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Abstract

The Relative Age Effect (RAE) documents the inherent disadvantages of being younger

rather than older in an age-banded cohort, typically a school- or competition-year, to the det-

riment of career-progression, earnings and wellbeing into adulthood. We develop the Tails

of the Travelling Gaussian (TTG) to model the mechanisms behind RAE. TTG has notable

advantages over existing approaches, which have been largely descriptive, potentially con-

founded, and non-comparable across contexts. In Study 1, using data from the UK’s Millen-

nium Cohort Study, we investigate the different levels of RAE bias across school-level

academic subjects and “personality” traits. Study 2 concerns biased admissions to elite

English Premier League soccer academies, and shows the model can still be used with min-

imal data. We also develop two practical metrics: the discrimination index (ID), to quantify

the disadvantages facing cohort-younger children; and the wastage metric (W), to quantify

the loss through untapped potential. TTG is sufficiently well-specified to simulate the conse-

quences of ID and W for policy change.

Introduction

Older children enjoy many advantages over younger children in an age-banded cohort, typi-

cally a school year, or competition year for sports. Being older, they tend to read more fluently

and have larger vocabularies, be taller, stronger, faster, more socially and emotionally aware,

and so on. Such children will more likely be top of the class, selected for sports teams, and hold

leadership positions, such as club presidents [1]. Each small success—actually due to chrono-

logical age, but misattributed to innate ability—will reinforce their self-esteem. It also seems

obvious that any age-related difference in abilities that exist between children who are 5 and 6

years old will be greater than between those who are 10 and 11 years old. In each case, the abso-

lute difference is one year, but in relative terms the older child has had 20%, not 10%, more

time to practice, develop and mature. Following this diminishing trend through adolescence,

we might expect that cohort-related differences attenuate over time until they are unnotice-

able. After all, don’t late-borns attain the same average height in adulthood as early-borns?

Interestingly, according to Relative Age Effect (RAE) research, the name given to this area of
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study, many aspects of children’s lives never auto-correct, even in the long run, leading to

anomalies in career progression, earnings and well-being [2–4].

In its consequences, RAE is an unintended form of age discrimination and talent wastage.

It is of concern beyond children, teachers, coaches and parents, reaching up to the managers

of teaching institutions, who have the power to affect the course that RAE takes; and to policy

makers, who create the wider environments in which RAE-induced wastage and discrimina-

tion may flourish, or not. The model we develop in this paper supplies the tools to better

understand RAE, make better predictions and decisions. In this way, we hope the model

lives up to Lewin’s [5] dictum that, "there is nothing more practical than a good theory"

(p. 169).

Despite the ubiquity of RAE research, (Wikipedia lists over 100 papers), these within-

cohort age-related differences have never really been modelled analytically. Past studies typi-

cally present tables of monthly or quarterly counts or percentages, perhaps with a χ2 test to

show that the observed pattern differs from expectations with no RAE. Yet, it is difficult to

compare the severity of RAE even when two sets of counts are measured in the same units, for

instance months, rather than quarters or biannually. Other studies have translated birthdays

into a measure of how far through the cohort-year, scaled [0,1], each child was born, with

birthtime tB = 0 and tB = 1 being, respectively, the earliest and latest possible a child could have

been born, and hence the oldest and youngest they could be within the cohort year. The indi-

vidual tBs can then be averaged into a summary statistic �tB, also known as the Index of Birth-

days [6], with lower values indicating distributions positively skewed towards earlier births,

and thus more severe RAE. While a single number does facilitate comparison, we show that

the apparently self-evident statistic �tB is influenced by (i) the rate of talent, ability or attribute

advancement, but also by (ii) the severity of selection, for instance whether the top 1% or top

0.1% are “make the grade”. In other words, past RAE research has been highly descriptive,

potentially confounded, and without a method of comparison across contexts. As such, RAE

research threatens to remain a series of isolated findings that cannot be accumulated in any

synergistic way.

The Tails of the Travelling Gaussian (TTG) is a mathematical model of RAE that redresses

the above criticisms by enabling a comparison of (i), above, uncontaminated by (ii). It is based

on Gaussian distributions for a talent, ability or attribute, which collectively we refer to as qual-
ities. There is a Gaussian for the youngest children in the cohort, a Gaussian for the oldest chil-

dren, and one for every birthday in between. Comparing the upper tails of such Gaussians

allows us to estimate the probability that children born on different days will exceed a particu-

lar criterion (e.g., selected into a soccer academy, or rated by teachers “well above average”).

We can also work backwards from known selection probabilities at different birthtimes of the

year to infer the unobserved rate at which a quality develops within the cohort, i.e., how fast

the Gaussian travels. In practice, this latter approach is likely to be most popular, given the for-

mat of available empirical data.

With knowledge of the relative rates of advancement, the TTG enables comparison of

widely different qualities which could not otherwise be compared. In addition, the form of

advancement can be traced. Does it develop at a constant rate, or are there critical periods for

learning, akin to growth-spurts and puberty? We can also derive related statistics which will

illuminate issues such as the degree of age discrimination operating, or the amount of talent

being wasted in a particular situation. Both should interest policy makers wishing to mitigate

the negative consequences of RAE. Also, because the TTG is an analytic model, it can be used

to simulate changes in policy, such as moving to half-year cohorts, relaxing selection criteria,

or delaying entry into talent schools, as well as being able to measure critical outcomes of pol-

icy changes.

Tails of the Travelling Gaussian model and the relative age effect
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Next, we briefly review the literature, present the theoretical underpinnings of the TTG

model and elaborate on its advantages over �tB, mean birthtime. We then illustrate how the

TTG model adds value and insight using real data from different domains (sports, education

and personality). This also shows how the model can be employed in practice, particularly

when the data is compiled in different formats (frequency tables and selection probabilities).

Finally, we discuss implications for theory and practice, along with directions for future

research.

Tails of the Travelling Gaussian (TTG)

Background literature

The literature charts a consistent set of RAE effects from Kindergarten [7], through early

school [8], middle school [9, 10], to upper school [11] and university [12]. Children born at

the start of the academic year do better academically, whereas those born at the end of the year

do less well and are more likely to be diagnosed with attention deficit / hyperactivity disorder

(ADHD), be referred with special needs, or even present with psychiatric problems [13].

The intrinsic age differences in RAE, so evident at an early age, tend to attenuate as the age-

cohort grows up. But a diverse and consistent body of work suggests that such RAEs do not

disappear altogether [2]. Studies have reported lower self-esteem among those born later in the

academic year [14]; higher rates of suicide and obesity [15, 16]; lower qualities of leadership

[1]; and lower educational attainment [17, 18].

