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literature. The mutation data catalogued by HGMD (sum-
marised by mutation type) are shown in Table 1.

HGMD has never sought to include either somatic or 
mitochondrial mutations, which are well covered by COS-
MIC (Forbes et al. 2015) and MitoMap (Lott et al. 2013), 
respectively. Nor does HGMD attempt to provide com-
prehensive coverage of pharmacological variants (except 
for those variants where evidence supporting a functional 
impairment has been provided); PharmGKB (https://www.
pharmgkb.org/; Thorn et al. 2013) is a more comprehensive 
resource for these data. Finally, HGMD is not intended to 
be a general genetic variation database; users interested in 
such variants should visit dbSNP (http://www.ncbi.nlm.nih.
gov/SNP/; Sherry et al. 2001), the NHLBI Exome Variant 
Server (http://evs.gs.washington.edu/EVS/) or the Exome 
Aggregation Consortium (ExAC; http://exac.broadinstitute.
org/; Lek et al. 2016).

HGMD was originally established in 1996 for the sci-
entific study of mutational mechanisms in human genes 
believed to cause inherited disease (Cooper et al. 2010; 
Stenson et al. 2014). However, over the last 20 years it has 
acquired a much broader utility as the central unified repos-
itory for disease-related functional genetic variation in the 
germline. It is now routinely accessed and utilised by next-
generation sequencing (NGS) project researchers, human 
molecular geneticists, molecular biologists, clinicians and 
genetic counsellors as well as by those specialising in biop-
harmaceuticals, bioinformatics and personalised genomics.

The public version of HGMD (http://www.hgmd.org) is 
freely available to registered users from academic institu-
tions/non-profit organisations. This version is, however, 
maintained in a basic form that is only updated twice annu-
ally, is permanently a minimum of 3.5 years out of date, 
and does not contain any of the additional annotations or 
extra features present in HGMD Professional (see below). 

Abstract The Human Gene Mutation Database (HGMD®) 
constitutes a comprehensive collection of published ger-
mline mutations in nuclear genes that underlie, or are 
closely associated with human inherited disease. At the 
time of writing (March 2017), the database contained in 
excess of 203,000 different gene lesions identified in over 
8000 genes manually curated from over 2600 journals. 
With new mutation entries currently accumulating at a 
rate exceeding 17,000 per annum, HGMD represents de 
facto the central unified gene/disease-oriented repository 
of heritable mutations causing human genetic disease used 
worldwide by researchers, clinicians, diagnostic laborato-
ries and genetic counsellors, and is an essential tool for the 
annotation of next-generation sequencing data. The public 
version of HGMD (http://www.hgmd.org) is freely avail-
able to registered users from academic institutions and non-
profit organisations whilst the subscription version (HGMD 
Professional) is available to academic, clinical and com-
mercial users under license via QIAGEN Inc.

Introduction

The Human Gene Mutation Database (HGMD®) represents 
an attempt to collate all known gene lesions underlying 
human inherited disease together with disease-associated/
functional polymorphisms published in the peer-reviewed 
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The Professional version is available to both commercial 
and academic/non-profit users via subscription from QIA-
GEN (https://www.qiagenbioinformatics.com/) as either 
an online or a locally installed/downloadable version that 
is updated quarterly and includes a variety of additional 
annotations and extra features, such as GRCh38/hg38 and 
GRCh37/hg19 genomic chromosomal coordinates, HGVS 
nomenclature, Variant Call Format (VCF), additional lit-
erature reports, advanced search features, conservation data 
and functional predictions.

Source of mutation data

All HGMD mutation data have been obtained from the sci-
entific literature and are manually curated on an ongoing 
basis. Identification of relevant literature reports is carried 
out via a combination of manual journal screening and 
automated text mining. The database currently contains 
>203,000 mutation entries obtained from over 57,000 pri-
mary literature reports (supported by 29,000 additional lit-
erature reports), which were published in more than 2600 
different journals. The number of articles screened (both 
for novel mutations and additional annotations) appears to 
have reached a plateau, (Fig. 1); however, the number of 
mutations reported (per reference) continues to increase 
steadily. It is likely that the continuing development of 

high-throughput NGS methods will lead to an increased 
rate of deposition of disease-associated genetic variants in 
the published literature.

