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Abstract

In this paper, we continued the research started in [6, 7]. We
applied the so-called Singular Spectrum Analysis (SSA) to forecast
the Earth temperature records, to examine cross-correlations between
these records, the Arctic and Antarctic sea ice extents and the Oceanic
Nino Index (ONI). We have concluded that that the pattern observed
in the last 15 years for the Earth temperatures is not going to change
much, found very high cross-correlations between a lagged ONI in-
dex and some Earth temperature series and noticed several signifi-
cant cross-correlations between the ONI index and the sea ice extent
anomalies; these cross-correlations do not seem to be well-known to
the specialists on Earth climate.
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1 Introduction

This paper has the following purposes.

(1) Further investigation of stability of SSA forecasts for the series with
no apparent structure.

(2) Learning about the behaviour of the major series representing the
Earth temperatures during the last 35 years.

(3) Evaluation of the quality of the SSA forecasts of the Earth temperature
series that we have made five years ago.
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(4) Forecasting these temperature series for the next 5 years and assessing
stability of the forecasts.

(5) Investigating the Oceanic Nino Index (ONI) and studying inter-dependence
between the ONI series and temperature records.

(6) Application of SSA for the analysis and forecast of the series repre-
senting the Arctic and Antarctic sea ice extents and studying inter-
dependence between these series and the series representing the tem-
peratures on the North and South poles respectively.

The research on SSA analysis of Earth temperature records has started in
our previous paper [6]. In the present paper, we assess the results published
in [6] and advance the research further by analysing many more real-life se-
ries. By doing this, we get more confidence in the performance of SSA for the
analysis and forecasting of series with no or little structure. Methodological
and theoretical principles of the basic version of SSA, that we use in this
research project, have been carefully considered in [3, 5]. In these books,
however, the performance of SSA has been verified only on a series (real-life
and simulated) with clear structure. For most of the series we analyse in
this paper, there is no apparent structure and in this case many methods
of time series analysis may not show any sense or stability. As we see in
numerous graphs below, SSA performance is very stable and therefore SSA
can be considered as a reliable tool for analyzing these kind of series.

In Section 2, we briefly consider SSA and our methodological principles.
In Section 3, we consider the temperature records representing the average
temperature on Earth and its parts during the last few decades. First, we
evaluate the quality of the SSA forecasts of Earth temperature series that we
have made 5 years ago and published in [6]. Then we make a large number
of SSA forecasts of these temperatures for the following 5 years. To achieve
the robustness of forecasts, we choose a wide range of parameters of SSA.

In Section 4, we correlate the main temperature series of Section 3 with
ONI, the Oceanic Niño Index. We show that some of the temperature series
are very highly correlated to a lagged ONI series. As is widely known (see,
for example, [8, Chapter 6]) the origins, timings (except the observation
that both El Niño and La Niña are usually strongest during December –
April) and intensities of the El Niño and La Niña are still big mysteries for
modern science so that the ONI series should be currently considered as
unpredictable. This series, however, has the major effect on the dynamics
of many of the Earth’s temperature series. An implication of the results of
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Section 4 confirms one of the learnings from Section 3 saying that most of
the Earth’s temperature series are lacking structure.

In Section 5, we use SSA for the analysis and forecast of the series
representing the Arctic and Antarctic sea ice extents and correlate these
series to the series representing the temperatures on the North and South
poles respectively. The series showing Arctic and Antarctic sea ice extents
have much structure related to their seasonality. This seasonality is very easy
to extract with the help of SSA. After extraction of the main seasonality, in
Section 5 we try to study the inter-dependence between the residuals from
the ice extent data and temperature records, as well as the ONI series.

2 The methodology

2.1 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is a well-known tool of analyzing and
forecasting time series in climatology in general and the analysis of temper-
ature records in particular, see e.g. [2, 4, 5, 9, 10]. It is a nonparametric
method that does not require standard assumptions about the time series
and analyses the data in the phase space. The non-parametric nature of
SSA is a very attractive property for the analysis of the Earth temperature
records as it seems that these records do not follow any simple pattern or
model.

There are several versions of SSA. We shall use the most common one
which is often called Basic SSA. A short description of this algorithm is
given below, see [3] and [5] for details.

