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Abstract

The progressive damage and fracture behaviour of Glare R© fibre-metal

laminates (FMLs) was investigated experimentally for the buckling and post-

buckling regimes of laminates containing internal ‘splice’ and ‘doubler’ joints.

Specimens were either ‘pristine’ or contained artificial delaminations in the

form of strips of release film to represent manufacturing defects. Each was

tested under in-plane compression. Tests were monitored using digital image

correlation (DIC) for visualisation of three-dimensional full-field displace-

ments whilst acoustic emission (AE) monitoring – combined with the novel

Delta-T location algorithm – was used for the first time to detect and lo-

cate damage events in these FML structures. Results were validated using

Scanning Electron Microscopy (SEM) to determine the damage mechanisms

present. Large numbers of AE events were recorded at the splice and dou-

bler locations during initial loading and throughout the postbuckling regime,
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suggesting that the novel AE location algorithm used is suitable for the moni-

toring of delaminations and matrix cracks in internal features in Glare R© lam-

inates. Moreover, AE events located away from internal features correlated

well with buckling and postbuckling deformation as identified by the full-

field DIC data. Finally, good correlation was observed between the onset of

buckling and a rapid increase in cumulative AE energy, demonstrating that

as well as locating damage, AE monitoring is able to indicate quite clearly

when the buckling load has been reached.
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1. Introduction

Fibre-Metal Laminates (FMLs), including Glare R© , are manufactured

from alternating metallic sheets and fibre reinforced composite layers. Glare R©

, which consists of aluminium alloy sheets combined with glass fibre reinforced

polymer (GFRP) layers, offers a 10% reduction in specific weight compared

with monolithic aluminium and has advantages over carbon fibre reinforced

polymers (CFRP) including improved impact, fire and corrosion resistance,

and increased damage tolerance. Its commercial use has increased progres-

sively and applications include the Airbus A380 fuselage, the Learjet 45, floor

panels for the Boeing 737, and the cargo doors of the Boeing C-17 Globemas-

ter III. Despite their advantages however, FMLs present additional challenges

in terms of understanding the different damage mechanisms present in this

class of materials. This paper examines the effects of potential damage aris-

ing from the manufacturing process, specifically from the need to introduce

2



joints when fabricating large panels. For a typical metal sheet of thickness

between 0.3 mm and 0.4 mm the maximum width of material is normally

1.65 m, whilst a fuselage skin requires sheets of up to 2 m or wider. In order

to obtain wider panels, aluminium sheets are positioned side by side with

gaps in between. The gaps are staggered through the thickness to prevent

loss of strength with the fibre layers providing load transfer; this is known

as ‘splicing’. Joints can also be strengthened by adding additional layers

externally or internally to reduce stresses, and these are known as ‘doublers’.

Examples of both types of joints are shown in Figure 1. Although solv-

ing size restrictions, these features involve further manufacturing processes

and therefore the possibility of introducing defects such as delaminations.

The latter are a particular problem in structures experiencing compressive

in-plane loading - and therefore subject to potential buckling.

Interlaminar doubler

Overlap splice

Adhesive
Metal GFRP

Interrupted metal layer

AdhesiveMetal GFRP

Figure 1: Schematic representations of the doubler (top) and splice (bottom) joining

techniques for Glare R© (adapted from [1]).

The effect of delaminations on fibre composites was studied by Clarke

and Pavier [2, 3] who examined the buckling behaviour of axially loaded

composite plates and found that under compressive load the presence of ini-

tial delaminations extending across the specimen’s width and over 1/5 of the
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specimen’s length had a significant influence on their strength. Delamination

growth during the buckling and postbuckling of HYE-3574 OH carbon/epoxy

composites with artificial delaminations was also studied experimentally by

Gu and Chattopadhyay [4]. The delamination buckling mode was found to

be closely related to the location and length of the delamination. Kutlu and

Chang [5] investigated the compressive response of T300/976 composite pan-

els containing multiple delaminations. Carbon/epoxy specimens with various

ply orientations were fabricated from both flat and cylindrical composite pan-

els. Experimental results demonstrated that delamination propagation sig-

nificantly affected the postbuckling response of laminated composite panels.