One of the intrigues of RAE is seeing these patterns persist into adulthood, long after they

should have disappeared. In terms of elite performance in adult life, more early-borns attend

UK’s premier Oxford and Cambridge universities. The US Congress is also overrepresented by

those born earlier in the cohort [4], as are corporate CEOs [19], and UK Nobel laureates in sci-

ence [20]. RAE exists among NHL professional ice hockey players [21], in Serie A, Italy’s top

soccer league [3], and Olympic athletes [22].

But, the clear message of RAE overrepresentation through into adulthood does not extend

quite so straightforwardly to earnings. Larsen and Solli [23] studied Norwegians born in the

1940s and showed that earnings were greater for early-borns, but only until their mid-40s,

after which time late-borns tended to earn more. Similarly, findings about wages among elite

performers have been equivocal; Bryson, Gomez and Zhang [21] showing that later-borns

tend to earn more (ice hockey); whereas Rossi and Fumarco [3] that later-borns earn less (soc-

cer). What does seem unequivocal is that early borns have a more advantaged path into adult-

hood, whether they fully capitalise on it or not.

One mechanism behind the persistence of RAE are the "self-fulfilling prophesies" described

in Hancock, Adler and Côté [24]. Doors may be opened or closed on the basis of RAE. The

teacher may give the older children leading roles in the school play, select them for sports

teams, and assign them to more able work groups. Each creates differences in the exposure

necessary for growth. Parents may reinforce this through "skewed enrolment bias", by failing

to engage their cohort-younger children into extra-curricular activities. These “self-fulfilling

prophesies” may be internalised too, so "once expectations are placed upon an individual, that

individual typically acts congruently with those expectations" [24], Thus, teachers, parents,

peers, and children themselves may all be working to reinforce feedback loops, which perpetu-

ate RAE and undermine or enhance positive self-esteem.

Because children attend school for most of their childhood, no matter how behind they

seem at first, there is always a chance that eventually they can catch up, revise their public- and

self-image, and thereby realise more of their true potential. Age should thus attenuate the

severity of RAE found in early childhood. In contrast, “talent” schools aim to accelerate the

Tails of the Travelling Gaussian model and the relative age effect
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latent ability of their pupils, who are often selected at an early age when intrinsic RAE is great-

est. Moreover, if the school is successful in its raison d'être, it will introduce a gulf in perfor-

mance between those inside and those outside the institution. Thus, outsiders will find it

increasingly difficult to catch up and gain admission as time passes and the gulf widens. The

age profile of talent schools’ pupils thus tends to be frozen in the state it was at first entry. Soc-

cer academies are one such talent school that we will explore in study 2.

Giving evidence to these claims, among 7 and 8 year olds, a year will make a big difference

to the talent a scout perceives a boy to have; thus at the U9 (under-9) level, soccer academies

are typically top-heavy with boys born at the start of the competition year. But once estab-

lished, we claim this “bias” will be largely impervious to outside influence. Accordingly, we

should find RAE bias at the highest levels of youth soccer, which is not so very different from

that found lower down the ages; and this perseverance of pattern is typically found. For

instance, Del Campo et al. [25], in their Figure 6, found in Spanish soccer, that the pattern of

RAE bias observed at U13, U15, U18 levels was almost identical to the pattern at U11 level.

Deprez et al. [26], in their Table 1 found similar levels of RAE bias for a Flemish (Belgian) sam-

ple at U10-U11, U12-U13, U14-U15, U16-U17, and U18-U19, namely the ratios of players

born in Quarter 1 to Quarter 4 were 2.9, 3.2, 3.1, 2.4, and 2.7, respectively. Finally, Lovell et al.

[27], in their Table 1 found no diminution of RAE between U9 and U19 for boys in lower lea-

gue, English soccer development programmes. Thus, the age profile of the entire academy is

likely to look much like the age profile at 7–8 years, as indeed it should, because that is where it

originated, remaining largely undiluted with time.

In contrast to sports, education is primarily cognitive rather than physical, is not overtly

competitive, and is explicitly measured, for instance by public examination. Education data

usually covers a representative sample of the population, rather than a highly selected upper

tail of extreme-ability children, as is often the case with sport. Chess occupies an interesting

niche between these extremes, being both competitive and cognitive, with ability explicitly

measured using the Elo system [28]. Breznik and Law’s [28] analysis of expert chess players

revealed the usual RAE downward trend in frequency across all quarters of the year (Jan-Dec)

for boys and women; but for girls and men, while the downward trend was present across

quarters 1 to 3, there was a pronounced upturn in quarter 4 born players. Gobet and Chassy

[29] reported a similar upturn in younger, later born chess players which they interpreted as a

genuine seasonal effect.

Table 1. Children’s speaking and listening ratings disaggregated by month-of-birth.

Well Below Below Average Above Well Above Cumulative Frequencies

1 2 3 4 5 � 1 � 2 � 3 � 4 � 5

Sep 3 39 161 195 72 470 467 428 267 72

Oct 13 34 169 171 61 448 435 401 232 61

Nov 6 36 197 168 66 473 467 431 234 66

Dec 9 52 206 158 44 469 460 408 202 44

Jan 9 60 168 168 50 455 446 386 218 50

Feb 13 53 183 142 36 427 414 361 178 36

Mar 11 52 195 140 40 438 427 375 180 40

Apr 12 49 186 140 31 418 406 357 171 31

May 17 59 209 121 30 436 419 360 151 30

Jun 22 60 213 115 25 435 413 353 140 25

Jul 22 71 171 105 33 402 380 309 138 33

Aug 13 64 211 79 24 391 378 314 103 24

https://doi.org/10.1371/journal.pone.0176206.t001
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This raises important issues for any analytical model and its associated estimation tech-

nique. If the distribution of birthdates were genuinely driven by season, we should expect no

great discontinuity across the competition cut-off date, the trend being a wave that repeats

year on year. But, if the data are driven by RAE, we should expect a discontinuity, the trend

having the appearance of a saw-tooth function. Clearly, any estimation technique must be

capable of distinguishing between these two distinct profiles, and specifically testing for both

linear and non-linear relations in the distribution of birthdates. Our two real-world examples

will illustrate the application of such an approach.

Key concept: Continuum of between-to-within age variability

In each area of activity, there will be a disparate spread of qualities (talents, abilities, attributes),

even among children born on the same day. The larger the difference a year makes to the

development of a quality relative to the overall spread among same-birthday children, the

more it will matter whether a child is the youngest or oldest in their cohort. A good example is

that children get taller as they age, conferring advantage in size-critical activities. Conversely,

the smaller the rate of annual advancement relative to the spread of qualities among same-

birthday children, the less it will matter whether a child is the youngest or oldest in their

cohort. For example, children produce more melanin as they grow up, improving their “abil-

ity” to avoid sunburn [30]. But, the effect is so small that whether a child is younger or older in

their cohort makes little difference to how much sun they can withstand before burning—

what matters is the inherent variability in skin tone at or within an age, which can differ hun-

dredfold according to Rees [31].

