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Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic 

fungi.

Lynne Boddy and Jennifer Hiscox

School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK

SUMMARY

Decomposer fungi continually deplete the organic resources they inhabit, so successful colonisation of

new resources is a crucial part of their ecology. Colonisation success can be split into (1) the ability to

arrive at, gain entry into, and establish within a resource, and (2) the ability to persist within the 

resource until reproduction and dissemination. Fungi vary in their life-history strategies, the three 

main drivers of which are stress (S-selected), disturbance (ruderal, or R-selected), and incidence of 

competitors (C-selected); however, fungi often have combinations of characteristics from different 

strategies. Arrival at a new resource may occur as spores or mycelium, with successful entry and 

establishment (primary resource capture) within the resource largely dependent on the enzymatic 

ability of the fungus. The communities that develop in a newly available resource depend on 

environmental conditions, and in particular the levels of abiotic stress present (e.g. high temperature, 

low water availability). Community change occurs when these initial colonisers are replaced by 

species that are either more combative (secondary resource capture), or better able to tolerate 

conditions within the resource, either through changing abiotic conditions or due to modification of 

the resource by the initial colonisers. Competition for territory may involve highly specialised 

species-specific interactions, such as mycoparasitism, or may be more general; in both cases combat 

involves changes in morphology, metabolism, and ROS production, and outcomes of these 

interactions can be altered under different environmental conditions. In summary, community 

development is not a simple ordered sequence, but a complex ever-changing mosaic. 
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INTRODUCTION

Decomposer fungi, by their very nature, continually deplete the organic resources in which they grow 

and feed. They therefore rely on continual successful spread to new resources. In terrestrial 

ecosystems resources are distributed heterogeneously in space and time (1, 2). They are often discrete,

ranging in size from small fragments, e.g. bud scales, to large tree trunks, though discrete leaves en 

masse can form a continuous layer on the forest floor. The processes of arrival and spread are thus 

crucial to the success of saprotrophic fungi. Following arrival at a resource, their competitive ability 

will determine whether they are successful in colonization and, also, how long they retain that 

territory. Colonization and competition are the main focus of this paper, and are discussed separately 

below, largely drawing on wood decay fungi for illustrative examples.

In view of the large number of decomposer fungi, and the variety of organic material that is available 

for them potentially to feed on, it is not surprising that they have evolved a range of different life 

history strategies to cope with the environment they inhabit, the three major drivers being: stress (S-

selected), disturbance (R-selected or ruderal), incidence of competitors (C-selected), or a combination 

of these (3-5). Characteristics defining these life-history strategies are given in Table 1. These 

strategies are relative depending on the communities being considered, and they also vary in different 

stages of the life cycle, or between regions of the same mycelium exhibiting different physiological 

states. The wood decaying basidiomycete Phlebia radiata, for example, has a rapidly extending 

aseptate mycelial margin, that can utilize only simple carbon sources and does not recognise 

antagonists (R-selected characteristics), whereas the more mature septate mycelium is able to use the 

lignocellulose complex and is antagonistic to other mycelia (C-selected characteristics) (6). Thus, taxa

should not usually be classified per se as having a specific life history strategy, but their behaviour in 

a particular context can be defined by these terms. Further, fungi often have combinations of 

characteristics from different strategies (R-C, R-S, C-S or R-C-S; Figure 1).
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COLONIZATION

Arrival

Most fungi can only spread between resources by producing asexual spores, sexual spores or sclerotia.

These fungi are termed resource-unit-restricted, as opposed to non-resource-unit-restricted fungi that 

grow out of resources and spread as mycelium. Spores can enable rapid spread, sometimes over many 

kilometres (7-11), though most basidiospores, for example, land within a few metres of the 

basidiocarp that produced them (9,11). Spores, however, usually contain only small food reserves, and

the chance of landing on a suitable new resource, with an appropriate environment for germination 

and growth is small if spread by wind or rain, though greater if transported by animal vectors (5, 12). 

Sclerotia often contain larger food reserves, and allow survival in time, though spread is more limited 

than for most other spore types (13). Thick-walled chlamydospores also enable survival in time, e.g. 

the wood decaying basidiomycetes Botryobasidium spp., Hyphodontia paradoxa, Piptoporus 

quercinus and Trechispora spp., allowing them to survive severe abiotic stress, e.g. desiccation (see 5 

and references therein).

