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Abstract

Predicting energy consumption and daylight illumi-
nance plays an important part in building lighting
control strategies. The use of simplified or data-
driven methods is often preferred where a fast re-
sponse is needed e.g. as a performance evaluation en-
gine for advanced real-time control and optimization
applications. In this paper we developed and then
compared the performance of the widely-used Arti-
ficial Neural Network (ANN) with Random Forest
(RF), a recently developed ensemble-based algorithm.
The target application was predicting the hourly en-
ergy consumption and daylight illuminance values of
a classroom in Cardiff, UK. Overall, RF performed
better than ANN for predicting daylight illuminance;
with coefficients of determination (R2) of 0.9881 and
0.9799 respectively. On the energy consumption test-
ing dataset, ANN performed marginally better than
RF with R2 values of 0.9973 and 0.9966 respectively.
RF performs internal cross-validation and is relatively
easy to tune as it has few tuning parameters. The
paper also highlighted possible future research direc-
tions.

Introduction

Buildings are responsible for 40% of the total global
energy use and account for 30% of the total emission
of CO2, one of the greenhouse gases responsible for
anthropogenic climate change (Ahmad et al., 2016).
To mitigate this, building regulations have been de-
veloped or updated to reduce the impact of climate
change and enhance the performance of buildings.
With sustained reductions in a building’s heating and
cooling demands, the energy used by artificial lighting
increases in relative terms (Ahmad et al., 2015). Day-
light is an essential part of our life, and building oc-
cupants tend to prefer daylight over artificial lighting.
It also provides a comfortable and effective learning
environment in schools. An appropriate lighting level
is necessary to satisfy both psychological and visual
comfort conditions. Typically Venetian blinds have
been used in buildings to control daylighting. In the
literature, various automatic control strategies have
been developed to enhance the thermal and daylight-

ing performance of occupied spaces. One example of
this research work is Ahmad et al. (2015), the authors
proposed a genetic algorithm based method to adjust
the window blind position. On the other hand, energy
prediction strategies are one of the core components
of building energy control and operational strategies
(Li and Wen, 2014).

In recent years, a number of prediction approaches,
either detailed or simplified, have been proposed and
applied for predicting building energy consumption
and daylight illuminance. These approaches can be
broadly classified into three categories i.e. numerical,
analytical and predictive. Numerical approaches (e.g.
EnergyPlus, DAYSIM, RADIANCE, TRNSYS, etc.)
often enable the user to evaluate designs with reduced
uncertainties. However, these methods do not per-
form well in predicting the energy use and daylight-
ing illuminance of occupied buildings as it is difficult
to model occupants’ behavior and how they interact
with their buildings. On the other hand, predictive
models (e.g. artificial neural networks, support vec-
tor machines, etc.) have been successfully applied
to predict the energy consumption of occupied build-
ings. These models quickly perform predictions and
thus are more suitable for real–time control purposes.

In a recent review, Ahmad et al. (2016) discussed
several computational intelligence (CI) techniques for
HVAC systems. It was mentioned that significant ad-
vances has been made in the past decades on the ap-
plication of CI techniques for building energy appli-
cations. Most of these techniques use historical data
to train a model or develop expert rules. With the
evolution towards Internet of Things (IoT), there is
an abundance of data available from buildings, and
therefore these CI techniques can easily be applied to
enhance building energy performance. Random For-
est (RF) has been less explored for building energy
and daylight illuminance predictions. RF does not
require much fine-tuning of their hyper-parameters,
and default parameters often give better results than
being fine-tuned. On the other hand, artificial neural
networks (ANNs) have been extensively used for en-
ergy and daylight predictions because of their fault–
tolerant and robust nature. The objective of this



study is to develop ANN and RF based models to
predict the daylight illuminance and energy consump-
tion of a classroom. This paper offers an alternative
methodology to the existing energy consumption and
illuminance prediction techniques.

Related work

In the literature, a large number of studies have fo-
cussed on using machine learning techniques to pre-
dict energy consumption. For building energy predic-
tion, ANNs are the most popular choice among other
computational intelligence techniques (Ahmad et al.,
2016). In two different studies, both González and
Zamarreño (2005) and Nizami and Al-Garni (1995)
used a simple neural network to predict hourly val-
ues of building energy consumption by using weather
and time stamp information as inputs to the mod-
els. Nizami and Al-Garni (1995) compared the re-
sults with a regression model and it was found that
ANN performed better.

