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SUMMARY 

1. Consumer-resource interactions (i.e. the functional response) underpin decades of 

ecological advancements. However, selecting, fitting and comparing functional 

response models using appropriate methods remains a non-trivial endeavour. 

2. The R package FRAIR provides tools for selecting and differentiating various forms 

of consumer functional response models, a consistent interface for fitting and 

visualising response curves, and a selection of statistically robust methods for 

comparing fitted parameters.    

3. Using real data from crustacean predator-prey systems, we demonstrate the utility of 

FRAIR, highlighting best practice and common analytical mistakes. 

 

KEYWORDS 

consumer-resource interactions; predator-prey; resource use; non-linear curve fitting; 
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INTRODUCTION 

Consumer-resource interactions are at the heart of ecology because all organisms must 

consume resources of some kind. Functional responses describe how the per capita feeding 

rates of consumers change systematically with resource availability as a result of the 

consumer’s search for, capture, and handling of resources (Holling 1959, 1966). The ubiquity 

and simplicity of principles underpinning the functional response continues to resonate with 

ecologists working at scales ranging from the behaviour of individuals (Toscano & Griffen 

2014) to entire food webs (Brose 2010). Across fields—from theoretical explorations of 
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stability and coexistence (Williams & Martinez 2004) to applications in biocontrol, invasions 

and conservation (Sinclair et al. 1998; Twardochleb et al. 2012)—functional responses 

remain central to much ecological research.  

THE ANATOMY OF A FUNCTIONAL RESPONSE 

Despite decades of refinements (e.g. Real 1977; Hassell 1978; Arditi & Ginzburg 1989; 

Skalski & Gilliam 2001; Okuyama 2012), the essential components of search, capture and 

handling outlined by Holling (1959) have remained largely unchanged. A generalised version 

of the Holling disc equation is (Real 1977): 

௘ܰ = ௔்ே(೜శభ)ଵା௔௛ே(೜శభ)          (1) 

where N is the resource density or number of prey; T is experimental time (typically hours or 

days); a is the instantaneous resource capture rate of the consumer, per unit area/volume per 

unit time; h in practice represents the time spent subjugating, ingesting and digesting each 

prey item, with the same units as T (Jeschke et al. 2002; Sentis et al. 2013); and q is a scaling 

exponent defining the extent to which the functional response changes from a decelerating 

hyperbola (Type II: q = 0 and Fig. 1a purple) to a sigmoidal form (Type III: q > 0 and Fig. 1a 

green).  

When q is 0, capture rates are constant with resource density, whereas where q > 0, capture 

rates follow a power-law relationship with resource density, often implying that consumers 

learn as they forage (Real 1977). Type I (linear rather than saturating sensu Holling; Fig. 1a 

orange) functional responses can be described where q = 0 and h = 0. Since handling time 

determines the maximum consumption rate (1/h), doubling h suppresses the asymptote for 

consumers with identical capture rates (Fig. 1c: dashed versus solid blue curve). In contrast, 
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for consumers with identical handling times, doubling capture rates (a) increases 

consumption at low resource densities (Fig. 1c: dashed versus solid purple curves).  

An important assumption of equation 1 is that local resource density does not decline. 

However, in many experiments, consumers deplete resources, rendering models in the 

equation 1 family inappropriate (e.g. Bollache et al. 2008). The family of models introduced 

by Royama (1971) and popularised by Rogers (1972) provide a solution to this problem by 

integrating instantaneous consumption over time. The modification of equation 1 assuming 

depletion is: 

௘ܰ =	 ଴ܰ(1	– ܽ)	݌ݔ݁	 ଴ܰ௤(ℎ ௘ܰ 	– 	ܶ)))        (2) 

where N0 is the initial prey density, and other parameters are as in equation 1. Although the 

number of prey eaten (Ne) appears on both sides of equation 2, it can be solved using the 

‘Lambert-W’ function (W). The derivation and definition of W is beyond the scope of this 

manuscript but it is described in detail in Corless et al. (1996) and with respect to ecological 

applications by Lehtonen (2016). 