Though the inoculum potential of an individual spore is small, it can be considerably increased if 

genetically identical spores, e.g. conidia, germinate close to one another. Germ tubes home in on each 

other and fuse to form a network (14). In contrast, when spores are genetically different, and hence 

somatically incompatible, competition is likely to result (15).  When basidiospores germinate, the 

mycelia that develop are usually homokaryotic. It is generally thought that this homokaryotic stage is 

short-lived, and that mycelia soon (within hours or days of germination) encounter a suitable 

conspecific and, following a successful mating, become heterokaryotic. However, even common fungi

such as Trametes versicolor and Heterobasidion annosum can sometimes remain homokaryotic for 

several years (11, 15-17), and rare species, e.g. Hericium spp., might be expected to remain 

homokaryotic for much longer (18). Homokaryotic and heterokaryotic mycelia do not necessarily 

behave the same in terms of growth rate, decay ability, competitive ability etc., though there does not 
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seem to be a general trend where one is better (has higher 'fitness') than the other (19 and references 

therein). 

In contrast to arrival as spores, arriving as mycelium allows the fungus to draw upon a much larger 

supply of nutrients (20). Mycelial spread can be as individual hyphae, albeit sometimes forming dense

mycelia or fronts, or as hyphae aggregated to form linear organs - mycelial cords and rhizomorphs (2, 

21, 22). Some leaf litter decay fungi can form large patches, e.g. Collybia spp. and Marasmius spp., or

‘fairy rings’, e.g. Clitocybe nebularis (20, 23). These patch formers colonise individual fallen leaves, 

but spread by mycelial growth from one leaf to another as if the litter layer was one large continuous 

resource. In contrast to mycelial patches, that exhibit no particular pattern, fairy rings comprise a 30 – 

40 cm wide annulus of mycelium which is highly polar growing outwards from an initial site of 

establishment, death of older mycelium forming a central zone devoid of the fairy ring-former (20, 

23). 

The mycelial systems of those fungi that produce linear organs of aggregated hyphae are very 

different from others. The structure of the linear organs covers a spectrum of complexity, from simple 

loose aggregations, through to hyphae highly aggregated to form cords, e.g. Hypholoma fasciculare, 

Megacollybia platypylla, Phallus impudicus, Phanerochaete velutina form cords with a thick outer 

rind that are differentiated internally, in contrast to the thick-walled melanised rhizomorphs of 

Armillaria  spp. (21, 22, 24, 25). Rhizomorphs grow from the tip, whereas cords tend to form behind 

an actively growing front of individual hyphae. When mycelia grow out from a resource they exhibit 

different branching patterns which vary between species, and depend on many biotic and abiotic 

factors including size, quality and states of decay of the resource, soil type, micro-climatic 

environment, antagonistic fungi and other microbes, and grazing invertebrates (12, 20, 26, 27) Some 

can be considered short-range foragers, with highly dense hyphae and mycelia, yielding mass fractal 

dimension close to 2 in 2-dimensions, e.g. H. fasciculare (27; Figure 2A). They are likely to be 
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successful in encountering small organic food resources. Others are longer-range foragers with more 

open systems and a lower mycelial mass fractal dimension, e.g. P. velutina and Resinicium bicolor 

(Figure 2B&C). Even longer-range-forages have a mass fractal dimension of close to 1, e.g. 

rhizomorphs of Armillaria spp. (27). 

When mycelia of cord-forming species encounter new resources they are able to exert considerable 

‘inoculum potential’ for colonisation, being able to draw on nutrient reserves from the mycelial 

network which gives them considerable advantage over spores. If colonisation of the newly 

encountered resource is successful there is often reallocation of mycelial biomass, with thickening of 

cords interconnecting the original and new resource, and regression of non-connecting mycelium (2). 

Thus a network of cords interconnecting woody resources develops on the forest floor, and can 

operate a ‘sit-and-wait’ strategy colonising wood when it falls onto the network as well as an ‘active-

search’ strategy (12). These networks can be extensive, though dynamic, covering many m2 or even 

hectares; networks of rhizomorphs of Armillaria spp. constitute the largest organisms on the planet 

(20, 28-32). While in temperate and boreal forests such mycelial networks are confined to the forest 

floor, in tropical forests similar networks are found both on the floor and in the canopy (33), in the 

latter case catching small leaf litter and wood components before they reach the forest floor. 