2.1.1 Short description of Basic SSA

Let x1, . . . , xT be a time series of length T . Given a window length L
(1 < L < T ), we construct the L-lagged vectors Xi = (xi, . . . , xi+L−1)

T ,
i = 1, 2, . . . ,K=T−L+1, and compose these vectors into the matrix

X = (xi+j−1)
L,K
i,j=1 = [X1 : . . . : XK ] .

This matrix has size L × K and is often called ‘trajectory matrix’. It is
a Hankel matrix, which means that all the elements along the diagonal
i+j=const are equal.

The columns Xj of X can be considered as vectors belonging to the
L-dimensional space RL. The singular-value decomposition (SVD) of the
matrix XXT yields a collection of L eigenvalues and eigenvectors. For a
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given integer r, 1 ≤ r < L, we choose the r largest eigenvalues and cor-
responding eigenvectors of XXT . The chosen eigenvectors determine an
r-dimensional subspace in RL; call this subspace Sr. The L-dimensional
data {X1, . . . , XK} is then projected onto this r-dimensional subspace Sr
and the subsequent averaging over the diagonals gives us some Hankel ma-
trix X̃, which we consider as an SSA approximation to X.

2.1.2 SSA forecasting

There are several ways of constructing forecasts based on the SSA decom-
position of the series described above, see Chapter 2 in [3] and Chapter 3 in
[5]. The most obvious way is to use the linear recurrent formula which the
last terms of the series reconstructed from X̃ satisfy. We however prefer to
use the so-called ‘SSA vector forecast’ ([3], Sect. 2.3.1). The main idea of
this forecasting algorithm is as follows. Selection of r eigenvectors of XXT

leads to the creation of the subspace Sr. SVD properties allow us to as-
sert that the L-dimensional vectors {X1, . . . , XK} lie close to this subspace.
Consider the vectors Z1, . . . , ZK where Zi defined as the projection of Xi

onto the subspace Sr. The vector forecasting algorithm then sequentially
constructs the vectors {ZK+1, ZK+2, . . .} so that they stay in the chosen sub-
space Sr and the hankelization of the matrix (Z1, . . . , ZK , ZK+1, ZK+2, . . .)
gives the vector forecast.

2.1.3 Choice of SSA parameters

In the examples below, the length of the series is T = 440 and the forecasting
horizon is h ∈ [60, 100].

Basic SSA described above has too parameters: L, the window length
and r, the dimension of the subspace Sr. Let us discuss the choice of these
two parameters in the analysis of the temperature series.

Choice of L. If the structure of the series is assumed stable then large
values of L, of the order L ∼= 80, should be preferred to small values, of the
order L ∼= 10. We, however, do not make the assumption that the structure
of the series is stable; on the contrary, we believe that this structure may be
rather unstable. In this case, large values of L would make SSA too rigid
and lacking flexibility. On the other hand, for very small values of L, SSA
may be too sensitive to the noise and small variations in the trend. It is
therefore natural to select values of L somewhere in-between. Our choice is
20 ≤ L ≤ 50, which we believe is a rather broad range.

Choice of r. The choice of r should depend on what do we intend to
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forecast. For example, if we observe some seasonal variations in the data and
we want to forecast these variations, then we have to choose r large enough
to capture these variations. There are several automatic procedures (see
e.g. [5]) helping in choosing the most suitable value of r (roughly speaking,
r should be the smallest among those values of r for which the residuals
after signal extraction pass the chosen statistical tests for being a noise).
These procedures, however, are often not very reliable as they require a few
conditions for the time series to satisfy and are not well suited for the long
and medium range forecasting.

In what follows, we choose r = 5, 7. Whatever the rule for selecting r,
some values of r are too small, which implies that some part of the signal
will be missed, but other values of r are too large, which implies that a
significant part of the noise will be included into the ‘reconstructed signal’.
This, however, goes in line with one of the main aims of our study which is
checking the stability of the forecasts.

Summarizing, for all temperature series we choose parameters 20 ≤ L ≤
50 and r ∈ {5, 7}. This choice is independent of the structure of the series.
This is done for consistency and for ensuring the fairness of the analysis. De-
spite a better forecast (with better stability) can be obtained if we optimize
the domains of parameters L and r for each individual series, we have fixed
the domains to show the robustness of results. Furthermore, the results of
our study are very stable with respect to these domains.