APPLICATIONS OF FUNCTIONAL RESPONSES 

Ecologists often seek objective comparisons between one or more groups; with functional 

responses this usually necessitates comparisons of fitted model parameters, though the 

particular methods employed remain a subject of confusion and debate (Houck & Strauss 

1985; Juliano 2001). Renewed interest in consumer functional response models has driven 

several innovative analytical solutions, at least two of which have been widely adopted. The 

first involves explicitly modelling the difference fitted parameters between two (or more) 

groups. This approach – described in Juliano (2001) – is computationally simple, but requires 

reparameterisation of the underlying model. It provides a coefficient (the difference between 
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groups of interest) that can be interpreted within a regression-modelling framework, and with 

proper formulation and sufficient data, can be extended to moderately complex hypotheses 

(e.g. Paterson et al. 2015). A second approach involves bootstrapping (resampling with 

replacement) of either raw data (e.g. Bovy et al. 2015) or modelled residuals (e.g. Médoc et 

al. 2015). This computationally intensive approach explores the likely range of fitted 

coefficients, and allows for direct comparison of the range of these values (e.g. via 

confidence intervals).    

Not all analytical approaches in the recent literature are as well advised. For example, some 

have applied null-hypothesis significance tests to bootstrapped parameter estimates from 

functional response models (e.g. Dodd et al. 2014; Bunke et al. 2015) – an approach that is 

clearly flawed (White et al. 2014). We suspect that the lack of a common toolset for non-

specialists to fit and examine consumer functional response models has contributed to the 

propagation of these methods. With research output increasing, it is critical that ecologists 

working on functional responses make robust analyses: we anticipate that FRAIR can meet 

this need. 

THE FRAIR PACKAGE 

FRAIR is a package in the R statistical environment for selection, fitting and comparisons 

among common functional response models and constituent parameters. FRAIR is available 

on CRAN and development is undertaken openly on GitHub 

(http://github.com/dpritchard/frair).  

This tutorial is based on FRAIR version 0.5.100 (the most recent version available on CRAN) 

and outlines key functionalities whilst providing a general introduction to these analyses. The 

tutorial is based on two experimentally derived datasets included with the package: 
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gammarus, a subset of data from Paterson et al. (2015) and bythotrephes, a previously 

unpublished dataset. 

The gammarus dataset describes consumption of dipteran larvae (Simulium spp.) by two 

amphipod species (Gammarus duebeni celticus and Gammarus pulex). The bythotrephes 

dataset describes consumption of three size classes of the cladoceran Polyphemus pediculus 

by the cladoceran Bythotrephes longimanus. Both datasets concern experimental designs 

incorporating prey depletion. For further examples, readers are directed to other published 

studies utilising FRAIR (https://github.com/dpritchard/frair/wiki/FRAIR-in-use). 

# Gammarus 

data("gammarus") 
str(gammarus) 

## 'data.frame':    224 obs. of  4 variables: 
##  $ density: int  2 2 2 2 2 2 2 2 2 2 ... 
##  $ eaten  : int  0 2 2 2 2 2 2 2 2 2 ... 
##  $ alive  : int  2 0 0 0 0 0 0 0 0 0 ... 
##  $ spp    : Factor w/ 2 levels 

levels(gammarus$spp) 

## [1] "G.d.celticus" "G.pulex" 

 
# Bythotrephes 
data("bythotrephes") 
str(bythotrephes) 

## 'data.frame':    72 obs. of  4 variables: 
##  $ density: int  1 1 1 3 3 3 2 2 2 4 ... 
##  $ eaten  : int  1 1 0 3 2 3 2 2 2 4 ... 
##  $ alive  : int  0 0 1 0 1 0 0 0 0 0 ... 
##  $ size   : Factor w/ 3 levels 

levels(bythotrephes$size) 

## [1] "small" "medium" "large" 
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The FRAIR workflow involves a three-step process: (1) model selection; (2) model fitting 

and; (3) comparison of fits and coefficients. An essential step in this process is to visually 

inspect the raw plotted data (Fig. 2). 

MODEL SELECTION 

FRAIR offers a range of commonly used functional response models that can be viewed using 

frair_responses(). Basic models assume constant resource density throughout 

experimental trials (resources are replaced). For experiments where resources are depleted 

(so-called non-replacement experiments), models are provided (suffixed with nr) with 

Rogers (1972) modifications and solved using the ‘lambertW’ function (Bolker 2008). 