The effect of delaminations on the postbuckling behaviour of CFRP compos-

ite laminated rectangular plates was also studied experimentally in [6]. This

study found that after buckling occurs, delaminations can be expected to

grow due to high interlayer shear stresses. This growth is likely to be rapid

and extensive before failure. In [7] experimental and numerical studies on the

buckling of GFRP laminates containing a single delamination were carried

out on rectangular plates. Artificial delaminations were introduced between

fabricated laminate plies using embedded rectangular fluoropolymer films of

13 µm thickness. Different fibre orientation angles were found to affect the

critical buckling load, which was greatest for the 0◦ fibre orientation angle

for all aspect ratios and widths of delamination.

Many experimental and numerical studies have been conducted in order

to study the effect of delaminations on the buckling properties of composite

laminates and more recently FMLs. In terms of buckling and postbuckling

behaviour flat and curved fibre-metal laminate panels were first investigated
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by Verolme [8, 9, 10]. Results showed that FML panels exhibited similar

buckling and postbuckling behaviour to their metallic counterparts. They

also emphasised the fact that the only difference was that the damage in the

FMLs started with a local delamination, while the corresponding metallic

panels exhibited plastic deformation. Botelho et al. [11] studied the com-

pressive properties of the hybrid composites ‘Glare’ and ‘Caral’ with glass

and carbon fibre composites. Results revealed that the compressive strength

of composites depends on the way the loading is applied. In particular, the

axial compressive strength for unidirectional polymer composites is mainly

controlled by the buckling modes of the fibres [12]. The results also showed

that the compressive strength was highest for CFRP laminates and lowest

for FMLs mostly due to the weak interface between the composite layers

and the aluminium alloy. SEM micrographs showed damage at this interface

leading to buckling of the corresponding aluminium layer. Mania and York

[13] studied the buckling behaviour and load carrying capacity of thin-walled

FML open cross-section profiles, subject to static axial compression loading.

Uni-axial compression buckling strengths obtained using semi-analytical and

finite element methods were compared with experimental results. Laminate

tailoring strategies, based on the use of buckling factor contours mapped

onto lamination parameter design spaces were used to improve the compres-

sive buckling load capacity for short columns of open cross-section. Ko-

lakowski et al. [14] investigated the elasto-plastic buckling of FML short

columns/profiles subjected to axial uniform compression. They incorporated

transverse shear effects and elasto-plastic material models based on different

strain-hardening plasticity theories. The work also revealed that the buck-
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ling modes in the elastic and elastic-plastic range are not always identical.

Kamocka and Mania [15] considered both micro and macro mechanics to

study flat plates manufactured from FMLs. The properties of these spec-

imens were determined using the Rule of Mixtures and analytical results

were verified by experimental tests. After demonstrating the sensitivity of

the performance of these structures to material properties, the authors high-

lighted the need for accurate sub-laminate material data. Frizzell et al. [16]

performed an experimental analysis at microscopic scale to monitor the pro-

gression of damage including buckling in pin-loaded fibre metal laminates.

Damage was investigated using SEM micrographs taken at different load lev-

els up to the failure load. Different damage mechanisms were observed for

instance at 90% of failure load, plastic deformation in the aluminium layers

was noticed in addition to delamination at the interface between the outer

aluminium layers and their adjacent 0◦ GFRP layers. Delamination was also

noted between the 0◦ and 90◦ fibre plies with fibre kinking progressing to

form micro-buckles in the 0◦ GFRP layers eventually leading to fibre break-

age in some of these plies. Experimental studies conducted by Remmers

and de Borst [17] presented delamination buckling in ‘Glare 2’ on a micro-

scopic level both experimentally using Scanning Electron Microcopy (SEM)

and numerically using the interface element model given by Kachanov [18].

Obdrzalek and Vrbka [19, 20] performed numerical studies on the buckling

of FMLs and concluded that depending on the in-plane orientation and out-

of-plane position of an artificial delamination, the buckling load can drop

by up to 30% and 50% respectively. They also found that the buckling and

postbuckling behaviour the plates was greatly affected by the geometrical
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shape of the delamination.

