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ABSTRACT 

Vascular endothelial growth factor (VEGF) is implicated in peritoneal membrane 

remodeling that limits ultrafiltration in peritoneal dialysis (PD). While the exact mechanism 

of VEGF induction in PD is unclear, VEGF concentrations in drained dialysate correlate with 

IL-6 levels suggesting a link between these cytokines. Human peritoneal mesothelial cells 

(HPMC), the main source of IL-6 and VEGF in the peritoneum, do not bear cognate IL-6 

receptor and are thus unable to respond to classical IL-6 receptor signaling. Here, we show 

VEGF release by HPMC is controlled by IL-6 in combination with its soluble receptor (IL-6 

trans-signaling). Although IL-6 and soluble IL-6 receptor (sIL-6R) alone had no effect on VEGF 

production, stimulation of HPMC with IL-6 in combination with sIL-6R promoted VEGF 

expression through a transcriptional mechanism involving STAT3 and SP4. Induction of VEGF 

was functionally active and conditioned medium from HPMC cultured with IL-6 and sIL-6R 

promoted angiogenic endothelial tube formation, which could be blocked by silencing SP4. 

To verify these in vitro observations, induction of peritoneal inflammation in wild type and 

IL-6-deficient mice further demonstrated IL-6 involvement in the control of SP4, VEGF and 

new vessel formation, confirming the role for IL-6 trans-signaling in these processes. Taken 

together these findings identify a novel mechanism linking IL-6 trans-signalling and 

angiogenesis in the peritoneal membrane. 
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INTRODUCTION 

The efficacy of peritoneal dialysis (PD) as a treatment modality largely depends on the 

peritoneal membrane integrity. Dysfunction of the peritoneum as a dialysis organ may result 

from progressive membrane injury occurring over time on PD. The underlying 

pathophysiological mechanisms involve a gradual rise in small solute transport due to an 

increase in peritoneal perfusion and a decrease in peritoneal hydraulic conductance due to 

tissue fibrosis.1 Both these processes are related to peritoneal angiogenesis. On the one 

hand, an increase in peritoneal vascularity increases the surface area available for solute 

diffusion and leads to rapid dissipation of the osmotic gradient that drives ultrafiltration. On 

the other hand, angiogenesis is a prominent feature of tissue repair, scar formation and 

fibrosis. Indeed, it has been estimated that up to 75% of patients with ultrafiltration failure 

may have increased vascular surface area.2;3 Moreover, peritoneal biopsies taken from PD 

patients show that fibrosis occurs significantly more often in the presence of vasculopathy,4 

and the density of peritoneal blood vessels and sub-mesothelial and perivascular fibrosis are 

significantly greater in patients with membrane failure.4-6 Animal models of PD confirm the 

existence of an inverse correlation between increased vascularization and ultrafiltration.7 

These studies suggest that a decline in ultrafiltration could be partially abrogated by anti-

angiogenic therapy.7 

Vascular endothelial growth factor (VEGF) is the most important pro-angiogenic 

mediator.8 The impact of VEGF on peritoneal vascularity is demonstrated by the association 

of genetic polymorphisms determining increased VEGF production with increased peritoneal 

solute transport.9 Moreover, the rates of VEGF appearance in the dialysate are elevated in 

patients with high peritoneal transport status.10;11 
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Several mechanisms are implicated in peritoneal VEGF induction in PD.12 One of the 

factors involved has been suspected to be interleukin-6 (IL-6), since IL-6 concentrations in 

the drained dialysate correlate with peritoneal solute transport rates13-15 and dialysate levels 

of VEGF. 10;14 Interestingly, it has been demonstrated that the peritoneal mesothelium is the 

main source of both VEGF16;17 and IL-6.18;19 Although VEGF can be induced by several 

inflammatory cytokines20, IL-6 has not been classically viewed as a driver of VEGF production 

in mesothelial cells, as these do not express the cognate IL-6 receptor (IL-6R).21 On the other 

hand, however, they do express gp130, a signal transduction element for IL-6, which allows 

them to respond to IL-6 in the presence of soluble IL-6R (sIL-6R). Indeed, this process of so-

called IL-6 trans-signaling plays critical role in controlling chemokine production and 

contributes to successful resolution of inflammation.21 The mechanism appears to be 

particularly active in the acute phase of peritonitis when mesothelial cells release large 

quantities of IL-619 and infiltrating leukocytes shed sufficient levels of sIL-6R.21 Interestingly, 

viral IL-6 (vIL-6) that binds directly to gp130 in a process resembling IL-6 trans-signaling, is 

also capable of inducing VEGF in mesothelial cells.22  

We have therefore hypothesized that IL-6 together with sIL-6R might be important in 

controlling VEGF production in human peritoneal mesothelial cells (HPMC). Here, we 

characterized the transcriptional regulation of VEGF in HPMC and identified transcription 

factors STAT3 and SP4 as forming a novel axis linking IL-6 and VEGF production in the 

peritoneum.  
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RESULTS 

 

Induction of VEGF by IL-6 and sIL-6R in mesothelial cells 

Since mesothelial cells are the main source of peritoneal VEGF, we have examined 

whether VEGF production by human peritoneal mesothelial cells (HPMC) can be regulated 

by IL-6 – either directly through classical IL-6 receptor signaling or IL-6 trans-signaling. 

Indeed, neither IL-6 nor sIL-6R alone had significant effect on VEGF protein release. 

