correlation24). Because genetic correlations could account

for some of the overlap between traits, we factored in

genetic correlations derived from LD score regression,24

which showed that 30 of the 70 pairs of traits with at least

one associated DNA methylation site in common are actu-

ally characterized by a genetic correlation< 0.2 (Figure S9).

Multiple DNA methylation sites can be annotated to a

single gene, and we identified a total of 337 gene-trait

pleiotropic associations with a mean of 1.46 sites associ-

ated per gene (range ¼ 1–11). These overlapping associa-

tions between a particular complex trait and a gene would

not necessarily be expected to be associated in the same di-

rection given that correlation of DNAmethylation across a

gene is not always positive, and they were not for 20 of the

31 gene-trait associations involving genes with multiple

annotated DNA methylation sites. To add further support

to the genes prioritized at GWAS loci with the use of blood

mQTL data, we aligned these results with SMR analyses

performed on publically available whole-blood eQTL data

(n¼ 5,311; p< 53 10�8) described in detail in a recent pa-

per by Westra et al.15 We identified an overlapping set of

2,724 genes that were (1) annotated to DNA methylation

sites influenced by significant mQTLs (involving 7,722

distinct DNA methylation sites) and (2) also transcription-

ally influenced by variation at significant eQTLs (involving

2,770 gene expression microarray probes), making them

suitable for testing in the SMR framework. It should be

noted that one limitation to assessing the relationship be-

tween mQTLs and eQTLs is that DNA methylation sites,

like SNPs, are annotated to genes according to their loca-

tion; therefore, a lack of overlap in the associations with

a particular gene from the SMR analyses between DNA

methylation and gene expression should not necessarily

be interpreted as inconsistent evidence. Furthermore, the

differences in the sample sizes used for generating the

mQTL and eQTL datasets could result in different levels

of statistical power to detect QTLs. Of the 337 pleiotropic

gene-trait associations identified with mQTLs, 86 (25.5%)

were also tested with eQTLs in the SMR framework

(Figure S10). Of these, 27 (31.4%) involving 17 complex

traits associated with expression at 16 genes also met the

criteria for representing pleiotropic associations between

the trait and gene expression (SMR p < 8.38 3 10�6

corrected for 5,966 gene expression probes and HEIDI

p > 0.05) (Table S5). An example of overlapping mQTL

and eQTL signals for RNASET2 (MIM: 612944) on chromo-

some 6 is presented in Figure 1; both RNASET2 expression
rican Journal of Human Genetics 100, 954–959, June 1, 2017 955
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Figure 1. SMR Analysis Using mQTLs and eQTLs Implicates a Role for RNASET2 in Crohn Disease
Shown is a chromosome 6 genomic region (UCSC Genome Browser hg19: 167,243,095–167,565,882) identified in a recent Crohn dis-
ease GWAS performed by Liu et al.5 Genes located in this region are shown at the top; exons are indicated by thicker bars, and red arrows
indicate the direction of transcription. DNAmethylation sites interrogated by the Illumina 450K array are indicated by solid vertical lines
underneath the genes. The four bottom panels depict the�log10 p value (y axis) against genomic location (x axis) from (A) SMR analysis
(black squares represent Illumina 450K array DNAmethylation sites, blue triangles represent gene expression probes, and green and red
coloring highlight those with a non-significant HEIDI test for DNA methylation and gene expression, respectively), (B) blood mQTL
(n ¼ 639) results for the DNA methylation site cg25258033 (outlined in black in A), (C) blood eQTL (n ¼ 5,311) results for
ILMN1671565 (outlined in black in A), and (D) the Crohn disease GWAS performed by Liu et al.5
(SMR p ¼ 6.04 3 10�8) and DNA methylation at two CpG

sites in the first intron of the gene (cg25258033: SMR

p ¼ 2.84 3 10�10; cg25258033: SMR p ¼ 2.50 3 10�10)

are associated with Crohn disease (MIM: 266600).

Given the tissue-specific and developmentally dynamic

nature of gene regulation, we were next interested in

examining the consistency of our findings in a different

tissue. So, we repeated the SMR analysis on mQTLs identi-

fied in our recent analysis of human fetal brain (n ¼ 166;

mQTL p < 1 3 10�8; a detailed description of this dataset

can be found here18). The majority (75.4%) of SNP-DNA

methylation relationships identified for SMR analysis in
956 The American Journal of Human Genetics 100, 954–959, June 1,
whole blood are characterized by a consistent direction

of effect when tested in fetal brain (sign test p ¼ 4.94 3

10�324; Figure S11). Despite the strong concordance of

mQTL effects across tissues, the smaller number of samples

used for generating the fetal brain dataset (n ¼ 166) means

that only a subset (4,691 [13.3%]) of these mQTL associa-

tions passed our mQTL significance threshold (p < 1 3

10�8) and were included in the subsequent SMR analyses;