Understanding the effect of geometric imperfection and load eccentric-

ity on buckling and postbuckling behaviour of composite laminates has also

been studied by many researchers. However again, comparatively less has

been done to investigate the effects of such imperfections on Fibre Metal

Laminates. Buckling in adhesively bonded GFRP composite flanges contain-

ing splice joints and with an initial debond were experimentally investigated

by Kwon and Kim [21]. Although the flange length and width were found

to affect the buckling behaviour strongly, their influence on debond growth

initiation (which was seen to originate in the corners of the free edge of the

buckled flange, where the highest peel stresses are found due to the post-

buckled flange deformation) was only slight. The consequent growth of the

debond was found to be strongly dependent on its initial length but weakly

dependent on flange width [21]. Koiter [22] examined the effect of geomet-

rical imperfections on the elastic buckling load of a cylindrical shell under

uniaxial compression. This work was extended to both cylinders and spheres

by Hutchinson [23] for loadings that produce biaxial membrane stresses. It

was found that reducing the transverse membrane stress component leads to

an increase in the axisymmetric initial imperfection (the normal deflection

of the middle surface of the unloaded shell) and this behaviour is similar

for both cylindrical and spherical shells. Hilburger and Starnes Jr. [24]

showed that non-linear analysis can be used to determine accurate, high-

fidelity design knock-down factors that can be used for predicting compos-

ite shell buckling and collapse loads in the design process. This can be

achieved by considering traditional imperfections (geometric shell-wall mid-
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surface imperfections) and non-traditional imperfections (shell-wall thickness

variations, local shell-wall ply-gaps associated with the fabrication process,

shell-end geometric imperfections, non-uniform applied end loads, and vari-

ations in the boundary conditions including the effects of elastic boundary

conditions). This could be used as the basis of a generalised imperfection

signature for a composite shell that includes the effects of variations or un-

certainties in the shell-geometry, fabrication-process, load-distribution and

boundary stiffness parameters. Tsouvalis et al. [25] investigated the effect

of initial imperfection magnitude on the buckling loads of cylinders under

external hydrostatic pressure and found a good correlation between experi-

mental and modelling results, and Featherston [26] performed a similar study

on a simple aerofoil under combined shear and in-plane bending. In [27]

Hilburger reports the results of experimental and analytical studies of the

effects of initial imperfections on the buckling response and failure of unstiff-

ened thin-walled compression-loaded graphite/epoxy cylindrical shells, re-

sults that include the effects of traditional and non-traditional imperfections

and uncertainties on the nonlinear response characteristics. Experimental

and analytical investigations were conducted to examine the effects of the

inherent mechanical couplings exhibited in fully anisotropic (i.e. unsym-

metric) graphite/epoxy laminates on the buckling loads and mode shapes in

[28]. The results indicated that these couplings, especially those which re-

late stretching and bending behaviour, cause out-of-plane deflections prior to

buckling and hence reduce the buckling load significantly. Eglitis et al. [29]

performed experimental and numerical studies on the buckling of concen-

trically and eccentrically compressed composite cylinders. Although using
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values of knock-down factors which were estimated from linear eigenvalue

analyses, both experimental and numerical results showed good correlation.

With respect to FMLs, the study conducted by [30] on the buckling be-

haviour and load carrying capacity of thin-walled FML open cross-section

profiles, was extended in Mania et al. [31, 13] to investigate the buckling and

postbuckling response of different FML profiles, with further work [32] high-

lighting the need to consider the effect of imperfections in order to accurately

predict the consequent reduction in performance.