However, simultaneous exposure to IL-6+sIL-6R resulted in a significant time- and dose-

dependent increase in VEGF secretion (Fig. 1A and 1B). The greatest effect was achieved 

with both IL-6 and sIL-6R at a dose of 100 ng/ml. This effect was confirmed by specific 

blocking experiments. Here, antibodies against either IL-6 or sIL-6R, but not with control IgG, 

inhibited the induction of VEGF by HPMC (Fig. 1C). The effect exerted by a combination of IL-

6 and sIL-6R on VEGF secretion was accompanied by a corresponding increase in VEGF mRNA 

(Fig. 1D). These observations prompted us to examine in more detail the signaling events 

leading to VEGF gene induction. 

 

Activation of VEGF gene promoter by IL-6 and sIL-6R  

To investigate how the IL-6+sIL-6R complex impacts on the activity of the VEGF gene 

promoter, HPMC were transiently transfected with VEGF luciferase reporter gene constructs 

and stimulated with IL-6 and sIL-6R. This resulted in a time-dependent increase in VEGF 

promoter activity, which peaked at 6 hours (Fig. 2A). Exposure for 6 hours to IL-6 or sIL-6R 

alone had no stimulatory effect on the full length VEGF promoter. In contrast, the 

combination of IL-6 and sIL-6R strongly increased the activity of the VEGF promoter (Fig. 2B). 

To identify VEGF promoter regions mediating the response to IL-6 trans-signaling, functional 
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5’-deletions of the VEGF promoter were generated. Truncation of the promoter region 

spanning positions -268 to -53 resulted in a loss of VEGF promoter activity to respond to 

stimulation with IL-6+sIL-6R (Figure 2C). This result suggested that the region identified 

comprised essential regulatory elements for the VEGF promoter activity. The in silico analysis 

predicted that the region contained high affinity binding sites for the transcription factors 

SP1 and SP4. To determine which of these transcription factors was regulated by IL-6+sIL-6R, 

electrophoretic mobility shift assays (EMSA) was performed. 

 

Activation of the transcription factor SP4 by IL-6 and sIL6-R 

EMSA was performed using biotin-labeled double-stranded oligonucleotides 

corresponding to positions -59 to -82 (SP4) and -80 to -103 (SP1) of the VEGF promoter. 

Analysis of nuclear extracts from cells stimulated with IL-6+sIL-6R showed formation of a 

prominent DNA-protein complex with a consensus oligonucleotide for SP4 binding (Fig. 3A). 

No binding was however seen with a consensus motif for SP1. Nuclear extracts from cells 

stimulated singly with IL-6 and sIL-6R failed to produce any effect.  

To verify the specificity of SP4 binding, EMSA was performed with a 100-fold molar 

excess of an unlabeled SP4 consensus oligonucleotide (Fig. 3B). This competition assay 

inhibited detection of the SP4-DNA complex. In turn, EMSA with a specific anti-SP4 antibody 

led to a supershift of the DNA-protein complex (Fig. 3B). Furthermore, transfection of a 

mutant construct specific to the SP4 binding site completely eliminated VEGF promoter 

activation after IL-6+sIL-6R stimulation (Fig. 3C). 

 

Effect of STAT3 blockade on VEGF production 
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As SP4 has not been typically associated with IL-6 signal transduction, we examined the 

activation of STAT3, a key regulator of IL-6 signaling.23 Indeed, stimulation of HPMC with IL-

6+sIL-6R resulted in a time-dependent induction of STAT3, but also of SP4 mRNA (Fig. 4A and 

4B). To determine if there exists a link between STAT3, SP4 and VEGF, the expression of 

STAT3 gene was blocked by RNA interference. These experiments showed that STAT3-

targeting siRNA, but not a scrambled siRNA control, inhibited STAT3 itself at a protein and 

mRNA level (Fig. 4C and 4D). It also inhibited SP4 and VEGF induction by IL-6+sIL-6R (Fig. 4E 

and 4F).  

 

Effect of SP4 blockade on VEGF production and angiogenesis 

To further confirm the involvement of SP4 in VEGF production and biological activity, 

HPMC were stimulated with IL-6+sIL-6R in the presence of either SP4-targeting siRNA or 

scrambled siRNA. The SP4 blockade resulted in a significant inhibition of VEGF protein 

release (Fig. 5A). To test the functional properties of the VEGF production, conditioned 

medium from stimulated HPMC was transferred to endothelial cell cultures and the 

formation of capillaries assessed. Incubation of human umbilical vein endothelial cells (of the 

EA.hy926 line) in the presence of conditioned medium from IL-6+sIL-6R-stimulated HPMC 

significantly increased endothelial cell tube formation. Similar degree of stimulation was 

observed when conditioned medium from HPMC treated with scrambled siRNA was used. 