Although equations 1 and 2 imply consumer functional responses can be described on a 

linear (Type I) to sigmoidal (Type III) continuum, the original categorical descriptions of 

Holling remain prominent (e.g. Denny 2014). This is likely because deviations from Type II 

towards Type III functional responses can stabilise otherwise chaotic consumer-resource 

dynamics (Williams & Martinez 2004; Barrios-O’Neill et al. 2016).  

Juliano (2001) advocates fitting polynomial logistic functions to proportional consumption 

data to determine functional response Type. Type II is characterised by a negative first-order 

term (declining proportional consumption with increasing resource density; Fig. 1b), in 

contrast to a positive first-order term of Type III (initial increase and subsequent decrease in 

proportional consumption; Fig. 1b). Using this logic, the frair_test function uses forward 

selection based on the sign and significance of first-order (density) and second-order 

(density^2) terms in logistic regressions. 

# Gammarus 

frair_test(formula = eaten~density, data = gammarus) 

## FUNCTIONAL RESPONSE TEST 
##  
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## Evidence for type-II response:   Yes 
## Evidence for type-III response:  - 
##  
## Type-II logistic regression output: 
##           Estimate Std. Error z value  Pr(>|z|)     
## density -0.0792704  0.0044298 -17.895 < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
# Bythotrephes 
frair_test(formula = eaten~density, data = bythotrephes) 

## FUNCTIONAL RESPONSE TEST 
##  
## Evidence for type-II response:   No 
## Evidence for type-III response:  Yes 
##  
## Type-III logistic regression output: 
##                Estimate Std. Error z value  Pr(>|z|)     
## density       0.3646093  0.1009794  3.6107 0.0003053 *** 
## I(density^2) -0.0206557  0.0051263 -4.0293 5.593e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Although this approach provides a statistical test to distinguish between Type II and Type III, 

it is considered phenomenological in that it describes only the general shape of the response, 

without determining whether a particular mechanistic model is appropriate. An alternative 

approach involves fitting a generalised form of the functional response model with a scaling 

exponent (q) parameterised such that q = 0 represents a Type II response (equation 1 or 2), 

thus exposing a useful null-hypothesis test (i.e. q ≠ 0) via a regression output and allowing 

for comparison of models using information criteria (e.g. AIC, BIC, AICc). For example, 

with the bythotrephes dataset: 

# Bythotrephes 

# Fit a model where q can vary: 
b_flex <- frair_fit(eaten~density, data=bythotrephes,  
                    response='flexpnr',  
                    start=list(b = 1, q = 0, h = 0.08),  
                    fixed=list(T = 12/24)) 
# Fit a model where q is fixed to zero: 
b_II <- frair_fit(eaten~density, data=bythotrephes,  
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                  response='flexpnr',  
                  start=list(b = 1, h = 0.08),  
                  fixed=list(T = 12/24, q = 0)) 
summary(b_flex$fit) # q != 0 : Type III preferred 
AIC(b_flex$fit, b_II$fit) # The model including q is preferred 

 

The usefulness of these tests depends on the quality of data at low resource densities 

(Barrios-O’Neill et al. 2015) and some authors recommend that proportional relationships are 

visually inspected with locally weighted regression (Juliano 2001).  

The experimental designs of our datasets indicate that depletion models are required as prey 

are not replaced during the experiment. Plots of the raw data and these analyses suggest that 

for the gammarus dataset, a Type II model is sufficient, however a Type III—or flexible 

model—may be most appropriate for the bythotrephes data. 

MODEL FITTING 

Essential to the optimisation of non-linear models is the provision of reasonable starting 

values for free parameters. There are some rules of thumb, for example, for Type II models, h 

can be approximated as the inverse of the maximum number eaten where T is set to 1 (Bolker 

2008). An equally reliable method is a visual assessment of the data, plotting of putative 

starting values and trial and error (Fig. 2).  