We can thus think of a continuum with age-sensitive differences, such as height dominating

towards one end, and age-insensitive differences, such as skin tone dominating at the other.

This continuum captures the relative size of between-age advancement to within-age variabil-

ity. At points along the continuum we should find the heterogeneous qualities to which RAE

applies. Clearly, some qualities are more passively acquired (e.g., height, skin tone), while oth-

ers require practice and effort for the latent talent to be manifest (e.g., reading, musical ability).

Likewise, some qualities are more objectively measurable (e.g., running speed) and others less

so (e.g., emotional maturation, soccer skills). Nevertheless, the TTG model can map all these

qualities onto the age-sensitivity continuum, and capture in a single measure, namely the rate

of Annual Advancement (A), how much difference a year makes. We now explain how A can

be derived from our proposed mathematical model.

Tails of the Travelling Gaussian (TTG) model

Fig 1 shows the Gaussian distribution for a quality expressed in standardized units (z-scores)

for the oldest children of a cohort born at time tB = 0; and the youngest born one year later at

time tB = 1. In general, if a quality advances by A units per annum, the distributions for youn-

gest and oldest will be ~N(0,1) and ~N(A,1) respectively. With knowledge about children at

points in between, we can infer how the Gaussian travels from youngest to oldest. For instance,

if the quality advances at a constant rate with time tB, then its distribution will be ~N(tBA,1)

for 0� t� 1.

Imagine that a professional soccer club wants to recruit and train youth goalkeepers, but

only if they meet or exceed some minimum height requirement denoted by the vertical Selec-

tion Criterion in Fig 1. The location of this line is measured by the distance A+C, relative to

the midpoint of the Gaussian distribution for the youngest children, as shown in the top half

of Fig 1. Likewise, this line is measured by the distance C, relative to the midpoint of the Gauss-

ian for the oldest children, as shown in the bottom half of Fig 1. Thus, the Gaussian will travel

Tails of the Travelling Gaussian model and the relative age effect
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a distance of A units (standard deviations) to the right during the course of a year. In this case,

A measures how much children grow in height, on average, per annum. Obviously, the youn-

ger you are, the more difficult it is to meet the height requirements of the professional soccer

academy. Whereas for the oldest children this criterion is met by those who are only slightly

taller than average, at z� C, the youngest children need to be a lot taller than average for their

chronological age, at z� A+C.

Given empirical data on selection percentages, we can work backwards and determine what

A and C actually are. Suppose, as in Fig 1, we observe 9.68% and 30.85% of the youngest and

oldest children meet the height requirements, as denoted by the shaded areas. Using knowl-

edge of the standard normal / Gaussian distribution, we can infer the effective z for the youn-

gest children is 1.3 (A+C) because p(z� 1.3) = .0968; mathematically: z = F-1(1–0.0968),

where F is the cumulative distribution function (cdf) for the standard normal, N(0,1), that

maps z-values onto p-values; and F-1 is its inverse, that maps p-values onto z-values. This

Fig 1. Standardized normal distributions for quality of oldest and youngest children in an age-banded

cohort. Oldest born at tB = 0, youngest born one year later at tB = 1. A is the rate of annual advancement. C is the

selection criterion.

https://doi.org/10.1371/journal.pone.0176206.g001
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corresponds to point f in Fig 2. Likewise, as 30.85% of oldest children meet the height criterion

(corresponding to point e in Fig 2), we can infer their effective z is 0.5 (C) because p(z� 0.5) =

.3085. By subtraction, we conclude A = 0.8. Thus, height (as a quality) increases by 0.8 standard

deviations on average during this cohort-year.

Now imagine that the soccer club raises their minimum height requirement. This more

severe selection criterion will shift the heavy black line further to the right in Fig 1. If only

2.87% of the youngest and 13.57% of the oldest children are selected, we would back-translate

these probabilities into z-scores of 1.9 (A+C) and 1.1 (C) respectively, corresponding to points

h and g in Fig 2, and would again infer that A = 0.8. In the world of constructed examples,

both scenarios give exactly the same value of A. For real-world empirical data theymight not.

But, one advantage of analysing different severities of selection on the same population pool is

Fig 2. Illustrative example continued. Calculating A and C (as z-values) from probabilities of selection for oldest and

youngest in a cohort.

https://doi.org/10.1371/journal.pone.0176206.g002
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that, via a process of triangulation, we obtain multiple estimates of the rate of annual advance-

ment (A) for the quality of interest, plus a measure of its uncertainty (standard error). The

mapping between known areas (probabilities) in Fig 1 and the inferred points e, f, g, h in Fig 2

is abbreviated as follows:

Point (e) p(z� 0.5) = 0.3085, thus C = 0.5 for less severe selection.

Point (f) p(z� 1.3) = 0.0968, thus A+C = 1.3 for less severe selection.

Point (g) p(z� 1.1) = 0.1357, thus C = 1.1 formore severe selection.

Point (f) p(z� 1.9) = 0.0287,, thus A+C = 1.9 formore severe selection.

Ambiguities in mean birthtime (�tB) as a measure of RAE severity

Earlier we claimed that the mean birthtime, �tB, was jointly influenced by the rate of ability

advancement (A) and the severity of selection (C), thereby limiting its usefulness in RAE

research. We now substantiate this claim by showing that �tB decreases as: (i) selection

becomes more severe (i.e., C increases, holding A fixed), and (ii) quality advances at a faster

rate (i.e., A increases, holding C fixed). Returning to Fig 1, we know that when C = 0.5,

(A = 0.8 = fixed), 31.85% of the oldest and 9.68% of the youngest are eligible for admission

into the soccer academy. Thus, children born at the very start of the year are 3.18 (= 31.85 /

9.68) times more likely to meet the goalkeeping height requirements than children born

right at the end. When the selection criterion is more severe, and only taller goalkeepers are

recruited, (C = 1.1; A = 0.8 = fixed), children born at the very start of the year are now 4.72

times (13.57 / 2.87) more likely to be selected than those born right at the end. Thus, as the

heavy black line denoting the selection criterion (C) shifts further to the right, the disparity

(odds ratio) between oldest and youngest increases and the distribution of those selected

skews more heavily in favour of the oldest, near tB = 0; and so �tB decreases. This is true not

just for A = 0.8, but is a general rule for any fixed A, easily verifiable via statistical tables, a

spreadsheet, or formally in mathematics.