2.2 Stability of forecasts

2.2.1 Forming the samples of forecasts

Assume that we have a family of SSA forecasts which is parameterized by a
parameter θ∈Θ= {θ1, . . . , θm}, where θ = (L, r) and m is the total number
of chosen pairs of parameters (L, r). For each time moment t≤T , any g>0
and any θ ∈ Θ we can build a g-step ahead forecast x̂t+g(θ) based on the
information x1, . . . , xt. Hence for any t≤T we may compute the following
set of forecasting results:

Xt = {x̂T+g(θ) : g ∈ [h1, h2], θ ∈ Θ},

where 0 < h1 ≤ h2 are some numbers. The number of elements in the
samples Xt is M=m(h2−h1+1).

To summarize, our forecasting procedure gives us T − T0 + 1 samples

Xt = {f (t)1 , . . . , f
(t)
M } at all t = T0, . . . , T , where T0 is the first time moment

we make the forecasting.
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2.2.2 Comparison of the samples

We now need to compare the samples Xt (t = T0, . . . , T ) to evaluate the
stability of the corresponding forecasts and decide whether at t = T we
have reached an acceptable level of stability.

The mean values of the samples Xt are f̄t = (f
(t)
1 + . . .+ f

(t)
M )/M . As

the future is unknown, it is not possible to check whether the mean values
f̄t give good approximations to the true values ExT+h. Hence the values f̄t
do not provide much information about the quality of forecasts.

As measures of stability, we must consider the behaviour of some char-
acteristics of variability of the samples Xt. The most common among these
characteristics is the (empirical) standard deviation of Xt:

st =

[
1

M − 1

M∑
i=1

(f
(t)
i − f̄t)

2

]1/2

.

Another important characteristic of the sample variability is the so-called
range of the sample Xt:

Rt = max
i=1,...,M

f
(t)
i − min

i=1,...,M
f
(t)
i .

3 Analysis of the Earth temperature records

3.1 Characteristics of forecast quality

We consider the Earth temperature records from the web-site http://vortex.nsstc.uah.edu/
(National Space Science and Technology Center, NASA, USA). The records
represent the temperature on Earth and some of its parts since December
1978. We did not not present the analysis of longer temperature records as
there is some controversy around earlier temperature records, see [8]. The
series contains the temperature anomalies rather than the absolute temper-
atures.

Note that in [6] we have used the the temperature anomalies computed
relative to the base period 1951-1980. Currently, the temperature anomalies
have been recomputed and are given in http://vortex.nsstc.uah.edu/ relative
to the new annual cycle 1981-2010.

For a given series of monthly data records zy+m (where y refers to the
year and m (1 ≤ m ≤ 12) denotes the month) and a reference period of
several years, the respected series of anomalies is defined as the difference
between the original time series zy+m and the series of monthly averages
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z̄m, where the monthly averages z̄m (1 ≤ m ≤ 12) are computed for the
reference period. If the reference period is not specified (as in Section 5.2)
then the averages z̄m are computed for the whole period of observations.

Working with anomalies rather than with absolute temperature records
is customary in climatology, see for example publications and web-sites of
the Goddard Institute for Space Studies. In the present subsection we follow
[6] and use the data from December 1978 to July 2015 so that altogether we
have T = 440 data points. The first time moment we start the forecasts is
January 2005 implying T0 = 314. We forecast the series until 2020 (longer-
term forecasts are very similar) by setting h1 = 97, h2 = 99. As mentioned
above we use L ∈ [20, 50] for the SSA window length L and choose the first
r ∈ {5, 7} eigenvectors.

Figure 1: Earth temperature. The time series (gray), the SSA approxima-
tion and the forecast for L = 50 and r = 7 (black).

Figure 2: Earth temperature. Top: averages −f̄t (black), standard devi-
ations st (light grey), ranges Rt (dark grey). Bottom: box-plots of the
samples Xt.

Figure 3: Forecasts for the Earth temperature at Jan 2018; L = 20, 30, 40, 50
and r = 5 (top) and r = 7 (bottom).

To illustrate our analysis, consider the series of the global tempera-
ture on Earth and Northern Hemisphere temperature. These two series
of temperatures are discussed most often. We have done similar analy-
sis for some other series; the results are presented at the web-site http:

//earth-temperature.com/forecasting/. For each of the three chosen
temperature series we plot the following.

(i) Figures 1 and 4: the series itself, the SSA approximation and SSA
forecast for L = 50 and r = 7 computed at the last point t = T
(December 2009).
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(ii) Figures 2 and 5 (left): the series −f̄t, standard deviations st (light
grey), ranges Rt (dark grey) for t = 314, . . . , 430 (the averages f̄t
are always plotted with the minus sign for the purpose of clarity of
display).