ANNs were also used by Kalogirou and Bojic (2000)
to predict the energy use of a passive solar build-
ing. The authors developed different modules to pre-
dict outdoor and indoor air temperatures at next
time step, as well as solar radiation and electrical
heaters’ state. Kreider et al. (1995) reported on the
use of recurrent neural networks to predict cooling
and heating energy consumption. ANNs are also be-
ing used to predict energy consumption for different
climate zones by using envelope performance parame-
ters, and heating and cooling degree days (Cheng-wen
and Jian, 2010). Manufacturing industries show high
fluctuations in their energy use and modeling energy
consumption for these buildings could be a challeng-
ing task. Azadeh et al. (2008) predicted the annual
electricity consumption of this type of building by
using an ANN, where the results demonstrated their
suitability for this purpose.

To the best of our knowledge, there are only a few
studies that focussed on the application of decision
trees for energy prediction.Tso and Yau (2007) and
Yu et al. (2010) studied the use of decision trees for
predicting energy demand and residential building en-
ergy performance respectively. Tso and Yau (2007)
compared the results from neural network, decision
trees, and regression analysis; and found that deci-
sion trees could be viable alternatives to understand
energy patterns. One key advantage of decision trees
is that the user can generate accurate models with-
out having any computational knowledge. Yu et al.
(2010) found that decision trees can produce accu-
rate models for predicting building energy use inten-
sity levels. Ahmad et al. (2017) compared the results
of neural network and random forest (an ensemble-
based method) for predicting hourly energy consump-
tion, and found that ANN performed marginally bet-
ter than random forest.

ANNs are also being used for predicting daylight il-

luminance in buildings. Hu and Olbina (2011) pro-
posed an illuminance-based Venetian blind control
method and used ANNs to predict illuminance val-
ues at two set-points. The author concluded that the
proposed method has advantages for real-time blind
control applications. Kazanasmaz et al. (2009) also
used an ANN to determine daylight illuminance for
an office building. The authors used building and
weather parameters to predict illuminance values and
found that the prediction accuracy of the model was
approximately 98%. Ahmad et al. (2015) proposed a
method for controlling Venetian blinds by using Ener-
gyPlus as an evaluation engine. The authors stressed
the need for a surrogate model to reduce the com-
putational time required to run 1000s of simulations.
Mourshed et al. (2011) studied the optimum design
of artificial lighting and found that the search for an
optimum design in a rugged solution space is a time
consuming process, so there is a need to develop sur-
rogate models.

Machine learning techniques

Random Forest

Random forests (RFs) are ensemble-based decision
trees and were developed to overcome the shortcom-
ings of traditional decision trees. In RF, like other
ensemble learning techniques, the performance of a
number of weak learners is boosted via a voting
scheme. The main hallmarks of random forest in-
clude; 1) bootstrap sampling – randomly selecting
number of samples with replacement, 2) random fea-
ture selection – randomly selecting only a small num-
ber of m features in the split of each node, 3) full
depth decision tree growing, and 4) Out-of-bag error
estimation – calculating error on the samples which
were not selected during bootstrap sampling (Jiang
et al., 2009).

In RF, a M number of decision trees are generated
from a N number of training samples. For each
tree, bootstrap sampling is performed to create a new
training set. The new training dataset is then used
to create a fully grown decision tree without prun-
ing by using the ’classification and regression trees’
(CART) technique (Duda et al., 2012). Instead of
using all available features at each split of the node,
only a small number of m features are randomly se-
lected. This procedure is then repeated until M deci-
sion trees are created to form a randomly generated
”Forest”. For RF models, we used 1000 trees in the
forest. One the hyper-parameters for RF is the num-
ber of randomly selected variables mtry at each split
node; according to Breiman (2001), the recommended
value of mtry is equal to

√
p for classification prob-

lems (where p being the total number of predictors).
The author also mentioned that mtry << p should
improve the performance of the model. For regression
problems, the proposed default value of mtry is p/3.



