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A computational approach, using the density functional theory, is 

employed to describe the enhanced electron-hole stability and 

separation in a novel class of semiconducting composite materials, 

with the so-called double bubble structural motif, which can be used 

for photocatalytic applications. We examine the double bubble 

containing SiC mixed with either GaN or ZnO, as well as related 

motifs that prove to have low formation energies. We find that a 24-

atom SiC sodalite cage inside a 96-atom ZnO cage 

 
 
 
possesses electronic properties that make this material suitable 

for solar radiation absorption applications. Surprisingly stable, 

the inverse structure, with ZnO inside SiC, was found to show a 

large deformation of the double bubble and a strong localisation 

of the photo-excited electron charge carriers, with the lowest 

band gap of ca. 2.15 eV of the composite materials considered. 

The nano-porous nature of these materials could indicate their 

suitability for thermoelectric applications. 

 

 
 

 
1 Introduction One of the grand challenges in 

contemporary materials science is the one-step splitting of 

water into hydrogen and oxygen, using a single 

heterogeneous photocatalyst [1]. Photocatalysts, which 

typically operate by the separation of electron–hole pairs, 

traditionally are wide band-gap oxide semiconductors that 

operate in the UV-vis spectrum [2]. A promising photo-

catalytic material that has recently been proposed is a solid 

solution of gallium nitride (GaN) and zinc oxide (ZnO) [3], 

which crystallises in the wurtzite structure and was shown 

to be able to achieve water splitting under visible light 

irradiation. Furthermore, to achieve a greatly enhanced 

efficiency, it is imperative to avoid the recombination of 

the photo-generated electron–hole pair.  
Another major technological challenge is the fabrication 

of the p-type wide-gap semiconductors, which has been 

 
partially met for GaN but not for ZnO based transparent 

oxide materials [4, 5]. In contrast, SiC is widely used both 

as n- and p-type semiconductors. In fact, all three materials 

share a common structural motif based on a tetrahedral 

coordination of each atom, which results in simple lattices 

of wurtzite and zinc blende. Moreover, a large number of 

polytypes are also known for SiC, in which hexagonal one-

atom thick layers (sheets) are stacked in differing patterns, 

with wurtzite (2H) and zinc blende (3R) being the most 

elementary examples. The bond lengths of SiC, ZnO and 

GaN are comparable, and, therefore, SiC can be readily 

exchanged into ZnO or GaN matrices, provided the charge 

balance is maintained. Further, SiC is one of the most 

mechanically and chemically stable materials, making it 

suitable for a plethora of applications and, importantly, it 

supports both electron and hole charge carriers [6]. 
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In order to effect novel material properties, one of the 

current drivers in materials science, chemistry and physics 

is the search for novel nano-organised composite materials 

that combine the best features of two or more chemical 

compounds [7–12]. In this paper, we propose that, by 

combining SiC, ZnO and GaN, the resulting composite 

heterostructures will possess the ability to readily generate 

separable and stable electron–hole pairs. We build on our 

previous work, in which we have devised novel structures 

that comprise secondary building units (SBU) of ‘perfect’ 
24-atom GaN, ZnO and SiC sodalite (b-) cages and 96-

atom bubbles [13–15]. Cage-like molecular and extended 

structures including SiC have also been the topic of 

previous investigations [16, 17].  
We organise the paper as follows. First, we provide the 

method, with which we construct these novel frameworks, 

and the computational details we have used are given. We 

then present the calculated electronic structure of the 

systems, and finish with a discussion of their viability in 

experimental work and potential applications. 

 

2 Method 
2.1 Construction of the systems We constructed 

our framework systems following the methodology 

outlined in our previous work [14, 15] as illustrated in Fig. 

