
PhD Thesis

2017

Constitutive modelling of soils and fibre-reinforced

soils

Thomas A. Bower

Under the supervision of Tony Jefferson and Peter Cleall







Acknowledgements

It is my pleasure to thank my PhD supervisors Tony Jefferson and Peter Cleall.

Their input and support to this project greatly contributed to its success. They

were able to provide direct help with particular problems when needed, and also

knew when to tell me to solve problems alone, allowing me to develop my technical

ability.

The experimental work described in this thesis was conducted by Stylianos Chat-

zopoulos and Zhongxing Wang for their MSc dissertations. Technical support was

also provided for the experimental work by Steffan Jones. I am very grateful to each

of these people for contributing a significant amount of experimental data for this

thesis, which aided greatly in the formulation of a new constitutive model.

Each of the algorithms in this thesis are coded into the finite element software

LUSAS. I would like to thank Paul Lyons, Garry Cole and, Paul Duxbury for their

advice and technical support with regard to coding models in LUSAS.

Much of the work described in this project was conducted as part of the knowl-

edge transfer partnership (KTP) project 9082. I would like to thank Innovate UK,

LUSAS, and Cardiff University for funding this work.

I would like to express my appreciation for my wife Louise, who proved to be an

excellent person to bounce ideas off and was kind enough to proof-read this thesis. I

am also grateful for her emotional support and tolerance of my ever varying moods

throughout the project.

I am grateful to my family who raised me to become the researcher I am today.

Finally, I would like to thank our cat Bella, for thoroughly testing the comfort

of research papers, my written notes, and my laptop bag.

i



ii



Abstract

This thesis covers two major themes: the first relates to the development of a

constitutive soil model, and the second is the development of a model to predict

the behaviour of fibre-reinforced soils.

The hardening soil (HS) model is an advanced constitutive plasticity model which

is applicable to the analysis of many soil types including sands and clays (Schanz

et al., 1999; Benz, 2007). This model is explored in depth, and several improvements

to the model are proposed. The first improvement is the formulation of a new

hardening shear yield surface to replace the previous hardening shear surface and

failure surface. The second is the implementation of the model in a robust return

mapping scheme. The scheme used is the closest point projection method of Simo

and Hughes (2006), which is tailored specifically to this implementation of the model.

This constitutive soil model and return mapping scheme is hereinafter referred to

as the HS-LC model.

The HS-LC model is then used in finite element analyses and compared to pub-

lished experimental and predicted data obtained from the prior versions of the HS

model. It was found that the new HS-LC model was able to reproduce results from

both the experimental data and the previous models. The numerical stability of the

proposed model was also tested with a step size study, a mesh density study, and

investigation of convergence rates for simulations.

The second main theme of this thesis is fibre-reinforced soils. The motivation for

reinforcing soils is first explored, then a literature review is conducted on different

reinforcement types; focussing on fibre-reinforcement. Experimental results from the

literature are then discussed, along with several models which predict the behaviour

of fibre-reinforced soil.

Results from an experimental study (Chatzopoulos, 2015; Wang, 2015) of fibre-

reinforced sand are presented and discussed. A series of triaxial compression tests

were conducted; in which fibre content, fibre length, and fibre type were varied. It
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was found that some fibre types added a significant amount of strength to the soil,

where other types added little strength. All fibres studied here were manufactured

from polypropylene, it was therefore concluded that the geometry had a significant

impact on the strength contribution for the composite. This study also found that

when the fibre diameter was too large or too fine relative to the sand particle size,

then the particles would not bind to the fibre. An additional unique study was also

carried out in relation to fibre composites. This was a series of fibre pullout tests,

where a fibre was pulled through a prescribed length of compressed, dry soil. In this

test it was found that the peak bond strength was linked to the compressive stress

acting on the fibre.

A novel fibre-soil composite model was also formulated which is based on micro-

mechanical relationships between soil and fibre, from findings of the literature review

and the experimental study. The proposed model is based on the well known shear

lag model (Cox, 1952) and is modified to also include the effects of fibre debonding.