However, endothelial cell angiogenesis was significantly less in response to conditioned 

medium from HPMC treated with siRNA against SP4 (Fig. 5B). This effect was not unique to 

specific features of EA.hy926 endothelial cells, but was also observed in cultures of human 

dermal microvascular endothelial cells (Supplemental Fig. 1).  
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Effect of IL-6 signaling on peritoneal Sp4 and Vegf expression in mice 

To test whether IL-6 signaling modulates Vegf expression during peritoneal 

inflammation, wild-type (WT) and IL-6-deficient (IL6-/-) mice were challenged (i.p.) with a 

cell-free supernatant prepared from of a clinical isolate of Staphylococcus epidermidis 

(SES).21 At designated time points, Sp4 and Vegf expression in the samples of parietal 

peritoneum was analyzed by qPCR. As illustrated in Fig. 6A, SES-induced inflammation in WT 

mice was associated with a time-dependent increase in Vegf mRNA expression. In contrast, 

Vegf expression was significantly less in IL6-/- mice. To assess whether this effect was related 

to sIL-6R activity, WT mice were treated with SES together with soluble gp130 (sgp130), 

which inhibits IL-6 trans-signaling by the IL-6+sIL-6R complex, but does not inhibit classic IL-6 

signaling through IL-6R.24 Addition of sgp130 significantly decreased Vegf expression in WT 

mice, which resembled the effect seen in IL6-/- mice and indicated that sIL-6R-mediated 

effects were involved in regulation of VEGF expression in the inflamed peritoneum.  

Having identified SP4 as a mediator of IL-6 trans-signaling in human cells, we next 

examined peritoneal expression of Sp4 in mice. Induction of peritoneal inflammation with 

SES led to a time-dependent increase in Sp4 expression in WT mice, but not in IL6-/- animals. 

In WT mice administered with sgp130, the expression of Sp4 followed the pattern seen in 

IL6-/- mice (Fig. 6B). 

 

Effect of IL-6 signaling in mice on peritoneal expression of genes essential for VEGF activity 

To determine whether VEGF induced in the peritoneum by IL-6-signaling can initiate 

events leading to increased vascular permeability and angiogenesis, we examined expression 

of several key endothelial-specific targets involved in these processes.25 These included VEGF 

receptors (Vegfr2 and Vegfr3), junctional proteins – vascular endothelial cadherin (VE-Cad) 
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and platelet/endothelial cell adhesion molecule 1 (Pecam1), markers of arterial commitment  

– neuropilin 1 (Nrp1) and ephrinB2 (Efnb2), and a marker of lymphatic commitment – 

podoplanin (Pdpn). Expression of all these angiogenesis-related targets increased 

significantly within 24 hours of SES-induced inflammation in WT mice but not in IL6-/- mice 

and not in WT mice receiving sgp130 (Fig. 7). 

 

Effect of IL-6 signaling on peritoneal vasculature during recurrent inflammation in mice 

To test whether these acute consequences of increased IL-6 signaling are associated 

with changes in peritoneal vasculature in the long term, we analyzed the parietal 

peritoneum of WT and IL6-/- mice challenged repeatedly with SES, as described previously.26 

After four sequential rounds of acute inflammation, the parietal peritoneum of WT animals 

appeared only modestly vascularized, but consistently showed increased numbers of vessels 

staining positively for PECAM-1 (CD31) and podoplanin (gp38) in comparison with IL6-/- mice 

(Supplemental Fig.2). 

 

Effect of STAT3/SP4-mediated IL-6 signaling on dialysate-induced VEGF expression in 

peritonitis 

As peritoneal effluents may contain high levels of IL-6 and sIL-6R during peritonitis, we 

have asked whether such effluents could induce VEGF in HPMC through a signaling pathway 

identified. Confirming earlier reports,21;27 we have detected significantly elevated 

concentrations of IL-6 and sIL-6R in the dialysate drained from PD patients during an acute 

phase of peritonitis (Fig. 8A). When an exemplary PD effluent from a patient with peritonitis 

was added to the culture medium, it stimulated VEGF, STAT3 and SP4 mRNA expression in a 

concentration-dependent manner (Fig. 8B). The increase in VEGF mRNA was reduced to 
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control levels in the presence of either STAT3 siRNA or SP4 siRNA, but not of the scrambled 

siRNA (Fig. 8C). Interestingly, the inhibition of STAT3 signaling resulted also in a decreased 

expression of SP4 and STAT3 itself. In contrast, the SP4blockade reduced the expression of 

SP4, but not of STAT3.  

 

 

DISCUSSION 

The diversity of IL-6 functions is now well appreciated.28 These pleiotropic activities 

are partly related to the complexity of IL-6 signaling, which allows even cells without the 

cognate IL-6R to respond to IL-6. Here, we demonstrate through a series of in vitro and in 

vivo experiments and the analysis of clinical samples from PD patients that a mechanism of 

IL-6 trans-signaling can contribute significantly to peritoneal VEGF production. In this 

respect, we have found that the complex of IL-6 and sIL-6R but not IL-6 alone is capable of 

inducing de novo VEGF synthesis in HPMC. In the clinical setting, this is most likely to occur 

during peritonitis since sIL-6R can be then delivered by shedding from infiltrating 

neutrophils.21;29 Indeed, we have observed that peritoneal inflammation induced in mice by 

S. epidermidis,21 a major causative microorganism of PD-associated peritonitis, resulted in an 

up-regulation of peritoneal Vegf expression. In contrast, the animals deficient in IL-6 failed to 

produce such a response. A similar lack of effect could be observed in wild-type mice treated 

with sgp130. These findings indicated that the induction of Vegf was controlled through sIL-

6R rather than by the membrane-bound IL-6R. This mechanism has previously been 

demonstrated to be instrumental in coordinating leukocyte trafficking during peritonitis.21 

Since STAT3 is the major signal transducer downstream of gp13023;30 and its 

involvement in VEGF gene regulation has already been postulated,31-33 we have examined 
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the consequences of STAT3 inhibition in HPMC. Indeed, the blockade of STAT3 resulted in an 

inability of the IL-6+sIL-6R complex to induce VEGF. Surprisingly, however, the progressive 