# Gammarus 
with(gammarus, plot(density, eaten, xlab = "Prey Density",  
                    ylab = "No. Prey Eaten")) 
x <- with(gammarus, seq(from = min(density), to = max(density),  
                        by = 0.1)) 
lines(x, rogersII(X = x, a = 1.2, h = 0.08, T = 40/24),  
      col='grey50', lty=2) 
lines(x, rogersII(X = x, a = 0.6, h = 0.16, T = 40/24),  
      col='grey50', lty=2) 
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# Bythotrephes 
with(bythotrephes, plot(density, eaten, xlab = "Prey Density",  
                        ylab = "No. Prey Eaten")) 
x <- with(bythotrephes, seq(from =  min(density), to = max(density),  
                            by = 0.1)) 
lines(x, flexpnr(X = x, b = 1, h = 0.04, q = 1, T = 12/24),  
      col='grey50', lty=2) 
lines(x, flexpnr(X = x, b = 2.4, h = 0.04, q = 0, T = 12/24),  
      col='grey50', lty=2) 

 

Note that all FRAIR functional response models take at least one fixed parameter (T), which 

is experimental time. Although not optimised, this value will change the units of the fitted 

coefficients. Many authors implicitly accept units of “experimental time” by setting T = 1. 

Unless the raw data is made available, this limits the use of parameter estimates in 

subsequent studies (e.g. meta-analyses, food-web models). Therefore, we recommend users 

adopt units of either ‘hour’ or ‘day’ and have adopted units of ‘day’ in this manuscript.   

Once starting estimates and fixed values are provided, the model is optimised using 

maximum likelihood estimation (MLE). This robust approach to fitting non-linear models 

(Bolker 2008) allows for optimisation on the basis of arbitrary probability distributions. 

Internally, all FRAIR models use a binomial likelihood function, which imposes an upper (all 

prey eaten) and lower (no prey eaten) limit on the response. A practical limitation of this 

likelihood specification is that FRAIR can only fit curves when the density (x-axis) is 

specified as whole integer values (the most common situation for individual prey items). 

In FRAIR, optimisation by MLE is provided by frair_fit and is implemented using 

bbmle::mle2 (Bolker 2008). The resulting output (of class frair_fit) provides information 

on the fit and the maximum likelihood estimators (fitted coefficients) and a lines method to 

plot the fitted curve (Fig. 2). frair_fit also returns the raw output from the maximum 

likelihood optimisation, which provides typical regression output including asymptotic 

standard errors, z-statistics and p-values. 
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# A fit to the entire gammarus dataset 
g_fit <- frair_fit(formula = eaten~density, data = gammarus,  
                   response = "rogersII", 
                   start = list(a = 1, h = 0.1),  
                   fixed = list(T = 40/24)) 
with(gammarus, plot(density, eaten, xlab="Prey Density",  
                    ylab="No. Prey Eaten")) 
lines(g_fit, lty = 1, col = "grey25") 
print(g_fit) 

## FUNCTIONAL RESPONSE FIT 
##  
## Response:            rogersII 
## Description:         Roger's type II decreasing prey function 
## Optimised variables: a, h 
## Fixed variables:     T 
##  
## Coefficients: 
##     a     h     T  
## 1.423 0.180 1.667 
##  
## NOTE: It is recommended you inspect the raw fit too (see: ?frair_fit) 

summary(g_fit$fit) 

## Coefficients: 
##    Estimate Std. Error z value     Pr(z)     
## a 1.4228013  0.1314562  10.823 < 2.2e-16  
## h 0.1802657  0.0098583  18.286 < 2.2e-16  
##  
## -2 log L: 1129.631 

 
# A fit to the entire bythotrephes dataset 
b_fit <- frair_fit(formula = eaten~density, data = bythotrephes,  
                   response = "flexpnr",  
                   start = list(b = 1.5, h = 0.04, q = 1),  
                   fixed = list(T = 12/24)) 
with(bythotrephes, plot(density, eaten, xlab="Prey Density",  
                        ylab="No. Prey Eaten")) 
lines(b_fit, lty = 1, col = "grey25") 
print(b_fit) 