Likewise, the bigger the difference a year makes to the development and advancement of a

quality, (A increases, holding C fixed), the more the two Gaussians will be pulled apart, but

only to the disadvantage of the youngest children. Returning to Fig 1, notice that for the oldest

children, the probability of being selected p(z� C) is independent of A. However, for the

youngest children, the selection probability will decrease as A increases p(z� A + C), with

their Gaussian starting further to the left, and so the disparity (odds ratio) between oldest and

youngest will increase. For instance, when C = 0.5 (fixed), 31.85% of the oldest are always

selected, regardless of A. If quality advances by 0.8 standard deviations annually, as given in

Fig 1, then 9.68% of the youngest are selected (z = 1.3; 0.8 + 0.5). But if ability advances at a

faster rate, say A = 1.2 (not shown in Fig 1), now only 4.46% (z = 1.7; 1.2 + 0.5) of the youngest

will “make the grade”. Thus, children born at the very start of the year are no longer 3.18 but

6.92 (= 30.85 / 4.46) times more likely to meet the goalkeeping requirements than those born

right at the end. Again, the distribution of those selected skews more heavily in favour of the

oldest near tB = 0; and so �tB, decreases.

It follows that any given �tB, being affected by both A and C, is not measuring the underlying

severity of RAE alone (as captured in A); nor is it measuring the severity of selection alone (as

captured in C). In fact, it is measuring an ambiguous combination of them both. For this rea-

son, the TTG is preferred.

None of this is to deny a place for �tB in RAE research. Sometimes we might want to describe

the degree of RAE existing in a situation, and not worry too much (yet) how much it is due to

Tails of the Travelling Gaussian model and the relative age effect
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A or to C; or we may find it difficult to estimate the size of the population pool, and identify C

and thus isolate A. In cases where we can’t or don’t want to partition �tB into its A and C com-

ponents, then �tB would be an attractive, easily understood portmanteau statistic to use, though

with caution. Finally, note that tB itself is an objective measure of where in the year someone’s

birthday lies, or where to locate the midpoints of the months or quarters of the year. The point

of contention is not with tB, but what can be inferred from using �tB.

Example studies

We now turn our attention to two real-world empirical datasets. This serves three purposes.

First, each provides a working example of how the TTG model can be practically used to mea-

sure RAE. Second, each serves to illustrate how flexible the model is in different contexts,

including the type and amount of information it requires. Finally, it enables us to introduce

two important practical metrics for evaluating the extent of RAE discrimination in any partic-

ular situation.

The first example uses teacher ratings of pupils from the UK’s Millennium Cohort Study

(MCS, [32–24]). The analysis follows the illustrative example above for, except that children

fall into one of twelve birth-months, instead of a binary category (oldest versus youngest); and

children are rated “as if” at four levels of selection severity, instead of just two (C = 0.5 and

1.1). The TTG model is used to map a range of curricular and non-curricular qualities onto

their respective A values, thereby facilitating comparison across disparate domains.

The second example uses data concerning English Premier League soccer academies, and is

an example of RAE in talent schools. The data is scant (percentage of academy boys born in

each third of the year), and the starting population pool is unknown, but must first be esti-

mated judgmentally, unlike the MCS. Despite this difference we can still extract a stable A for

the problem, thus demonstrating that the model can be estimated, even with minimal real-

world data. In the first study, nobody was actually selected or rejected, but in the second they

were. The second study thus provides an opportunity to present two metrics which describe

the level of age discrimination. We call these the (i) discrimination index (ID), and (ii) wastage

metric (W).

Development in the classroom: A worked example

MCS is a longitudinal study following the lives of a sample of nearly 20,000 children born in

the year 2000–2001, carefully stratified to represent the UK population [32–34]. We selected

data from the “Forth Sweep” [sic] collected in 2008; specifically children born between 1 Sep-

tember, 2000 and 31 August, 2001 inclusive, but only in England and Wales because there is a

clear boundary on which the school year starts, 1 September, which is not shared by Scotland

and Northern Ireland. As part of the study, children were assessed by teachers on a range of

academic qualities using Likert-type scales (1 = well below average, 5 = well above average). To

illustrate the estimation of A, we will focus on their performance in terms of Speaking and

Listening.

In the left-hand panel of Table 1 are the frequencies with which teachers classified students’

speaking and listening performance as well below [average], below, and so on. The right-hand

panel contains the cumulative frequencies; for instance 267 September born children were

rated above average or well above average (“�4” given by 195 + 72). Note two points. First

the column "� 1" is effectively all children born in the month (e.g., there were 470 September-

born children surveyed). Second, because of stretched resources among teachers who were not

central to this cohort study, this classroom data was only provided for a less than half of the

children.
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Next, the cumulative frequencies in Table 1 were expressed as probabilities (proportions) in

Table 2. For instance, in the first row (Sep), for column "�2", 0.9936 = 467 / 470. Treating

these as upper tail probabilities, their corresponding z-scores are presented in the right-hand

panel. For instance, p(z� −2.4902) = 0.9936; mathematically: z = F-1(1–0.9936); or in Excel:

normsinv(1–0.9936). Finally, the last column contains the tB values for the mid-points of each

month in [0,1]. For instance, for November it is (30 [Sep] + 31 [Oct] + 30/2 [mid-Nov]) /

365 = 0.2082.

To recapitulate these ideas graphically, in Fig 3, the intercepts of the four lines at tB = 0 can

be interpreted as four values of C, namely four different criteria by which the oldest are to be

judged as either below average, average, above average, or well above average. The slope of the

lines can be interpreted as values of A. But how are A and C to be estimated?

One way would be to subtract the z-scores for August from the corresponding z-scores for

September, much as was done in the illustrative example. This gives four estimates of how

much progress has been made over those 11 months (beginning mid-Sep, ending mid-Aug).

The estimates are: 0.6552, 0.4921, 0.8043, and 0.5204 for columns labelled�2,�3,�4,�5,

respectively. Once averaged and scaled by 12/11 to cover the full year, we get A = 0.6742.

Although simple to apply and understand, data for months October to July remain unused. A

second approach is to regress the z-scores on the mid-month points for each severity of selec-

tion in turn. This gives slopes of: 0.6716, 0.5965, 0.7441 and 0.5583 for columns�2,�3,�4,

�5, respectively, which average to A = 0.6426.

A more comprehensive, powerful but flexible approach is to run a single regression over all

data. In it, the four columns of z-scores are stacked to provide 48 observations of the depen-

dent variable. The independent variables are: mid-month tB, replicated four times for each

attainment level; and a set of dummy variables to indicate at which attainment level the ratings

had been made (�3,�4, or�5, with� 2 serving as the reference condition). Data are given in

this regression-ready format for all MCS analyses reported here (see S1 Appendix), which also

contains R code for the regressions. It gives A = 0.6428. Thus, for these particular data, all

three methods triangulate well, particularly methods two and three.

Results for curriculum qualities. According to the RAE, as we move through the school

year from September to August the proportion of students that the teacher has “good things”

to say about should decrease, true at each attainment level; and this decrease would be

Table 2. Transformation of cumulative frequencies from Table 1 into probabilities and z-scores.