Artificial Neural Network

Artificial Neural Networks (ANNs) learn the relation-
ships between inputs and outputs by using a training
dataset and do not need any information about the
system as they are black-box models. The inspira-
tion for ANNs comes from the functioning of bio-
logical neurons. ANNs consist of a number of lay-
ers of neuron-like processing units, which are inter-
connected with each other. Different neural network
strategies have been developed in the literature e.g.
feed-forward, Hopfield, Elman, self-organising maps,
and radial basis networks (Krenker et al., 2011).
Feed-forward ANNs are the most widely used and
generic neural network types and have been used for
solving problems in various research fields.

This paper uses a feed-forward neural network trained
by the Broyden-Flatcher-Goldfarb-Shano (BFGS) al-
gorithm. In this study, only one hidden layer used,
as more hidden layers did not improve the predic-
tion power of the neural network. This concurs with
Principe et al. (1999), who state that for most appli-
cations, one hidden layer should be adequate. We
also varied the number of neurons between 10-20
for both the energy consumption and daylight il-
luminance models, by using the stepwise searching
method. We found that for both models, using more
than 10 neurons in the hidden layer did not signifi-
cantly improve the accuracy of the models, so we used
10 hidden layer neurons. As the paper is focussed on
random forest and its comparison with ANNs, the de-
tails about searching the neurons in the hidden layer,
number of hidden layers and training algorithms are
not discussed here.

In order to develop machine learning models; we used
the implementation of RF included in the scikit-learn
module of the Python programming language, and
the neurolab module for the development of artificial
neural network.

Methodology

Energy model

A model of a classroom of a school building was cre-
ated in EnergyPlus as a use case to develop and val-
idate prediction models. The school building is lo-
cated in Cardiff, UK and is a BREEAM excellent
(≈ LEED platinum) rated building. The dimensions
of the classroom were 9.0 m (width)× 9.5 m (depth)
× 3.6 m (height). It was assumed that the class-
room has a 30% window-to-wall ratio on its south-
ern façade, which consists of a double glazing (3 mm
Generic PYR B Clear + 13 mm air gap + 3 mm
Generic Clear). An interior Venetian blind was mod-
eled on the window, which has a thermal conductivity
of 0.9 W/mK and slat beam solar reflectance for both
front and back sides were set to 0.8. The slat width
was modeled as 2.5 cm and the slat angle was fixed
at 4◦. The illuminance levels were calculated at one
sensor point (SP), which was located in the middle of

the classroom at a height of 0.8 m.
Energy consumption and hourly illuminance values
at the sensor point were obtained by running Energy-
Plus simulations. The weather file for Cardiff, Wales,
UK was used for these simulations. The cooling and
heating demand of the model was met by using a pur-
chased air system (ideal load air system). The system
meets the energy demand by providing the required
supply air capacity at the specified temperature. The
heating and cooling set points are defined according
to CIBSE (2006) Guide A i.e. 22◦C and 24◦C for
heating and cooling respectively. 9 people were mod-
eled with an activity level of 60 W/m2. A continu-
ous dimming control was modeled to control artificial
lighting based on the lux level calculated at the SP.
The sensor point has an illuminance set-point value
of 300 lx (CIBSE, 2006). The outputs from the mod-
els were energy consumption (sum of heating, cooling
and lighting energy consumption) and daylight illu-
minance at the SP. We also considered different in-
put variables to improved the prediction accuracy of
the machine learning models. The considered inputs
variables were; solar altitude angle, solar azimuth an-
gle, direct normal radiation, diffuse horizontal radia-
tion, day of the week, hour of the day, month of the
year, outdoor dry-bulb air temperature, wind speed,
outdoor air relative humidity, window blind position,
occupancy and previous hour values of daylight illu-
minance and energy consumption.

Evaluation metrics

To evaluate the performance of the models, several
metrics were calculated the testing data samples: the
root mean squared error (RMSE), the coefficient of
variation (CV), the mean absolute deviation and the
coefficient of determination (R2), as formalised in
Equations (1) to (4).

CV =

√∑N
i=1(yi−ŷi)2

N

ȳ
× 100 (1)

RMSE =

√√√√√ N∑
i=1

(yi − ŷi)2

N
(2)

MAD =
1

N

N∑
i=1

|ŷi − yi| (3)

R2 = 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − ȳ)2
(4)

where ŷi is the predicted output value, yi is the ac-
tual output variable for the ith sample in the testing
subset, ȳ is the mean of the observed values and N
is the number of samples in the testing subset. The
MAD metric calculates the average distance between



each data value and its mean for a given dataset. CV
is a measure of variation in error with respect to the
actual consumption means, R2 is used to evaluate the
closeness of fit, where perfectly fitted model will have
an R2 of 1. We have used RMSE as our primary
metric, and other performance metrics were used as
tie breakers; they were considered only when RMSE
did not provide any statistical difference between two
prediction models.