Entry and establishment

Plant tissues that have recently died are usually colonised initially by endophytic fungi already 

present, and/or by prolifically sporing R-selected species, which happened to arrive first (34, 35); so 

at early stages the absence of species commonly considered to be later colonisers reflects arrival time 

rather than an inability to colonise newly available plant tissues. On the forest floor, arrival by 

mycelium can, however, sometimes happen early on if the resource is located on or close to an active 

mycelia patch or network of mycelial cords.
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Entry and establishment in an un-colonised dead organic resource, be it following arrival as spores or 

mycelium, will depend largely on the enzymatic ability of the fungus. If the fungus  has the enzymatic

capacity to use compounds available within the resource it will colonise, establish and remain present 

until it is (1) ousted by another species, (2) inhibited or killed by adverse abiotic conditions, (3) uses 

up the food supply, or (4) is triggered to fruit or grow out of the resource in search of others. If the 

fungus exits the resource by fruiting it may or may not commit all of its mycelial biomass to 

reproduction, depending on its life strategy (see above). Timing of production of reproductive 

structures also depends on life strategy, ruderal (R-selected) species committing themselves rapidly 

and prolifically to reproduction,  others (C- or S-selected) tending to reproduce later in life, and not 

usually committing all of their mycelial biomass to reproduction (Table 1). Fungi that are able to exit 

by mycelial spread (those with C- and S-selected characteristics), do so at different times following 

colonisation, with the exact timing varying depending on species, other biotic and abiotic factors, and 

on the relative size/nutrient status of the resource compared with other resources in the network (2).

During colonisation simple compounds are typically used first followed by more recalcitrant 

cellulose, hemicellulose and lignin. Colonisation of the non-lignified tissues is relatively easy for 

mycelia, but woody tissues are more challenging. In wood most rapid spread is usually along vascular

tissues; tangential and radial spread necessitates boring through lignocellulose in the cell walls (35). 

Plant anatomy results in the characteristic often longitudinally extensive decay columns seen in wood 

(Figure 3).

Community development

Communities that develop initially depend on the environmental conditions when the resource 

becomes available for colonisation, ranging between low environmental stress, where fungi with R-

selected characteristics dominate initially, to high stress, e.g. due to extreme abiotic variables, where 

species that dominate have appropriate S-selected characteristics often combined with some R-
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selected characteristics (3, 5; Figure 4). High stress conditions include heartwood of trees containing 

allelopathic compounds, extreme temperature of hot deserts and Arctic, Antarctic and alpine tundra, 

and the desiccating conditions of tree canopies. Though some of the initial fungal colonisers will have

the enzymatic ability to completely break down the resource that they are colonising, most are usually

replaced sooner or later by other species, when abiotic conditions worsen (stress aggravation) or 

improve (stress alleviation), when the habitat is disturbed or when competition/combat (see next 

section) with other fungi ensues (Figure 1). Changes to the abiotic conditions occur due to changes in 

microclimate, but are also brought about by fungi altering the physical and chemical environment as 

they metabolise the resource they are colonising (see next section). Disturbance occurs when 

resources are suddenly made available (enrichment disturbance) or when part or all of the resident 

mycobiota is destroyed, e.g. following fire. Competition/combat occurs when the expanding territory 

of fungi in freshly available resources overlaps, and when new colonisers arrive at a resource via 

spores or mycelial spread.

So, communities of primary, secondary and late secondary (or tertiary) colonisers develop. 

Community development is not a simple ordered sequence, but a complex ever-changing mosaic. The 

general order of colonising species – succession - has been determined in many types of organic 

substrata, but three-dimensional structure has been mostly studied in decaying wood, because the 

mosaic of different individual fungi is clear to see at all but the earliest and latest stages of community

development (Figure 5A). Since organic substrata are opaque, they have to be destructively sectioned 

to reveal the individual decay columns. The patterns revealed can be mapped, isolations can be made 

onto agar media and subsequently identified, or DNA can be directly extracted from wood, and the 

three-dimensional community determined (Figure 3; Figure 5A). Isolation onto agar has the benefit 

that isolates of the same species can be paired to determine, in the case of basidiomycetes, whether the

isolates are the same genotype/individual, based on somatic incompatibility (11, 36). The same can be

done with ascomycetes, but different individuals/genotypes can sometimes belong to the same 

vegetative compatibility (VC) group (36, 37), so the situation is not so clear cut. Experimental 
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pairings can also be made between different species to give indications of relative combative ability, 

which can aid understanding of community development pathways.