Upper tail probabilities Z-Scores for Upper tail probabilities Month Points

� 2 � 3 � 4 � 5 � 2 � 3 � 4 � 5

Sep .9936 .9106 .5681 .1539 -2.4902 -1.3447 -.1715 1.0228 .0411

Oct .9710 .8951 .5179 .1362 -1.8954 -1.2541 -.0448 1.0977 .1247

Nov .9873 .9112 .4947 .1395 -2.2357 -1.3482 .0132 1.0824 .2082

Dec .9808 .8699 .4307 .0938 -2.0708 -1.1261 .1746 1.3176 .2918

Jan .9802 .8484 .4791 .1099 -2.0583 -1.0294 .0524 1.2271 .3767

Feb .9696 .8454 .4169 .0843 -1.8743 -1.0170 .2099 1.3767 .4575

Mar .9749 .8562 .4110 .0913 -1.9580 -1.0632 .2251 1.3326 .5384

Apr .9713 .8541 .4091 .0742 -1.9001 -1.0540 .2299 1.4455 .6219

May .9610 .8257 .3463 .0688 -1.7625 -.9373 .3952 1.4847 .7055

Jun .9494 .8115 .3218 .0575 -1.6393 -.8834 .4626 1.5764 .7890

Jul .9453 .7687 .3433 .0821 -1.6007 -.7344 .4035 1.3912 .8726

Aug .9668 .8031 .2634 .0614 -1.8351 -.8526 .6328 1.5433 .9575

https://doi.org/10.1371/journal.pone.0176206.t002
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indicated by a z-score that increases, thus leaving less probability mass to its right. Therefore,

according to the RAE, we expect a positive sign on tB.

First, we examine the eight questions covering curriculum attainment. Table 3 contains the

regression coefficients for birthtime tB, together with their associated t-values and p-values.

Omitted from the table are the coefficients for the attainment-level dummy variables, which

just tell us the self-evident, that fewer pupils reach higher levels of attainment. In Fig 3, the

dummies shift the overall vertical location of the four lines marked below average, average,
above average, and well above average relative to each other. For all eight curricular qualities,

the linear term in tB was significant. In Fig 3 the thick, continuous regression lines for each

level of attainment have been extrapolated to meet the vertical dotted lines of tB = 0, and

tB = 1. These are the estimated selection z-values for being born right at the start of the year

(hence = C), versus end of the year, respectively. The difference between these z-values is there-

fore A, how many standard normal deviates the population of children of this age advance in a

year. Alternatively, we can just read off the regression coefficient on tB as our estimate of A.

Fig 3. Estimating A as regression slope: MCS data for speaking and listening.

https://doi.org/10.1371/journal.pone.0176206.g003
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The single OLS approach yields additional useful information relevant to the assumptions

behind TTG. When a quadratic term tB
2 was added, there was no significant increase in model

R2 in any of the eight subjects, meaning there are no non-linearities, and no seasonality at

work. See column heading "Model 2" in Table 3, which are the F-tests for the change in R2

(ΔR2) associated with adding a quadratic term to Model 1. None was significant: p> .10 for all

analyses. Second, a birthtime x assessment-level interaction was added, but again ΔR2 was

non-significant for all qualities except PE, meaning that the slopes of the lines for each attain-

ment level did not vary. See Fig 3, and the column heading "Model 3" in Table 3. Taken

together, these results suggest Model 1 is preferred over Models 2 and 3. Qualities all advance

at a constant rate (in z) over the year, whose rate (regression slope) does not vary between lev-

els of aptitude. Therefore, it is legitimate to interpret the regression coefficients for tB quite

simply as the desired values of A, as we have above.

Finally, the proportion of pupils at each ability level is not strictly independent. For

instance, if a greater proportion of September-borns are rated as “well above” average ability,

by definition, a smaller proportion must have attained lesser levels. So, the regression analysis

was repeated using (by-month) clustered standard errors instead. Results were highly consis-

tent with OLS reported here.

Results reveal that A ranges from 0.774 (Maths and number) to 0.398 (Physical Education).

So while mathematical skills advance at nearly 4/5 of a standard deviation across this cohort

year, physical education advances much more slowly, at around 2/5 of a standard deviation.

Interestingly, the traditional “3Rs”, as Reading, wRiting and aRithmetic are often known,

appear to advance at similar rates, averaging out to A = 0.691. In practical terms, when sitting

competitive examinations (which often rely heavily on ability in the 3Rs) for limited places at

academically selective schools, account should be taken of a child’s age because a year can

make a notable difference. However, recalling that a small A indicates the lesser importance of

between-age to within-age ability, if the same child performs poorly in PE, then maybe they

just don’t have the necessary physical aptitude to be a star quarterback or make it onto the

track team. They will improve, but only modestly with age.

Results for non-curriculum qualities. Teachers in the MCS were also asked about a series

of non-curriculum related qualities. We focus on two that are not so explicitly taught, being

Table 3. Regression coefficients for the eight curriculum subjects.

Subject Model 1 Model 2 Model 3

birthtime (= A) t(43) P R2 F(1,42) F(3,40)

Maths and number 0.774 17.01 <10−19 0.995 <1 1.80

Science 0.668 12.55 <10−15 0.995 <1 <1

Reading 0.657 17.93 <10−20 0.996 <1 <1

IT 0.650 9.36 <10−11 0.994 1.56 <1

Writing 0.643 14.43 <10−17 0.995 <1 <1

Speaking & listening 0.643 13.08 <10−15 0.995 2.32 <1

Expressive & creative 0.504 7.20 <10−8 0.993 <1 1.53

Physical Education (PE) 0.398 6.71 <10−7 0.995 <1 4.40*

* p < 10−2.

Model 1: z = b0 + b1tB + Ʃ diDi

Model 2: z = b0 + b1tB + Ʃ diDi + b2tB
2

Model 3: z = b0 + b1tB + Ʃ diDi + Ʃ fi (tB * Di),

where di are the regression coefficients for the attainment-level dummy variables Di; and fi are the regression coefficients for the birthtime x attainment-level

interaction terms.

https://doi.org/10.1371/journal.pone.0176206.t003
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more akin to personality traits than abilities. One is the development of empathy and pro-

social behavior (see Table 4, items E1-E4). The other is the development of attention and

focus, which are disaggregated into physical focus (F1-F2) and mental focus (F3-F5). Teachers

answered these questions on a three-point scale: not true / somewhat true / certainly true. We

reverse-coded F1-F3 for purposes of analysis, so as to preserve the sense of positive values of

A being linked with positively valued qualities. We analysed the data following the same

approach outlined above. Model 2 and Model 3 follow on from Model 1 to test, respectively,

for non-linearities in the progress of qualities; and different slopes, or rates of advancement, at

different levels of attainment. In all cases the simple linear Model 1 with constant slope is pre-

ferred (p> .10 for all tests of ΔR2 in Models 2 and 3).