Results and discussion

The variables used to train the prediction models,
along with their maximum and minimum values, are
listed in Table 1. The variable importance plots
for energy consumption and daylight illuminance are
shown in Figure 1. These plots were produced by re-
placing each input variable in turn by random noise
in the RF and then analyzing the deterioration of the
performance of the random forest models. The result-
ing deterioration is a measure of predictor’s impor-
tance, for regression problems the most widely used
score is the increase in the mean of the error of a
tree (mean squared error) (Vincenzi et al., 2011). As
shown in Figure 1, it is evident that for both en-
ergy consumption and daylight illuminance, the pre-
vious hour’s values are the most important variables.
For energy consumption, other important variables
include: occupancy schedule, outdoor dry-bulb tem-
perature, indoor air temperature, blind schedule, alti-
tude angle, month of the year, diffuse solar radiation,
hour of the day, azimuth angle, total transmitted so-
lar radiation and direct solar radiation. For daylight
illuminance prediction; total transmitted solar radi-
ation, direct solar radiation, altitude angle, diffuse
solar radiation, azimuth angle, blind schedule, month
of the year and hour of the day were the most influen-
tial variables. We only used these input variables for
further analysis (i.e tuning hyper-parameters, train-
ing and testing of models).

Table 1: Summary of the input variables considered
in the model construction.

Variable Minimum Maximum Unit
Outdoor air temperature -3.7 26 ◦C
Outdoor relative humidity 30.63 100 %
Wind speed 0 22.5 m/sec
Diffuse solar radiation 0 383.17 W/m2

Direct solar radiation 0 613.03 W/m2

Solar azimuth angle 4.96 352.06 deg.
Solar altitude angle -61.50 61.54 deg.
Total trans. solar rad. 0 2355.84 W
Previous hour’s D.I. 0 26330.62 lx
Indoor air temperature 4.61 30.91 ◦C
Occupancy 0 1 –
∗Window blind 0 1 –
Previous hour’s E.C. 0 7.22 kWh
Hour of the day 0 23 –
Day of the week 0 6 –
Month of the year 1 12 –
Note: ∗Dichotomous variable

The observed effect of tree depth on the performance
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Figure 1: Variable importance for energy consump-
tion daylight illuminance prediction models.

of a Random Forest models is shown in Figure 2 and
Table 2. For both cases, it was found that a for-
est constructed with deeper trees resulted in better
accuracy. A maximum depth of 1 resulted in poor
performance and led to under-fitting. From results,
it is shown that using trees deeper than 10 levels did
not enhance the performance significantly and there-
fore, we used a maximum depth of 10 levels for both
energy consumption and daylight illuminance predic-
tion models. The forest with trees depth of 10 levels
resulted in the lowest values of RMSE (0.0540), CV
(14.8952%), MAD (0.019) and a higher R2 (0.9959)
value for energy consumption. For daylight illumi-
nance, using a tree depth of 10 levels resulted in
RMSE, CV and R2 values of 238.108, 36.429% and
0.9867 respectively.

Table 3 shows the effects of varying the number of
features on the accuracy of the RF models.

the performance of RF models while varying the num-
ber of features. Increasing mtry can improve the pre-
dictive performance of the RF model as there is a
higher number of predictors being available each node
of the tree. Contrary to the norm, we observed a de-
terioration in the performance of the RF model when
using more than 7 features. As shown in Table 3,
the resulting CV values for the model with max fea-
tures equal to 7 was 13.101% and 36.067% for energy
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Figure 2: RF models for energy consumption with
different maximum depths.
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Figure 3: RF models for daylight illuminance with
different maximum depths.