The model takes the form of a representative volume element (RVE), which is ho-

mogenised using a statistical approach (Bažant and Oh, 1986). The proposed fibre

model is then combined with the new HS-LC model using the rule of mixtures. The

composite model is then used to predict the behaviour of the tests in the experimen-

tal study. Predictions of the triaxial tests closely matched the experimental results

in the shear stress response, however, were less accurate for the prediction of volu-

metric strains. It was concluded that further work is required in the development

of this model before it can be considered in routine design.
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Chapter 1

Introduction

Civil engineering is a discipline which covers the design and construction of buildings,

bridges, railways, highways, tunnels, irrigation systems and many more. Every one

of these structures is either built resting on soil, constructed within soil, or composed

of soil. It is therefore vital that the behaviour of soil is fully understood, and can

be predicted accurately in the design process of these structures.

This thesis explores two main topics; the first is the constitutive modelling of

soil, and the second is the behaviour of fibre-reinforced soil. This work uses many

previously defined theories such as the finite element method, plasticity, models for

different aspects of soil behaviour, and composite theory. Due to the diverse nature

of this thesis, each theme exploited is introduced in this chapter. More detailed

background to each theme can be found later in the thesis. The first main goal of

this work is to improve an existing constitutive soil model, particularly focusing on

its robustness. The second goal of this work is to produce a new model to describe

the behaviour of fibre reinforced soils, which is used in conjunction with the proposed

constitutive soil model.

For many soil design problems, it may be sufficient to use derived analytical

methods, such as Terzaghi’s formulae for calculating the bearing capacity of shal-

low foundations (Terzaghi et al., 1996), and the analysis of slope stability problems

using Bishop’s, or the Swedish method of slices (Craig, 2004). More complex prob-
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lems, to which such models are not applicable, require a more generalised approach.

Complexities here may include difficult geometry, abnormal loading conditions, and

different soil behaviours. Finite element analysis is one such method which can

be used to capture the behaviour of soils in a wide range of geotechnical design

problems.

1.1 Objectives of this thesis

The main themes of this thesis are the constitutive modelling of soils, analysis with

the finite element method (FEM), and reinforcement of soils. The main goals of this

thesis are to produce an improved version of an existing constitutive soil model (the

hardening soil model), and a new model to describe the behaviour of fibre-reinforced

soil. These main goals are to be attained with the following objectives:

� To evaluate an existing advanced constitutive soil model, known as the hard-

ening soil (HS) model

� To clarify some of the implementational aspects of the HS model

� To reformulate the HS model in order to improve both its performance and

numerical robustness

� To validate the accuracy and assess the performance of the improved HS model

by comparing to experimental results and predictions using the previous ver-

sions of the model

� To investigate the behaviour of soil-fibre composites through a review of ex-

perimental studies

� To evaluate the current state of existing models which predict the behaviour

of fibre-reinforced soils

� To document and interpret results from an experimental study of fibre-reinforced

soils

2



CHAPTER 1. INTRODUCTION

� To develop a new constitutive model for the prediction of the behaviour of soil

reinforced with short fibres

� To validate the accuracy of the proposed soil-fibre model by comparing pre-

dicted results to experimental results

1.2 Thesis structure

� Chapter 1 - A basic overview of FEM and geotechnical engineering in general,

standard definitions for various parameters are also defined

� Chapter 2 - An in-depth overview of the HS model is conducted, including its

modification by several authors

� Chapter 3 - Issues with the previous version of the HS model are identified

and resolved, the proposed HS-LC model is described fully, and an implicit

return mapping procedure is described

� Chapter 4 - The proposed HS-LC model is used in several analyses, and results

are compared with published experimental results, and published results from

prior versions of the HS model

� Chapter 5 - A literature review on fibre-reinforced soils is conducted, with

consideration for both experimental and modelling work

� Chapter 6 - Experimental work on fibre-reinforced soils from two MSc projects

which the author co-supervised is documented, this includes triaxial testing,

investigation of fibre pullout behaviour, and dissection of prepared samples

� Chapter 7 - The interaction between soil and fibre is investigated further

through a finite element study, and a new soil-fibre composite model is formu-

lated based on micro-mechanical interactions and findings from the literature

review, experimental study, and finite element study
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� Chapter 8 - The proposed soil-fibre composite model is combined with the

HS-LC model, and results are compared with the experimental study

� Chapter 9 - Conclusions are made on both the performance of the HS-LC model

and the proposed soil-fibre model, and potential future work is discussed

The remainder of this chapter provides a basic overview of finite elements, soil

plasticity, and soil reinforcement. More detailed background material specific to the

objectives of this thesis is described in Chapters 2 and 5.