Sectioning is destructive, so patterns of community development cannot be followed in an individual 

organic substratum, but rather must be inferred by analysing many units at different stages of decay. 

Extracting DNA samples from substrata, e.g. by collecting sawdust from holes drilled into wood, can 

reveal species composition (e.g. 38). Such samples could be extracted at different times to reveal a 

temporal sequence of colonisation but, of course, sampling may alter abiotic conditions in the 

resource and/or allow different fungi to colonise. Presence of fruit bodies provides a vague idea of 

fungi present, and has been used to infer colonisation sequence. Sequences of fruit bodies occurring 

on dung is an early cautionary tale (see 39). The order in which fruit bodies appear and disappear is 

largely related to their simplicity:  mucorales, e.g. Mucor, Pilaria and Pilobolus are usually visible 

within a few days, declining after a week; after 5-6 days fruit bodies of discomycetes, e.g. Ascobolus 

and  Coproboia  spp., are evident; these are joined fruiting after 9 – 10 days by pyrenomycetes and 

loculoascomycetes, e.g. Sordaria and Podospora; finally basidiomycetes, e.g. Coprinus, Stropharia 

and Paneolus fruit. The fungi are, however, often already present in the dung when it is deposited or 

colonise very early. Some species have evolved adaptations to passage through the gut, and may even 

be able to germinate and grow whilst still within the near-anaerobic conditions of herbivore rumens; 

Sporormiella minima, for example, begins to grow before sheep dung is deposited, allowing it to 

colonise and fruit much more quickly than other species with similarly complex fruit bodies (40). 

In wood, the order of fruit body appearance depends, to some extent, on the order within succession, 

but also on the ecological strategy, fungi with S- and C-selected characteristics tending to fruit 

sporadically and much later in their lifecycles. However, fruit bodies of some species repeatedly and 

sometimes almost exclusively follow those of other specific species (41-44). For example, Antrodiella

hoehnelii almost always fruits following Inonotus nodulosus and I. radiatus, while Hericium 
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coralloides fruits following Inonotus obliquus, I. cuticularis or Fomes fomentarius on angiosperm 

wood in Central Europe and Scandinavia (41, 43).  This has led to the idea of predecessor-successor 

relationships and priority effects.

The order in which species arrive at a resource, i.e. the assembly history, affects the composition and 

development of the community which follows. When earlier colonising species affect the colonisation

success of species that arrive later, whether as spores or mycelium, they are described as exerting 

priority effects (45, 46). Such effects can be stimulatory or inhibitory. Wood decay fungi again 

provide good examples: they change the resource they occupy both chemically and physically by 

utilising different components of the wood cell wall, making nutrients available, altering wood 

chemistry, pH and water content. This can prevent some species from capturing territory, acting as a 

sort of constitutive defence (35), or, can select for certain species that prefer the altered environment 

(44, 47-50). The actual presence of a certain species can make a resource easier to colonise by specific

fungi, for example, wood colonized by Trametes species may be more attractive to Lenzites betulina 

than is other wood, since the latter is temporarily mycoparasitic (see next section) on the former and 

can gain easy access via the mycelium of its host (51). Once L. betulina has taken over the territory 

occupied by Trametes spp., it operates other antagonistic mechanisms (see next section) to defend and

gain territory from other fungi. Similary, Trametes gibbosa is temporarily mycoparasitic on 

Bjerkandera adusta (51). Priority effects are common in the development of wood decay communities

(e.g. 45, 46, 49, 52-55), although they may be less evident in the later stages of decay (56).

COMPETITION

Competition is the negative effect that one organism has on another by using up, or inhibiting access 

to, a resource of limited availability (57). When one organism inhibits the other and limits access to 

resources it is termed interference competition, whereas when one organism depletes a resource, 

consequently reducing its availability, it is termed exploitation competition (57). The sequestration of 
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nutrients by mycelia growing through soil, hence preventing other fungi from using them, is an 

example of exploitation competition. However, when saprotrophic basidiomycetes and xylariacious 

ascomycetes are growing in and feeding on solid organic resources, e.g. wood and leaf litter, the 

distinction between exploitation competition and interference competition is not clear, and cannot 

sensibly be divorced from each other (58). This is because these fungi compete to obtain and defend 

3-dimensional territory within the organic resource; within the territory the resources can be used at 

the fungus’ ‘leisure’. Thus, competition for nutrients is effectively brought about by competition for 

territory/space.