## FUNCTIONAL RESPONSE FIT 
##  
## Response:            flexpnr 
## Description:         Flexible exponent, not assuming replacement 
## Optimised variables: b, h, q 
## Fixed variables:     T 
##  
## Coefficients: 
##     b     q     h     T  
## 0.652 1.215 0.053 0.500 
##  
## NOTE: It is recommended you inspect the raw fit too (see: ?frair_fit) 
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summary(b_fit$fit) 

## Coefficients: 
##   Estimate Std. Error z value     Pr(z)     
## b 0.651730   0.258996  2.5164   0.01186 
## q 1.215357   0.296077  4.1049 4.045e-05 
## h 0.052912   0.005112 10.3509 < 2.2e-16 
##  
## -2 log L: 241.1805 

 

MODEL COMPARISON 

The third step in the FRAIR workflow includes comparisons of fitted coefficients. The two 

approaches currently implemented are the delta or difference method of Juliano (2001), 

provided by frair_compare and non-parametric bootstrapping of the raw data, provided by 

frair_boot. Both functions operating on objects produced by frair_fit (i.e. class frfit). 

Comparisons between constituent parameters require that those parameters are equivalent. 

Comparisons of handling times, h, and maximum feeding rates (1/hT) are possible between 

all models in FRAIR (assuming consumers are handling limited), but comparisons of capture 

rates are often problematic. For example, there is no equivalence between capture rates as 

defined in hassIIInr and rogersII, which respectively describe Type III and Type II 

responses (e.g. Alexander et al. 2012). Indeed, a Type II model assumes a prey density-

independent capture rate, whilst for a Type III model capture rates typically follow a power 

law with prey density. Where comparing Type II and Type III models it is common to resort 

to comparisons of maximal capture rates, usually the steepest part of the curve (Englund et al. 

2011). Often, however, responses in a dataset are of the same categorical form, making 

comparisons straightforward. 

 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

# Compare two species in the gammarus dataset 
pulex <- gammarus[gammarus$spp=='G.pulex', ] 
celt <-  gammarus[gammarus$spp=='G.d.celticus', ] 
st <- list(a = 1, h = 0.1) 
fx <- list(T = 40/24) 
p_fit <- frair_fit(eaten~density, data = pulex, response = 'rogersII',  
                   start = st, fixed = fx) 
c_fit <- frair_fit(eaten~density, data=celt, response='rogersII',  
                   start = st, fixed = fx) 
frair_compare(p_fit, c_fit) 

## FUNCTIONAL RESPONSE COEFFICIENT TEST 
##  
## Response:            rogersII 
## Optimised variables: a,h 
## Fixed variables:     T 
##  
## Original coefficients:  
##             a       h 
## p_fit 1.47748 0.14268 
## c_fit 1.41745 0.23381 
##  
## Test: p_fit - c_fit 
##  
##    Estimate Std. Error z value  Pr(z)  
## Da  0.05961    0.27132  0.2197  0.8261  
## Dh -0.09115    0.02087 -4.3681  1e-05  

 

frair_compare implements a difference test with the null hypothesis that fitted parameters 

do not differ. The fitted parameters Da and Dh estimate the differences between the capture 

rates and handling times of the two predators respectively. Here, we have evidence that 

capture rates do not differ (Da = 0.06, z = 0.22, p = 0.826), but that the handling time of 

G. pulex is shorter than that of G. d. celticus (Dh = -0.02, z = -4.36, p < 0.001). 

Unfortunately, the difference method does not allow for direct comparisons between 

predicted consumption across the range of resource densities and because consumers can 

switch between Type II and Type III responses (Barrios-O’Neill et al. 2016), objective 

comparisons using this approach are often impossible. Therefore, FRAIR also provides 

frair_boot, which implements non-parametric bootstrapping and leverages boot::boot 

(Canty & Ripley 2016). This method generates multiple estimates of curves and constituent 
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parameters (based on a default minimum of 999 samples; Dixon 2001) and reports 95% 

confidence intervals (CIs) by default. We recommend using bias corrected and accelerated 

intervals – BCa – to account for bias, skew and bounded parameters (a and h > 0). It is 

expected that the underlying maximum likelihood estimation will sometimes fail, even with 

reasonable starting values, therefore frair_boot warns if > 10% of all bootstrapped fits fail 

and returns an error if >50% of the fits fail. Because bootstrapping generates population 

metrics, the equivalent of a null hypothesis test is simply a lack of overlap between the CIs of 

model parameters. 

