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Abstract

Background: The species is a fundamental unit of biological pattern and process, but its delimitation has proven a
ready source of argument and disagreement. Here, we discuss four key steps that utilize statistical thresholds to
describe the morphological variability within a sample and hence assess whether there is evidence for one or
multiple species. Once the initial set of biologically relevant traits on comparable individuals has been identified,
there is no need for the investigator to hypothesise how specimens might be divided among groups, nor the
traits on which groups might be separated.

Results: Principal components are obtained using robust covariance estimates and retained only if they exceed
threshold amounts of explanatory power, before model-based clustering is performed on the dimension-reduced
space. We apply these steps in an attempt to resolve ongoing debates among taxonomists working on the extinct
Eocene planktonic foraminifera Turborotalia, providing statistical evidence for two species shortly before the
lineage’s extinction near the Eocene/Oligocene boundary.

Conclusion: By estimating variance robustly (samples containing incipient species are unlikely to be scaled
optimally by means and standard deviations) and identifying thresholds relevant to a particular system rather than
universal standards, the steps of the framework aim to optimize the chances of delineation without imposing pre-
conceived patterns onto estimates of species limits.

Background
Whilst the fundamental importance of the species
remains paramount in systematic and evolutionary biol-
ogy, debates on species concepts continue [1-3]. There
is, however, a growing consensus that conceptualizing
what species ought to be is different from delimiting
them in practice [2,4,5]. Operationally, species delimita-
tion pivots on the assumption that, once sexual
dimorphism, ontogeny and other causes of group differ-
ence have been taken into account to leave directly
comparable individuals for analysis (semaphoronts [6]),
expression of genotypes or phenotypes [7] or both [8]
should be more similar in two individuals of species X
than between one individual of species X and one indi-
vidual of species Y. Hence individuals within species are
expected to cluster in genotypic or phenotypic space,
with sparsely inhabited or empty space between them.
The range of intra-species variation can surpass the

range of inter-species variation [9] however, which is
problematic for morphological species concepts which
rely critically on the assumption that gaps between spe-
cies do exist [1-3].
The development of molecular diagnostics to identify

analogous gaps has been dramatic [10], yielding auto-
mated approaches to test specific evolutionary hypoth-
eses and enabling rapid delimitation of previously-
undescribed species [10,11] across taxa and biogeogra-
phical region [12]. Morphological data are nevertheless
useful in delimiting species [13] and strong arguments
exist to refine non-molecular approaches [14,15]. Mor-
phological data are often the only sort available. Else-
where, they can be integrated with genetic data to
augment evidence for species delimitation [8] or pro-
voke new hypotheses given a lack of congruence [16].
Morphological traits are the outcome of multi-locus var-
iation, and thus constitute a more thorough reflection of
variation among individuals than a particular, pre-deter-
mined section of the DNA sequence [14]. Furthermore,
if divergent selection is the main driver of speciation,
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then adaptive (morphological) traits may provide the
best insights into species’ limits [17,18]. Whilst various
approaches have been developed for delimiting species
morphometrically using an a priori definition [19],
development of hypothesis-driven morphometric techni-
ques when there is no guide as to whether an individual
in a genus belongs to species X or Y has been much
slower than for equivalent molecular tests [10,20].
To be suitable, any approach to this problem must be

able to first characterize and then distinguish complex,
multivariate organisms [19]. The mathematical transla-
tion of species delimitation is identification of well-sepa-
rated clusters (Fig. 1): multiple species are inferred
when two or more well-separated groups are a better
way of describing a given sample than one group [21].
The problematic nature of non-discrete differentiation

[9] has provoked the development of threshold models,
which permit small numbers of supposedly distinct
groups to show similar character expression: Wright
[22] developed a threshold model to split continuous
genotypic distributions into discrete character states;
Simpson et al. [23] claimed that a coefficient of variation
over 10 in a morphological trait indicated more than
one taxon in a sample; Wiens & Servedio [24] used a
5% polymorphism cut-off to account for the rarity of
characters being genuinely fixed; and Templeton [25]
used a 5% homoplasy cut-off to partition data into inde-
pendent haplotype networks. The use of threshold levels
remains the crux of numerical taxonomy [7], but the
idea that the appropriate threshold for species’ delimita-
tion is consistent across all questions and groups is
problematic.

Figure 1 How many clusters are there in a particular sample? In this simulated instance (main panel), are there two, three or more? The
problem is that adding additional clusters, by definition, explains more variation until each individual sits isolated in a cluster by itself [26]. If the
cluster limits are robust, statistical methods should be able to identify them without resorting to a priori patterns. Cosine-smoothed kernel
density plots [continuous analogues of histograms, [65]] highlight the difference induced by centering around the median (dot-dashed long
lines) rather than the mean (dashed long lines) and scaling by the median absolute deviation rather than by standard deviations (the short,
perpendicular lines are one median absolute deviation or standard deviation, as appropriate). In symmetric distributions, means and medians are
similar, but median absolute deviations can still differ from standard deviations (right panel). If part of the population is an incipient species
diverging from the majority, then medians and means also give different values (top panel).
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Any threshold measure effectively aims to identify
how much “noise” can be discarded. In structured data,
the identification of additional clusters increases within-
group cohesion until, in the limit, each individual sits
proudly as an isolated cluster [26] and no noise is dis-
carded. Hence the problem becomes finding the optimal
number of clusters to describe the structure parsimo-
niously. The simplest structure where an additional clus-
ter is not warranted can be identified sequentially [e.g.,
are 3 clusters better than 2? [26,27]] or simultaneously
[e.g., are 3 clusters better than 1,2,4,5, and so on?
[28,29]]. These clusters may vary in their size (i.e., num-
ber of included individuals), shape and orientation [30].
Quantifying how much noise to discard relies heavily on
the traits used to characterize differences among indivi-
duals. Any method to calculate variability within and
between species should aim to neglect redundant mea-
surements, whilst retaining essential differences. Accu-
rate identification of the dimension and orientation of
any dimension-reduced space is therefore a key
problem.
In high-dimensional data, there often exists a lower-