In this paper we extend the work of previous authors, focusing on exam-

ining the effect of delamination damage on the buckling and postbuckling

characteristics of Glare R© FML specimens containing two different types of

joints – doublers and splices – based on a series of experiments. Specimens

containing these joints have been tested under compression and monitored

using Digital Image Correlation (DIC) to measure the out-of-plane displace-

ments of the plate. Damage initiation and progression including the onset of

delamination growth is detected and located using Acoustic Emission (AE)

using the Delta-T algorithm presented in presented in [33] – which was de-

signed to provide more accurate results for anisotropic materials than the

previously used time-of-arrival technique to locate damage – for the first

time in a fibre-metal laminate. AE event locations are compared with the

full-field deformation data from the DIC data and SEM micrographs of the

structure taken both remote from and within the joint to determine the level

of damage and hence gain an understanding of its effect on the buckling and

postbuckling behaviour of FMLs containing such joint types.
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Table 1: Standard grades of commercial Glare R© [1].

Grade Sub-

Grade

Alloy Metal

sheet

thickness

[mm]

GFRP

sub-

laminate

layup

Main beneficial character-

istics

Glare 1 - 7475-

T761

0.3-0.4 0/0 fatigue, strength

Glare 2 Glare 2A 2024-T3 0.2-0.5 0/0 fatigue, strength

Glare 2 Glare 2B 2024-T3 0.2-0.5 90/90 fatigue, strength

Glare 3 - 2024-T3 0.2-0.5 0/90 fatigue, impact

Glare 4 Glare 4A 2024-T3 0.2-0.5 0/90/0 fatigue, strength (espe-

cially in 0◦ direction)

Glare 4 Glare 4B 2024-T3 0.2-0.5 90/0/90 fatigue, strength (espe-

cially in 90◦ direction)

Glare 5 - 2024-T3 0.2-0.5 0/90/90/0 impact

Glare 6 Glare 6A 2024-T3 0.2-0.5 +45/-45 shear, off-axis properties

Glare 6 Glare 6B 2024-T3 0.2-0.5 -45/+45 shear, off-axis properties

2. Experimental Setup

2.1. Specimen Design

Specimens measuring 140 mm × 80 mm (unsupported dimensions; when

clamped 100 mm × 80 mm) were manufactured incorporating longitudinal

splice and transverse doubler features as shown in Figure 2. These speci-

mens were made by Airbus Germany GmbH from 0.4 mm thick sheets of

aluminium alloy 2024-T3 and Hexcel S2-glass/FM94 glass fibre reinforced

polymer (GFRP) unidirectional prepreg. Each GFRP ‘layer’ has 3 plies with

the layup [90◦/0◦/90◦] and a cured ply thickness of 0.133 mm. The layup one
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side of the joint was ‘3/2’ (three layers of aluminium and two layers of GFRP

prepreg) and on the other ‘4/3’ (four layers of aluminium and three layers

of prepreg), according to the standard designation of commercial ‘Glare 4B’

shown in Table 1. Artificial delaminations were introduced by embedding

a 4 mm wide strip of fluoropolymer film of thickness 10 µm. This artificial

delamination is representative of those which could potentially be generated

during manufacturing.

Splice jointResin pocket Doubler joint
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80 mm80 mm
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5 mm

(a) (b)

Figure 2: Layout of ‘Glare 4B’ specimens, (a) longitudinal splice and (b) transverse dou-

bler.
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2.2. Test Setup

The specially designed test rig seen in Figure 3, was manufactured from

stainless steel 304. Specimens are held in place with four clamps. The

frame was mounted in a Zwick R© servo-hydraulic testing machine (fitted with

a 500 kN load cell) as shown in Figure 4. The rig is designed such that

when tension is applied the loading plates apply a compressive load to the

specimen with axial movement of the rig being facilitated by four bronze

journal bearings. The machine was operated under displacement control with

a cross-head velocity of 0.1 mm ·min−1. A total of four types of specimens

were tested, namely splice and doubler specimens with and without artificial

delaminations, with two repeats each, totalling 8 specimens.

20

Specimen

240

30

Ø 25

140

Stainless steel
frame

Bearings

400

290

Clamps

Loading 
plates

Machine load

Figure 3: Buckling rig design (dimensions in mm).
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Crosshead

DIC System

Specimen AE Sensors

Compression

Rig

(a) (b)

Figure 4: Experimental setup (a) and position of AE sensors on the specimen (b).