(iii) Figures 2 and 5 (right): box-plots of the samples Xt for t = 325, 337, 349, 361, 373, . . . , 421, 433.

(iv) Figures 3 and 6: forecasts for the temperature at January 2018 us-
ing the series x1, . . . , xt for L = 20, 30, 40, 50, r = 5, 7 and all t =
314, . . . , 433.

Note that the markers on the x-axis in all plots correspond to Januaries. To
compare the forecasted values of the temperatures with recent values, note
the average values of these temperatures for 2000–2009: 0.222 for Earth;
0.312 for Northern Hemisphere.

Figures 2, 3, 5 and 6 are extensions of the corresponding figures we have
provided in [6] to cover the time periods up to 2015.

Figure 4: Northern Hemisphere temperature. The time series (gray), the
SSA approximation and the forecast for L = 50 and r = 7 (black).

Figure 5: Northern Hemisphere temperature: Top: averages −f̄t (black),
standard deviations st (light grey), ranges Rt (dark grey). Bottom: box-
plots of the samples Xt.

Figure 6: Forecasts for the Northern Hemisphere temperature at Jan 2018;
L = 20, 30, 40, 50 and r = 5 (top) and r = 7 (bottom).

3.2 Assessing accuracy of forecasts made in 2009

In Figure 7 we can see that during the period Jan 2010 to Sep 2014 the
global Earth temperatures roughly followed a typical forecast given in [6].

Figure 8 shows that for the global Earth temperatures, all forecasts made
in [6] for the period from Jan 2010 to Dec 2020 were very similar and the
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Figure 7: Global Earth temperature. Gray: the original time series from
http://vortex.nsstc.uah.edu/ for the period Dec 1978 to Sept 2014. Black:
the SSA approximation until Dec 2009 and the forecast from Jan 2010 on-
wards. SSA parameters: L = 50 and r = 7.

actual global Earth temperature during the whole period from Jan 2010 to
Sept 2014 was well inside the family of forecasts. Figure 8 also shows that
the forecasts made in Dec 2009 do not show any significant change in the
level of temperatures.

Figure 8: Global Earth temperature. Top: the original time series for the
period Dec 1978 to Nov 2016 (gray) and the family of forecasts from Jan
2010 defined by L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an extraction
from the top graph showing the period Jan 2010 to Dec 2016.

Figure 9 is similar to Figure 8 but shows the North pole temperatures
(rather than the global Earth temperatures). Again, all forecasts made in
2009 for the period from Jan 2010 to Dec 2020 were very similar and the
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actual global Earth temperature during the whole period from Jan 2010 to
Sept 2014 was well inside the family of forecasts. Unlike Figure 8, Figure 9
shows that the forecasts made in Dec 2009 indicate a very small increase in
the level of temperatures in the North pole. This figure should be compared
with Figure 16 where revised forecasts are shown. Note also that despite
the forecasts were unable to catch the volatility of the actual series, these
forecasts have shown the main trend (more precisely, the absence of any
trend) quite accurately.

Figure 9: North Pole temperatures. Top: the original time series for the
period Dec 1978 to Nov 2016 (gray) and the family of forecasts from Jan
2010 defined by L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an extraction
from the top graph showing the period Jan 2010 to Dec 2016.

Figure 10 is similar to Figures 8 and 9. It shows the South pole tem-
peratures. Unlike the global Earth and North pole temperatures, the South
pole temperatures never exhibited any trend and were very volatile. The
volatility did not exhibit any patterns and this was reflected in the SSA
forecasts: all these forecasts were very close to a constant. Figure 10 shows
that the South pole temperatures continue to be volatile with no apparent
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tendency.

Figure 10: South Pole temperatures. Top: the original time series for the
period Dec 1978 to Nov 2016 (gray) and the family of forecasts from Jan
2010 defined by L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an extraction
from the top graph showing the period Jan 2010 to Dec 2016.

Figures 11, 12, 13 and 14 are similar to Figures 8, 9 and 10 and deal with
Northern hemisphere, Southern hemisphere, Earth land and Earth ocean
temperatures respectively. These pictures are self-explanatory. They show
the good quality of the SSA forecasts made in 2009 and the fact that the
temperatures continued to be volatile but did not rise in the last three years.