dimensional space that describes the majority of the
observed variation, i.e., a smaller “fundamental set of
independent variables ... which determine the values of
the original data” [[31], cited in [32]]. Principal Compo-
nents Analysis (PCA) finds a dimension-reduced space
using variable covariance to rotate the original data to a
new orientation that emphasizes similarities and differ-
ences among variables. Use of covariance for rotation
assumes a multivariate normal distribution, which is
often violated in taxonomic studies where data consist
of a mixture of ratio, ordinal, binary and continuous
variables, i.e. mixed mode, and might contain multiple
species distributed in clumps across space. Many work-
ers seek to circumvent this problem by using the corre-
lation matrix rather than the covariance matrix as the
basis for the PCA [ch. 11 in [32]], but outliers can still
skew the orientation of the rotated axes markedly
[33,34]. An alternative is to estimate variance robustly,
using, for example, the median absolute deviation to
detect the most variable direction [35]. The approach
has already been employed in environmetrics [36] but
not, to our knowledge, until now in systematic biology
where it is relevant because samples containing incipient
species are unlikely to be scaled optimally by means and
standard deviations (Fig. 1).
Our approach to species delimitation consists of four

steps: (1) obtaining orthogonal axes with robust covar-
iance estimators [37]; (2) reducing the dimensionality of
the orthogonal axes to only those with significant expla-
natory power [38]; (3) identifying the optimal number,
shape and orientation of groups within the rotated,
dimension-reduced data [28]; and (4) performing model

diagnostics to assess the impact of unusual or extreme
individuals on the dimension-reduced space and cluster
model [39]. At each step, we use heuristic thresholds to
retain or remove additional complexity, thereby mini-
mising the scope for subjective choices. The details of
application likely vary from question to question, but we
argue here that they are key steps when splitting contin-
uous morphological variation into discrete species. We
first introduce the case study that motivated develop-
ment, before going on to discuss application in this con-
tentious area.

Case Study - Turborotalia cerroazulensis lineage
The Turborotalia cerroazulensis lineage (Fig. 2) consti-
tute one of the most abundant and widely distributed
groups of Eocene planktonic foraminifera [40]. Sine
Bolli [41], Blow and Banner [42] and Toumarkine and
Bolli [43], it has been widely appreciated that significant
morphological change has occurred over geological
time, which has made the group very useful for practical
biostratigraphy [44]: earlier morphotypes tend to be
more rounded in overall shape whereas later forms tend
to be more angular and possess a distinct rim or keel
around the periphery. Although a variety of biostratigra-
phically-important morphospecies have been described
and the morphological differences between middle and
upper Eocene forms are very obvious, it has been sug-
gested that they are linked by populations comprising of
overlapping morphospecies that intergrade temporally
(Turborotalia frontosa - T. possagnoensis - T. pomeroli -
T. cerroazulensis - T. cocoaensis - T. cunialensis)
[43-46]. In this hypothesis, despite the group being split
into six morphospecies, only a single morphological
cluster is present at any one time. An alternative view
[40] is that more than one species exists by the upper
Eocene and hence genuine speciation and morphological
divergence can be implied. The key problem is therefore
to determine whether one or more morphological clus-
ters are present at each time interval. Here, we restrict
our investigation to two time slices, one from the older
and one from the younger part of the succession (for
more details, see Methods). Our aim is to demonstrate
application to delimit species using the sorts of mixed
mode data often found in ‘traditional’ taxonomic pro-
blems, especially in a palaeontological context when the
morphological species concept is fundamental.

Statistical Thresholds used to Delimit Species
(STUDS)
The Orientation of the Dimension-Reduced Space
The restrictive assumption of a multivariate normal dis-
tribution induced by use of covariance fails in many
applied contexts, prompting refinement of the original
PCA [see ch. 11 in [32]]. Using correlation matrices as
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an alternative does not always account for the poten-
tially large effect that outliers can have on the orienta-
tion of the principal components, which aims to remove
interdependence among components but can be biased
by unusual observations [33,37]. As an illustration,
Croux & Ruiz-Gazen [33] compared a PCA on the cor-
relation matrix with a PCA using robust variance esti-
mators, finding a correlation between the two
“independent” components obtained from the correla-
tion matrix argued to be a result of two outlying points.
If scaled and centered data are not well-approximated
by a multivariate normal distribution (multiple clusters
within the data can also violate the normality assump-
tion), rotated axes are more likely to pass through the
centre of the multivariate data cloud when obtained
using robust covariance estimators to identify the most
variable traits using alternative metrics [35]. As the
mixed mode data we analyze here are poorly described
by the assumption of normality, each variable was cen-
tered on the median and scaled by percentile variability
prior to rotation. Note that rotation is based upon the
robust covariance estimates and pays no attention to the
ultimate goal of finding cohesive clusters of comparable
individuals - the implicit assumption is that the key

distinctions among groups are present and identifiable
in the traits used for analysis.