Classes of variant listed in HGMD

There are six different classes of variant listed in HGMD 
(Fig. 2). Disease-causing mutations (DM) are entered 
into HGMD where the authors of the corresponding 
report(s) have established that the reported mutation(s) 
are involved (or very likely to be involved) in confer-
ring the associated clinical phenotype upon the individu-
als concerned. The DM classification may, however, also 
appear with a question mark (DM?), denoting a probable/
possible pathological mutation, reported as likely to be 
disease causing in the corresponding report, but where (i) 
the author has indicated that there may be some degree 
of doubt or uncertainty; (ii) the HGMD curators believe 
greater interpretational caution is warranted, or (iii) sub-
sequent evidence has appeared in the literature which has 
called the initial putatively deleterious nature of the vari-
ant into question (e.g. a negative functional, case–control 
or population-scale sequencing study). The DM and DM? 
variant classes may include mutations that are believed 
to contribute to disease susceptibility in a multi-factorial 
manner (e.g. autism or schizophrenia), exhibit complex 

Table 1  Numbers of different mutations by mutation type present in HGMD Professional release 2017.1 and the publicly available version of 
the database (March 31st 2017)

Mutation type Numbers of mutations

HGMD Professional 2017.1 Publicly available

Total (disease-associated/functional 
polymorphism sub-total)

With chromosomal coordinates and 
VCF data (GRCh38/hg38)

Missense substitutions 92,331 (5132) 91,671 62,759

Nonsense substitutions 22,372 (333) 22,376 15,642

Splicing substitutions (intronic and 
exonic)

18,386 (632) 18,083 13,087

Regulatory substitutions (exonic, 
intronic, 5′- and 3′-untranslated 
regions)

3801 (2499) 3717 2764

Micro-deletions ≤20 bp 30,169 (292) 29,540 21,744

Micro-insertions/duplications ≤20 bp 12,557 (175) 12,227 8975

Micro-indels ≤ 20 bp 2866 (59) 2770 2100

Gross deletions >20 bp 15,272 (147) 0 10,337

Gross insertions/duplications >20 bp 3767 (84) 0 2389

Complex rearrangements (including 
inversions, translocations and complex 
indels)

1857 (117) 0 1417

Repeat variations 507 (306) 0 421

Totals 203,885 (9776) 180,386 141,635

https://www.qiagenbioinformatics.com/
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polygenic inheritance or possess an environmental trig-
ger component to their pathogenicity. It can be seen from 
Fig. 2 that the proportion of reported mutations belonging 
to the DM? category has steadily increased over the last 
decade; we speculate that this is because authors, jour-
nal editors and referees (also database curators!) alike 
have become much more cautious than they used to be 
in ascribing pathogenicity to the putatively disease-asso-
ciated variants that have been identified. This increase 

in caution appears to closely coincide with the advent of 
NGS and the consequent deluge of genetic variants that 
must be filtered and prioritised.

Three categories of polymorphism are included in 
the database (combined into ‘polymorphisms’ in Fig. 2). 
Disease-associated polymorphisms (DP) are entered into 
HGMD where there is evidence for a significant associa-
tion with a disease/clinical phenotype along with additional 
evidence that the polymorphism is itself likely to be of 
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functional relevance (e.g. as a consequence of genic loca-
tion, evolutionary conservation, transcription factor binding 
potential, etc.), although there may be no direct evidence 
(e.g. from an expression study) for a functional effect. 
The functional polymorphisms (FP) class includes those 
sequence changes for which a direct functional effect has 
been demonstrated (e.g. by means of an in vitro reporter 
gene assay or alternatively by protein structure, function 
or expression studies), but with no disease association 
reported as yet. Disease-associated polymorphisms with 
supporting functional evidence (DFP) must meet both of 
the above criteria in that the polymorphism should not only 
have been reported to be significantly associated with dis-
ease, but should also display direct evidence of being of 
functional relevance. The polymorphism data present in 
HGMD should be viewed with a degree of caution owing 
to (i) the possibility that an observed disease association 
may be simply due to a linkage disequilibrium effect and 
(ii) the fact that in vitro studies are not invariably accurate 
indicators of in vivo functionality (Cirulli and Goldstein 
2007; Dimas et al. 2009). Retired records (R) are variants 
that have been removed from HGMD if found to have been 
erroneously included ab initio, or if the variant has been 
subject to retraction/correction in the literature resulting in 
the record becoming obsolete, merged or otherwise invalid.