3. Instrumentation

3.1. Digital Image Correlation (DIC)

Specimens were monitored using a Dantec
TM

Dynamics Q-400 system to

record full field displacement in three dimensions to characterise the buckling

and postbuckling behaviour. Specimens were prepared by applying a sprayed

speckle pattern to white primed surfaces to enhance contrast. Two 2/3-inch

greyscale CCD Limess
TM

sensors, each with a resolution of 1600×1200 pixels,

were fitted with lenses of focal length 28 mm to enable a working distance

of 300 mm to 600 mm. A HiLis
TM

monochromatic LED lighting system was

used as a light source. DIC images were captured manually in approximately

1 kN steps and post-processed using the ISTRA
TM

4D software with subset

size 17 pixels and spatial resolution 0.2 mm.
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3.2. Acoustic Emission (AE) Monitoring

Three Acoustic Emission (AE) sensors were mounted on the specimens to

monitor damage events during the buckling and postbuckling regimes. The

wideband sensors used in this work were supplied by Mistras
TM

Group and

had a frequency range of 100-1000 kHz. These were chosen because they

cover a wide range of waveform frequencies which enable them to detect

the different types of energy produced from different materials incorporated

into the Glare R© laminate. These were bonded to the specimens using multi-

purpose silicone sealant Loctite
TM

595. The sensors were connected to a

Mistras Group
TM

PCI2 acquisition unit with a 45 dB threshold (as recom-

mended by previous work, including [34, 35, 36], for a wideband differential

transducer) and a sampling rate of 5 MHz, recording over 1.2 ms to capture

full waveforms, through pre-amplifiers with a 40 dB gain and a built-in band

pass filter of 20-1200 kHz.

Event locations were calculated using a bespoke location algorithm de-

veloped at Cardiff University called ‘Delta-T Mapping’ [33]. The technique

was developed to improve location in comparison with Time of Arrival (ToA)

techniques which are based on triangulation and assume constant wave veloc-

ity in different directions, and direct paths between source and sensors. For

composite structures, material anisotropy results in great variation in wave

velocity with respect to in-plane direction. Moreover, for complex structures

features such as holes interrupt the wave path. The Delta-T technique over-

comes these limitations by mapping the structure to take these effects into

account and then uses these maps in the location of any AE-generating event

(impact, crack propagation).
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The implementation of the Delta-T technique requires three main steps.

Firstly, an area of interest is selected and marked using a regular grid system.

Secondly, time of arrival data are collected at each grid node using an artificial

AE source, e.g. pencil lead breaks. Thirdly, this ToA data is used to calculate

‘Delta-T maps’ for each pair of sensors (i.e. maps of the difference in ToA of

these signals betweeneach sensor pair), which are then stored for use during

the test. Finally, AE events are located by comparing the signal patterns

obtained by the sensor network to the superposition of contour lines of the

pre-computed Delta-T maps, resulting in accurate location data which takes

into account anisotropy and any level of geometry complexity.

In the present work the Delta-T method has been applied for the first

time in the monitoring of damage development in Glare R© laminates. The

sensitivity and accuracy of the method make it a strong candidate for the

monitoring of FML structures containing anisotropic laminae [28] and in-

ternal features (such as splices and doublers) which are prone to high-cycle

fatigue damage. A more comprehensive explanation of the technique can be

found in [33].

3.3. Scanning Electron Microscopy (SEM)

Specimens were studied following testing using scanning electron mi-

croscopy to allow the damage mechanisms present to be identified and lo-

cated. Sections were taken to enable areas both remote from and within the

joints to be examined for both splice and doubler features (the locations at

which these sections were taken are shown in Figures 9 and 16 for splice and

doubler specimens, respectively). These sectioned specimens were finished by

grinding with wet silicon carbide paper and polishing with acetone cleaner.
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A carbon coating, which gives a more suitable matt finish in comparison

to the alternative gold coating for metallic specimens, of 10-20 nm was ap-

plied by thermal evaporation. Specimens were then examined using a SEM

type (FEI/Philips XL30 FEG ESEM). Micrographs were then taken under

high vacuum using a 30 µm aperture and 20 kV accelerating voltage with a

working distance of 10-12 mm between the specimens and the aperture.