Table 2: Maximum depth for RF

Max depth RMSE CV MAD R2

Energy consumption
1 0.5644 155.6710 0.238 0.5537
3 0.2166 59.7446 0.083 0.9342
5 0.1135 31.3014 0.043 0.9820
7 0.0741 20.4428 0.027 0.9923
10 0.0540 14.8952 0.019 0.9959
13 0.0496 13.6816 0.017 0.9966
15 0.0492 13.5786 0.016 0.9966
20 0.0491 13.5438 0.016 0.9966

Daylight Illuminance
1 1264.396 193.446 603.779 0.6260
3 650.598 99.538 194.066 0.9010
5 373.824 57.193 97.200 0.9673
7 271.102 41.477 60.927 0.9828
10 238.108 36.429 44.915 0.9867
13 235.500 36.030 41.058 0.9870
15 234.368 35.857 40.419 0.9871
20 234.936 35.944 40.368 0.9870

consumption and daylight illuminance respectively,
which was higher than considering minimum feature
(mtry = 1, CVE.C = 37.818% and CVD.I = 61.205%)
and mtryE.C = 12 (CVE.C = 14.895%), mtryD.I =
9 (CVD.I = 36.429%). The results showed the same
behaviour for other performance metrics. Increasing
mtry also reduced the diversity of the individual tree
in the forest and therefore the performance of the RF
deteriorated when considering more than 7 features.
It is also worth mentioning that the construction of
an RF with more features is computationally inten-
sive and hence slower.
To evaluate the accuracy and generalization capabil-
ities of the developed models, both models were used
to predict energy consumption and daylight illumi-
nance on an unseen dataset (i.e. the dataset was
not used during the training or validation stages).
The results from both models are shown in Figure 4.
Moreover, RMSE and R2 of the testing and validation
samples using RF and ANN models were compared,
and are shown in Table 4. From Table 4 and Figure 4,

Table 3: Maximum Features for RF

Max features RMSE CV MAD R2

Energy consumption
1 0.137 37.818 0.060 0.9736
3 0.064 17.833 0.024 0.9942
5 0.051 14.199 0.019 0.9963
7 0.048 13.101 0.017 0.9968
10 0.049 13.544 0.017 0.9966
12 0.054 14.895 0.019 0.9959

Daylight Illuminance
1 400.046 61.205 86.806 0.9626
3 270.917 41.449 52.871 0.9828
5 242.970 37.173 47.027 0.9862
7 235.738 36.067 45.335 0.9870
8 236.302 36.153 44.645 0.9870
9 238.108 36.429 44.915 0.9867



Table 4: Comparison of ANN and RF for validation
and testing datasets

Validation Testing
Model RMSE R2 RMSE R2

RF (E.C) 0.048 0.9968 0.0559 0.9966
ANN (E.C) 0.043 0.9975 0.0493 0.9973
RF (D.I) 235.738 0.9870 227.87 0.9881
ANN (D.I) 282.354 0.9814 278.498 0.9799

it is evident that the Random Forest model performed
better at predicting daylight illuminance, had lower
RMSE values and higher R2 values. On the other
hand, ANN performed slightly better while predict-
ing energy consumption. Predicting daylight illumi-
nance was a challenging task as the illuminance at SP
has drastic fluctuations. RF models performed well
at predicting both higher and lower values, whereas
ANN struggled to predict particularly lower values.
There were even two high values of daylight illumi-
nance which the ANN model predicted as values close
to zero. One of the advantages of RF, as an ensemble
algorithm, is that it can efficiently deal with any miss-
ing values in the input values. Both studied models
did capture the relationship between input and out-
put variables and can be used as evaluation engines.

y(ANN_E.C) = 0.9987x + 0.0008
R² = 0.9973

y(RF_E.C) = 0.9901x + 0.0052
R² = 0.9966
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Figure 4: Testing results for RF and ANN models

The results showed that both models can be valu-
able computational intelligence tools to predict en-
ergy consumption and daylight illuminance. We also
found that the training time of the RF model was
much less than the ANN model (a few seconds versus
a few minutes). This time may vary from problem

to problem and also depends on other factors (e.g.
number of trees in the forest, tree depth, number of
random features selected at each split). Our results
concur with Siroky et al. (2009), who state that Ran-
dom Forests are faster to train and tune than other
ML techniques.