The various HGMD variant classes described above 
should not be cross-correlated with the ‘benign to patho-
genic’ 5-point classification system adopted by the ACMG 
consortium (Green et al. 2013). Although, by their very 
nature, there will be some overlap, these two classification 
systems are not directly interchangeable. The primary pur-
pose of the ACMG guidelines appears to be to minimise 
false positives in a clinical setting, whereas HGMD aims 
to include mutation data based on the cogency and credibil-
ity of the associated literature, with a curation policy that 
opts to minimise false negatives by being broadly inclu-
sive, whilst attempting to highlight potential false posi-
tives to users (e.g. via an allele frequency flag). Attempt-
ing to cross-correlate the two classification systems (e.g. 
by automatically considering HGMD DM to be equivalent 
to ACMG class 5) is likely to be potentially misleading at 
best, and may well lead to users drawing incorrect or inap-
propriate conclusions (Pinard et al. 2016).

Polymorphic copy number variations (CNVs) repre-
sent an important subset of potentially functional disease-
associated variation (Mikhail 2014; Usher and McCarroll, 
2015). While HGMD does not wish to replicate the excel-
lent curatorial work of other resources (e.g. the Database 
of Genomic Variants http://dgv.tcag.ca/dgv/app/home, 
DECIPHER http://decipher.sanger.ac.uk/ and Copy Num-
ber Variation in Disease http://202.97.205.78/CNVD/), we 
do include such variants where they fulfil certain criteria. 
HGMD will include such variants if they have been shown 

to be of functional significance, associated with disease, 
and involve a single characterised gene or small group 
of genes that have been directly implicated in the disease 
association. Such variants would then be entered into the 
database under one of the above-mentioned polymorphism 
categories, depending upon the supporting evidence pro-
vided by the authors of the article in question.

The HGMD curators have adopted a policy of con-
tinual reassessment of the curated content within the data-
base. If and when newly published information relevant 
to a specific mutation entry becomes available (e.g. addi-
tional case reports or alternate clinical or laboratory phe-
notypes, population frequency data or functional studies), 
the mutation entry may be revised or re-classified. Where 
new information becomes available which suggests that 
a given disease-causing mutation (DM) is likely to be of 
questionable pathological relevance or even a neutral poly-
morphism (on the basis of additional case reports, genome/
population screening studies, negative case–control studies, 
etc.), it may be flagged with a question mark (DM?), re-
categorised under one of the categories of polymorphism, 
or retired from the database altogether (R) if it turns out 
to have been erroneously included ab initio. The HGMD 
curators re-categorised or retired over 800 variants in 2015 
with almost 26,000 existing records having at least one rel-
evant additional reference added in the same year. Users of 
HGMD may utilise a feedback/comments function in order 
to inform the HGMD curators of relevant new or missing 
information, or to request the correction, recategorisation 
or removal of a listed variant.

Zygosity information (i.e. heterozygous, homozygous 
or compound heterozygous) for individual mutations in 
HGMD has not been recorded. Reasons for this include (i) 
the fact that this information is not always unequivocally 
provided in the corresponding literature reference; (ii) the 
possibility that a given mutation may be pathogenic irre-
spective of the zygosity in which it is found; (iii) the clini-
cal consequences of zygosity may often be modified by 
other genetic variants either in cis or in trans; (iv) digenic 
or polygenic inheritance of other pathogenic variants or 
disease modifiers and (v) variable or reduced penetrance 
which ensures that the genotype is not invariably predictive 
of the clinical phenotype (Cooper et al. 2013). Sometimes 
the same mutation may be present in the heterozygous, 
compound heterozygous or homozygous states in different 
patients; in such cases, information on zygosity may not be 
easy to provide and may be even more difficult to interpret. 
Thus, information pertaining to zygosity would not always 
be helpful or informative with regard to ascertaining or pre-
dicting the clinical phenotype, and indeed might even prove 
inaccurate or misleading.