1.3 Finite element analysis

The finite element method (FEM) is a powerful analysis tool, which is highly adapt-

able for a variety of applications including stress-strain analysis (Owen and Hinton,

1980; Zienkiewicz and Taylor, 2000), fluid dynamics (Reddy and Gartling, 2010),

heat transfer (Lewis et al., 1996; Reddy and Gartling, 2010), and viscosity (Owen

and Hinton, 1980; Gunzburger, 2012).

The purpose of FEM is to provide a framework for which to base simple gov-

erning equations, and apply them to complex problems which would be otherwise

unsolvable using conventional calculations. Perhaps the simplest example of finite

elements is the one dimensional spring model, which relates the force applied to the

end of a spring to the extension of the spring, through a linear stiffness constant.

In the finite element method, this same relationship applies, albeit with many more

degrees of freedom:

F = ku (1.1)

where F represents a vector of forces applied to a system, u is the vector of dis-

placements for each degree of freedom in the system, and the matrix k represents

the stiffness of each degree of freedom and is related to the geometric and material
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CHAPTER 1. INTRODUCTION

properties of the system.

There are many types of finite elements which can be used to model various prob-

lems. The relationship between forces and displacements are different for each type

of finite element, due to their varying boundary conditions. Continuous structures

such as soils can be analysed using a selection of continuum elements:

� Plane strain - This two-dimensional element type is suitable for modelling

geometries which are effectively infinite in one direction (Figure 1.1), such that

strains are only transferred in one plane. Tangential to this plane, stresses

develop due to material surrounding both sides of the plane. Examples of

problems suited to this element type are embankments, earth dams, strip

footings, and tunnels.

� Axisymmetric - This element is used for modelling circular geometry with a

two-dimensional mesh (Figure 1.2). Typically, analyses are performed on one

unit radian, and the axis of symmetry must be defined. Examples of uses of

this element are soil triaxial tests, soil oedometer tests, circular footings, and

single pile foundations.

� General stress space - This three-dimensional element type can be used for any

given soil problem where the geometry cannot be approximated by one of the

aforementioned element types (Figure 1.3). This type of element is typically

reserved for more complex design work.

For many materials, the relationship between force and displacement is more

complex than the basic Hookean relationship (Equation 1.1). Plasticity, time depen-

dent behaviour, and coupling effects each require more complex models to capture

the required behaviour. One of the main aspects of this thesis is plasticity in soils;

here it is required that the relationship between stress and strain is appropriately de-

fined. Once this ‘constitutive model’ is defined, then the stresses and strains can be

translated into forces and displacements and used in the global solution algorithm.

Stress in a material is comprised of several independent components, which repre-
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Figure 1.1: Plane strain mesh used to model a tunnel

sent the direct and shear stresses on each orthogonal Cartesian plane. The stress ten-

sor for full three-dimensional space is given by Equation 1.2. In the two-dimensional

cases, several of these components are not present; for example, in the plain strain

case, σxz = σzx = σyz = σzy = 0 and εz = εxz = εzx = εyz = εzy = 0.

σ =



σx σxy σxz

σyx σy σyz

σzx σzy σz


(1.2)

To determine if a material is yielding according to a particular material model, it

is common to describe this stress tensor in terms of simple and meaningful measures,

for example, the mean stress p, or the shear stress q; these are defined in Section

1.7. These terms are known as invariants of stress, as they do not change when the

stress coordinate axis is rotated.

These stress invariants can be used to detect yielding in materials. The von Mises

material model (as described by Owen and Hinton (1980) and shown in Figure 1.4a)
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Figure 1.2: Axisymmetric mesh used to model a circular footing

Figure 1.3: Three-dimensional mesh used to model a square footing

places a limit on the shear stress. The yield criterion for the von Mises model is

given by

fVM = q − σy (1.3)

where σy is a material parameter defining the yield strength of the material. The

Drucker-Prager model (Drucker et al., 1952), shown in Figure 1.4b, also takes the

mean stress into account, such that the shear yield limit increases along with the

compressive stress. The yield function for the Drucker-Prager model is given by

7
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Figure 1.4: Yield surfaces for von Mises (a) and Drucker-Prager (b) plasticity mod-
els, the dashed line represents the line σ1 = σ2 = σ3

fDP = q +
6 sinϕ

3− sinϕ
(p+ c cotϕ) (1.4)

where ϕ is the friction angle, which relates to the internal friction between soil

particles, and describes the rate at which the shear strength increases with the

mean stress; and c is the cohesion, which describes the inter-particle bonding of

soils, and controls the position of the apex of the yield surface.