5’-deletion analysis mapped the IL-6+sIL-6R response element of the VEGF promoter in 

HPMC to a region that did not contain STAT3 binding elements. Instead, it did contain high 

affinity binding sites for SP4. Subsequent experiments using EMSA and site-directed 

mutagenesis confirmed that it was SP4 driving VEGF gene expression in response to IL-6 

trans-signaling. Moreover, the blockade of STAT3 inhibited SP4 expression, which positioned 

STAT3 upstream of SP4 in the signaling cascade. Whilst the targeting of other transcription 

factors by STAT3 is recognized,34 the induction of SP4 has not been reported before. The 

existence of such a signaling axis in vivo was further supported by the observation that S. 

epidermidis-induced peritoneal inflammation either in IL-6-/- mice or in WT mice 

administered with sgp130 did not produce an increase in peritoneal Sp4 expression.  

The potential of IL-6 to drive VEGF expression has been observed in several cancer 

cells31;32;35-37 and implicated in tumor-associated angiogenesis.38;39 Interestingly, it has been 

demonstrated that anti-IL-6 antibody siltuximab reduced STAT3 activation and angiogenesis 

in IL-6-producing intraperitoneal ovarian cancer xenografts and reduced VEGF levels in 

patients with ovarian cancer.40 The exact role of SP4 in these processes remains to be 

established. The experiments using RNA interference suggested that SP4 might contribute to 

the regulation of basal VEGF expression in some pancreatic cancer cells lines.41 The 

involvement of SP4 could also be inferred from the observation that the down-regulation of 

VEGF expression by cyclooxygenase inhibitors in human colon cancer cells was associated 

with proteasomal degradation of SP4.42 

Ablation of STAT3 has long been considered an attractive therapeutic strategy for IL-

6-mediated inflammation and cancer.43;44 Our findings suggest that SP4 activity is 
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downstream of STAT3 activation in response to IL-6 trans-signaling. Thus, a therapeutic 

targeting of SP4 may block specific aspects of IL-6 signaling, whilst leaving STAT3 activity 

intact. That blocking SP4 can indeed produce viable biological effects could be demonstrated 

by experiments that showed a decrease in angiogenesis induced by conditioned media from 

HPMC exposed to the IL-6+sIL-6R complex in the presence of SP4-silencing RNA. 

The consequences of VEGF up-regulation by IL-6 trans-signaling in the setting of PD 

can be twofold. As VEGF is a potent vascular permeabilizing agent, its rise during acute 

peritonitis will cause extravasation of fluid rich in plasma proteins, which together with 

migrating leukocytes will form an inflammatory infiltrate essential for the clearance of 

infection. The process would be self-limiting given the massive, but short-lived increase in 

intraperitoneal IL-6 levels21;27 and the role of IL-6 trans-signaling in suppressing neutrophil-

specific chemokines21 and promoting neutrophil apoptosis.45 Indeed, it has been 

demonstrated that the IL-6+sIL-6R complex can induce STAT3- and VEGF-mediated vascular 

leakage through microvascular endothelial cells.46  

On the other hand, repeated episodes of peritonitis and the persistent IL-6+sIL-6R-

mediated VEGF stimulation may lead to formation of new hyperpermeable blood vessels, as 

found in many chronic inflammatory diseases.47 The accumulation of fibrin in tissues favors 

fibroblast migration and subsequent extracellular matrix synthesis. In this respect, it has 

recently been demonstrated that recurrent peritoneal inflammation in mice leads to tissue 

fibrosis through a process that is strictly dependent on IL-6, albeit in this particular model 

related to STAT1 and IFN- signaling.26 Moreover, it has been demonstrated that 

experimental peritoneal fibrosis in mice could be reduced by antagonizing VEGF through 

soluble VEGF type I receptor.48 We observed that SES-induced inflammation in WT mice was 

associated with increased expression of key mediators of VEGF signaling, new vessel 
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formation 25 and vascular remodeling.49 In this respect, increased expression of Pecam1 and 

VE-Cad likely reflect endothelial cell expansion in vivo but might also be a secondary 

response, either to transient rearrangement of intercellular junctions that underlie increased 

permeability or to degradation of junctional proteins by inflammation-induced proteases.50 

Importantly, these increases in endothelial markers were mediated directly by IL-6 trans-

signaling as they did not occur in IL-6-/- mice and could be reduced in WT mice by specific 

blockade with sgp130.  

Moreover, these early events in IL-6 signaling during acute inflammation may also 

contribute to chronic changes in the peritoneal vasculature. We have observed increased 

immunostaining for PECAM-1 and podoplanin in WT mice subjected to repeated episodes of 

peritonitis compared with IL-6-/- mice. Of particular interest is the increased number of 

podoplanin-positive cells in this setting, as increased expression of podoplanin was 

consistently detected in PD patients with encapsulating peritoneal sclerosis (EPS). 51;52 

Furthermore, recent data from the GLOBAL study showed that patients who developed EPS 

had earlier had higher dialysate levels of IL-6 during PD.53 

These two scenarios would fit well into the concept that depending on a 

pathophysiological context, IL-6 can either be crucial for host defense or promote chronic 

disease.28 Here, we demonstrate that dialysate IL-6 and sIL-6R can act together through the 

trans-signaling pathway controlled by the STAT3-SP4 axis to up-regulate mesothelial VEGF 

production during peritonitis. The identification of this novel mechanism that controls 

peritoneal VEGF expression at the transcriptional level may help to understand better how 

peritoneal inflammation and angiogenesis contribute to adverse peritoneal membrane 

remodeling during peritoneal dialysis.  
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CONCISE METHODS 