Dimension Reduction
Retaining too few axes risks neglecting an influential
one whereas retaining too many factors can deliver
attention to relatively unimportant components (or, pos-
sibly, measurement error and inaccuracy [47]): either
can generate bias, although the former is more serious
[48]. Each retained variable should provide a significant
improvement in explanatory power, whilst the improve-
ment of each discarded variable should be minor: the
threshold is located where the morphological trait infor-
mation changes from being useful to irrelevant noise.
Many stopping criteria have been proposed to determine
where the threshold for dimension retention lies [see
reviews in [38,47]] and no single measure outperforms
all others [47]. Our case study contains multiple traits
that are reasonably highly correlated. In such instances,
adapting Horn’s parallel analysis [49] to test whether the
observed eigenvalues in the data are greater than the
centiles of 10,000 Monte Carlo estimates is one of two
most promising stopping criteria [[47], Additional file 1,
online appendix 1 contains a comparison of multiple

Figure 2 The linear morphometric traits used (see Methods for a full list of incorporated traits), and an example Turborotalia
specimen. Of the morphotaxa discussed, this specimen most closely resembles Turborotalia cerroazulensis.

Ezard et al. BMC Evolutionary Biology 2010, 10:175
http://www.biomedcentral.com/1471-2148/10/175

Page 4 of 11



criteria and simulations documenting why dimension
reduction is important in this context].

Identification of well-separated clusters
The dimension-reduced sample can be split into
groups using cluster analysis, the optimal delimitation
of which has low intra- and high inter-group variabil-
ity. K-means approaches [50,51] generate clusters with
equal lengths in all dimensions (e.g., circles,
spheres,....), which is not always representative of indi-
viduals in species clusters [30]. The flexibility in the
shape and orientation of clusters can be incorporated
using Gaussian mixture models and a Bayesian
approach to estimate the support for particular
arrangements of clusters using iterative Expectation-
Maximization methods for maximum-likelihood [28].
The volume and shape can be equal or variable among
axes to assess, for example, whether elliptical clusters
fit better than round ones. The choice between com-
peting models is made through the Bayesian Informa-
tion Criterion (BIC, also known as the Schwarz
Information Criterion), which is similar to the Akaike
Information Criterion (AIC) and provides a compro-
mise between explained variation and the number of
parameters used [52]. The difference is that the penalty
term per parameter for the BIC is log(n), where n is
the number of observations, rather than 2 for the AIC.
Consequently, BIC favours complex models more than
AIC if n is at least 8, but simpler ones otherwise [52].
We present BIC values and also model weights, which
sum to 1 and can be interpreted as the probability that
a particular model provides the best description of the
data structure among the set of candidate models [52].

Model Diagnostics
Unusual or extreme individuals can exert great influence
on the orientation of principal components [34,39]. The

distances between individuals, when transformed to
approach a chi-squared distribution, can be used to
identify unusual observations at a desired level of signifi-
cance [34]. Even if an individual is significantly unusual
at a given level, there is still no guarantee that it unduly
affects interpretation [39]; small groups of such points
might rather be an under-sampled group that is diver-
ging away from the main population.

Implementation
All calculations were performed in R version 2.9.1 [53]
and used the pcaPP [54], mvoutlier [34,54] and mclust
[28] packages. A self-contained example of our code is
included in Additional file 1, online appendix 1.

Results
Rotated and dimension-reduced morphospaces
The random average under parallel analysis criterion
suggested that two components should be retained in
both samples, which represented just under 50% of the
variation in the original data in the upper Eocene but
around 64% in the middle Eocene (Table 1). While test
expansion and chamber aspect ratio were a key trait in
both samples (identified using the loadings onto the
robust principal components), filled (a shape variable,
see Methods for full details) was a much stronger pre-
dictor in the upper Eocene than earlier in the sequence
(Table 2). Area, the principal size measurement, loaded
relatively weakly onto these components. These mea-
surements reflect in different ways the main qualitative
axis of variation used by taxonomists in morphospecies
discrimination, i.e., the relative roundness of the shell
versus the more angular, compressed morphology. The
overall parametric correlation between loadings in the
two samples was low (r = -0.124), which suggests sub-
stantial differences between typical individuals in the
two samples.

Table 1 Based on stopping criteria, two components were retained in both samples (see Additional file 1, online
appendix 1 for justification of stopping criteria and dimension reduction).