almost all of these (96.0%; sign test p < 2.2 3 10�308)

were characterized by the same direction of effect in both

tissues (Figure S12). Of the 625 pleiotropic associations

identified with whole-blood mQTLs, 84 (13.5%) involved
2017
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Figure 2. SMR Analysis Using Whole-Blood and Fetal Brain mQTL Data Implicates a Role for HEY2 in Migraine
Shown is a chromosome 6 genomic region (UCSC Genome Browser hg19: 125,970,800–126,170,800) identified in a recent migraine
GWAS performed by Gormley et al.25 Genes located in this region are shown at the top; exons are indicated by thicker bars, and red
arrows indicate the direction of transcription. The four bottom panels depict the �log10 p value (y axis) against genomic location
(x axis) from (A) SMR analysis (points represent DNA methylation sites interrogated by the Illumina 450K array, squares and diamonds
indicate SMR tests from blood and fetal brain mQTLs, respectively, and green squares and blue diamonds highlight those with a non-
significant HEIDI test for blood and fetal brain, respectively), mQTL results for the DNAmethylation site cg05901451 (outlined in black
in A) in (B) blood (n ¼ 639) and (C) fetal brain (n ¼ 166), and (D) the migraine GWAS performed by Gormley et al. (n ¼ 59,674 case and
316,078 control samples).25
a DNA methylation site that also had a significant fetal

brain mQTL (p < 1 3 10�8), meaning it could be tested

with the SMR framework (Figure S13). Of these 84 pleio-

tropic associations, 35 (41.7%) met the criteria (i.e., SMR

p< 5.403 10�6 corrected for 9,265 DNAmethylation sites

tested and HEIDI p > 0.05) for also having a pleiotropic as-

sociation involving nine complex traits in fetal brain (Ta-

ble S6). Whereas six (17.1%) of the site-trait associations

involved brain-related phenotypes (five for schizophrenia

and one for migraine [MIM: 157300]), the majority

(82.9%) involved traits that are presumed to affect other

tissues (e.g., total cholesterol and Crohn disease), suggest-

ing that effects are common across tissues. Figure 2 sum-

marizes SMR analysis across the HEY2-NOCA7 region on

chromosome 6, which was implicated in a recent GWAS

of migraine.25 Manhattan plots for the genetic analysis of
The Ame
cg05901451, located in the 50 UTR of HEY2 (MIM:

604674), in whole blood and fetal brain show a profile

highly comparable to that of the migraine GWAS, consis-

tent with overlapping genetic signals influencing DNA

methylation in both tissues and migraine.25

Finally, comparing the SMR results across multiple com-

plex traits gives a potential insight into shared pleiotropic

associations between pairs of traits. We performed hierar-

chical clustering of SMR results for 38 complex traits,

selected because they were tested against a minimum of

20,000 DNA methylation sites, to identify consistent sig-

natures (Figure S14). Figure 3, for example, depicts the as-

sociation statistics for 43 DNAmethylation sites associated

with Crohn disease (SMR p < 1.42 3 10�6) across all 38

phenotypes; interestingly, we observed a highly concor-

dant profile between Crohn disease and ulcerative colitis
rican Journal of Human Genetics 100, 954–959, June 1, 2017 957
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Figure 3. Heatmap of the SMR Results for 32 DNA Methylation Sites Associated with Crohn Disease across 38 GWAS Datasets
Each square in the heatmap represents the t-statistic (b_SMR/se_SMR) of the GWAS trait (columns) for a DNA methylation site (row;
n ¼ 32) associated with Crohn disease. Only phenotypes (n ¼ 38) tested against at least 20,000 DNA methylation sites were included
in this comparison. SMR p < 1.38 3 10�6 and HEIDI p > 0.05.
across all associated sites, consistent with the strong

genetic correlation between these traits (Figure S9). The

SMR results might highlight which genes are characterized

by shared effects between traits. There is also a notable

overlap with BMI, waist, and hip circumference at specific

loci (i.e., ATP2A1 [MIM: 108730], SULT1A2 [MIM: 601292],

and SBK1 [MIM: 300374]), an interesting observation

given the negligible genetic correlations between these

traits and Crohn disease.

Together, these analyses demonstrate the utility of the

SMR approach for identifying instances where complex

traits and variable DNA methylation are pleiotropically

associatedwithgenetic variation. This approachcould facil-

itate our understanding of the functional consequences of

genetic risk variants for a range of complex traits and facil-

itate the localization and prioritization of specific genes

within genomic regions identified by GWASs.
Supplemental Data

Supplemental Data include 12 figures and 6 tables and can be
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