 

Materials 

Unless stated otherwise, all chemicals were from Sigma-Aldrich (St Louis, MO, USA) and 

all culture plastics were Falcon from Becton Dickinson (Franklin Lakes, NJ, USA). Cell culture 

media and buffers were from Biochrom AG (Berlin, Germany) and fetal calf serum was from 

Invitrogen (Darmstadt, Germany). Human recombinant IL-6 and sIL-6R were from R&D 

Systems (Wiesbaden, Germany). Antibodies against STAT3 and SP4 were from Santa Cruz 

Biotechnology, Inc. (Heidelberg, Germany).  

 

Mesothelial cell culture 

HPMC were isolated from the specimens of omentum obtained from consenting patients 

undergoing elective abdominal surgery. Cells were cultured and characterized as described 

in detail elsewhere.20 For the experiments, cells were rendered quiescent by serum 

deprivation for 48 hours and then stimulated with IL-6 and/or sIL-6R as specified in the 

legends to figures. All experiments were performed with cells no older than from the third 

passage to minimize the number of senescent cells, as this may affect the level of VEGF 

released.54 

 

Endothelial cell culture and tube formation assay 

Human umbilical vein endothelial cells (HUVEC) of the EA.hy926 line55 were kindly 

donated by Dr. CJ Edgell (University of North Carolina, Chapel Hill, USA). For the tube 

formation assay, Matrigel (Corning, Tewksbury, MA, USA) was poured onto a 96-well plate 

(50 µl/well) and solidified at 37°C for 30 min. Endothelial cells (2 × 104 cells/well) were 
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seeded onto the Matrigel and cultured in MCDB131 medium (Thermo Fisher Scientific, 

Waltham, MA USA) with or without 10% (v/v) conditioned medium from HPMC treated with 

as described in the legends to figures. Capillary networks of tubes formed were 

photographed under the microscope (Zeiss Axiovert 40 CFL Oberkochen, Germany) and five 

randomly selected fields from each well were analyzed for total capillary length using ImageJ 

1.43 software.56 

 

Immunoassays  

Concentrations of VEGF, IL-6 and sIL-6R were measured using DuoSet® Immunoassay Kits 

(R&D Systems). All assays were designed and performed as per manufacturer’s instructions. 

 

Gene expression analysis 

The expression of target genes was assessed with reverse transcription and quantitative 

PCR (RT-qPCR), essentially as described previously.20 PCR conditions and primer sequences 

were as specified in Supplemental Data.  

 

DNA Constructs and Reporter Plasmids 

Progressive VEGF 5’-deletion luciferase plasmids (pLuc 2068, pLuc 1340, pLuc 840, pLuc 

318, and pLuc 102) were kindly provided by Dr. A. Scholz (Charité-Universitätsmedizin, 

Berlin, Germany). The constructs were generated as reported previously,57 and checked for 

the correct length by restriction digest. To target the SP4 binding site at position -73 to 75 

(TGA) within the VEGF promoter, the desired sequence (AAA) was inserted into the pLuc 

VEGF 318 construct using the Q5 site-directed mutagenesis kit (New England BioLabs, 
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Franfurt, Germany) with forward primer 5′- GGGGCGGGCCaaaGGCGGGGTCCC -3′ and 

reverse primer 5′- GGGGGGCGGGGACAGGCG -3′. 

 

Transfection studies 

Transient transfection and luciferase assays were performed as previously described in 

detail.20 Transfections with siRNAs were performed with the siRNA Transfection Reagent and 

siRNAs for STAT3 (sc-44275), SP4 (sc-36545), or with scrambled siRNA control (sc-37007) as 

per manufacturer’s instructions (all materials from Santa Cruz Biotechnology, Heidelberg, 

Germany).  

 

Computational analysis of the VEGF promoter 

The human VEGF promoter region -268 to -51 (GenBank NT_007592.15) was analyzed by 

PROMO virtual laboratory (http://alggen.lsi.upc.es/cgi-

bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) for the presence and location of 

potential transcription factor binding sites. 

 

Nuclear extracts and electrophoretic mobility shift assay 

Nuclear extracts were prepared using the NE-PER Nuclear and Cytoplasmic Extraction Kit 

(Thermo Scientific, Darmstadt, Germany) according to the manufacturer’s instructions. The 

extracts obtained were aliquoted and stored at -80°C. Oligonucleotide probes were labeled 

with the Biotin 3' End DNA Labeling Kit (Thermo Scientific). For the electrophoretic mobility 

shift assay (EMSA) the following probes were used (the corresponding region of the VEGF 

promoter is given in brackets): SP4 - 5’- GCGGGCCGGGGGCGGGGTCCCGGC -3’ (-131 to -154), 

Sp1 - 5’- TCGCCTGTCCCCGCCCCCCGGGGC -3’ (-109 to -132). Each binding mixture (20 µl) for 
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EMSA contained 5 µg nuclear extract, 20 fmol labeled double-stranded probe, 1 µg poly-

dI/dC, and 2 µl 10 x reaction buffer and was incubated at room temperature for 30 min. The 

protein-DNA complexes were then analyzed by electrophoresis in 6% non-denaturing 

polyacrylamide gels and visualized using a LightShift Chemiluminescent EMSA Kit (Thermo 

Scientific). 