1. Three-dimensional tiling of polyhedral shapes can be 

achieved either by bonding or merging via corners (zero-

dimensional), edges (one-dimensional) or faces (two-

dimensional) [18]. Three types of structures are considered 

here. The first consists of a double-bubble framework, 

where a 12-atom sodalite cage is placed inside a 96-atom 

bubble to form the double bubble systems [19, 20]. The 

inner and outer bubbles can be either composed of the 

same compound or of different compounds, and we use the 

naming convention (AB)@(CD) to indicate that the 

compound AB moiety is inside the compound CD matrix. 

The second structural type is constructed from corner-

sharing sodalite cages that, again, can be composed of the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 Secondary building units used to construct the 
framework systems. Where, a and b are the cage structures 

containing 96 and 24 atoms (the sodalite cage), respectively, c is 

the periodic sodalite structure, d is the periodic double bubble 

system, e and f are the LTA structures. g represents the SOD 

structure. 

 
 

 

same compound or a structure formed by alternating two 

compounds. We term these systems LTA, adopting the 

standard zeolite nomenclature. The final structural type, 

which we call SOD, is formed by merging edge-sharing 

sodalite cages, and again the systems can be composed of 

one compound or two differing compounds.  
The ability to experimentally create these double bubble 

structures could be based on work on layered core–shell 

nanoparticles (and their composites) that are designed for 

quantum dots for the purpose of separating electrons and holes 

[21, 22]. Furthermore, the synthesis of microporous 

frameworks usually involves a template, which can be an 

organic molecule that helps to steer the nucleation towards the 

formation of cages, and these template molecules are, then, 

removed using post-synthetic treatments [23]. 

 
2.2 Computational details We employed the plane-

wave density functional theory (DFT) code VASP [24–26] to 

determine the equilibrium structures and chose the solids-

corrected Perdew-Burke-Ernzerhof (PBEsol) [27, 28] GGA 

exchange-correlation (XC) functional for the geometry 

optimisations. Within VASP, we used the projector aug-

mented wave (PAW) method to describe the interactions 

between cores and the valence electrons [29], using four 

valence electrons for both silicon and carbon, thirteen for 

gallium, twelve for zinc, five for nitrogen and six for oxygen. 

An energy cut-off of 500 eV and a Monkhorst-Pack k-point 

mesh of 1 1 1 for the double bubble frameworks provided total 

energy convergence up to 10 
5
 eV. Pure bulk phases of SiC, 

GaN and ZnO required k-point meshes of 8 8 6 for 

comparable total energy convergence. To avoid the problem 

of Pulay stress, each equilibrium structure was determined by 

optimising the atomic coordinates at a series of differing 

volumes and then fitting a Murnaghan equation of state to the 

resulting energy versus volume data. Furthermore, we 

performed single-point energy calculations at the hybrid level 

of theory using the PBEsol0 XC functional that includes 25% 

Hartree–Fock electron exchange. The electronic structure of 

the frameworks was characterised by computing their density 

of states (DOS) and partial DOS using PBEsol0. It is 

important to note that we have performed test geometry 

optimisations using the PBEsol0 XC functional, and found 

negligible changes in atomic structure. Therefore, we have 

used the PBEsol optimised geometries in single-point 

PBEsol0 calculations, to obtain the electronic structure 

characterisations. 

 
2.3 The measure of stability The enthalpy of 

formation, Hf is calculated as: 
 

H 

f ¼ 

Etot    ½ n1ðEaÞ þ n2ð EbÞ& ; 1 

 n1 þ n2 ð Þ  
where Etot is the total energy of the framework, Ea and Eb are 

the total energies of the pure bulk structures, and n1 and n2  
are the numbers of formula units of each moiety, and, a 

and b represent SiC, GaN or ZnO. 