Component Middle Eocene Upper Eocene

Eigenvalue Cumulative
Variance Explained

Eigenvalue Cumulative
Variance Explained

1 3.47 0.29 5.97 0.42

2 2.33 0.49 3.24 0.64

3 1.43 0.61 1.44 0.74

4 1.27 0.72 0.95 0.81

5 1.15 0.81 0.74 0.86

6 0.75 0.88 0.68 0.91

7 0.5 0.92 0.5 0.94

8 0.42 0.95 0.31 0.97

9 0.42 0.99 0.31 0.99

10 0.09 1 0.11 1
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Sample Structure
Clustering on the dimension-reduced morphospaces
found strong evidence to reject the null hypothesis of
homogeneous data in the upper Eocene sample, but not
in the middle Eocene (Table 3).
The model weights in the earlier, middle Eocene sam-

ple suggested overwhelmingly that there was no evi-
dence to reject the null hypothesis of one, mixed species

(Fig. 3a): the model weight was 0.996 when summed
across all one-cluster models (Table 3). The weights of
all these one-cluster models were similar, meaning there
is no clear inference of the shape of the three-dimen-
sional point cloud. As previously described, the typical
individual has a rounded overall shape (Fig. 4a).
In contrast, the summed model weight of all one-clus-

ter models for the upper Eocene sample was 0, with the
remainder distributed among two- (0.894), three- (0.106)
and four-cluster models (0.002). This is strong evidence
to reject the null hypothesis in favour of the alternative
hypothesis of more than one species in the genus at this
time (Fig. 3b). As the three- and four-cluster model
weights sum to 0.108 and these models are less parsimo-
nious (they contain additional parameters compared to
the two-cluster models), we do not discuss them further.
The best model for the upper Eocene sample therefore
favours two ellipsoidal clusters with equal shape (the
model weight for this model alone was 0.611, Table 3)
but of different abundance (155 and 45 individuals in
each). Typical individuals in both are less rounded than
earlier in the stratigraphic interval (Fig 4b-c), but key dif-
ferences between the two upper Eocene groups are in
test height, filled and aperture ratio (Fig. 5): smaller, less
rounded individuals have a larger aperture ratio and less
acute umbilical angle (the mean values are 1.313 μm vs.
1.984 μm, 0.849 vs. 1.362, 0.581 vs. 0.456 and 33.3° vs.
28.3°, respectively). In taxonomic terms the cluster con-
taining more-rounded individuals corresponds more clo-
sely to the holotype of Turborotalia cerroazulensis,
whereas the second corresponds to T. cocoaensis (see
SEMs in [40] of these specimens).

Discussion
Whilst automation at the expense of all else is undesir-
able [55], the use of taxonomically informative data
should enable species’ limits to be readily visualized
[21]. We set out to test the null hypothesis that the

Table 2 The loadings onto the robust principal components; larger absolute values indicate more influential traits on
the dimension-reduced space.

Trait Middle Eocene Upper Eocene

Component 1 Component 2 Component 1 Component 2

Area 0.111 -0.355 0.289 -0.364

Filled -0.508 0.239 0.382 0.317

Chamber Aspect Ratio -0.395 -0.438 -0.418 0.453

Chamber Inflation -0.390 -0.396 -0.274 0.062

Aperture Aspect Ratio -0.176 -0.026 -0.249 0.148

Test Height -0.261 0.374 0.470 0.220

Test Expansion -0.505 0.228 -0.112 0.469

Umbilical Angle 0.103 0.522 -0.361 -0.047

Chirality 0.043 -0.037 0.122 0.192

Chamber Number 0.233 -0.048 -0.284 -0.478

Table 3 Bayesian Information Criterion values and, in
brackets, model weights for the model-based clustering
based on robust principal components for the two
samples.

Distribution Model Middle Eocene Upper Eocene

1 2 3 4 1 2 3 4

Spherical E– 1574
(0.010)

1575.5
(0.004)

Spherical V– 1574
(0.010)

1649
(0.002)

Diagonal EE- 1567
(0.227)

Diagonal VE- 1567
(0.227)

Diagonal EV- 1567
(0.227)

Diagonal VV- 1567
(0.227)

Ellipsoidal EEE 1573
(0.017)

Ellipsoidal EEV 1573
(0.017)

1639
(0.224)

1648
(0.003)

Ellipsoidal VEV 1573
(0.017)

1637
(0.611)

1641
(0.101)

Ellipsoidal VVV 1573
(0.017)

1642
(0.059)

1649
(0.002)

Legend: Although models for up to 10 clusters were fitted, only the first three
had at least one model with non-zero weight and we only show models for
up to 4 clusters in the table. The model codes relate to, in order, the volume,
shape and orientation of the clusters: E denotes equal and V variable such
that VEV, e.g., is a model with clusters of equal shape but different volume
and orientation. BIC values and weights are only given if model weights were
non-zero.
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species lineage of the Eocene planktonic foraminifer
Turborotalia is homogeneous, i.e. one that contains an
insensibly continuous series of intergrading populations
[44] despite comprehensive description of multiple mor-
phospecies regularly used in biostratigraphy [40]. In the
middle Eocene sample, there was no statistical evidence
to split the sample; this does not mean that multiple
species are not present, just that there is no statistical
evidence to delimit them. In the upper Eocene sample,
the statistical evidence supported two species strongly
(model weights ~0.9), whereas support for the existence
of other numbers of species was very low. Delimitation
is subtle enough to be difficult to determine by eye and
requires investigation of large populations using multi-
variate data analysis. Crucially, we neither made a priori
assumptions about the assignment of individuals to clus-
ters nor employed prior knowledge of which traits
determined those differences. Our use of robust variance
estimators [37] is particularly appropriate for samples

containing incipient species diverging in opposing direc-
tions (Fig. 1). Consequently, our approach is more gen-
eral than this particular study: it can be used if a test is
sought for the null hypothesis of multivariate homoge-
neity without specifying a particular alternative.
The increased adoption of geometric morphometrics -

which utilizes distances among functionally-important
characters referred to as landmarks - has been under-
pinned by a desire to quantify shape precisely across
diverse questions, often to understand changes in shape
independent of size [56] and can delimit previously-
undetected species [57]. Size, however, often has a deci-
sive role in diversification [58] and there is no guarantee
that separating shape from it is biologically reasonable
[59]. Our aim was to aid ‘classical’ morphometric treat-
ments, where taxonomists have established decisive and
informative functional traits. The steps discussed here
serve to increase repeatability of taxonomic decisions,
through the quantitative element that morphometric