 

Western blotting 

Cell extracts were prepared as described,58 electrophoresed on sodium dodecyl sulfate-

polyacrylamide gels and Western blotted using antibodies against STAT3 and SP4 (Santa Cruz 

Biotechnology), GAPDH (Hytest, Turku, Finland), and appropriate secondary peroxidase-

conjugated IgG (Dianova, Hamburg, Germany). The bands obtained were visualized and 

analyzed using Enhanced Chemiluminescence Detection System (Thermo Scientific) and 

Image J 1.43 software (National Institutes of Health, USA). 

 

Peritoneal dialysis effluent 

Peritoneal effluent was obtained from consenting patients undergoing continuous 

ambulatory PD. Dialysate was collected either from stable PD patients after a routine 4-hr 

dwell or from the first bag drained from patients presenting with an episode of peritonitis. 

Samples were processed as described previously.59 

 

Animal experiments  

All animal procedures were performed under appropriate licenses and according to 

institutional animal care guidelines. The experiments were performed in weight-matched 7- 

to 12-wk-old inbred C57BL/6J wild-type (WT) and IL-6-deficient (IL6-/-) mice, as previously 
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described.45 Peritoneal inflammation was established through i.p. administration of 500 µl of 

a cell-free supernatant (SES) prepared from S. epidermidis isolated from a PD patient, as 

detailed elsewhere.60 Repeated challenge with SES was used to model recurrent peritoneal 

inflammation, essentially as described previously.26 Animals were sacrificed at designated 

time points and specimens of peritoneal peritoneum were collected and snap frozen in liquid 

nitrogen. The tissue samples were then homogenized in Tri Reagent (Invitrogen) and total RNA 

was prepared according to the manufacturer’s instructions. Additional biopsy samples were 

processed for immunohistochemistry, as described26 and subsequently stained with 

antibodies against anti-CD31 (eBioscience) and podaplanin (BioLegend). Antibody labeling was 

detected using biotinylated secondary antibodies (Dako), the Vectastain ABC kit and 

diaminobenzidine chromagen (Vector Laboratories). Sections were counterstained with 

hematoxylin. Quantification of antibody staining was performed using the Leica QWin 

microscope imaging software (Jones, GW. et al., 2015 J. Exp. Med. 212:1793). 

 

Statistics 

Statistical analysis was performed using GraphPad Prism 6.05 software (GraphPad 

Software). The data were analyzed with the t-test or repeated measures analysis of variance 

for paired data (in vitro experiments) or unpaired data (animal experiments), as appropriate. 

Results were expressed as means ± SEM. Differences with a P value <0.05 were considered 

significant. 
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Figure legends 

 

Figure 1. Induction of VEGF in HPMC by a combination of IL-6 and sIL-6R. (A): Kinetics of 

VEGF secretion by HPMC treated with IL-6 (10 ng/ml) and sIL-6R (25 ng/ml) either singly or in 

combination; *P<0.05 vs. control cells at each time point, n=6; (B): Dose effect of IL-6 and 

sIL-6R on VEGF release over the period of 48 hours; *P<0.05 vs. untreated cells; (C): Blockade 

of the effect of the IL-6+sIL-6R complex. HPMC were treated with IL-6+sIL-6R (both at 100 

ng/ml) for 48 hours in the presence of 10 µg/ml of antibodies against either IL-6 (MAB206, 

R&D Systems) or sIL-6R (MAB227, R&D Systems). An additional group received an irrelevant 

antibody of the same class and at the same dose; *P<0.05 vs. cells not exposed to 

antibodies, #P<0.05 vs. cells treated with an irrelevant antibody; n=5; (D): Induction of VEGF 

mRNA by IL-6 and/or sIL-6R. HPMC were treated with IL-6 and sIL-6R (both at 100 ng/ml) 

either singly or in combination for 48 hours, *P<0.05 vs. untreated cells n=4).  

 

Figure 2. Identification of sequences in the human VEGF promoter responsive to 

stimulation with the IL-6+sIL-6R complex. Cell were transiently transfected with VEGF 

promoter constructs and stimulated with IL-6 and/or sIL-6R (both at 100 ng/ml), as 

indicated. Luciferase activity was determined as described in Methods. (A): Time effect of 

the IL-6+sIL-6R complex on the full-length VEGF promoter activity *P<0.05 vs. unstimulated 

control, n=3; (B): Full-length VEGF promoter activity after 6 hours of stimulation with IL-6 

and/or sIL-6R, n=4; (C): Effect of progressive 5’-deletions of the VEGF promoter on its activity 

upon stimulation with IL-6+sIL-6R for 6 hours; *P<0.05 vs. unstimulated controls, n=4. 

 



27 
 

Figure 3. Identification of SP4 as a transcription factor mediating human VEGF promoter 

induction by the IL-6+sIL-6R complex. (A-B): Cells were stimulated with IL-6+sIL-6R at 100 

ng/ml for 6 hours, the nuclear fractions were obtained and analyzed with EMSA. In A, EMSA 

was performed with consensus oligonucleotide probes for SP1 and SP4; In B, formation of 

nuclear complexes with SP4 probe was assessed either in the presence of 100-fold molar 

excess of unlabeled VEGF DNA (resulting in a reduced shift – a lower arrow) or in the 

presence of SP4-specific antibody (resulting in supershift – an upper arrow). (C): Effect of 

site-directed mutagenesis in the SP4 binding site within the VEGF promoter on its activity 

after stimulation with IL-6+sIL-6R. #P<0.05 vs. relevant control, n=4. 