HGMD users should not assume that just because a 
sequence variant is labelled “DM”, it automatically follows 

http://dgv.tcag.ca/dgv/app/home
http://decipher.sanger.ac.uk/
http://202.97.205.78/CNVD/
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that it is known or believed to be pathogenic in all individu-
als harbouring it (i.e. that the variant exhibits 100% pene-
trance). Indeed, many “disease-causing mutations” display 
reduced or variable penetrance for a variety of different 
reasons (reviewed by Cooper et al. 2013). Further, popula-
tion sequencing programmes (such as the 1000 Genomes 
Project and ExAC) are now identifying considerable num-
bers of “DM” mutations in apparently healthy individuals 
(MacArthur et al. 2012; Xue et al. 2012; Lek et al. 2016). 
Such lesions should not be regarded automatically as being 
clinically irrelevant, even when they occur with significant 
frequency, because it is quite possible that these mutations 
either represent low-penetrance, mild or late onset, or more 
complex disease susceptibility alleles, as opposed to neu-
tral variants (Cooper et al. 2013), or alternatively reside 
within transcripts that exhibit a degree of translational plas-
ticity (Jagannathan and Bradley 2016).

It is HGMD curation policy to err on the side of inclu-
sion and enter a variant into the database even if its path-
ological relevance may be questionable (while indicat-
ing this fact to our users wherever feasible), rather than 
run the risk of inadvertently excluding a variant that may 
be directly (or indirectly) relevant to disease. We have 
taken several different steps to highlight such equivo-
cation in HGMD, viz. the DM? variant class, a dbSNP 

1000 Genomes frequency flag (to highlight those HGMD 
variants that are also present in dbSNP, with allele fre-
quency information included; see below) and the provi-
sion of additional literature citations which either support 
or cast doubt upon the pathogenicity of a particular vari-
ant (Fig. 3). This latter point is particularly pertinent in 
the clinical setting, where a greater burden of proof may 
be required as a prerequisite for use in diagnostic and 
predictive medicine, and when considering the return of 
incidental findings to patients after testing (Green et al. 
2012, 2013; Ng et al. 2013; Gonsalves et al. 2013; Dewey 
et al. 2014; Tabor et al. 2014; Gambin et al. 2015; Jur-
gens et al. 2015).

Additional literature references are an important 
source of contextual information, and play a vital role 
in querying or confirming the pathogenicity of HGMD 
variants. Types of additional reference include functional 
studies, additional case reports, additional phenotypes 
and population case–control studies. The number of addi-
tional references in HGMD has grown steadily as a pro-
portion of the total number of references and accounts 
for approximately 30–40% of the number of literature 
references screened and entered into HGMD over the 
last 3–5 years (Fig. 1). The number of literature refer-
ences reporting novel variants appears to have reached a 

Fig. 3  Example of an HGMD Professional entry
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plateau over the last few years; however, the number of 
variants being reported per reference is still increasing, 
from 2.5 mutations per reference in the 1990s to over 4.0 
in the last two years. We expect this trend to continue as 
ever larger numbers of patient population-scale sequenc-
ing studies are completed and published (Ellingford et al. 
2016; Susswein et al. 2016; Lopes et al. 2015).