Figure 3 Point clouds for the two samples show a homogeneous sample in the middle Eocene and a heterogeneous one in the upper
Eocene. The two clusters in the upper Eocene sample are shown in different symbols and colours. Significant outliers at the 5% level are
denoted in solid symbols but were retained for all analyses, as conclusions were not altered qualitatively (see “Model Diagnostics”).

Figure 4 Individuals at the centres of their clusters, identified as that with the minimum summed pairwise distance between it and all
other individuals in their respective clusters. Panel A is from the middle Eocene sample, with B and C being from the two upper Eocene
clusters. These images have been cropped and are therefore no longer to scale; high-quality SEM images are available in [40].

Ezard et al. BMC Evolutionary Biology 2010, 10:175
http://www.biomedcentral.com/1471-2148/10/175

Page 7 of 11



treatment adds to descriptions of sample variability. The
connectivity of samples to be delimited can be achieved
in many ways using, for example, Fourier analysis of dis-
tances between neighbours [60], neural networks [61]
or, as here, by encompassing clusters of similar indivi-
duals using polygons [28]. The details of application
may change on a case-by-case basis as there is rarely a

one-size-fits-all recipe, but the steps of the framework
have widespread utility in aiding species delimitation
that might otherwise be obscured through mathematical
conflation.
Distributions of biological traits are rarely described

optimally when centered and scaled by means and stan-
dard deviations and rotated using covariance; such data
are treated more appropriately using robust covariance
estimates (Fig. 1). The use of robust covariance estima-
tors to rotate raw data onto principal components is not
widespread and yields a different dimension-reduced
space from correlation- or covariance-based approaches
[37]. There are alternatives to obtain appropriate scaling,
notably principal co-ordinates analysis [62] but that
method does not lend itself readily to threshold criteria,
which are important to ensure parsimonious description
of the untransformed traits in orthogonal space. Data
can be, and often are, transformed prior to scaling, cen-
tering and rotation, but there is often no biologically
meaningful transformation [63]. Whilst each variable
could be transformed independently to obtain approxi-
mately symmetric, normally distributed distributions,
doing so can inhibit interpretation. An advantage of
robust approaches is that they de-emphasize extreme
values: medians and median absolute deviations are less
affected by long-tailed or asymmetric distributions than
means and standard deviations. Both of these circum-
stances may arise during the early stages of divergence,
when a population is splitting into incipient species.
Inadequate scaling can skew the orientation of the prin-
cipal components [35], hence obscuring potentially criti-
cal differences. The notion of being ‘well-separated’
applies to extreme data points as well as distinct clus-
ters, meaning that identification of genuine outliers can
be problematic. In the case studies we present here, we
have no biological or methodological reason to remove
the outliers, which might correspond to one or more
undersampled or hidden groups. Without a priori
grounds to eliminate them, results are reported here
from analyses that retained these data and we note that
the use of robust variance estimates means that manual
removal is less likely to alter conclusions than standard,
covariance-based approaches.
If species are argued to be morphologically distinct

[1-3], then threshold-stopping criteria can be used to
aid delimitation in morphospace. The failure to use
prior knowledge of which individuals belong to which
species and which traits are the key distinctions between
species does not maximise power, but is based upon the
argument that rejecting the null hypothesis (homoge-
neous data) in a contemporaneous sample implies two
or more species. Analogous approaches have been
applied to the problem of species’ delimitation from
alternative perspectives. Pons et al. [11] used changes in

Figure 5 The difference between the two clusters in the upper
Eocene sample in four of the raw morphological traits was
often clear. The thick bar inside each box is the median, with the
box extremities representing the inter-quartile range. The limits of
each whisker are 1.5*(inter-quartile range), values beyond which are
denoted by open circles

Ezard et al. BMC Evolutionary Biology 2010, 10:175
http://www.biomedcentral.com/1471-2148/10/175

Page 8 of 11



per-lineage branching rate to cluster tips on a phyloge-
netic tree, with the threshold between intra- and inter-
species variation being the point where branching rates
underwent a striking increase. Clusters in contempora-
neous samples of comparable individuals are argued to
be putative species [1-3]. The approach we present pro-
vides a useful analogue to methods that cluster tips on a
phylogeny [11], from a bottom-up (samples into multi-
ple clusters) rather than top-down (merging phyloge-
netic and phylogeographic methods) perspective for
estimating sample structure in, amongst others, genoty-
pic or phenotypic [7] or geographical [64] space. Appli-
cation is likely to be particularly appropriate for species
delimitation questions in the fossil record [57], or to
test for congruence between morphological and genetic
differentiation without resorting to using the other evi-
dence as a prior hypothesis [8].