 



 
 
 

 

 

3 Results 
3.1 Atomic structure and stability The calculated 

radial distribution function (RDF) for a representative 

selection of systems containing SiC with GaN and ZnO can be 

seen in Fig. 2. From the plots, we see a close match between 

the sodalite cages of SiC and GaN for the SOD structure, and 

a slight mismatch for the LTA structure indicating that SiC 

and GaN are structurally similar. The double bubble systems 

again show how the SiC and GaN bond lengths are 

comparable. Curiously, a more pronounced mismatch in the 

structural parameters between the inner and outer bubbles for 

the structure SiC@ZnO results in a stronger deformation of 

the outer bubble compared to GaN@ZnO frameworks 

considered previously [14]. In this previous study, we found 

that the inner bubble is connected with the outer bubble via 

vertices to the faces of the outer bubble that are shared 

between three hexagons. Here, we have determined that 

(SiC)12@(ZnO)48 has a c2-3 structure (No. 5), whereas both 

(SiC)12@(GaN)48 and (ZnO)12@ (SiC)48 possesses an fcc, 

orthorhombic structure, F222 (No. 22), although the latter 

breaks all symmetry constraints, probably due to the strongly 

incommensurate structure of 

 

 

the two moieties (see Fig. 3): The strong interactions between 

the inner and outer bubbles result in a fragmenta-tion of the 

inner bubble into six four-member rings (the hexagonal faces 

originally edge sharing to these tetragons expand). The 

surface of the outer bubble distorts in a similar way to isolated 

bubbles that are composed of strongly polarisable atoms; 

anions are slightly further out from the centre of the bubble 

than the cations. In our system, the 
silicon atoms are closer to the centre of its bubble by ca. 

̊  
0.3 A than carbon and, therefore, closer to the inner bubble, 
whereas the polarisation of the fragmented inner bubble is 

much smaller; Zn atoms are slightly further out by ca. 0.1 A
̊
, 

which is the inverse of what we would expect for the 

isolated, non-fragmented (ZnO)12 bubble. After the inner 
bubble expansion, bonding results between silicon and 

oxygen (ca. 1.75 A
̊
)at the cost of elongating the Zn–O bonds 

between tetragonal faces, four of which are themselves 
slightly rotated about the axis that goes through the centre of 
the tetragonal face and the centre of the bubble. We note that 
the shortest Zn–C interatomic distances are approximately 

2.0 A,
̊
consistent with the zinc carbide structures. In 

summary, the outer bubble controls the binding between the 
inner and outer shells with the resulting structure of the inner 
bubble fragmenting and Zn ions moving further out than O 
ions, even if only slightly. 

 

3.2 Electronic structure and charge 
carriers Table 1 summarises the calculated electronic 
band gaps of our semiconductor framework systems along 

with their standard enthalpy of formation with respect to 

the end member compounds (SiC, ZnO and GaN) in the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 Radial distribution function plots for the framework 
systems comprising SiC, GaN and ZnO moieties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 ZnO inner bubble (stick and ball model) showing the 

structural fragmentation inside a SiC bubble (line model). Sticks and 

ball are also employed to highlight bonding between the other bubble 

and just two of the six inner tetragons. (Red is reserved for oxygen, 

grey for zinc, green for silicon and copper for carbon). 



 

Table 1 Band gap, Eg, and enthalpy of formation per formula unit, using LDA [33, 34] and PBE GGA [35], respectively; 1.86, 
Hf, with respect to the end-member compounds, for the SiC, GaN    2.58 for GaN using a PBE GGA, and PBE þ U [36], 
and ZnO semiconductor frameworks, using the PBEsol0 density respectively; 0.75 eV, 1.83 eV for ZnO using PW91 GGA 
functional. For comparison, the corresponding values are given for 

   and GGA þ U, respectively [37]). Our results are still pure SiC, GaN, and ZnO, in the wurtzite (2H) phase. 

   typically deviate from experiment (cf. Fig. 5) to within ca. 