# Bootstrap the Gammarus pulex fit 
p_fitb <- frair_boot(p_fit) 
confint(p_fitb, citypes = 'bca') 

## Coefficient  CI Type        Lower   Upper    
## a            BCa            0.998   2.295    
## h            BCa            0.102   0.203 

 
# Bootstrap the Gammarus duebeni celticus fit 

c_fitb <- frair_boot(c_fit) 
confint(c_fitb, citypes = 'bca') 

## Coefficient  CI Type        Lower   Upper    
## a            BCa            0.94    2.133    
## h            BCa            0.183   0.286 

 

Bootstrapping outputs for the gammarus dataset concur with the difference method for 

capture rates: the 95% CIs clearly overlap. In contrast to the difference method frair_boot 

suggests no difference between consumer handling times (95% CIs for h fractionally 

overlap). While both methods are sensitive to underlying data quality and quantity, the 

difference method makes assumptions about the error structure of the fitted parameters, 

whilst bootstrapping reflects the likely range of values given the data provided, whilst 

accounting for the bounded (e.g. non-negative) nature of handling times.  
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Based on the output from bootstrapped fits, FRAIR provides visual comparisons of entire 

functional response curves using drawpoly (Fig. 3). This function plots empirical 

approximations of the confidence intervals using the desired quantile predictions (0.025 and 

0.975 for 95% CIs). Even where estimates of 95% CIs for all fitted parameters overlap (as in 

this example), parameters can combine to yield differences in predicted consumption as a 

function of prey density (Fig. 3). Such differences cannot be addressed using the delta 

method, and drawpoly provides a means to identify where predicted consumption may differ 

along an axis of resource density. 

LIMITATIONS 

Fitting non-linear models to ecological data can be a challenging and frustrating process 

(Bolker et al. 2013), resulting from highly variable data, low replication, use of an overly 

complex model, a desire to test many hypotheses, or a combination of these. Although there 

have been computational improvements, the challenges are as real now as they were in 1988, 

when Trexler et al. noted that it may be impossible to fit a curve to data, even with 11 

resource densities and 10 replicates per resource density – a quantity of data rarely attained in 

experimental functional response analyses (Trexler et al. 1988). Even after many days of 

laboratory work, it may be impossible to fit the desired functional response model, or 

distinguish between the subtleties of a Type II and Type III response. This may be an 

unavoidable problem that no software can solve, but accessible tools for analysis will 

improve understanding of the strengths and limitations of consumer functional responses. 

Still, even with these tools, it seems clear that there is nothing straightforward about 

application or interpretation.  

FRAIR has been designed with the non-specialist in mind. however, for those seeking 

advanced analyses, FRAIR has some practical limitations. For example, currently FRAIR 

does not provide ratio- or predator-dependent models (e.g. Hassell & Varley 1969; 
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Beddington 1975), body size-dependent models (e.g. Kalinkat et al. 2013) or convenience 

functions to explore and avoid local optima, or the capacity to specify user defined models 

(e.g. those with arbitrary probability distributions). We aim to add these features to FRAIR in 

the future and welcome third party participation in package development 

(https://github.com/dpritchard/frair).encourage those seeking to work outside the structure 

provided by FRAIR to consider the details provided by Bolker (2008) as well as guidance in 

the FRAIR help manual (e.g. ?frair_fit).   

 

CONCLUSION 

We have presented the FRAIR package and demonstrated how it provides a reproducible 

framework for the selection, fitting and comparison of functional response models. We 

anticipate that FRAIR will help to consolidate functional response analysis methods for non-

specialists by ensuring that common mistakes are not perpetuated, and by exemplifying the 

current best practice for non-linear curve fitting and comparison. Consumer-resource 

interactions are fundamental to many aspects of contemporary ecological research and thus, 

we anticipate that in providing an accessible open source package for functional response 

analysis, FRAIR will provide a useful tool for many ecologists. 
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SUPPORTING INFORMATION 

Appendix S1: The R Markdown document containing all code and examples used in this 
manuscript.   
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