 

Figure 4. The role of STAT3 in SP4-mediated VEGF induction by the IL-6+sIL-6R complex.  

(A-B): Kinetics of STAT3 and SP4 mRNA induction in HPMC treated with IL-6+sIL-6R (both at 

100 ng/ml); *P<0.05 vs. control cells at each time point, n=4; (C-F): Effect of STAT3 silencing 

on STAT3, SP4 and VEGF expression. Cells were transiently transfected with either STAT3 

siRNA or scrambled (Scramb) siRNA and then stimulated with IL-6+sIL-6R (both at 100 ng/ml) 

for 9 hours. Cells were assessed for STAT3 protein expression by Western blotting (C) and 

mRNA expression by qPCR for STAT3 (D), SP4 (E), and VEGF (F). In C, a representative 

immunoblot is presented together with quantified data from 4 independent experiments. In 

C-F *P<0.05 vs. cells stimulated with IL-6+sIL-6R in the absence of siRNA, n=4. 

 

Figure 5. Effect of SP4 on VEGF-mediated endothelial cell tube formation. 

(A): Cells were transiently transfected with either SP4 siRNA or scrambled (Scramb) siRNA, 

stimulated with IL-6+sIL-6R (both at 100 ng/ml) for 24 hours and then assessed for VEGF 

secretion, n=5. (B): Effect of conditioned medium (10% v/v) from HPMC treated as in (A) on 
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endothelial cell tube formation within 16 hours. *P<0.05 vs. cells stimulated with IL-6+sIL-6R 

in the absence of siRNA, n=4. Representative phase contrast images (magnification 100 X) 

are presented in order corresponding to experimental groups as shown in graph from left to 

right. 

 

Figure 6. Effect of IL-6 signaling on peritoneal Sp4 and Vegf expression in mice. WT and 

IL6-/- mice were intra-peritoneally administered with SES and then analyzed at defined time 

points for Sp4 (A) and Vegf (B) expression in the parietal peritoneum. An additional group of 

WT animals received SES together with sgp130 (150 ng/mouse); *P<0.05 vs. WT mice at the 

same time point, n=4 mice per condition.  

 

Figure 7. Effect of IL-6 signaling on peritoneal expression of endothelial-specific targets 

Mice were treated as in Fig. 6 and analyzed for peritoneal expression of Vegfr2 (A), Vegfr3 

(B), Pecam1 (C), VE-Cad (D), Nrp1 (E), Efnb2 (F), and Pdpn (G). *P<0.05 vs. WT mice at the 

same time point, n=4 mice per condition.  

 

Figure 8. IL-6 signaling contributes to VEGF release by HPMC during peritonitis. (A): IL-6 

and sIL-6R levels in dialysates drained either from stable PD patients after a routine 4-hr 

dwell (n=20) or from patients with peritonitis at first presentation (n=11); the data are 

presented as box and whiskers plots, with the median, 25th and 75th percentiles, and range 

of data indicated; *P<0.05 between the groups; (B): The dose effect of exemplary PD 

effluent drained during peritonitis on VEGF (top), STAT3 (middle) and SP4 (bottom) mRNA 

expression in HPMC. Cells were treated with increasing doses of effluent for 24 hours. 

*P<0.05 vs. untreated controls, n=4; (C): Cells were transiently transfected with 10 µM 
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STAT3 siRNA, SP4 siRNA, or scrambled siRNA, as indicated. After that cells were exposed to 

peritoneal effluent (25% v/v) from a PD patient with peritonitis for 24 hours and assessed for 

mRNA expression of VEGF (top), STAT3 (middle), and SP4 (bottom). *P<0.05 vs. cells treated 

with the dialysate in the absence of siRNAs, n=4.  
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SUPPLEMENTAL DATA 

 

Gene expression analysis 

The expression of target genes was assessed with reverse transcription and quantitative 

PCR (RT-qPCR). Total RNA was extracted with the PerfectPure RNA Cultured Cell Kit (5 Prime, 

Hamburg, Germany), reverse transcribed into cDNA with random hexamer primers, and 

amplified with real-time qPCR on the Applied Biosystems 7500 Fast Real-Time PCR system 

(Applied Biosystems, Darmstadt, Germany). The reaction was carried out in 14 μl reaction 

volumes containing 2 μl of cDNA (20 ng), specific sense and anti-sense primers (250 nM 

each), and 7 μl Power SYBR Green PCR Master Mix (Applied Biosystems). PCR primers were 

synthesized by TIB Molbiol (Berlin, Germany) and their sequences were as follows:  

 VEGF (GenBank NM_001171623.1):  

forward (5’-AAGGAGGAGGGCAGAATCAT-3’),  

reverse (5’-ATCTGCATGGTGATGTTGGA-3’);  

 STAT3 (GenBank NM_139276.2):  

forward 5’- GGCCATCTTGAGCACTAAGC-3’),  

reverse (5’-CGGACTGGATCTGGGTCTTA -3’);  

 SP4 (GenBank NM_003112.3):  

forward 5’-TCAGCAGCAAGGACAAGATG -3’),  

reverse (5’- AAGCCTCTTGCCAGGTTGTA -3’);  

 β2M (GenBank NM_004048.2):  

forward (5’- GTGCTCGCGCTACTCTCTCT-3’),  

reverse (5’- CGGCAGGCATACTCATCTTT -3’).  
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Primers for murine targets were as follows:  

 Sp4 (GenBank NM_009239.4):  

forward (5’- GCCTGCTCCTGTCCTAACTG -3’),  

reverse (5’- CTCGGAGGTGAGAGGTCTTG -3’);  

 Vegf (GenBank NM_001025250.3):  

forward (5’- CAGGCTGCTGTAACGATGAA -3’),  

reverse (5’- GCATTCACATCTGCTGTGCT -3’).  