Conclusion
Taxonomic decisions should ideally be taken by aligning
state-of-the-art statistics with taxonomic expertise. Any
technique to delimit species pivots on its ability to
quantify the heterogeneity contained within species:
“even an improved taxonomy still imposes structure on
macroevolutionary investigation” [pp. 371, [60]] and the
success of any statistical approach pivots on the use of
biologically relevant data. The details of application will
differ from question to question and from group to
group, but the four steps discussed here decrease the
potential for subjective decisions in species delimitation
once biologically relevant traits have been identified. By
scaling and centering appropriately, estimating variance
robustly and identifying the thresholds that are relevant
to the particular question and data set rather than a uni-
versal guide, the objective is to minimize the extent to
which pre-conceived pattern is forced onto data.

Methods
Raw data were obtained from Hole 865B of the Ocean
Drilling Program (equatorial mid-Pacific Ocean). The
entire data set consists of 51 time slices through a strati-
graphic interval spanning around 13 million years. We
focus on two samples here: one middle Eocene and one
upper Eocene; a future contribution will analyze many
more time slices and discuss the pattern of evolution in
detail. Samples of 10 cm3 were taken from the sediment
and washed over a 63-micron sieve to remove fine parti-
cles (mainly coccoliths). The sieved residue is >99%
planktonic foraminifer shells. All specimens of the Tur-
borotalia cerroazulensis group of morphospecies were
identified by eye using the taxonomic criteria of Pearson
et al. [40] from multispecies assemblages and picked
without further reference to species designation. Most
other groups of foraminifera are easily distinguished,

although rejection of specimens belonging to T. altispir-
oides and T. ampliapertura required a greater degree of
expert discrimination [40]. The first 200 specimens
encountered were manually separated and mounted on
cardboard slides in a standard orientation (edge on,
aperture facing). For each specimen, fine adjustments
were made using a universal stage to achieve as consis-
tent a standard orientation as possible. The choice of
orientation in side view and measurements were care-
fully designed to capture the greatest range of morpho-
logical variability in the group, including the characters
that are used in qualitative discrimination of the mor-
phospecies by working taxonomists [40].
Measurements were made from photographs of each

individual using Image Pro+ (Image Software, UK). The
following morphological traits were incorporated in analy-
sis: area, ‘filled’ (the proportion of a circle of an individual’s
radius filled by that individual), final chamber inflation
(chamber width scaled by length), final chamber and aper-
ture aspect ratio (the height: width ratio of the final cham-
ber and aperture, respectively), test height (axis/radius),
test expansion (diameter/radius), umbilical angle, chamber
number and chirality. See fig. 2 for more information.

Additional material

Additional file 1: Further Methodological Detail. This appendix
contains (1) a comparison of different threshold-stopping criteria for use
in dimension reduction; (2) simulation study to illustrate the importance
of dimension reduction in cases like this; and (3) self-contained R code
to follow the framework as implemented here.

Acknowledgements
We would like to thank the authors of the packages we use as well as Tim
Barraclough, Norman MacLeod, Albert Phillimore and four anonymous
reviewers for insightful suggestions that improved the manuscript, Catherine
Watling for the SEM photograph and Matthew Carroll for repeating all
morphometric measurements. The Natural Environment Research Council
(grant NE/E015956/1 to AP & PNP) provided financial support.

Author details
1Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY,
UK. 2School of Earth and Planetary Sciences, Cardiff University, Cardiff, CF10
3YE, UK.

Authors’ contributions
THGE developed the framework, generated simulations, analyzed the data
and produced new figures; PNP conceived the study and co-ordinated data
collection; AP was involved in framework development; AP & PNP
supervised the work; THGE, PNP and AP wrote the text. All authors read and
approved the final manuscript.

Received: 30 April 2010 Accepted: 11 June 2010
Published: 11 June 2010

References
1. Cracraft J: Species Concepts and the Ontology of Evolution. Biol Philosoph

1987, 2(3):329-346.
2. De Queiroz K: Species concepts and species delimitation. Syst Biol 2007,

56(6):879-886.

Ezard et al. BMC Evolutionary Biology 2010, 10:175
http://www.biomedcentral.com/1471-2148/10/175

Page 9 of 11

http://www.biomedcentral.com/content/supplementary/1471-2148-10-175-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/18027281?dopt=Abstract


3. Claridge MF, Dawah AH, Wilson MR, (eds): Species: The Units of
Biodiversity. New York: Springer 1997.

4. Hey J, Waples RS, Arnold ML, Butlin RK, Harrison RG: Understanding and
confronting species uncertainty in biology and conservation. Trends Ecol
Evol 2003, 18(11):597-603.

5. Mayden RL: A hierarchy of species concepts: the denouement in the
saga of the species problem. Species: The Units of Biodiversity New York:
SpringerClaridge MF, Dawah AH, Wilson MR 1997, 381-424.

6. Hennig WL: Phylogenetic systematics. Urbana, IL: University of Illinois Press
1966.

7. Sites JW, Marshall JC: Operational criteria for delimiting species. Ann Rev
Ecol Evol Syst 2004, 35:199-227.

8. Fontaneto D, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C,
Barraclough TG: Independently evolving species in asexual bdelloid
rotifers. PLoS Biol 2007, 5(4):914-921.

9. Tabachnick RE, Bookstein FL: The Structure of Individual Variation in
Miocene Globorotalia. Evolution 1990, 44(2):416-434.