HGMD Professional

HGMD Professional serves as the subscription ver-
sion of HGMD, and is available to both commercial and 
academic customers under license from QIAGEN Inc. 
HGMD Professional allows access to up-to-date muta-
tion data with a quarterly release cycle; this version is 
therefore essential for checking the novelty of newly 
found mutations. HGMD Professional contains many 
features not available in the public version. More power-
ful search tools in the form of an expanded search engine 
with full text Boolean searching are provided. A batch 
search mode has been developed to allow users to query 
HGMD using gene (e.g. OMIM IDs, Entrez IDs), variant 
(e.g. dbSNP IDs, chromosomal coordinates, VCF for-
mat) and dataset (e.g. PubMed ID) oriented lists. Users 
can employ these tools to perform additional searches 
for gene-specific (e.g. chromosomal locations, gene 
names/aliases and gene ontology), mutation-specific 
(e.g. chromosomal coordinates, HGVS nomenclature, 
dbSNP ID) or citation-specific (e.g. first author, publi-
cation year, PubMed ID) information. Chromosomal 
coordinates (hg19/hg38) and HGVS nomenclature are 
provided for the vast majority of our nucleotide substitu-
tions (99.8% coverage) and other micro-lesions (97.6% 
coverage). Provision of consistently accurate mutation 
descriptions is especially important in the era of NGS 
sequencing (Yen et al. 2017) and has helped to make 
HGMD an invaluable tool for the analysis of population-
scale NGS datasets such as the 1000 Genomes Project 
(1000 Genomes Project Consortium 2015) and ExAC 
(Lek et al. 2016). Additional information is also pro-
vided on a mutation-specific basis (see Fig. 3) including 
curatorial comments (for example, if the mutation data 
presented in the original publication required in-house 
correction or author clarification [5–10% of all entries], 
or if the clinical phenotype is associated with a more 
complex, i.e. digenic or in-cis inheritance pattern), addi-
tional reports comprising functional characterisation, 
further phenotypic information, comparative biochemi-
cal parameters, evolutionary conservation and SIFT (Sim 
et al. 2012) and MutPred (Li et al. 2009) pathogenicity 
predictions. More recently, the functional predictions 
and nucleotide conservation data from dbNSFP2.0 (Liu 

et al. 2013), a database of all potential non-synonymous 
single-nucleotide variants in the human genome, have 
been included. These additional annotations are updated 
on a regular basis.

HGMD clinical phenotypes have been annotated 
against the Unified Medical Language System (UMLS) 
using a combination of manual curation and natural lan-
guage processing. The UMLS is a compilation of biomed-
ical ontologies and vocabularies catalogued into a single 
resource (e.g. OMIM phenotype data, Medical Subject 
Headings (MeSH) and other disease ontologies), and 
may be found at http://www.nlm.nih.gov/research/umls/. 
HGMD phenotype data have been mapped to approxi-
mately 18 different UMLS high-level concepts (Fig. 4). 
These UMLS mappings provide users with a more accu-
rate and expanded phenotype search. Thus, searches 
using alternative disease names should return the same 
result-set, e.g. a search for “breast cancer” should yield 
identical results to a search for “malignant neoplasm of 
breast”. In addition, utilising the UMLS allows for pow-
erful semantic searching (e.g. searches for all mutations 
linked to “blood disorders” or “immune disorders”). The 
UMLS ontology mappings have been utilised in a variety 
of different NGS sequencing studies (see below).

Another feature involves the highlighting of HGMD 
entries where the pathogenicity of the variant may have 
been cast into doubt by virtue of its high allele frequency. 
HGMD Professional displays a frequency flag when a 
listed variant is to be found in dbSNP, and population fre-
quency data from the 1000 Genomes Project are provided. 
In addition, HGMD will soon include allele frequencies 
derived from the more recent ExAC study (Lek et al. 2016). 
As well as searching and viewing mutation data, users of 
HGMD Professional may utilise a feedback facility to sub-
mit corrections to the database curators or to request addi-
tional features (see Fig. 3 to view a sample HGMD Profes-
sional variant entry).

HGMD Professional also includes an Advanced 
Search facility to enhance mutation searching, view-
ing and retrieval. Datasets may be combined (for exam-
ple, micro-deletions, micro-insertions and indels) to 
enable powerful searching across comparable types 
of mutation. A variety of search parameters are avail-
able, including functional features [e.g. in vitro and/
or in silico characterised transcription factor bind-
ing sites, post-translational modifications, microRNA 
binding sites, upstream open reading frames (ORFs), 
and catalytic residues] to search for the gain or loss 
of a specific feature as a consequence of mutation; 
type of amino acid substitution; nucleotide substitu-
tion; size and/or sequence composition of micro-dele-
tions, micro-insertions or indels; pre- or user-defined 
sequence motifs (both those created and those 

http://www.nlm.nih.gov/research/umls/
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abolished by the mutation in question); dbSNP num-
ber; keywords found in the article title or abstract. The 
Advanced Search also includes a batch mode termed 
“Mutation Mart” to query HGMD via multiple identi-
fiers including dbSNP, Entrez gene (http://www.ncbi.
nlm.nih.gov/gene) and PubMed. HGMD Professional is 
available to subscribers either as an online-only pack-
age or in downloadable form enabling users to incorpo-
rate HGMD data into their local variant analysis pipe-
lines (https://www.qiagenbioinformatics.com/products/
human-gene-mutation-database/).