3.3 Forecasting from the present time until Jan 2025

In the figures that follow we show the families of the SSA forecasts of tem-
peratures of different parts of Earth from Aug 2015 until Jan 2020. To
make the forecasts we use SSA with the same parameters as above; that is,
L = 20, . . . , 50 and r = 5, 7. The data used is the corresponding temper-
ature series from Dec 1978 until July 2015; thus, the length of all series is
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Figure 11: Northern hemisphere temperatures. Top: the original time series
for the period Dec 1978 to Nov 2016 (gray) and the family of forecasts
from Jan 2010 defined by L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an
extraction from the top graph showing the period Jan 2010 to Dec 2016.

440.
Figures 15, 16, 17, 18, 19, 20 and 21 show forecasts (constructed using

the most recent data) of the temperatures for the Earth overall, North pole,
South pole, Northern hemisphere, Southern hemisphere, Earth land and
Earth ocean temperatures, respectively. The new forecasts have been made
using the data until Sept 2014 (that is, the most recent data available at
the time of submission of the present paper). These figures complement
Figures 8, 9, 10, 11, 12, 13 and 14, respectively. All forecasts do not show any
tendencies for temperature increase. There show, however, a lot of volatility
and even a possibility of insignificant decrease of some temperatures.

12



Figure 12: Southern hemisphere temperatures. Top: the original time series
for the period Dec 1978 to Nov 2016 (gray) and the family of forecasts
from Jan 2010 defined by L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an
extraction from the top graph showing the period Jan 2010 to Dec 2016.
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Figure 13: Earth land temperatures. Top: the original time series for the
period Dec 1978 to Nov 2016 (gray) and the family of forecasts from Jan
2010 defined by L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an extraction
from the top graph showing the period Jan 2010 to Dec 2016.
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Figure 14: Earth ocean temperatures. Top: the original time series for the
period Dec 1978 to Nov 2016 (gray) and the family of forecasts from Jan
2010 defined by L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an extraction
from the top graph showing the period Jan 2010 to Dec 2016.

Figure 15: Earth temperature. The time series (gray) until Nov 2016, the
family of forecasts (black) from Dec 2016.
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Figure 16: North pole temperature. The time series (gray) until Nov 2016,
the family of forecasts (black) from Dec 2016 for L = 20, . . . , 50 and r = 5, 7.

Figure 17: South pole temperature. The time series (gray) until Nov 2016,
the family of forecasts (black) from Dec 2016 for L = 20, . . . , 50 and r = 5, 7.

Figure 18: Northern hemisphere temperature. The time series (gray) until
Nov 2016, the family of forecasts (black) from Dec 2016 for L = 20, . . . , 50
and r = 5, 7.
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Figure 19: Southern hemisphere temperature. The time series (gray) until
Nov 2016, the family of forecasts (black) from Dec 2016 for L = 20, . . . , 50
and r = 5, 7.

Figure 20: Earth land temperature. The time series (gray) until Nov 2016,
the family of forecasts (black) from Dec 2016 for L = 20, . . . , 50 and r = 5, 7.

Figure 21: Earth ocean temperature. The time series (gray) until Nov 2016,
the family of forecasts (black) from Dec 2016 for L = 20, . . . , 50 and r = 5, 7.
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4 ONI index

The National Oceanic and Atmospheric Administration (NOAA) is a federal
agency focused on the condition of the oceans and the atmosphere. De-
facto, the standard tool used by NOAA for identifying El Nino (warm) and
La Nina (cool) events in the tropical Pacific is the so-called Oceanic Nino
Index (ONI) discussed in this section. It is the running 3-month mean SST
anomaly for the Nino 3.4 region (i.e., 5oN-5oS, 120o–170oW).

Monthly data of the ONI index is taken from the website http://ggweather.com/enso/oni.htm
In Figure 22 we plot the ONI index.

Figure 22: The ONI index.

In Figure 23 we plot Earth temperature and the scaled ONI index. We
can see an amazing similarity between these two time series. Note that the
ONI index has highest correlation with the Earth temperature if apply a
delay 3-4 months to the ONI series.

In Figures 24–30 we compare temperatures for different parts of Earth
and the ONI index.