Conclusions

The paper presented two machine learning algorithms
to predict energy consumption and daylight illumi-
nance, based on a simulation model of a classroom.
Based on the evaluation metrics of RMSE, CV, MAD
and R2, it was found that the developed models can
be feasible and effective for predicting the hourly
daylight illuminance at a set-point and energy con-
sumption. On the testing dataset, ANN performed
marginally better than RF for predicting energy con-
sumption with a RMSE value of 0.0559 as compared
to 0.0493. Whereas, on daylight illuminance predic-
tion’s validation dataset, RF model provided better
results than the ANN model. The paper also used RF
as a method to calculate variable importance score,
which is a useful method for dimensionality reduc-
tion in order to improve model’s performance on high-
dimensional datasets.
Whilst the paper was focussed on developing ML
models for a specific classroom, the study will be
extended in the future to include a diverse range of
building types. In future, the performance of the pro-
posed models will be compared with other ensemble
based algorithms e.g. Gradient Boosted Regression
Trees (Friedman, 2002) and Extremely Randomised
Trees (Geurts et al., 2006). In the paper, the models
were developed by using a Test Reference year (TRY
weather file), however, in future actual weather con-
ditions will be used to replicate the proposed work.
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González, P. A. and J. M. Zamarreño (2005). Pre-
diction of hourly energy consumption in buildings
based on a feedback artificial neural network. En-
ergy and Buildings 37 (6), 595 – 601.

Hu, J. and S. Olbina (2011). Illuminance-based slat
angle selection model for automated control of split
blinds. Building and Environment 46 (3), 786 – 796.

Jiang, R., W. Tang, X. Wu, and W. Fu (2009). A ran-
dom forest approach to the detection of epistatic
interactions in case-control studies. BMC bioinfor-
matics 10 (1), 1.

Kalogirou, S. A. and M. Bojic (2000). Artificial neural
networks for the prediction of the energy consump-
tion of a passive solar building. Energy 25 (5), 479
– 491.

Kazanasmaz, T., M. Gnaydin, and S. Binol (2009).
Artificial neural networks to predict daylight illu-
minance in office buildings. Building and Environ-
ment 44 (8), 1751 – 1757.

Kreider, J., D. Claridge, P. Curtiss, R. Dodier,
J. Haberl, and M. Krarti (1995). Building energy
use prediction and system identification using re-
current neural networks. Journal of solar energy
engineering 117 (3), 161–166.

Krenker, A., J. Bester, and A. Kos (2011). Intro-
duction to the artificial neural networks. Artifi-
cial neural networks: methodological advances and
biomedical applications, 1–18.

Li, X. and J. Wen (2014). Review of building energy
modeling for control and operation. Renewable and
Sustainable Energy Reviews 37, 517–537.

Mourshed, M., S. Shikder, and A. D. Price (2011).
Phi-array: A novel method for fitness visualiza-
tion and decision making in evolutionary design
optimization. Advanced Engineering Informat-
ics 25 (4), 676 – 687. Special Section: Advances
and Challenges in Computing in Civil and Build-
ing Engineering.

Nizami, S. J. and A. Z. Al-Garni (1995). Forecasting
electric energy consumption using neural networks.
Energy Policy 23 (12), 1097 – 1104.

Principe, J. C., N. R. Euliano, and W. C. Lefebvre
(1999). Neural and adaptive systems: fundamentals
through simulations with CD-ROM. John Wiley &
Sons, Inc.

Siroky, D. S. et al. (2009). Navigating random
forests and related advances in algorithmic mod-
eling. Statistics Surveys 3, 147–163.

Tso, G. K. and K. K. Yau (2007). Predicting electric-
ity energy consumption: A comparison of regres-
sion analysis, decision tree and neural networks.
Energy 32 (9), 1761 – 1768.

Vincenzi, S., M. Zucchetta, P. Franzoi, M. Pellizzato,
F. Pranovi, G. A. D. Leo, and P. Torricelli (2011).
Application of a random forest algorithm to pre-
dict spatial distribution of the potential yield of
ruditapes philippinarum in the venice lagoon, italy.
Ecological Modelling 222 (8), 1471 – 1478.

Yu, Z., F. Haghighat, B. C. Fung, and H. Yoshino
(2010). A decision tree method for building energy
demand modeling. Energy and Buildings 42 (10),
1637 – 1646.


	Introduction
	Related work
	Machine learning techniques
	Random Forest
	Artificial Neural Network

	Methodology
	Energy model
	Evaluation metrics

	Results and discussion
	Conclusions
	Acknowledgement