Concentration, planning, follow-through (F3-F5) are all desirable qualities and we see that

the ability of a typical child born at the very start versus the very end of the year advances by

about half a standard deviation over the cohort-year (Ā = 0.463). The rate of advancement is

slightly faster than PE, but definitely slower than the traditional 3Rs and related qualities.

Indeed, mental focus might be seen as either a by-product or prerequisite in the acquisition of

these traditional products of education. However, children who are restless and fidgety (F1,

F2; Ā = 0.199) clearly learn very slowly not to be so. Interestingly, even less amenable to chro-

nological development with age are the empathic qualities of E1-E4 (Ā = 0.099). Such develop-

ment as there is must be barely noticeable to the observer, since empathic qualities advance at

about a tenth the rate of height (mean A = 1.05, MCS dataset—not shown). This suggests that

whereas you may grow taller, you simply are empathic (or not). Perhaps it is no wonder that

psychotherapy, one goal of which is to develop a more empathic nature in the client, tends to

be such a long process with often modest progress.

English Premier League soccer academies

Estimating ability Advancement (A). Typically, RAE has been researched in highly com-

petitive sports such as soccer, where specialised training begins early for those who show

promise, so it is befitting we should examine it here. This example differs from the last since

we have substantially less data available for the TTG model, yet we can still infer A, the rate at

which soccer talent advances annually. It is noteworthy that we are able to do this without ever

understanding what exactly constitutes talent in this context, nor directly measuring the ability

of any soccer players. In this example, children are not just rated but actually selected, so the

concepts of age discrimination and talent wastage have real meaning. We will show how this

Table 4. Regression coefficients for non-curriculum qualities.

Quality Model 1 Model 2 Model 3

birthtime (= A) t(21) P R2 F(1,20) F(1,20)

E1. Is considerate of other people’s feelings 0.010 <1 >0.50 0.988 <1 <1

E2. Shares readily with other children 0.147 3.09 <0.01 0.990 1.96 <1

E3. Is helpful when someone is hurt, upset, or feeling ill 0.111 2.34 <0.05 0.991 2.08 1.27

E4. Often volunteers to help others (teachers or children) 0.127 2.69 <0.05 0.991 2.46 <1

F1. Is restless, overactive, cannot stay still for long (R) 0.195 3.58 <0.01 0.968 1.84 <1

F2. Constantly fidgets or squirms (R) 0.202 4.77 <0.001 0.977 <1 <1

F3. Is easily distracted, concentration wanders (R) 0.473 13.65 <10−11 0.991 <1 1.03

F4. Thinks things out before acting. 0.344 8.17 <10−7 0.995 1.17 <1

F5. Sees tasks through to the end, good attention span 0.573 12.28 <10−10 0.989 <1 <1

Note: (R) = reverse scored. Models as in Table 3.

https://doi.org/10.1371/journal.pone.0176206.t004
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important, yet practical, information can easily be derived from knowledge of the rate of

annual advancement (A).

According to the Football Association (of England), during the competition year 2008–

2009, which runs from 1 September to 31 August, 57%, 29%, and 14% of boys at English Pre-

mier League Academies were born in the first, middle, and last thirds ("terciles") of the year,

respectively [35]. Similar percentages were found a football generation earlier [36], emphasis-

ing that the RAE bias is stable over time. We cannot work with these percentages directly, as

we need to compute z-scores from percentages of the soccer-playing population, rather than

percentages of the EPL academies. We estimated the number of academy boys to be 320 per

annum (see S2 Appendix). So, in any EPL academy year-group we expect there to be 182.4

(= 320 x 0.57), 92.8 (= 320 x 0.29), and 44.8 (= 320 x 0.15) boys born in the first, middle, and

last thirds (terciles) of the cohort year (T1, T2, T3). We also estimated the soccer playing popu-

lation in England to be 100,000 in any year-group (see S2 Appendix). In the UK, births are

nearly uniform across the year, so we could divide the 100,000 boys into three equal groups of

33,333. But since the birthrate drops slightly for T2 and there are fewer days in T2 (T1, T2, and

T3 have 122, 120.25, and 123 days, respectively), we used per-day Office of National Statistics

(UK) figures for 1995–2014 to make more accurate estimates of: 33,736 for T1 (Sep-Dec);

32,378 for T2 (Jan-Apr, weighting 29 Feb by 0.25); and 33,886 for T3 (May-Aug). Hence the

selection probabilities for boys born in each tercile are estimated to be: 0.005410 (= 182.4 /

33736), 0.002866 (= 92.8 / 32378), and 0.001322 (= 44.8 / 33886), with corresponding z-

scores of 2.548, 2.763, and 3.006, respectively (2.548 = F-1(1–0.005410), for instance). All the

calculations are in S1 Appendix, where what-if analyses may be performed using alternative

judgments.

We make the usual assumption about grouped data, that the mean within an interval is its

midpoint. Therefore, the three (tB, z) points, graphically presented in Fig 4, are then: (0.1670,

2.548), (0.4986, 2.763), and (0.8316, 3.006). From these we use OLS regression to estimate the

equation:

z ¼ 2:429þ 0:689 tB;

with R2 = 0.9987, and t(1) = 27.69, p< 0.05 for the test that the slope is non-zero. Hence

A = 0.689 (slope), and C = 2.429 (intercept).

Because running regression with the bare minimum of 3 three observations is so unusual,

an alternative approach would be to calculate the slope in Fig 4 between points u and v, and

between v and w, then average; or to calculate the slope between u and w. In both cases A�

0.689. Hence, the rate of annual advancement is effectively the same as that estimated via

regression.

Naively, we might have expected football talent and physical education to advance at similar

rates. However physical education in British schools tends to consist of a sundry group of

sports and activities designed to give children exercise rather than to coach or teach to levels of

excellence. The difference in A between professional football (A = 0.689) and physical educa-

tion (A = 0.398; Table 3) may reflect the difference between incidental learning of general

body-skills as children mature, compared with the focused, accelerated training involved in a

highly valued, professional sport.

Since we are working with judgments about the effective population pool, it is prudent to

perform a sensitivity analysis to understand how robust our calculations of A are to impreci-

sion in the judgments we made. For instance, the number of academy players will not be

exactly 320 per annum, though it will be close, but the figure of 100,000 aspirant players might

have more imprecision attached to it. As a sensitivity analysis, we used 50,000 and 150,000
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players as bounding estimates, yielding A = 0.740 and A = 0.663, respectively. In other words,

though the starting population does make a difference, A is quite inelastic to changes in this

assumption. In fact, a 1% increase in our estimate of the soccer population pool leads to less

than a 0.1% change in our estimate of A.