Fungal competition in organic resources is often divided into: (1) primary resource capture, when a 

fungus colonises and gains influence over previously unoccupied territory/resource; and (2) secondary

resource capture, when a fungus captures territory from fungi that have already colonised a resource 

(3, 58). Another aspect to secondary resource capture is defence of territory from potential invaders. 

R-selected characteristics favour primary resource capture, whereas success in secondary resource 

capture depends on combative/antagonistic mechanisms (predominantly C-selected characteristics). 

Combative/antagonistic interactions can occur at a distance and following contact, comprising 

mycoparasitism and larger scale mycelial interactions. 

Antagonism at a distance

Antagonism between fungi can occur in the absence of mycelial contact, through the production of 

volatile and diffusible organic compounds (VOCs and DOCs respectively; 59). Fungi produce a wide 

range of these so-called 'secondary' metabolites, spanning a variety of chemical classes, from short-

chain alcohols and ketones to aromatic compounds and terpenes (60-62). Different species tend to 

produce a characteristic metabolite profile (63, 64), although this profile can be perturbed by growth 

substrate, pH, culture age, and temperature (65-67).
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Whilst DOCs have antagonistic potential in circumstances where they can accumulate or diffuse 

through substrata (i.e. locally), VOCs function in much more heterogeneous environments and can act

over greater distances (68, 69). Mycelia exposed to the DOCs or VOCs of a competitor exhibit altered

spore germination, mycelial morphology, foraging behaviour, and enzyme production (47, 67, 68, 70-

72). For example, the extension rate of Trametes versicolor was reduced when grown on media 

containing DOCs from Fomes fomentarius cultures (Figure 5B&C), and the extension of Phallus 

impudicus cords across soil was reduced as a result of exposure to VOCs from Hypholoma fasciculare

(Figure 5D&E; 67). The antagonistic potential of VOC and DOC profiles depends on the chemical 

composition of that profile and the susceptibility of the combatants; effects of VOCs and DOCs may 

be stimulatory, and function as attractants to competitors, mycoparasites, or invertebrates (47, 72).

Mycoparasitism

Mycoparasitic relationships occur when one mycelium gains nutrition directly from another (35). The 

mycoparasite may cause the death of the host mycelium and utilise nutrients from the dead or dying 

hyphae (necrotrophy), or it may derive nutrition from living mycelia (biotrophy). There is a spectrum 

of relationships between these extremes, and some fungi may grow biotrophically on certain hosts but

necrotrophically on others (73). Not only do fungi parasitise other mycelia, but they can also 

parasitise fruiting bodies, spores and sclerotia (73). 

Biotrophic mycoparasitic relationships are complex, controlled, and specialised associations 

between mycoparasite and host. Biotrophic mycoparasites have a narrow host range, and the 

mycoparasite is frequently dependent on the host for survival; for example, Coniothyrium minitans is 

an obligate mycoparasite of certain Sclerotinia and Botrytis species, and lacks a free-living 

saprotrophic stage (74). The establishment of biotrophic associations requires high specificity in 

recognition between the host and the mycoparasite (73). The associations are relatively non-

destructive, with the cytoplasm of the host remaining relatively healthy, but abstraction of nutrients 

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

11



from the host results in reduction in host biomass, often causes distortion of host hyphae, and has 

adverse effects on host sporulation (73, 75, 76). Three subdivisons of biotrophic mycoparasitism have 

been described based on physiological characteristics. Firstly, the intracellular biotrophs function by 

the entire thallus entering and developing within the host cells, and absorbing nutrients directly from 

the host cytoplasm. Secondly, haustorial biotrophs penetrate host cell walls by the production of 

appressoria, and the development of specialised absorbtive branches (haustoria) which invaginate the 

host plasma membrane. Host nutrients are abosrbed across the plasma membrane into the haustorium. 

Thirdly, fusion or contact biotrophs produce specialised hyphae which closely adpress to the host 

hyphae and form channels or micropores in the host cell wall, allowing the biotroph plasmalemma to 

fuse with that of the host and absorb nutrients directly from the host cytoplasm (37, 76).