The von Mises yield surface (Figure 1.4a) is a cylinder in the three-dimensional

stress space because the criterion is based on the shear stress q only. The radius of

the cylinder is equal to the yield stress σy. With the Drucker-Prager surface (Figure

1.4b), the radius of the yield surface is dependent on the mean stress p.

If the yield function, e.g. fVM , is negative, then the material is said to be in

an elastic state; if fVM is equal to zero then the current stress state is on the yield

surface. The yield function defines the allowable boundaries of stress, therefore

fVM > 0 would represent an illegal stress state. Some material models allow hard-

ening of the yield surface. This is where the yield surface grows according to some

pre-defined component of plastic strain, for example, the plastic shear strain can be

used as a hardening variable in the von Mises model.

The hardening gradient describes the rate at which the plastic strains expand or

contract the yield surface. Figure 1.5 shows an example load path for a hardening
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A
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(a)
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D

F

(b)

Figure 1.5: Hardening load paths for the von Mises model in principal stress space
(a) and the corresponding stress-strain path (b)

material. Under initial loading (AB), elastic behaviour is observed and the stiffness

is initially high. Once the yield criterion is exceeded, the yield surface begins to

harden and expand (BC); here the stiffness is reduced. Unloading follows the initial

gradient back to the elastic domain (CD) and leaves the yield surface in the current

position at C. Reloading (DE) observes elastic behaviour again until the yield surface

is reached at E. With further loading (EF), the yield surface continues to harden.

To define the rate of hardening, a simple constant term may be used, and the

yield function must be modified to take hardening into account:

fVM = q −
(
σy +HVMγ

p
)

(1.5)

where HVM is the assigned hardening gradient, and γp is the plastic shear strain.

The von Mises model is more suited to the analysis of metals; for the analysis of

soils, several constitutive models have been developed which are more appropriate.

The behaviour of soil is very complex, this will be explored in the following section.

Different constitutive models capture different aspects of soil behaviour. Examples

of such constitutive models include the Mohr-Coulomb model (described by Owen

and Hinton (1980)), the hyperbolic soil model (Duncan and Chang, 1970), the Mod-
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ified Cam-Clay model (Roscoe and Burland, 1968), Lade’s model (Lade, 1977), the

Matsuoka-Nakai model (Matsuoka and Nakai, 1974), and the hardening soil model

(Schanz et al., 1999; Benz et al., 2008). The latter of these models is discussed

and improved on in this thesis. A review and description of this model is detailed

in Chapter 2, and a reformulation of the model is documented in Chapter 3. The

proposed model is then validated in Chapter 4.

1.4 Behaviour of soils

In order to model the behaviour of soils, it is first necessary gain an understanding

of the behaviour of soils. Soil is typically composed of granular material, and water

and air which fill the space between soil grains. Soils are classified according to their

grain structures, and in particular, their particle size (BS 5930:2015). Boulders and

cobbles are the soils with the largest particles, with diameters ranging from 63 mm

to 630 mm; the particle size of gravel ranges between 2 mm and 63 mm; sand ranges

from 63 µm to 2 mm; silt ranges from 2 µm to 63 µm; and clay is defined as any

soil with a particle size of 2 µm or less.

In the presence of water, clays and silts tend to be cohesive. The particle size of

these soils are small enough that colloidal effects occur in the clay-water mixture,

which act as a homogeneous material on the macro scale (Schofield and Wroth,

1968). Clays also exhibit some frictional shearing resistance; this is related to the

arrangement of the clay particles. Clay particles are typically long and flat; clays

with particles which are oriented in the same direction offer less shearing resistance

than those which are randomly oriented (Lambe and Whitman, 1969). The small

size of the clay particles means that water flows through clays very slowly. Therefore

the rate of loading on clay can have a significant effect on the resulting displace-

ments, as initially, the load may be supported by the water, increasing the pore

water pressure. The load is transferred to the soil skeleton as the water dissipates

(Cotecchia and Chandler, 2000). Clays also exhibit stress memory, where historical
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CHAPTER 1. INTRODUCTION

loading of the clay results in different mechanical properties. This effect is one as-

pect of a behaviour known as over-consolidation, and can be a result of soil erosion

above the clay layer, or melting of glaciers for example; i.e. the current stress in the

clay may not be the highest stress the clay has undergone historically (Craig, 2004).