The greater the annual advancement in ability (A), the greater advantage to older children,

the greater the RAE, the greater the age discrimination, the greater the wasted talent, and so

on. We can therefore use this estimated value of A descriptively to compare the severity of

RAE between soccer nations, or to compare the severity of RAE between different qualities, as

we did with the educational curriculum and non-curriculum qualities. Among the related sta-

tistics that can be derived from knowing A, we use it to calculate the selection probability of

someone born right at the very start of the year versus someone born right at the end of the

year, a kind of index of age discrimination. The midpoints of the first and last thirds of a year

are each 2 months in from these extremes, meaning that the 4.07 ratio (57% versus 14%)

Fig 4. Estimating A as regression slope: Football academies data.

https://doi.org/10.1371/journal.pone.0176206.g004

Tails of the Travelling Gaussian model and the relative age effect

PLOS ONE | https://doi.org/10.1371/journal.pone.0176206 April 20, 2017 15 / 22

https://doi.org/10.1371/journal.pone.0176206.g004
https://doi.org/10.1371/journal.pone.0176206


quoted by the (English) Football Association [35] above, does not describe the full extent of

RAE age discrimination as we show below.

Age discrimination. Given the regression equation z = 2.429 + 0.689 tB, estimated above,

we use the values tB = 0 and tB = 1 to estimate the selection z-values for oldest possible and

youngest possible in the cohort. They are 2.429, and 3.118. Thus, 0.7577% (= 1−F(2.429)) of

oldest-possible boys will be selected, whereas only 0.0912% of youngest-possible boys will be

selected. So, the extreme-oldest are about 8.31 times more likely to be selected by English Pre-

mier League soccer clubs than the extreme-youngest, which is twice as discriminatory as the

4.07 we computed by comparing terciles 1 and 3. We call this ratio the Index of (age) Discrimi-

nation, ID = p(Oldest possible) / p(Youngest possible).

From the discussion above, we expect the estimated value of A to hold specifically for U9s.

And so it should, because the pattern probably originates from that age. In fact, it may result

from decisions made midway through the previous year, when the oldest boys were about

eight and a half years old, the youngest seven and a half years old, and coaches made their

selections for the up-coming year’s cohort. These decisions, in turn, will have been informed

by how the boys performed at the start of the season when they were between 7 and 8 years

old. For this reason, we will assume that both the MCS and FA studies refer to the same age,

implying it is valid to compare them.

Wastage. While ID focuses on the individual, a policy maker might be more concerned

with how much talent is being wasted in the entire cohort because of RAE. We argue that the

selection probabilities for the oldest should, in a non-RAE world, be uniform across the year

(the dotted horizontal line in Fig 5). This would imply that regardless of whether children were

born earlier or later in the cohort-year, they have the same chance of selection or attainment.

Any shortfall from that is wastage. Connecting this back to Fig 1, each grey area to the right of

the selection criterion now becomes a vertical line from the x-axis to the selection probability

curve in Fig 5. Similarly, connecting this back to Index of Discrimination (ID), the line on the

extreme left of the grey area (tB = 0 for the oldest) is 8.31 times the length of the line on the

extreme right (tB = 1 for the youngest). Note that wastage at any particular age is measured by

the distance from the horizontal dotted line to the selection curve, so that wastage for the entire

cohort is the white area above the selection curve but below the dotted line. We therefore

define wastage (W) as the ratio of the White area / (White + Grey area). Analytical solutions to

determine the size of these areas can be achieved by integrating (calculus) the Gaussian, or via

numerical approximation in a spreadsheet.

It is also revealing to calculate from W the implied population expansion factor (PopEx)

that we would gain by eliminating RAE altogether. For example, if W = 0.6667, we have

wasted, two-thirds of our talent pool, and have selected and retained only a third of the talent

we might have had. If there were no wastage with the current population pool (W = 0), there

would be a certain pool of talent. To achieve that same size pool of talent under the current

level of wastage (W = 0.6667) the population would need to be tripled, meaning that the popu-

lation expansion factor (PopEX) is 3. The general formula is:

PopEx ¼ 1 = Grey; ð1Þ

if White + Grey area = 1 when standardised.

Also revealing is the related population contraction factor (PopCon), which describes how

RAE has contracted the effective population pool. It is as follows:

PopCon ¼ 1 = PopEx ¼ Grey ¼ 1 � W: ð2Þ
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Returning to the English Premier League example, we know that soccer talent advances by

0.689 standard deviations per annum (A). When determining the Index of Discrimination, we

also deduced via a process of extrapolation that z = 2.429, so that children born on day 1of

the competition year had a 0.758% chance (7.58 per 1000) of being selected. Following some

calculus (not shown), the analytic solution revealed values for W = 0.570, or 57% wastage;

PopEx = 2.33; and PopCon = 0.43 or 43%. Surely, every head of their country’s soccer associa-

tion, every club’s head coach would want to avoid working with a talent pool that was only

43% of what it might have been? On a more positive note, who would not want to expand the

effective pool of talent coming through their youth development system by 2.33 fold, simply by

eliminating RAE?

Fig 5. Index of age discrimination and talent wastage: Evidence from English Premier League Clubs.

https://doi.org/10.1371/journal.pone.0176206.g005
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Discussion

This paper develops the TTG (Tails of the Travelling Gaussian) model to account for the ori-

gins and form of the Relative Age Effect (RAE). The principal output of TTG is a measure (A)

of the degree of age discrimination potential in a context, which results from when the child

was born in the cohort year. In virtually every context that has been researched, RAE discrimi-

nates against the younger child by decreasing the chances of achieving their life goals (e.g.,
being accepted at an Ivy League university, invited to play for the New York Symphony

Orchestra, becoming a Nobel laureate, a CEO of a blue chip company, competing in the Olym-

pics, playing soccer for Manchester United, or simply coming top of the class). RAE often

operates through early selection to open or close doors onto advanced programs. But more

insidiously, having spent a childhood being outperformed by their cohort peers, RAE may act

to depress the young child’s expectations so that they aim lower in life and thereby achieve less

than they might have [12, 24].

Like all forms of discrimination, RAE should be a salient issue for policy makers, managers,

organizational recruiters, college admissions tutors, as well as scouts and coaches of sports

teams, who are all entrusted to find and nurture talent. But until now, the literature reveals no

viable measure to capture the extent of RAE operating in different contexts, thereby limiting our

understanding of how pervasive RAE is; how aggressively it operates in different contexts; how

it diminishes with children’s chronological age; and whether it has diminished in recent years.