 β2m (GenBank NM_009735.3):  

forward (5’- GAAATCCAAATGCTGAAGAACG-3’), 

reverse (5’- CAAATGAATGTTCAGAGCATCATG -3’) 

 Pecam1 (GenBank NM_008816.2):  

forward (5’- AGAGACGGTCTTGTCGCAGT -3’),  

reverse (5’- TACTGGGCTTCGAGAGCATT -3’);  

 VE-Cad (GenBank NM_009868.4):  

forward (5’- ACCGAGAGAAACAGGCTGAA -3’),  

reverse (5’- AGACGGGGAAGTTGTCATTG -3’);  

 Vegfr2 (GenBank NM_010612.2):  

forward (5’- GGCGGTGGTGACAGTATCTT -3’),  

reverse (5’- GTCACTGACAGAGGCGATGA -3’);  

 Vegfr3 (GenBank NM_008029.3):  

forward (5’- GCTGTTGGTTGGAGAGAAGC -3’),  

reverse (5’- GAGCCACTCGACACTGATGA -3’);  
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 Efnb2 (GenBank NM_010111.5):  

forward (5’- CTCAACTGTGCCAGACCAGA -3’),  

reverse (5’- CTTGTTGGACCGTGATTCCT -3’);  

 Nrp1 (GenBank NM_008737.2):  

forward (5’- GGAGCTACTGGGCTGTGAAG -3’),  

reverse (5’- ACCGTATGTCGGGAACTCTG -3’);  

 Pdpn (GenBank XX):  

forward (5’- XX -3’),  

reverse (5’- XX -3’);  

  

 
After an initial activation step for 2 min at 50°C and denaturation at 95°C for 10 min, 40 

cycles of 15 sec at 95°C, and 1 min at 60°C were performed. Specificity of the reaction was 

verified by melting curve analysis at the end of each series of assays. The relative amount of 

gene transcript was calculated by the cycle threshold method using the Applied Biosystems 

7500 System v.1.2.3 software and normalized for the endogenous reference (β2-

microglobulin). 

 

VEGF promoter, EMSA oligonucleotide sequences and site-directed mutagenesis primer 
 

-267 
GGGCGCGTGTCTCTGGACAGAGTTTCCGGGGGCGGATGGGTAATTTTCAGGCTGTGAACCTTGGTG
GGGGTCGAGCTTCCCCTTCATTGCGGCGGGCTGCGGGCCAGGCTTCACTGAGCGTCCGCAGAGCCC
GGGCCCGAGCCGCGTGTGGAAGGGCTGAGGCTCGCCTGTCCCCGCCCCCCGGGGCGGGCCGGGGG
CGGGGTCCCGGCGGGGCGGAGCCATGCGCCCCCCCCTTTTTTTTTTAAAAGTCGGCTGGTAGCGGGG
AGGatcgcggaggcttggggcagccgggtagctcggaggtcgtggcgctgggg+50 
 
EMSA oligo sequences for SP1 and SP4 
GCGGGCCGGGGGCGGGGTCCCGGC SP4 -59 to -82 
TCGCCTGTCCCCGCCCCCCGGGGC SP1 -80 to -103 
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Site directed mutagenesis of SP4 sequences 
GGGGCGGGCCaaaGGCGGGGTCCC site directed mutagenesis forward Primer 
 

Nucleotides written in CAPITAL LETTERS correspond to VEGF promoter sequence -267 to 0. 
Nucleotides written in small letters correspond to VEGF gene sequence +1 to+50. 
 
A sequence in dark green was used as a synthethic oligo for SP1 EMSA experiments  
 
A sequence in light green was used as a synthethic oligo for SP4 EMSA experiments. Mutated 
SP4 sequence is written in small blue letters.  
 

Fig. S1 Effect of SP4 on VEGF-mediated tube formation by human dermal microvascular 

endothelial cells (HDMEC). Cells were transiently transfected with either SP4 siRNA or 

scrambled (Scramb) siRNA, and stimulated for 16 hrs with conditioned medium (10% v/v) 

from HPMC treated without or with IL-6+sIL-6R (both at 100 ng/ml) for 24 hours. *P<0.05 vs. 

cells stimulated with IL-6+sIL-6R in the absence of siRNA, n=4. Representative phase contrast 

images (magnification 100 x)  
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Fig. S2 Effect of IL-6 signaling in mice on peritoneal vasculature following repeated 

peritonitis. WT and IL-6-/- mice received 4 consecutive doses of SES (i.p.) administered at 7‐

day intervals. Histological evaluation was recorded on day‐49 post first SES challenge. 

Sections were stained for either PECAM-1 (CD31) (A, B) or podoplanin (C, D). Representative 

40x magnification (insert panels: 400x magnification) fields are shown. Scores displayed in 

Panels B and D reflect digital assessments of immunohistochemistry staining as described in 

Materials and Methods. 
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