4. Results and Discussion

4.1. Splice Specimen

Figures 5 and 6 show the load-displacement curves and section stress vs.

normalised cross-head displacement curves for the splice specimens, respec-

tively (Specimen 1 of the laminates with defects suffered from slippage in the

rig and has therefore not been considered). The section stress is defined as

the load divided by the cross-sectional area of the specimen, while the nor-

malised displacement is the ratio between cross-head displacement and initial

specimen length, i.e. ∆x/l0, where l0 = 100 mm for all specimens. It should

be noted that ‘section stresses’ are global measures and may not reflect the

local stress states in each of the material constituents. Approximate ‘lamina

stresses’ can be recovered during the initial elastic regime via the assumption

of uniformity of in-plane strains. This will be discussed later in this paper,

based on the material strengths provided by the accompanying paper [37].

The in-plane displacements were obtained from DIC data instead of the

machine cross-head displacement as the former is believed to be more accu-

rate (since it is not affected by the compliance of the machine). In terms of

the ultimate compressive loads for the splice coupons the experimental values
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Figure 5: Axial force versus in-plane displacement for splice specimens; (a) pristine and

(b) with an artificial defect.
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Figure 6: Section stress versus normalised in-plane displacement for splice specimens; (a)

pristine and (b) with an artificial defect.
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are 13.66 kN and 13.72 kN (corresponding to section stresses of 77.86 MPa

and 78.20 MPa) with and without defects respectively. The effect of the

inserted delamination on both pre and postbuckling stiffness and ultimate

strength therefore appears to be negligible. This could be due to the rela-

tively small delamination size relative to the specimen size, or the fact once

global buckling has started to occur the deformation of the specimen tends

to close any delamination initiated by the insertion of this localised defect

which is in front of the specimens neutral axis and therefore sits between

plies which are under tension during bending, which consequently has little

effect on the performance of the joint under compression.

Figure 7 shows the contours of the out-of-plane displacement at ini-

tial buckling (in-plane displacement ∆x = 0.166 mm), peak load (∆x =

0.385 mm) and postbuckling (∆x = 0.809 mm), obtained from DIC data.

These are compared with AE location data using the Delta-T algorithm

described earlier. The results presented are for splice specimens incorpo-

rating an artificial defect, but the pristine specimens presented very similar

behaviour indicating that the effect of the damage introduced on the mode

shape and the amplitude of out-of-plane deformations is negligible. The plate

is seen to buckle with a single half wave length in the loading direction as

expected for a plate with free longitudinal edges under compression. De-

formations to the left of the joint in the thinner region of the specimen are

higher than those to the right again as would be expected.

With respect to the AE location data in Figure 7 and cumulative AE en-

ergy in Figure 8, at approximately ∆x = 0.166 mm initially low-energy AE

events are detected along the horizontal centreline in an area which coincides
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Figure 7: Contours of out-of-plane displacement (left) against location of AE events (right)

for the splice specimen (with an artificial defect) at different in-plane displacements ∆x

(dashed lines indicate position of splice).

with the location of the embedded defect. This due to matrix cracking at the

initial buckling load, as illustrated later by SEM micrographs (Figure 11).

Then, at approximately ∆x = 0.385 mm, a large number of high-energy AE
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events are detected all along the centreline of the specimen where the large

out of plane displacements and high curvature at the ultimate compressive

load lead to further matrix cracking, as also seen in SEM micrographs (Fig-

ure 10). Further events located in the area of the splice joint correspond

to widespread matrix damage leading to delamination initiation. Activity

then begins to spread out along the joint at approximately ∆x = 0.809 mm,

indicating delamination growth in addition to shear damage in the matrix

resin layers, with possible fibre breakage in 0◦ fibre plies. Although some

level of fibre failure is expected during the postbuckling regime, only indirect

observations have been made via SEM as no clear ‘kink band’ is observed at

these moderate levels of strain. Instead, fibre failure along 0◦ plies appear

in the form of fibres with multiple fractures along their length, e.g. Fig-

ure 10(b), which is likely to be a combination of fibre damage during the test

with further damage during the cutting and polishing of SEM samples.
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Figure 8 shows the cumulative energy of events occurring throughout the