The shear strength of sand is almost purely the result of the frictional interaction

between particles; the particle size of sand is much larger than clay, the surface

area between the particles and water is much lower, and colloidal forces do not

significantly contribute to the soil strength. Denser sands inherently have more

interlocking between particles, which increases the shear strength. The shape of the

particles also affects the sand strength. Rough sand particles have a higher inter-

particle friction than a smooth, weathered sand. On the macro scale, both of these

factors contribute to the increase in strength of sands. Additionally, the distribution

of particle sizes influences the sand strength (Lambe and Whitman, 1969).

Figure 1.6 depicts typical shear stress responses from a drained triaxial com-

pression test. The procedure for this type of test is outlined in BS 1377-8:1990;

the essence of this test is a body of soil which is initially compressed equally in all

directions. After this, a vertical load is applied to the soil and the resulting stress

and strain are measured. A higher compressive stress allows the soil to reach a

higher shear stress before failure. Failure is defined as the point when an increase

in deviatoric strain causes no increase in shear stress.
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Figure 1.6: Typical triaxial shear stress results for soil under drained conditions

Shear strains in dense sands can lead to an overall increase in volume (Rowe,

1962; Wood, 1990). The cause of this is the rearrangement of sand particles as shear
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planes are developed. Rowe (1962) described this behaviour in terms of a ‘saw tooth’

model (Figure 1.7). This model describes the relationship between compaction stress

on the sand σn, the angle of dilatancy ψ, and the shear stress τ .

σn

τ

ψ

Figure 1.7: Saw tooth model for dilatancy, (after Rowe, 1962)

In terms of the macroscopic behaviour, sands typically compact initially under

shearing. After extended shearing, loose sands continue to compact, whilst dense

sands begin to dilate (Figure 1.8). A negative change in volumetric strain describes

a reduction in soil void ratio, and a positive change describes dilatancy. Further

shearing of dense sands can lead to an upper limit of dilation, where the void ratio

reaches an equilibrium state. This is demonstrated in Figure 1.8, where the gradient

of the volumetric strain for the dense sand reduces after the dilatant phase.

In this discussion, several key features of soil behaviour have been described.

In the modelling of geotechnical structures, it is important to be able to capture

as many features as possible which are appropriate to the soil being modelled. As

discussed previously, several such models have been developed and implemented

in various finite element software. Part of the work described in this thesis is to

study an existing soil model, the hardening soil (HS) model, which captures many

advanced soil features, and make improvements to its implementation including the

reformulation of the model and a robust solution algorithm. A review of the current

state of the HS model is conducted in Chapter 2, improvements are proposed in

Chapter 3, and results from the new model are compared with the previous versions

12



CHAPTER 1. INTRODUCTION
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Figure 1.8: Typical triaxial volumetric response for dense and loose sand

of the HS model and experimental data in Chapter 4.

1.5 Reinforcement of soils

In the preparation of sites for civil engineering construction, it is common for some

type of ground improvement work to be performed. The extent of ground im-

provement is typically determined from a site geotechnical survey; this may include

techniques such as borehole analysis, shear vane tests, cone penetration tests (Das,

2011).

If it is determined that the soil is not strong enough to support the intended

structure, then improvements must be made to the soil. One of the simplest methods

is the compaction of the soil; this can be performed by methods such as vibration

(Slocombe et al., 2000), drop hammer impact (Mayne et al., 1984), or kneading,

which involves shearing the soil at surface level (Xanthakos et al., 1994). Each of

these methods compacts different soils to varying extents, and combinations of the

above methods may be used to create the desired soil properties.
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Alteration of the drainage conditions of a soil can also affect the soil strength,

as high pore water pressure can force soil grains to separate, thereby lowering the

strength of the soil. Water flows very slowly through clays, and the presence of

clay on a site can reduce the drainage through a soil. One remedy to this problem

is the installation of sand wick drains (Xanthakos et al., 1994). The flow rate of

water through sand is much faster than that of clay, therefore the addition of these

channels can significantly reduce the distance needed for the water travel through

low permeability material; thus, the drainage rate for the site is increased.

Another option for improving the strength of soil is the addition of cement.