The TTG model proposes that a particular quality (Q) a group of children possess at a spe-

cific chronological age follows a Gaussian (i.e., normal) distribution. Q may be a raw ability

(e.g., running speed), a nurtured talent (e.g., playing a violin), or an attribute/characteristic

(e.g., height). As the group gets older, their development on Q increases (they run faster, are

more proficient at violin, get taller), so that their Gaussian travels along the Q axis. In any

given cohort (typically a school year or competition year) there will be a Gaussian centred at

Q0 for the youngest, one at Q1 for the oldest, and one at each point in between (Qt, with 0� tB

� 1). By examining the proportion of children who exceed a certain criterion in each age

group, we are able to infer the location of each group’s Gaussian along the Q axis. This allows

us to determine how far the Gaussian travels over the year; or more simply how much they

grow (in speed, in musical ability, in height). This distance is known as the rate of annual

advancement (A), and because A is measured in standard deviations or z-values of the Gauss-

ian, it is directly comparable with other values of A computed from widely different contexts,

and in different data formats. It is also possible to examine whether growth has been accelerat-

ing, decelerating, or has it been linear (constant) over the year, as in all the examples studied

here. One important point is that in TTG model, the value of A does not vary if the selection

criterion is made more severe or more lax.

Analysing RAE data by TTG is a definite advance over past practice which has largely been

descriptive with some simple statistical testing, but lacking any real attempt to develop a math-

ematical model of the underlying mechanisms in RAE. There are many advantages to TTG.

1. The plausible assumptions of a Gaussian distribution to quality and linear growth (travel)

of the Gaussian with time / age act to demystify RAE so that its appearance and general

form seem no longer anomalous, but almost inevitable. The assumptions are testable too.

2. We have shown that mean tB, �tB, is anything but straightforward. An extreme �tB may be

due to an extreme rate of annual advancement (A), or a severe selection criterion (C). �tB is

not a measure of RAE: A is. Thus, research that seeks to explain severity of RAE by using �tB
may be confounded. Similarly, �tB cannot be used as an independent variable and interpreta-

tion of its effect on the dependent in any simple way.
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3. Knowing A, the rate of annual advancement, we can compare across disparate contexts,

without need for further calculation. This enables the systematic development of knowledge

in the whole field of RAE research, where previously it has remained fragmented. Addi-

tional value may be added by being able to compare values of A from different contexts, as

we have done briefly in reflecting on learning in the 3Rs (Reading, wRiting, aRithmetic)

versus learning to empathise; or in reflecting on the developments of elite football talent

and physical education (PE) as an ensemble.

4. Once A and C are known, derivative statistics may be calculated, such as ID, the index of

(age) discrimination, and W (the proportion of wasted talent), as well as the closely related

PopEx and PopCon. We suggest that it is these kinds of metrics that will be of most value to

practitioners who are often interested in ascertaining the scale of any gap between most

advantaged and disadvantaged in a cohort. One can draw parallels between ID and other

metrics such as the Gini coefficient, widely used to compare income inequality or market

share concentration in different countries.

5. Because TTG is a formal model, it supports what-if scenarios that decision makers (school

principals, sports academy managers, orchestra conductors, even government ministers)

can use to understand the consequences of policy changes. Being able to generate mana-

gerially relevant and insightful statistics helps here too. Being able to simulate, the TTG

also provides the mechanism to generate testable hypotheses that other researchers may

examine.

6. It is worth reflecting on how we might have designed a field study to estimate A for football

talent. First, what are the dimensions along which talent exists, and how should they be

combined? Then there is the problem of gaining access, and the considerable leg-work

involved in collecting, collating and analysing the data. By contrast, all TTG needed was

five numbers: three publicly available percentages and some background knowledge to

judgmentally estimate the two population parameters. Of course, the real field-work was

done by the dozens of coaches whose implicit models of talent, which they would "know

when they saw it", summed collectively to yield the percentages; or by the hundreds of

teachers who assessed their pupils’ academic abilities in the Millennium Cohort Study.

7. TTG is very flexible given it applies whether the quality just happens to someone, such as

height or skin tone, or whether it is a lot more effortful, such as learning to read; whether it

is easy to measure (such as running speed, maths), or not (such as acting talent); or whether

it is small (empathic response) or large (again, maths). Also, TTG’s inputs can be detailed

information (as in our academic example), or very scant information (as in our football tal-

ent example). The levels of measurement of the data may be ratio (height), ordinal (teachers

rating their pupils on a Likert scale), or even simple counts and percentages (football acade-

mies). Yet each produces the same key statistic, the rate of annual advancement (A), that is

directly comparable.

8. When only the high-achieving right tail of the Gaussian is known, its distribution may need

adjusting to control for known non-uniformity in the population birthrate across the year

[37]. TTG can easily adjust its extreme-tail distribution relative to the baseline population if

this differs from uniform, exactly as we did in Study 2. A similar adjustment could also be

made if ever seasonality in a subpopulation were shown to be associated with RAE, there-

fore opening the door to a counter-explanation about RAE’s origins [38]. In S3 Appendix

we argue that subpopulation seasonality in birthrate is unlikely to have been operating in

either of these datasets, or to be able to re-explain the current RAE literature.
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None of these advantages is present in previous models of RAE or methods of RAE

research. We therefore believe that the TTG maybe a spur to properly understand, quantify,

integrate past and future research in this important area, as well as to devise solutions for its

mitigation, to the advantage of not only those who suffer RAE age discrimination, but also for

those who wish to maximise talent in whatever field.

One reason that makes RAE so noteworthy is finding that it is present in places where it

really shouldn’t be present; for instance, among elite sport-persons, and entrants to Oxford

and Cambridge Universities. Should the advantage of being oldest in the class not have worn

off by then? In the former case, RAE may exist because of early selection into talent schools,

which never get corrected as the intrinsic advantages of being older wear off. So one interest in

focussing on 7 to 8 year olds is that selection into advanced talent schools often takes place this

early on, resulting in a massive bias towards accepting older children; the bias tends to be self-

sustaining thereafter, as RAE research attests. In the latter case, RAE is sustained by older chil-

dren doing better in exams, thus going to better schools, being in more able work groups, and

by the virtuous (or vicious) cycles of self-esteem engendered by parents, teachers, peers, and

the child themselves, all based on RAE underperformance [24]. A formal model of RAE such

as the TTG can be extended to take a long-run view of how these phenomena work.

Finally, a serviceable model can sometimes be used in situations that it was not originally

intended. In this respect, the TTG model may contribute to scientific understanding in geron-

tology, specifically the deterioration of faculties in older age. Here, the rate of annual “advance-

ment” would in fact be decline, and A would take on negative signs. But just as a set of As

supports a discourse on the various qualities that make up child development, so too could A

provides the tools for another discourse on the loss of different abilities as we age. Fortunately,

it seems that the TTG model is still young and dynamic, with plenty of life ahead of it yet.
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