test period, against applied load. The first significant increase in the log-

arithmic cumulative energy occurs at an in-plane displacement of around

∆x = 0.166 mm corresponding to matrix damage which accompanies initial

buckling of the panel, indicating that AE can be used to predict the onset of

buckling. A further large jump is observed when the load reaches the ulti-

mate compressive load at ∆x = 0.385 mm indicating a high level of damage

activity (potentially matrix cracking and matrix shear damage, as suggested

by the SEM micrographs) plus the initiation of macroscopic delamination,

due to high levels of deformation and curvature at this point, as would be

expected. This is followed by a gradual increase in energy which corresponds

to delamination initiation and growth along the splice feature during post-

buckling. Again, this interpretation is backed by the analysis of detailed

nonlinear Finite Element models in [37].
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Figure 10: SEM of splice specimens along section 1 (side of specimen), with magnifications

of (a) 100× and (b) 1000×.
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(a) 72× and (b) 1000×.
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Figure 12: Axial force versus in-plane displacement for doubler specimens; (a) pristine

and (b) with an artificial defect.

4.2. Doubler Specimen

The load versus in-plane displacement curves and section stress versus

normalised displacement curves of doubler specimens with and without ar-

tificial defects are shown in Figures 12 and 13. As before, in-plane displace-

ments were extracted from DIC data. The ultimate compressive loads for

the specimens without defects are 13.78 kN and 13.69 kN (corresponding to

section stresses of 85.27 MPa and 84.72 MPa) and for those with artificial

defects are 14.65 kN and 15.49 kN (corresponding to stresses of 90.66 MPa

and 95.85 MPa). Clearly the presence of the defect is not having any sig-

nificant impact on the buckling load of the doubler specimens, and this is

believed to be for the same reasons as for the splice specimens.

Using the concept of uniform strains, and utilising the material strengths

presented in the accompanying paper [37], a simplified stress analysis shows

that fibre damage will not occur in the 90◦ GFRP plies outside the joint at
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Figure 13: Section stress versus normalised in-plane displacement for doubler specimens;

(a) pristine and (b) with an artificial defect.

peak load. Neither will matrix cracking nor shear damage between GFRP

plies occur at this load for the same reason. Damage initiation is however

predicted in the splice as the stresses in this thinner region are likely to

exceed the ultimate normal and shear strengths for the FM94 epoxy resin.

Figure 14 shows the contours of the out-of-plane displacement for ini-

tial buckling (in-plane displacement ∆x = 0.173 mm), ultimate load (∆x =

0.362 mm) and postbuckling (∆x = 0.824 mm), obtained from DIC data,

which are again compared with AE event location data and AE cumulative

energy (Figure 15). The results shown correspond to one of the specimens

with a defect but the pristine specimens give similar results. Out-of-plane

displacements can be seen to be greatest along the doubler joint, which cor-

responds to the panel buckling with one half wavelength along the length of

the panel. It is also where a change in panel thickness occurs, with the thin-

ner portion being above the joint. Examining the results from the acoustic
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emission monitoring, Figure 14, shows initial low-energy AE events detected