With this technique, the cement is mechanically mixed with the soil. Bergado et al.

(1999) documented the experimental testing of clay-cement mixtures in relation to

the use of the deep soil mixing method to produce vertical piles of clay, lime and

cement, which reduce the long term settlement of an embankment. Spagnoli et al.

(2016) documented the use of a similar technique used in the construction of offshore

platforms. Several other authors have also contributed work relating to the testing

of soil-cement mixtures (Amini and Hamidi, 2014; Khemissa and Mahamedi, 2014;

Venkatarama Reddy and Latha, 2014). In a related line of study, Harbottle et al.

(2014) demonstrated the benefits of cement producing bacteria embedded in soil.

In this study, it was shown that the bacteria-soil mixture ‘self healed’ after induced

failure.

Geosynthetics are a group of products covering a range of sheet materials. Gen-

erally, geosynthetics serve two purposes: the first is to bind with the soil particles

(typically sand or gravel) and transfer shear stress in the soil to tensile stress in

the fabric; the second is to control the movement of water. Geomembranes are

used for the latter purpose and may consist of materials such as synthetic polymers

or asphalt (Ingold, 1994). Geotextiles are sheets of woven material which provide

some shearing resistance by bonding to the surrounding soil particles and are per-

meable to allow seepage (Khoury et al., 2010). Geogrids are sheets of material

(typically polymer-based) which contain large apertures. The mechanism for rein-

forcement here is that soil particles fill the voids in the sheet, locking it in place and
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CHAPTER 1. INTRODUCTION

allowing direct transfer of stress to the reinforcement material (Ingold, 1994). A

comprehensive review of investigations using different types of sheet reinforcement

was performed by Marto et al. (2013). Typical applications for such geosynthetics

include slope reinforcement (Alamshahi and Hataf, 2009), improvement of bearing

capacity (Latha and Somwanshi, 2009; Sireesh et al., 2009), and retaining walls (Yoo

and Jung, 2004; Yang et al., 2009).

Fibres have been used previously in the reinforcement of concrete and in poly-

meric composites such as fibreglass and carbon fibre. Historically, this technique

has been used in soils with the planting of vegetation where the roots provide the

soil with additional stability near the surface. Waldron (1977) was one of the first

to scientifically quantify the effect of fibre inclusion in soil where plant roots, mixed

with soils, were subject to direct shear tests. Strength improvements were observed

with use of the fibres.

Many materials are used in the manufacture of fibres. Randomly oriented natural

fibres such as jute (Singh and Bagra, 2013) and coconut hair (Sivakumar Babu

et al., 2008) have been investigated and shown to provide strength increases to soils.

Polymer-based materials such as polypropylene (Tang et al., 2007; Diambra et al.,

2010), polyamide (Estabragh et al., 2011), and polyethylene are also used and have

the inherent advantage over natural fibres that they do not decompose or degrade.

Recycled materials such as torn plastic bags (Muntohar, 2009) and shredded tyres

(Hataf and Rahimi, 2006; Tafreshi and Norouzi, 2012) have also been shown to

provide some strength increase to soils. A comprehensive literature review of studies

using different fibre types was conducted by Hejazi et al. (2012), which goes into

more detail about many fibre types.

Several methods for the reinforcement of soils have been presented in this section.

The applicability of each method is heavily dependent on the requirements of each

individual project and the nature of the soils on a given site. Environmental impact,

cost of materials, and ease of construction all play an important role in the decision

process for soil reinforcement. To prioritise environmental impact, methods such as
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compaction will likely have the lowest long term effect as nothing is added to the

soil. This method may not provide enough strength improvement for some applica-

tions, hence mechanical stabilisation may be necessary. Use of sheet geosynthetics

has been shown to provide additional strength to soils, however the nature of this

reinforcement is highly anisotropic, and may introduce planes of weakness (Koerner

and Koerner, 2011). Randomly oriented fibres do not suffer from this limitation,

and can reinforce the soil in all directions. If a strength increase in a particular

orientation is desired, then the distribution of orientations can be controlled (Gray

and Ohashi, 1983; Diambra et al., 2007).