10. Vogler AP, Monaghan MT: Recent advances in DNA taxonomy. J Zool Syst
Evol Res 2007, 45(1):1-10.

11. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S,
Kamoun S, Sumlin WD, Vogler AP: Sequence-based species delimitation
for the DNA taxonomy of undescribed insects. Syst Biol 2006,
55(4):595-609.

12. Pfenninger M, Schwenk K: Cryptic animal species are homogeneously
distributed among taxa and biogeographical regions. BMC Evol Biol 2007,
7:121-127.

13. Wiens JJ: The role of morphological data in phylogeny reconstruction.
Syst Biol 2004, 53(4):653-661.

14. Will KW, Mishler BD, Wheeler QD: The perils of DNA barcoding and the
need for integrative taxonomy. Syst Biol 2005, 54(5):844-851.

15. Dayrat B: Towards integrative taxonomy. Biol J Linn Soc 2005,
85(3):407-415.

16. Cardoso A, Serrano A, Vogler AP: Morphological and molecular variation
in tiger beetles of the Cicindela hyrbida complex: is an ‘integrative
taxonomy’ possible? Mol Ecol 2009, 18(4):648-664.

17. Rundle HD, Nosil P: Ecological speciation. Ecol Lett 2005, 8:336-352.
18. Schluter D: Ecological character displacement in adaptive radiation. Am

Nat 2000, 156:S4-S16.
19. MacLeod N, Forey PL: Morphology, shape and phylogeny. Boca Raton, FL:

CRC Press 2002.
20. Wiens JJ: Species delimitation: New approaches for discovering diversity.

Syst Biol 2007, 56(6):875-878.
21. Sneath PHA, Sokal RR: Numerical Taxonomy. San Francisco: W.H. Freeman

1973.
22. Wright S: An analysis of variability in the number of digits in an inbred

strain of guinea pigs. Genetics 1934, 19(6):506-534.
23. Simpson GG, Roe A, Lewontin RC: Quantitative Zoology. New York:

Harcourt, Bruce & Co 1960.
24. Wiens JJ, Servedio MR: Species delimitation in systematics: inferring

diagnostic differences between species. Proc Roy Soc Lond B 2000,
267(1444):631-636.

25. Templeton AR: Using phylogenetic analyses of gene trees to test species
status and processes. Mol Ecol 2001, 10(3):779-791.

26. Tibshirani R, Walther G, Hastie T: Estimating the number of data clusters
via the gap statistic. J Roy Stat Soc B Met 2001, 63(2):411-423.

27. Yan M, Ye K: Determining the number of clusters using the weighted
gap statistic. Biometrics 2007, 63(4):1031-1037.

28. Fraley C, Raftery AE: Model-based clustering, discriminant analysis, and
density estimation. J Am Stat Assoc 2002, 97(458):611-631.

29. Oh MS, Raftery AE: Model-Based Clustering with Dissimilarities: A
Bayesian Approach. J Comput Graph Stat 2007, 16(3):559-585.

30. Hohenlohe PA, Arnold SJ: MIPoD: A Hypothesis-Testing Framework for
Microevolutionary Inference from Patterns of Divergence. Am Nat 2008,
171(3):366-385.

31. Hotelling H: Analysis of a complex of statistical variables into principal
components. J Educ Psychol 1933, 24(6):417-441, 498-500.

32. Jolliffe IT: Principal Components Analysis. New York, Springer, 2 2002.
33. Croux C, Ruiz-Gazen A: High Breakdown Estimators for Principal

Components: The Projection-pursuit Approach Revisited. J Multivariate
Anal 2005, 95(1):206-226.

34. Filzmoser P, Maronna R, Werner M: Outlier identification in high
dimensions. Comp Stat Data Anal 2008, 52(3):1694-1711.

35. Li G, Chen Z: Projection-pursuit Approach to Robust Dispersion Matrices
and Principal Components: Primary Theory and Monte Carlo. J Am Stat
Assoc 1985, 80(391):759-766.

36. Filzmoser P: Robust Principal Component and Factor Analysis in the
Geostatistical Treatment of Environmental Data. Environmetrics 1999,
10:363-375.

37. Croux C, Filzmoser P, Oliveira M: Algorithms for Projection-Pursuit Robust
Principal Component Analysis. Chemometr Intell Lab 2007, 87(2):218-225.

38. Jackson DA: Stopping rules in principal components analysis: a
comparison of heuristical and statistical approaches. Ecology 1993,
74(8):2204-2214.

39. Brooks SP: Diagnostics for Principal Components: Influence Functions as
Diagnostic Tools. The Statistician 1994, 43(4):483-494.

40. Pearson PN, Olsson Premec-Fucek V, Premoli Silva IRK: Taxonomy,
biostratigraphy, and phylogeny of Eocene Turborotalia. 2006 In. Atlas of
Eocene Planktonic Foraminifera Frederiksberg, VA: Cushman Foundation for
Foraminiferal ResearchPearson PN, Olsson RK, Huber BT, Hemleben C,
Berggren WA 2006, 433-460.

41. Bolli HM: Planktonic foraminifera from the Eocene Navet and San
Fernando formations of Trinidad, B.W.I. Studies in Foraminifera: United
States National Museum Bulletin Loeblich Jr A, Tappan, H 1957, 215:97-124.

42. Blow WH, Banner FT: The Mid-Tertiary (Upper Eocene to Acquitanian)
Globigerinaceae. Fundamentals of Mid-Tertiary Stratigraphical Correlation
Cambridge: Cambridge University PressEames FE, Banner, FT, Blow, WH,
Clarke WJ 1962, 2:287-331.