Focus on NGS

HGMD data are available in VCF format allowing easy 
visualisation, for example by using the Integrative 
Genomics Viewer (Robinson et al. 2011), or incorpora-
tion into custom data analysis pipelines (Dorschner et al. 
2013; Gambin et al. 2015; Johnston et al. 2015; Lek et al. 
2016). This facility allows users to maximise their use 
of HGMD data in both a clinical diagnostic and research 
setting. The provision of disease UMLS concept map-
pings (including OMIM, SNOMED, MeSH and HPO) 
also greatly enhances both the web-based HGMD search 

facility and the downloadable package, allowing the 
stratification of variants according to recognised disease 
concepts.

When using HGMD Professional to annotate large 
NGS datasets, and depending on the context (e.g. an 
inherited disease screen), it is often useful to annotate the 
dataset with a subset of HGMD variants (e.g. those which 
fall into the DM and DM? categories). Any variants found 
concurrently in this subset and the dataset being tested 
may then be further prioritised by variant class; hence, 
DM variants could be ranked higher than DM? variants 
if so desired. We have plans to introduce a literature-
based variant scoring system to allow NGS researchers 
and clinicians to improve their prioritisation of DM/DM? 
variants found in their result sets. This system will anno-
tate additional references as being supportive, neutral or 
not supportive of the inclusion of the variant in HGMD, 
thereby allowing users to rank those variants that possess 
additional supporting literature evidence (e.g. those with 
a published functional study) more highly, in addition 
to de-prioritising variants that have additional literature 
evidence questioning their pathological relevance. This 
new information will be available in both the online and 
download versions of the next release of HGMD Profes-
sional (see Fig. 3).

Fig. 4  Overview of UMLS high-level disease concept mappings present in HGMD

http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene
https://www.qiagenbioinformatics.com/products/human-gene-mutation-database/
https://www.qiagenbioinformatics.com/products/human-gene-mutation-database/
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One of the problems encountered by NGS researchers 
and clinicians is the mis-annotation of variants as path-
ogenic or disease-causing. A small number of literature 
reports have been published where common variants have 
not being properly filtered out at an early stage, thereby 
increasing the number of mis-categorised variants 
appearing in the literature. HGMD has instigated plans 
to mitigate this problem, including the pre-screening of 
entries against the population frequency data present in 
ExAC (in progress) and the introduction of a literature-
based scoring system (see above).

Other variant databases

Several other databases are available that attempt to record 
disease-causing or disease-associated (i.e. pathogenic) varia-
tion. These include the Online Mendelian Inheritance in Man, 
OMIM (http://www.omim.org/; Amberger et al. 2015), Clin-
Var (http://www.ncbi.nlm.nih.gov/clinvar/; Landrum et al. 
2016), dbSNP (http://www.ncbi.nlm.nih.gov/SNP/; Sherry 
et al. 2001), LOVD (http://grenada.lumc.nl/LSDB_list/lsdbs; 
Fokkema et al. 2011) and a variety of locus-specific mutation 
databases (LSDBs) (http://www.hgvs.org/dblist/glsdb.html). 
OMIM does not provide statistics for allelic variants on its 
website; however, 25,115 germline OMIM variants appear to 
have been added to ClinVar, which itself currently contains 
a total of 53,211 pathogenic or likely pathogenic germline 
variants, whereas dbSNP contains 49,675 pathogenic or 
likely pathogenic clinically significant variants (all databases 
accessed December 30th 2016). In comparison, HGMD cur-
rently contains 193,904 DM and DM? variant entries in 6770 
genes. Owing to the highly dispersed nature of the LSDBs 
and the potential for duplication between databases, accu-
rate statistics with regard to like-for-like bona fide germline 
disease-causing (i.e. not merely neutral) variation is difficult 
to obtain. Since OMIM only records a limited number of 
variants deemed newsworthy per gene, and ClinVar still lacks 
depth (in terms of variant and literature coverage) and obtains 
a significant proportion (~40% of the above-mentioned total) 
of its pathogenic variant data via direct submission from clin-
ical testing laboratories, HGMD is the only database of inher-
ited human pathological variants that can claim to approach 
comprehensive coverage of the peer-reviewed literature 
(Peterson et al. 2013). Since both ClinVar and the LSDBs 
contain unpublished (i.e. non-peer reviewed) mutation data, 
the question has arisen as to whether HGMD should also 
include these data (Patrinos et al. 2012). However, both Clin-
Var and the LSDBs have encountered problems pertaining to 
data quality, submission, provenance and consent. A recent 
study (Abouelhoda et al. 2016) found that a higher proportion 
(1.1% vs. 0.59%) of variants in ClinVar required reclassifi-
cation when compared to HGMD Professional (Abouelhoda 