System                                  Eg (eV) Hf  (kJmol 
1
)  10%, which can be related to an unbiased non-empirical 

   

character  of  the  hybrid  PBESol0  density  functional 
 SiC                                           3.95 0.00 

 

 employed; with a marked contrast between the band-gap 
GaN                                           3.86 0.00  overestimation for SiC and GaN and underestimation for 
ZnO                                           3.07 0.00 

 

 ZnO. A further improvement should be expected from 
(SiC)12-SOD                              3.45 51.92 

 

 
quasiparticle calculations using Green’s function methods, 

(SiC)12-LTA                              3.62 86.65  
 

which are however still not feasible for the framework (SiC,GaN)12-SOD                     3.94 80.38  

which are however still not feasible for the framework 
 

materials with large unit cells. (SiC,GaN)12-LTA                     4.75 136.97  

(GaN)12@(SiC)48                                 3.83 65.53  To understand the fundamental driving forces in the 
(SiC)12@(GaN)48                                 2.90                                       61.34                       observed pDOS of the heterogeneous systems (shown in 

(SiC)12@(ZnO)48                                  2.53                         42.02                        Fig. 4), we refer the reader to the band alignment of the 
 

(ZnO)12@(SiC)48                                  2.14          49.02  respective bulk phases illustrated in Fig. 5, which also 
   provides experimental values of the band gap in these 
   materials. As is clear from Fig. 5, the ionisation potentials 

wurtzite (2H) phase. The calculated partial density of states decrease as the anion species moves from group 16 to group 

(pDOS) are given in Fig. 4. In pure end member compounds, 14 and similarly, the electron affinities decrease with the 

as should be expected, the top of the valence band is same trend. The majority of these nanoporous systems obey 

dominated by carbon, nitrogen and oxygen states, whereas the same trends as their pure end-member counterparts. 
the bottom of the conduction is dominated by silicon, Although, notably, (SiC,GaN)12-LTA breaks this trend by 

gallium and zinc states. The calculated values of the band having a much larger band gap than the other nanoporous 

gap of the three compounds are in good agreement with systems. This is probably due to the changes in Madelung 

previous reports using similar methods (e.g. 3.90, 3.84 eV potential  for  the  atoms  in  the  very  porous  LTA 

for SiC using B3LYP and PBE0 hybrid functionals using structure [38]. 

25% exact exchange, respectively [30]; 3.23, 3.55 eV for As previously found by our group [39], the SiC sodalite 
GaN using HSE06 with 25 and 30% exact exchange, is a stable low-energy polymorph, which is stabilised further 

respectively [31]; and 3.14, 3.13 eV for ZnO using PBE0 in the (SiC)12@(ZnO)48 double bubble system. The much 

and PBESol0, respectively [32]) and represent a marked lower energy gap (2.5 eV) makes this system a candidate for 

improvement on simple local or gradient corrected density solar radiation absorption applications that do not depend on 

functional approximations (e.g. 2.05, 2.11, 2.29 eV for SiC electron mobility (cf. Table 2). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Calculated bulk band alignment of the wurtzite (2H) 
phases of SiC, GaN and ZnO using available experimental band gap 

values [40]. Adapted from Figure 1 in [6]. 
 

 

 

 

Figure 4 Total and partial Density of States (pDOS) plots for the 
novel framework systems. 



 

 

 

Table 2 Calculated electron and hole effective masses of the 

wurtzite and double bubble systems (experimental data for effective 

masses are taken as geometric averages over the tensor components). 

Calculated electron and hole effective masses of the wurtzite and 

double bubble systems (bold) along with experimen-tal data that are 

taken as geometric averages over the principal tensor components. 

Values are given in units of electron mass. 
 

system me mh 

ZnO 0.23,0.22
a
,0.24

b 
1.29,0.93

c
,1.47

d 

GaN 0.20,0.19
a
,0.20

c 
2.06,0.80

e
,1.44

a
,2.2

f 

SiC 0.26,0.49
g
, 0.29

h 
2.07,1.0

g 

(SiC)12@(GaN)48 0.28 10.87 
(SiC)12@(ZnO)48 0.37 1.31 

(ZnO)12@(SiC)48 1.18 0.86 
    
aexp. [45]; bexp. [46]; cexp. [47]; dexp. [48]; eexp. [49, 50]; fexp. [51]; 
gexp. (SiC-6H) [52]; hexp. (SiC-4H) [53]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Electron (orange) and hole (blue) iso-surfaces for the 
double bubble frameworks of SiC@GaN/ZnO. 