The second focus of this thesis is the development of a constitutive model to

describe the behaviour of fibre-reinforced soils. A thorough review of experimental

studies and previous model developments is presented in Chapter 5. An experimen-

tal study was conducted, as described in in Chapter 6; here the results of many

experiments including triaxial tests, fibre pullout tests, and sample dissection are

documented and discussed. A constitutive model based on the micro-mechanical

relationship between fibre and soil particles, and on data obtained from the exper-

imental study, is described in Chapter 7. This model is then used alongside the

aforementioned HS-LC model and is tested against experimental data in Chapter 8.

1.6 Sign convention

This thesis adopts the standard sign convention in stress analysis where tension is

taken as positive; this is opposite to the standard geotechnical sign convention. The

reason for this choice in convention is to match the finite element software used

in the development of the models proposed in later sections. Principal stresses are

ordered σ1 ≥ σ2 ≥ σ3; however, it is important to note that this work has a strong

geotechnical theme; for the purpose of clarity, many of the standard soil tests are

plotted on negative axes, such that they are directly comparable with geotechnical

studies.
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1.7 Tensor and invariant definitions

This work makes abundant use of stress tensors and invariants of stress tensors. It

is therefore important to clearly define each term. The following section describes

the stress and strain invariants in terms of the Cartesian tensors. The symmetrical

shear terms in the 3-D stress tensor are replaced by the three independent shear

terms and the tensors are arranged in vector form, suitable for use in computational

stress analysis.

σ =

[
σx σy σz σxy σyz σxz

]T
(1.6)

ε =

[
εx εy εz εxy εyz εxz

]T
(1.7)

The mean stress is defined as

p =
σx + σy + σz

3
(1.8)

The shear stress is defined as

q =

√
1

2

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2

]
+ 3

(
σ2
xy + σ2

yz + σ2
xz

)
(1.9)

The Lode angle is defined as

θ =
1

3
arcsin

(−27J3

2q3

)
(1.10)

where
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J3 = (σx − p)
[
(σy − p)(σz − p)− σ2

yz

]
−σxy

[
σxy(σz − p)− σyzσxz

]
+σxz

[
σxyσyz − (σy − p)σxz

] (1.11)

The Lode angle defined in Equation 1.10 is equal to π/3 in triaxial compression

and −π/3 in triaxial extension.

The volumetric strain is defined as

εv = εx + εy + εz (1.12)

And finally, the shear strain is defined as

γ =
1

3

√
2
[
(εx − εy)2 + (εy − εz)2 + (εz − εx)2

]
+ 3

[
ε2
xy + ε2

yz + ε2
xz

]
(1.13)
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Chapter 2

The hardening soil model

The hardening soil model (hereinafter referred to as the HS model) is formulated to

replicate the hyperbolic soil model (Duncan and Chang, 1970) in triaxial conditions.

The main disadvantage of the hyperbolic soil model is its incremental formulation;

this has been found to cause convergence problems, step size dependency, and an

inability to capture path dependent behaviour (Bower and Duxbury, 2014). Many

of these drawbacks are addressed in the HS model as it is formulated using plasticity

theory which records plastic strains and state variables. Working in the plasticity

domain also allows use of consistent tangent stiffness matrices; which lead to the

quadratic convergence of global Newton-Raphson schemes.

The HS model is currently included in several finite element packages such as

Plaxis (PLAXIS, 2016), ZSoil (Obrzud, 2010), and FLAC3D (Jiang and Zhang,

2012).

The first version of the HS model developed by Schanz et al. (1999) is derived

in principal stress space and uses a Mohr-Coulomb type shear yield surface which

hardens from initial loading until the final Mohr-Coulomb failure limit is reached.

The model uses concepts from earlier work by Vermeer (1978), as cited in (Vermeer,

1980). In addition, a cap surface (similar to that of the Modified Cam-Clay model)

controls volumetric behaviour. A simple stress return procedure is discussed by

Schanz et al. (1999) however, its full implementation is unclear.
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The HS model was then modified by Benz (2007) as part of a larger project to

introduce small-strain stiffness. This version of the model is derived in Cartesian

stress space using the invariants p (mean stress), q (shear stress) and θ (Lode angle).

Additional detail of this modification can be found in Benz et al. (2008). The model

is implemented such that it is possible to change the failure criterion. For example,

Benz (2007) compared the Mohr-Coulomb failure surface with the smooth failure

surface by Matsuoka and Nakai (1974), this smooth formulation is more convenient

from a numerical perspective, as the number of singularities (edges and corners)

present in the yield surfaces in the HS model are reduced.