et al. 2016, Table 1). The reclassification data presented by 
the authors of this study have already been incorporated into 
HGMD Professional. At present, however, it does not appear 
that any revisions have been made to ClinVar as a result of 
this study. Therefore, we have opted not to include data from 
these databases at this time.

How HGMD is utilised

The registered users of the HGMD public website 
(>101,000 as of March 2017) performed more than 260,000 
queries in 2016. HGMD data may not be downloaded in 
their entirety from the public website; however, data may 
be made available at the discretion of the curators for non-
commercial research purposes. Potential collaborators who 
wish to access HGMD data in full are required to sign a 
confidentiality agreement.

HGMD data have been used to perform a series of meta-
analyses on different types of gene mutation causing human 
inherited disease. These studies have helped to improve 
our understanding of mutational spectra and the molecular 
mechanisms underlying human inherited disease (Cooper 
et al. 2011). They have served to demonstrate not only that 
human gene mutation is an inherently non-random process, 
but also that the nature, location and frequency of different 
types of mutation are shaped in large part by the local DNA 
sequence environment (Cooper et al. 2011). Indeed, HGMD 
data have been instrumental in demonstrating that electron 
transfer reactions (Bacolla et al. 2013), base-pair flexibility 
(Bacolla et al. 2015) and non-B DNA forming sequences 
(Kamat et al. 2016) all contribute to sequence context-
dependent mutagenesis causing inherited disease. HGMD 
mutation data were used to demonstrate that many in-frame 
pathogenic variations perturb protein–protein interactions 
(Das et al. 2014). HGMD mutations have also been used 
to demonstrate that proteins linked to autosomal dominant 
diseases exhibit more clustering of rare missense mutations 
than those linked to autosomal recessive diseases (Turner 
et al. 2015). Finally, HGMD mutations have been mapped 
to protein 3D structures in order to study the loss and gain 
of various types of functional attribute, thereby quantifying 
the impact of disease-causing amino acid substitutions on 
catalytic activity, metal binding, macromolecular binding, 
ligand binding, allosteric regulation and post-translational 
modification (Lugo-Martinez et al. 2016).

HGMD data have been used extensively in several 
international collaborative research projects including the 
Genotype-Tissue Expression (GTEx) project (Rivas et al. 
2015), the ExAC project (Lek et al. 2016) and the 1000 
Genomes project (Marth et al. 2011; MacArthur et al. 
2012; 1000 Genomes Project Consortium 2015), where 
a surprising number of HGMD variants were found in 

http://www.omim.org/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/SNP/
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apparently healthy individuals. They have also been used 
in the comparative analysis of orthologous sequences in 
model genomes including those of gorilla (Scally et al. 
2012), mountain gorilla (Xue et al. 2015), cynomolgus 
and Chinese macaques (Yan et al. 2011), Rhesus macaque 
(Rhesus Macaque Genome Sequencing and Analysis Con-
sortium 2007) and rat (Rat Genome Sequencing Project 
Consortium 2004), in which many apparently disease-caus-
ing mutations in human were found as wild-type (‘compen-
sated mutations’) (Azevedo et al. 2015, 2016).