Necrotrophic mycoparasites tend to have a broad host range and utilise relatively unspecialised, 

destructive parasitic mechanisms. For many necrotrophs parasitism is more opportunistic than 

biotrophy and, as mentioned above, can even be temporary, providing the parasite with a means of 

access a different food source. As with biotrophic mycoparasites, the necrotrophs can be subdivided 

based on their physiological relationship with the host. Non-invasive necrotrophs make contact with, 

or grow very close to (within a few micrometres), host hyphae which they attack by a process known 

as 'hyphal interference'. The mycoparasite secretes non-enzymic diffusible toxins, which cause 

impaired membrane function resulting in lysis of organelles, invagination of the plama membrane, 

and eventual death of the hyphal compartment (73). Death of the whole mycelium may occur if 

multiple contacts are made. In contrast, invasive necrotrophs coil around and penetrate host hyphae 

(73). Contact and recognition of a host often stimulates production of specialised structures on the 

mycoparasite cell wall, with which it binds to host hyphae (77). The mycoparasite produces antifungal

metabolites and lytic enzymes to disrupt host cytoplasm, resulting in vacuolation and lysis of hyphal 

walls and organelles. For example, vigorous necrotrophs in the genus Trichoderma secrete antibiotic 

peptides called peptaibols, which disrupt cytoplasmic membranes causing hyphal leakage and 

eventual cell death, and they also secrete cell-wall degrading chitinases and proteases (78). 
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Larger scale mycelia interactions: antagonistic mechanisms

For saprotrophic fungi, the territory occupied by a mycelium is also its nutrient source, and as such 

mycelia attempt to maximise their territory by replacing other mycelia and defending themselves from

replacement. This is clearly seen in communities of wood decay fungi; the territories occupied by 

different mycelia in decaying wood are often delineated by pigmented barriers, or 'pseudosclerotial 

plates', which are the interfaces between competitors (Figure 5A; 58). The establishment of physical 

contact between two competing mycelia, often termed 'gross mycelial contact', results in large-scale 

changes in the growth, gene expression, and metabolite production in both competitors, and the 

induction of antagonistic mechanisms. The outcomes of antagonistic interactions range from 

replacement of one competitor by another, to deadlock, where neither species can capture any territory

from the other (58). Between these extremes are partial replacement, where one species is able to 

capture some but not all of the opponent's territory, and mutual replacement, where one species 

obtains some of the territory formerly occupied by the other and, simultaneously, vice versa. 

Outcomes are determined by the relative abilities of the opponents to capture and defend territory, and

different species may exhibit different 'strategies' during combat, displaying traits that may benefit 

them in attack and/or defence (79). Some fungi are good at both attack and defence, whereas others 

are good at one of these but not the other. For example, the secondary coloniser Stereum hirsutum is 

relatively poor at gaining new territory in decaying beech wood, but can defend the territory it 

occupies against more combative later secondary colonisers such as H. fasciculare and P. velutina 

(49). Further, the progress and outcomes of interactions can be altered and even reversed by changing 

environmental conditions, such as invertebrate grazing, gaseous regime, water availability, and 

temperature (79-82).

Morphological changes: Antagonistic mechanisms utilised by mycelia to attack or defend against 

competitors include morphological changes, production of enzymes and toxins, detoxification of 

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

13



competitor toxins, and alteration of metabolic rate. Changes in mycelial morphology are most 

dramatic in areas in direct contact with the competitor - the interaction zone. Hyphae may aggregate 

to form defensive barrages to physically block invaders, or to form invasive replacement fronts or 

cords to penetrate competitor defences (Figure 5F-H; 58). Different types of hyphal assemblage can 

be found in different regions of the same interaction front, indicating that antagonistic mechanisms are

deployed dynamically and in response to local stimuli (68). Changes in morphology during 

interactions are reflected in changes in expression of genes involved with cell division, cellular 

transport, and cytoskeleton rearrangement compared to non-interacting mycelia (83-85).