43. Toumarkine M, Bolli HM: Evolution de Globorotalia cerroazulensis (Cole)
dans l’Eocene moyen et superieur de Possagno (Italie). Revue de
Micropaleontologie 1970, 13:131-145.

44. Bolli HM, Saunders JM: Oligocene to Holocene low latitude planktic
foraminifers. Plankton Stratigraphy Cambridge: Cambridge University
PressBolli HM, Saunders JM, Perch-Nielsen K 1985, 155-1621.

45. Toumarkine M: Middle and Late Eocene planktonic foraminifera from the
northwestern Pacific Ocean, Leg 32 of the Deep Sea Drilling Project.
Initial Reports of the Deep Sea Drilling Project Washington D.C.: U.S.
Government Printing OfficeLarson RL, Moberley R 1975, 40:679-721.

46. Toumarkine M: Planktonic Foraminiferal Biostratigraphy of the Paleogene
of Sites 360 to 364 and the Neogene of Sites 362A, 363, and 364 Leg
40. Initial Results of the Deep Sea Drilling Project Bolli HM, Ryan WBF 1978,
40.

47. Peres-Neto PR, Jackson DA, Somers KM: How many principal components?
stopping rules for determining the number of non-trivial axes revisited.
Comp Stat Data Anal 2005, 49(4):974-997.

48. Hayton JC, Allen DG, Scarpello V: Factor Retention Decisions in
Exploratory Factor Analysis: a Tutorial on Parallel Analysis. Organ Res
Methods 2004, 7(2):191-205.

49. Horn JL: A rationale and a test for the number of factors in factor
analysis. Psychometrika 1965, 30(2):179-185.

50. Flury BA: Principal points. Biometrika 1990, 77(1):33-41.
51. Klingenberg CP, Froese R: A multivariate comparison of allometric growth

patterns. Syst Biol 1991, 40(4):410-419.
52. Burnham KP, Anderson DR: Model selection and multimodel inference. a

practical information-theoretical Approach. New York.: Springer-Verlag
2002.

53. R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria 2009
[http://www.R-project.org].

54. Filzmoser P, Garrett RG, Reimann C: Multivariate outlier detection in
exploration geochemistry. Comput Geosci 2005, 31:579-587.

55. Crisci JV: One-Dimensional Systematist: Perils in a Time of Steady
Progress. Syst Bot 2006, 31(1):217-221.

56. Zelditch ML, Swiderski DL, Sheets DH, Fink WL: Geometric Morphometrics
for Biologists: A Primer. San Diego, CA: Academic Press 2004.

57. Hull PM, Norris RD: Evidence for abrupt speciation in a classic case of
gradual evolution. Proc Natl Acad USA 2009, 106(50):21224-21229.

58. Stanley SM: An Explanation for Cope’s Rule. Evolution 1973, 27(1):1-26.
59. Klingenberg CP: Heterochrony and allometry: the analysis of evolutionary

change in ontogeny. Biol Rev 1998, 73(1):79-123.

Ezard et al. BMC Evolutionary Biology 2010, 10:175
http://www.biomedcentral.com/1471-2148/10/175

Page 10 of 11

http://www.ncbi.nlm.nih.gov/pubmed/16967577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16967577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17640383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17640383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15371253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16243769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16243769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19175505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19175505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19175505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18027280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17246735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17246735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11298987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11298987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17425640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17425640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18194086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18194086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14306381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14306381?dopt=Abstract
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/pubmed/9569772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9569772?dopt=Abstract


60. Foote MJ: Nearest-neighbor analysis of trilobite morphosapce. Syst Zool
1990, 39(4):371-382.

61. MacKay DJC: Information Theory, Inference, and Learning Algorithms.
Cambridge, UK: Cambridge University Press 2003.

62. Gower JC: Some distance properties of latent root and vector methods
used in multivariate analysis. Biometrika 1966, 53(3-4):325-338.

63. Box GEP, Cox DR: An analysis of transformations (with discussion). J Roy
Stat Soc B B 1964, 26(2):211-252.

64. Dépraz A, Hausser J, Pfenninger M: A species delimitation approach in the
Trochulus sericeus/hispidus complex reveals two cryptic species within a
sharp contact zone. BMC Evol Biol 2009, 9:171-180.

65. Venables WN, Ripley BD: Modern Applied Statistics with S-PLUS. New
York: Springer-Verlag 1999.

doi:10.1186/1471-2148-10-175
Cite this article as: Ezard et al.: Algorithmic approaches to aid species’
delimitation in multidimensional morphospace. BMC Evolutionary Biology
2010 10:175.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ezard et al. BMC Evolutionary Biology 2010, 10:175
http://www.biomedcentral.com/1471-2148/10/175

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/19622149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19622149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19622149?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Case Study - Turborotalia cerroazulensis lineage

	Statistical Thresholds used to Delimit Species (STUDS)
	The Orientation of the Dimension-Reduced Space
	Dimension Reduction
	Identification of well-separated clusters
	Model Diagnostics
	Implementation

	Results
	Rotated and dimension-reduced morphospaces
	Sample Structure

	Discussion
	Conclusion
	Methods
	Acknowledgements
	Author details
	Authors' contributions
	References