In a clinical setting, HGMD is widely utilised by many 
groups in ongoing NGS diagnostic (Bell et al. 2011; John-
ston et al. 2012; Calvo et al. 2012; Makrythanasis et al. 
2014; Karageorgos et al. 2015; Wilfert et al. 2016; Walsh 
et al. 2017) and human genome sequencing (Tong et al. 
2010; Kim et al. 2009; Telenti et al. 2016) programmes. 
HGMD has also been used by a number of different groups 
to aid the development of a wide variety of post-NGS 
variant interpretation and exome prioritisation algorithms 
including MutPred (Li et al. 2009), MutPred Splice (Mort 
et al. 2014), PROVEAN (Choi et al. 2012), CAROL (Lopes 
et al. 2012), regSNPs (Teng et al. 2012), CRAVAT (Dou-
ville et al. 2013), NEST (Carter et al. 2013), FATHMM 
(Shihab et al. 2013), FATHMM-MKL (Shihab et al. 2015), 
PinPor (Zhang et al. 2014), MutationTaster2 (Schwarz et al. 
2014), Phen-Gen (Javed et al. 2014), VEST-indel (Douville 
et al. 2016), Gene Damage Index (Itan et al. 2015), DDIG-
in (Folkman et al. 2015), RSVP (Peterson et al. 2016), 
ExonImpact (Li et al. 2017), IntSplice (Shibata et al. 2016), 
snvForest (Wu et al. 2015), IMHOTEP (Knecht et al. 2017) 
and M-CAP (Jagadeesh et al. 2016). A list of some of the 
articles which have utilised HGMD data or expertise in 
their analyses can be found on the HGMD website (http://
www.hgmd.cf.ac.uk/docs/articles.html).

Data sharing

A limited HGMD data set, containing both chromosomal 
coordinates and HGMD identifiers, has been made avail-
able via academic data exchange programmes to the Euro-
pean Bioinformatics Institute (EBI)/Ensembl (Flicek et al. 
2013) and the University of California, Santa Cruz (UCSC) 
(Meyer et al. 2013) and may be viewed in these projects’ 
respective genome browsers. Data from HGMD Profes-
sional have additionally been made available to subscrib-
ers of Ingenuity Variant Analysis™ (QIAGEN) and Alamut 
(Interactive Biosoftware), but are also accessible as part 
of the HGMD Professional stand-alone package (QIA-
GEN). Allowing free access to the bulk of the mutation 
data present in HGMD, while generating sufficient income 
to support maintenance and development via commercial 
distribution, represents a business model that is intended 

to maximise the availability of HGMD at the same time 
as ensuring its long-term sustainability. Although we are 
obliged to be prudent with regard to data sharing with 
public data repositories, we have always taken the view 
that making as much data publicly available as possible 
is generally beneficial to HGMD as well as to its users 
worldwide.

Future plans

The provision of chromosomal coordinates (both GRCh37 
and 38) for the vast majority of coding region micro-
lesions in HGMD is now complete. Expanding this pro-
vision to include micro-lesions in non-coding regions 
and the gross (in progress) and complex lesion (where 
feasible) datasets is a high priority, We plan to add other 
commonly utilised NGS formats such as General Feature 
Format (GFF) (http://www.sanger.ac.uk/resources/soft-
ware/gff/) and Browser Extensible Data (BED) format 
to complement the Variant Call Format (VCF) (Danecek 
et al. 2011) data currently available in HGMD Profes-
sional. The provision of allele frequency data from large-
scale NGS projects such as ExAC (http://exac.broadinsti-
tute.org/), more complete references (i.e. including article 
titles) and HGVS protein level descriptions for HGMD 
micro-lesions are also priorities. Provision of genomic ref-
erence sequences based on the NCBI RefSeqGene project 
(Pruitt et al. 2014), links to available protein structures and 
homology models, and expanding our coverage of second-
ary references (additional case reports and functional stud-
ies) are also regarded as priorities, as well as updating our 
set of functional predictions using the new dbNSFP v3.0 
dataset (Liu et al. 2016).

HGMD provides the user with a unique resource that 
can be utilised not only to obtain evidence to support the 
pathological authenticity and/or novelty of detected gene 
lesions and to acquire an overview of the mutational spec-
tra for specific genes, but also as a knowledgebase for use 
in the bioinformatics and whole genome screening pro-
jects that underpin personalised genomics, next-generation 
sequencing research and diagnostic medicine.
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