By looking at Figure 28 we observe an almost perfect similarity be-
tween Tropics temperature and the ONI index. Let ρONI,Tr(k) be the cross-
correlation between the ONI index and Tropics temperature for a lag k.
The largest cross-correlation between Tropics temperature and the ONI in-
dex is ρONI,Tr(3) = 0.7277, while the largest cross-correlation between the
ONI index and Earth temperature is ρONI,Ea(4) = 0.3044. Also note that
the largest cross-correlation between the ONI index and smoothed Earth
temperature is ρONI,smoothedEa(4) = 0.3278.
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Figure 23: Earth temperature (gray) and the scaled ONI index (black).
Middle: Smoothed Earth temperature (gray) and the scaled ONI index
(black). Bottom left: Cross-correlation between the ONI index and Earth
temperature. Bottom middle: Cross-correlation between the ONI index and
smoothed Earth temperature. Bottom right: Cross-correlation between the
differences of the ONI index and the differences of smoothed Earth temper-
ature.
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Figure 24: North pole temperature (gray) and the scaled ONI index (black).
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Figure 25: South pole temperature (gray) and the scaled ONI index (black).
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Figure 26: Northern hemisphere temperature (gray) and the scaled ONI
index (black).
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Figure 27: Southern hemisphere temperature (gray) and the scaled ONI
index (black).
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Figure 28: Tropics temperature (gray) and the scaled ONI index (black).
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Figure 29: Earth land temperature (gray) and the scaled ONI index (black).

25



Figure 30: Earth ocean temperature (gray) and the scaled ONI index
(black).
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5 Arctic and Antarctic sea ice extents

5.1 Analysis and forecasting of ice extent series

In this section, we study Arctic and Antarctic sea ice extents from 1979 to
present. The sea-ice extent (unit: 106 square Km) is calculated as the areal
sum of sea ice covering the ocean where sea-ice concentration (SIC) exceeds
a threshold (15% for AMSR-E). SICs are derived from various satellite-borne
passive microwave radiometer (PMR) sensors using the algorithm developed
and provided by Dr. Comiso of NASA GSFC through a cooperative rela-
tionship between NASA and JAXA. Daily data of Arctic and Antarctic sea
ice extents is taken from

http://nsidc.org/data/seaice index/archives.html
On the base of this daily data, we compute monthly time series by taking

the average for each month.
In Figure 31 we can see that Arctic sea ice extent during summer months

of last decade was smaller than Arctic sea ice extent for the period from 1980
to 2000. However, this decrease of Arctic sea ice extent is compensated by
Antarctic sea ice extent so that their sum has very stable behaviour over all
period from 1980 to the present time, as can be seen in Figure 38.

Figure 31: Monthly average values of Arctic sea ice extent from Nov 1978
to Nov 2016.

5.2 Ice extent anomaly

In this subsection we study the time series of the sea ice extent anomaly
which is the difference between the original time series of ice extent and the
series of corresponding monthly averages. As an increase of temperatures
leads to a decrease of sea ice extent, we consider the inverted sea ice ex-
tent anomaly which is obtained by changing the sign of the sea ice extent
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Figure 32: Monthly average values of Arctic sea ice extent from Nov 1978
to Nov 2016 (grey) and forecast with L = 72, r = 7 (black).

Figure 33: Monthly average values of Antarctic sea ice extent from Nov 1978
to Nov 2016.

Figure 34: Monthly average values of Antarctic sea ice extent from Nov 1978
to Nov 2016 (grey) and forecast with L = 72, r = 7 (black).

anomaly.
We investigate the relationship between the inverted sea ice extent anomaly

and other time series such as the ONI index (see Figures 39 and 40) and
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Figure 35: The annual average values of Arctic sea ice extent from 1980 to
2014.

Figure 36: The annual average values of Antarctic sea ice extent from 1980
to 2014.

Figure 37: The annual average values of the sum of Arctic and Antarctic
sea ice extents from 1980 to 2014.

Figure 38: Monthly average values of the sum of Arctic and Antarctic sea
ice extents from Nov 1978 to Nov 2016.

temperatures at North and South poles (see Figures 41 and 42).
In Figures 39 and 40 we can notice several significant correlations be-

tween the ONI index and the sea ice extent anomalies. We tried to find a
confirmation of the existence of such correlations in the literature on Earth
climate but we failed. This can be for one of the following three reasons:
(a) we did not look hard enough (as we are not specialists in climatology),
(b) the correlations found by us are spurious, and (c) the correlations are
meaningful and hence they will be rediscovered and explained by the spe-
cialists in climate and earth science. We shall leave this to the specialists in
climate to resolve.