in the upper portion of the panel just above the doubler joint, as well as at

the point of highest curvature at around ∆x = 0.16 mm corresponding to the

onset of buckling. This is mostly due to matrix cracking as illustrated by the

SEM micrographs (Figure 18). Then, at approximately ∆x = 0.36 mm when

the peak load is reached, a large number of high-energy AE events are seen

(Figures 14 and 15). These again correspond to the joint and the thinner sec-

tion of the specimen where the out-of-plane displacements and curvatures are

increasing significantly leading to matrix cracking in the resin layers as con-

firmed again by SEM micrographs (Figure 17). Following this point activity

levels continue to increase as loading continues into postbuckling (Figure 14

particularly at the boundary of the joint with the thinner section, with the

results of the SEM indicating this damage to be in the form of matrix crack-

ing and shear damage as seen in Figure 17. In terms of AE energy the results

in Figure 15 show that there is a sharp increase in cumulative energy between

0.16 mm < ∆x < 0.23 mm corresponding to widespread matrix cracking. A

further large jump in energy can be seen at ∆x = 0.36 mm due to the large

out-of-plane displacements and high curvature seen at ultimate load caus-

ing further matrix cracking. This is followed by a more gradual increase in

energy up to the end of the tests at approximately ∆x = 0.85 mm caused

by a number of different damage mechanisms including matrix cracking and

shear damage, as confirmed by SEM micrographs at the doubler joint region

in Figure 18. No delamination initiation or propagation from the embedded

defect was noticed in the SEM results. Again this can be explained by the

fact that as the specimen begins to buckle globally, deformations act to close
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any delamination which might be initiated minimising their effect. This is

supported by the fact that the increase in cumulative energy is more gradual

for the doubler specimen than for the splice specimen due to the smaller

number of damage mechanisms which are active. This is in agreement with

the Finite Element analysis presented in [37].

As also shown in Figure 14, initial low-energy AE events were detected

in the upper portion of the panel just above the doubler joint, as well as

at the point of highest curvature which shows great levels of AE activity at

around ∆x = 0.16 mm which corresponds to the onset of buckling. Then at

approximately ∆x = 0.36 mm a large number of high-energy AE events are

seen in the same region, corresponding to the peak load when out-of-plane

displacements and curvatures increase significantly.

The AE energy results shown in Figure 15 show a sharp increase in

cumulative energy between 0.16 mm < ∆x < 0.23 mm corresponding to

widespread matrix cracking. A further large jump in energy can be seen at

∆x = 0.36 mm due again to the large out-of-plane displacements and high

curvature seen at ultimate load. This is followed by a more gradual increase

in energy up to the end of the tests at approximately ∆x = 0.85 mm. The

increase in cumulative energy is more gradual for the doubler specimen than

for the splice specimen. This suggests that the transverse doubler joint inves-

tigated here does not promote large scale delaminations as observed for the

longitudinal splice joint. This is supported by the detailed Finite Element

analysis presented in [37].
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Figure 14: Contours of out-of-plane displacement (left) against location of AE events

(right) for the doubler specimen (with an artificial defect) at different in-plane displace-

ments ∆x (dashed lines indicate position of doubler).

5. Conclusions

A series of experiments was performed to examine the effect of splice

and doubler joints on the buckling and postbuckling behaviour of Glare R©
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specimen with defect.
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Figure 16: Sections of the doubler specimen observed under SEM.

fibre-metal laminate specimens containing internal splice and doubler joints.

Panels were tested under in-plane compression with and without the intro-

duction of artificial defects. Tests were recorded using Digital Image Corre-
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Figure 17: SEM of doubler specimens along section 1 (near the top grip), with magnifica-

tions of (a) 100× and (b) 1000×.
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Figure 18: SEM of doubler specimens along section 2 (across doubler), with magnifications

of (a) 80× and (b) 800×.
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lation (DIC) and Acoustic Emission (AE) monitoring systems. A bespoke

Delta-T algorithm was implemented for accurate detection and location of

damage from the recorded AE signals. Good correlation was observed be-

tween in-plane loads, out-of-plane displacements and AE event location which

suggest that the postbuckling behaviour of both joints involves different dam-

age mechanisms. The longitudinal splice joint did not promote early matrix

cracking and the buckling point was characterised by a greater amount of

delamination, as seen by a large jump in cumulative AE energy and the

sudden increase in out-of-plane displacements. The transverse doubler joint

on the other hand showed a much more gradual damage behaviour during

postbuckling, dominated by widespread matrix cracks. The ‘Delta-T ’ AE lo-

cation algorithm was successfully used to monitor damage development in the

Glare R© laminates. The location and sequence of AE events suggest that the

method is particularly sensitive to early activity within the internal features

which act as stress concentrations. Artificial delaminations representative

of those which could potentially be generated during manufacturing had a

negligible effect on the compressive strength of both types of joints; yet the

Delta-T algorithm was able to detect their presence at relatively low loads,

suggesting that the method is a strong candidate for the in-service Structural

Health Monitoring of Glare R© structures.
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