Secondary metabolite production: Profiles of VOCs and DOCs alter quantitatively and qualitatively

during interactions, often involving production of interaction-specific compounds not produced by 

either competitor during growth alone (66-68, 72, 86-88; Table 2). Interaction-specific VOCs are 

often identified as terpenoids, frequently sesquiterpenes (66, 67, 87). Many sesquiterpenes are known 

to be bioactive, displaying antifungal activity, or functioning as attractants or repellants to fungi and 

invertebrates (61, 91, 92). Some compounds that were produced constitutively may be up-regulated 

following contact with a competitor (Table 2), for example the production of a potentially antifungal 

quinolinium-type compound by H. fasciculare doubled during interactions with Trametes versicolor 

compared to during growth alone (72). 

Accumulation of ROS: Reactive oxygen species (ROS) accumulate at interaction zones, although 

their exact role is unclear (Figure 5G; 84, 93, 94). ROS may be produced by one or both competitors 

to generate a toxic oxidative environment, and increases in potential sources of ROS, such as 

increases expression of genes encoding NADPH oxidase, and increases in peroxidase and 

phenoloxidase activity, have been detected at interaction zones (84, 94, 95). Increases in expression of

genes encoding catalase and putative DNA repair proteins have also been detected at interaction 

zones, which suggests attempts by the mycelium to mitigate ROS toxicity and repair oxidative 
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damage (83, 84). However, a direct role for ROS toxicity during interactions between wood decayers 

seems unlikely since these fungi are adapted to tolerate the oxidative stress caused by activity of their 

own ligninolytic enzymes. Instead, ROS accumulation may be incidental, and occur as a result of 

disruption of cellular metabolism caused by other antagonistic mechanisms. Alternatively, increases in

ROS levels may function as a defence signalling response similar to that in plants, for example, 

triggering biosynthesis of pigment (94, 96). Increases in another potential signalling compound, nitric 

oxide (NO), have also been detected during interactions between Phellinus morii and Inonotus 

obliquus, triggering the production of antifungal phenylpropanoid metabolites (97).

Oxidative enzyme activity: Activities of peroxidases and phenoloxidases (laccases) are also up-

regulated at interaction zones (19, 83, 95; Table 3). This may function to increase decomposition and 

could be associated with increased utilisation of the resource during combat. However, laccases and 

peroxidases are also secreted in response to stress, and could function during interactions to detoxify 

competitor VOCs and DOCs (19, 85). Other enzymes involved in detoxification are also up-regulated 

during interactions, for example increases in expression of genes encoding oxidoreductases, 

aldo/ketoreductases, and glutathione-S-transferases were detected in Trametes versicolor and 

Pycnoporus coccineus during interactions with various competitors (84, 85). Laccases may also 

function to wall off and protect hyphae during interactions through production of melanin, which 

insulates hyphae from ROS, toxins, temperature extremes, and hydrolytic enzymes, and may also 

have direct antibiotic properties (106, 107). Pigmentation is frequently observed at interaction zones 

(Figure 5H), and whilst there is some indication that this is the result of deposition of DOCs, this may 

also be the result of melanisation (72).

Energy expenditure during interactions: Antagonism is energetically expensive. Production of 

invasive mycelial cords by one or both competitors is associated with increases in respiration, 

indicating that this requires up-regulation of metabolic processes (49). Enhancement of nutrient 
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acquisition through increased production of cellulases and phosphatases occurs at interaction zones 

and throughout the competing mycelia (85, 103, 104). The concurrent reduction in biomass 

accumulation during interactions between P. coccineus and Coniophora puteana suggests that this 

increased nutrient acquisition functions to fund antagonistic mechanisms rather than mycelial growth 

(85). Metabolism was also found to increase in newly captured territories (i.e. regions where a 

mycelium had replaced a competitor), and it is likely that the observed increases in activity and gene 

expression of proteases and chitinases in these regions function to recycle the mycelium of the 

displaced competitor (85, 89, 105, 108). Similary, genes whose products are involved in carbohydrate 

and nitrogen metabolism were up-regulated in T. versicolor mycelium during interactions where it 

replaced competitors, but not during interactions where it was outcompeted (84).