 

 

The relatively high effective masses are common to all 
bubble systems considered, which does, however, limit the 

range of potential applications.  
The calculated standard enthalpy of formation (Hf) for 

the double-bubble, SOD, and LTA structures is roughly 
comparable with that of fullerenes with respect to bulk 

carbon (ca. 40 kJ mol 
1
) [41]. Furthermore, the alternative 

nanoporous SiC framework material with the LTA 
architecture has a higher enthalpy of formation (by ca. 35 
kJ/mol per formula unit), but still is thermodynamically 
plausible: one can envisage potential routes to its synthesis 
using pore-filling templates.  

Unexpectedly, out of all systems considered, 

(ZnO)12@ (SiC)48 which we term here as scanlonia, 

possesses the smallest band gap of 2.14 eV and one of the 
lowest enthalpies of formation (49 kJ/mol). The heavy 
charge carrier masses of scanlonia (see Table 2) would 
make this material if synthesised an ideal candidate for a 
solar light radiation collector for optical applications, for 
example, as a pigment.  

Additionally, it is known that nanoporous solids often 

display lower thermal conductivities than their dense 

counterparts, which points to possible applications in 

thermoelectrics. To realise this potential application, an 

understanding of the defect physics (especially, the 

response of the system to dopants) is a prerequisite (e.g. 

[42]), which is beyond the scope of this initial screening.  
The calculated isotropic effective masses for ground-state 

wurtzite polymorphs and selected double bubble systems are 

summarised in Table 2 along with the available experimental 

data. We find excellent agreement between our values and 

experiment apart from the hole effective mass for SiC. The 

reliability of the experimental data for holes in 2H–SiC is 

quite low, but we can compare our value of 2.07 with 2.05, 

which has been obtained from theoretical LDA data of 

Lambrecht et al. [43] (not including spin-orbit splitting). 

Interestingly, inclusion of spin-orbit effects results in a 

significantly lower value of 0.83 corroborated 

 

 

by a later report of 0.81 [44]. The overall close agreement 

still gives us confidence in our prediction for the composite 

materials, but also highlights the need for a careful re-

examination of spin-orbit effects on effective masses in 

this class of material.  
The double bubble effective masses prove to be 

competitive with those of the ground state systems. 

Notably, the (SiC)12@(GaN)48 system has the highest 

asymmetry with the mh /me of 38 compared to the value of 

2 for SiC (6H). For all three double bubble systems, the 
hole resides on the SiC moiety (see Fig. 6) and the electron 
is localised on its counterpart. When SiC is the inner 

bubble in the system, mh /me is greater than unity, and the 

transport is dominated by the lighter electron carriers. 
Conversely, when SiC is the outer bubble, the hole 
dominated mobility will prove to be low. The clear 
electron–hole separation and the strong asymmetry in these 
charge carrier masses forms a good basis for prospective 
photocatalytic, optoelectronic and more generally, energy 
materials applications. 

 

4 Conclusions The addition of a wide gap semicon-

ducting material SiC to the family of heterogeneous 

framework materials has led to the formulation of a new 

composite semiconductor with enhanced stability of hole 

charge carriers and improved potential for electron-hole 

separation. We find that these materials have quite large 

electron and hole effective masses and therefore, are 

perhaps more suited to solar radiation collectors, with 

optical applications for pigmentation, for example. These 

composite frameworks may also have the potential to be 

possible thermoelectric materials, although further inves-

tigations with respect to their defect physics are required. 

To ascertain the stability of these materials, further 

investiga-tion into their mechanical and dynamical 

properties is necessary.  
The proposed class of novel semiconducting materials 

are both mechanically robust and energetically accessible
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and therefore, the challenge of realising these materials is 

now in the experimental domain. 
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