From Figure 39 we can observe that the ONI index has small influence
on the Arctic sea ice extent with delay 2 months. An increase of the ONI
index anomalies is followed by a decrease of the Arctic sea ice extent at
North Pole (delayed by 2 months).
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Figure 39: The scaled ONI index (gray) and the inverted smoothed Arctic
ice extent anomaly (black). Bottom left: Cross-correlation between the
ONI index and the inverted smoothed Arctic ice extent anomaly. Bottom
right: Cross-correlation between the differences of the ONI index and the
differences of the inverted smoothed Arctic ice extent anomaly.

In Figure 40 we can see that the Antarctic sea ice extent has influence
on the ONI index with delay 2 months. A decrease in anomalies of the
Antarctic sea ice extent is followed by an increase of the ONI index (delayed
by 2 months).

In Figure 41 we can see that the North pole temperature has strong influ-
ence on the Arctic sea ice extent. This phenomena can easily be explained.

In Figure 42 we can see that the South pole temperatures have a mod-
erate influence on the Antarctic sea ice extent with delay about 3 months.
This can also be easily explained.
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Figure 40: The scaled ONI index (gray) and the inverted smoothed Antarctic
ice extent anomaly (black). Bottom left: Cross-correlation between the ONI
index and the inverted smoothed Antarctic ice extent anomaly. Bottom
right: Cross-correlation between the differences of the ONI index and the
differences of the inverted smoothed Antarctic ice extent anomaly.
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Figure 41: Smoothed North pole temperature (gray) and the inverted
smoothed Arctic ice extent anomaly (black). Bottom left: Cross-correlation
between the smoothed North pole temperature and the inverted smoothed
Arctic ice extent anomaly. Bottom right: Cross-correlation between the dif-
ferences of the smoothed North pole temperature and the differences of the
inverted smoothed Arctic ice extent anomaly.
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Figure 42: Smoothed South pole temperature (gray) and the inverted
smoothed Antarctic ice extent anomaly (black). Bottom left: Cross-
correlation between the smoothed South pole temperature and the inverted
smoothed Antarctic ice extent anomaly. Bottom right: Cross-correlation
between the differences of the smoothed South pole temperature and the
differences of the inverted smoothed Antarctic ice extent anomaly.
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6 Regression analysis of temperature data on the
ONI index

Figure 43: Temperature data and it regression on the ONI index.

Let x(ti) be a temperature at time ti for a part of Earth. Let O(ti) be
the ONI index at time ti.

Consider the regression model

x(ti) = θ6 +
5∑
j=0

θjO(ti−j) + ε(ti).

We estimate θ = (θ6, θ0, . . . , θ5) via least squares, that is, as follows

θ̂ = arg min
θ

N∑
i=1

x(ti)− θ6 −
5∑
j=0

θjO(ti−j)

2

.
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We define residuals as R(ti) = x(ti)− θ̂6 −
∑5

j=0 θ̂jO(ti−j).

Figure 44: Residuals of regression for temperature data on the ONI index
and it forecasts, L = 30, 31, . . . , 50 for all parts, r = 9 or r = 5 depending
on a part of Earth.

Conclusions

The main results and finding of this paper are as follows.

• We have made a further investigation of stability of SSA forecasts for
the series with no apparent structure. We have observed that the
behaviour of SSA forecasts for such series does not change much when
we vary the two SSA parameters within a reasonable range.

• We have evaluated the quality of the SSA forecasts of the Earth tem-
perature series that we have made in [6]. We have found out that our
forecasts made five years ago were very accurate.
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• We have made forecasts of Earth temperature series for the next 5
years and assessed stability of these forecasts. We claim that the
pattern observed in the last 15 years for the Earth temperatures is not
going to change much. This implies, for example, that sharp rise of
Earth temperatures is very unlikely.

• We have analysed cross-correlations between the Earth temperature
records and the Oceanic Nino Index (ONI). We have found very high
cross-correlations between a lagged ONI index and some Earth tem-
perature series.

• We have applied SSA for the analysis and forecast of the series rep-
resenting the Arctic and Antarctic sea ice extents and studied cross-
correlations between anomalies of sea ice extents, the ONI index and
the series representing the temperature anomalies on the North and
South poles. In particular, we have noticed several significant correla-
tions between the ONI index and the sea ice extent anomalies which
are not well-known in the literature on Earth climate.
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