CONCLUSIONS

Fungal community development within decaying resources is ultimately driven by the abiotic 

conditions the resource is subjected to, and the local pool of potential colonising species. Fungi have 

evolved different life-history strategies to exploit different niches during community development 

within decaying resources, although certain species may often have combinations of characteristics 

from different strategies, or vary in their strategy during different stages of the life cycle or in 

different contexts. The communities that develop in newly available resources depend on the levels of 

abiotic stress present; this determines which of the latently present colonisers, and which of those that 

arrive as spores or via mycelial spread from local species pools, are most likely to establish within the

resource. Changing abiotic conditions, modification of the resource by colonisers, and arrival of more 

combative species drive shifts in community composition, and in some cases the assembly history 

determines subsequent community development. Acquisition of previously colonised resources by 

more combative species is achieved through the deployment of antagonistic mechanisms, which can 

begin before mycelia establish physical contact through production of volatile and diffusible organic 

compounds. Interacting mycelia undergo a slew of morphological and biochemical changes, which 

may be aggressive or defensive in function, and the changes that occur differ depending on the 
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combination of species involved. Interaction outcomes, and thus community change, are determined 

by the relative combative abilities of the fungi involved, but these outcomes can be altered or even 

reversed under different environmental conditions. 

Many questions remain to be answered for us to fully understand the processes underlying community

development of saprotrophic fungi. Firstly, how far do spores spread, and how do they manage to 

establish within resources that are already colonised; what exactly is the success rate of a spore? 

Perhaps communities within decaying resources are determined through all initial stages of decay by 

propagules that are latently present; emerging sequencing technologies will allow a much more 

comprehensive profile of latent colonisers to assess the extent of their contribution to community 

development. Further, how strong are priority effects, and how resilient are these pathways of 

community development global environmental change? Finally, utilisation of emerging molecular and

biochemical approaches will allow better understanding of the mechanisms involved in antagonism or

facilitation within decay communities, which drive changes in community composition throughout the

decomposition process.
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Figure Legends

Figure 1. How R-C-S characteristics relate to r-K strategies

Figure 2. Foraging strategies of cord-forming basidiomycetes growing out of pre-colonised beech 

wood blocks across compacted soil. A: Hypholoma fasciculare, a short-range forager, produces highly

dense hyphae and mycelia. B: Phanerochaete velutina is a longer-range forager, with a more open 

cord system. C: Resinicium bicolor has an even more open system than P. velutina, with thicker 

cords.
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Figure 3. Sectioned beech trunk showing decay columns running longitudinally through the wood. 

Arrows indicate dark zone lines (pseudosclerotial plates) surrounding different decay columns.

Figure 4. Fungal community development pathways in woody resources. Newly available wood (top)

becomes progressively colonised, initially through primary resource capture in an open community 

stage where there is still unoccupied territory, until all territory becomes occupied, resulting in a 

closed community where further colonisation occurs as secondary resource capture. As the 

community moves from open to closed, combat becomes the driving force for change. Finally, 

communities in well-decayed wood are characterised by substrate modification and invasion by soil 

invertebrates. The ecological characteristics of the dominant organisms are indicated in boxes: R, 

ruderal; C, combative; S, stress-tolerant. Driving forces are indicated in italic, and direction of 

community change indicated by arrows. The community may be driven toward the left by stress 

aggravation, or to the right by stress alleviation, although destructive disturbance will drive the 

community towards species with R-selected characteristics.(Adapted from 5, 58).

Figure 5. Interspecific interactions fungi growing in natural and artificial media. A: Cross section of a

decaying beech branch with dark zone lines (pseudosclerotial plates) surrounding competing mycelia. 

B&C: Growth of Trametes versicolor when exposed to the DOCs from uncolonised malt broth 

(control; B), or DOCs from Fomes fomentarius (C). D&E: Phallus impudicus cord systems growing 

across compacted soil when exposed to VOCs from uncolonised soil (control; D), or VOCs from 

Hypholoma fasciculare growing across soil (E). F: Interaction between H. fasciculare and Resinicium

bicolor cord systems across compacted soil. G: Accumulation of reactive oxygen species (ROS) at the

interaction zone between Bjerkandera adusta (left) and T. versicolor (left) on 2% malt agar (MA). 

ROS are stained purple using nitroblue tetrazolium (methods in 94). H: Three-way interaction 

between mycelia of H. fasciculare (left), P. velutina (centre), and Stereum hirsutum (right) growing on
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2% malt agar (MA). H. fasciculare cords are beginning to encroach over the P. velutina mycelium, 

whilst H. fasciculare itself is overgrown by P. velutina cords. A thick barrage separates the mycelia of 

S. hirsutum and P. velutina, with a distinct orange/yellow band of pigment deposited in the agar at the 

regions of contact between the two mycelia. 
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