In this thesis, several versions of the hardening soil model are referred to. For

the purpose of clarity, each version is named in Table 2.1. Note that the small strain

stiffness version of the HS model is not included in this study. Instead, the smooth

reformulation of the HS model is included (Benz, 2007; Benz et al., 2008).

Table 2.1: Different versions of the hardening soil model

Reference Name Short name

(Schanz et al., 1999) Hardening Soil HS

(Benz, 2007) HS smooth shear surface HS-smooth

Chapter 3 HS LUSAS-Cardiff HS-LC

Both previous versions of the HS model (HS and HS-smooth) use a non-associated

shear surface which hardens from initial loading. The first version (HS) uses asso-

ciated gradients for the cap surface and the second (HS-smooth) uses similar but

non-associated cap surface gradients. Both versions include stress dependent stiff-

ness and stress dependent dilatancy. Triaxial compression test simulations give con-

sistent results for both models in shear stress (q-εq) and volumetric strain (εv-εq),

however, some of the material parameters must be adjusted to achieve this.
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CHAPTER 2. THE HARDENING SOIL MODEL

2.1 Model parameters

Most of the parameters used in the HS model can be calculated using standard

triaxial compression and oedometer tests. This section briefly explains the meaning

of each parameter and how they can be obtained.

2.1.1 Stiffness parameters

The HS model is based on the work of Duncan and Chang (1970), and is formulated

to produce essentially the same response to this hyperbolic model under monotonic

loading conditions. The hyperbola is defined in Equation 2.17 later in this chapter.

A limit is placed on the shear stress (i.e. q ≤ qf ), which is coincident with the Mohr-

Coulomb failure envelope. A more detailed description of the hyperbolic model may

be found in the literature (Kondner and Zelasko, 1963; Duncan and Chang, 1970;

Schanz et al., 1999).

qa

qf

qf
2

1

Eur

1

E50

q

−ε3

1

Ei

Figure 2.1: Triaxial hyperbola and key stiffness definitions
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Reference stress σref

Stress dependency is used throughout the HS model in areas such as the soil stiffness

and dilatancy. The reference stress defines the level at which certain parameters have

been calculated. With a scaling law, the stiffness for any stress level can be defined.

For some stress dependent parameters, this stress level refers to the confining stress

in a triaxial test, and for others it may represent one of the principal stresses.

50% strength reference modulus Eref
50

The modulus E50 is defined by the secant stiffness at 50% of the failure shear stress

in a triaxial test. The reference modulus Eref
50 is the value when the triaxial confining

stress is equal to σref . In the original HS model, this parameter is used directly,

however the cap surface affects the steepness of this curve, therefore in the second

approach by Benz (2007) it is used to calibrate other parameters such that the

triaxial curve produced matches the provided Eref
50 .

Throughout analyses, the secant stiffness changes according to the minor princi-

pal stress, as shown in Equation 2.1; this is done according to a Janbu relationship

(Janbu, 1963).

E50 = Eref
50

( −σ1 + c cot (ϕ)

−σref + c cot (ϕ)

)m
(2.1)

The angle of friction at failure ϕ, the cohesion c, and the stress dependency term

m, are defined later in this section.

Unload-reload reference modulus Eref
ur

The unload-reload modulus Eref
ur is simply found by calculating the gradient of the

unloaded portion of a triaxial curve, again at an effective confining stress of σref .

Similarly to the secant stiffness, Eur varies with the minor principal stress (Equa-
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CHAPTER 2. THE HARDENING SOIL MODEL

tion 2.2).

Eur = Eref
ur

( −σ1 + c cot (ϕ)

−σref + c cot (ϕ)

)m
(2.2)

The unload-reload modulus Eur is used in the assembly of the elastic stiffness

matrix.

Initial reference modulus Eref
i

The initial stiffness is used only in the second version of the HS model. It is used

to calibrate E50 to the user supplied value. This parameter is not entered by the

user, and acts as an auxiliary material parameter to ensure that the predicted E50

matches the user supplied value.

Ei = Eref
i

( −σ1 + c cot (ϕ)

−σref + c cot (ϕ)

)m
(2.3)

Oedometer reference modulus Eref
oed

The oedometer stiffness is not used directly in the HS model, but other auxiliary

parameters are calibrated to ensure that the simulated oedometer stiffness is the

same as the one provided. This stiffness is calculated from a set of oedometer test

results, and is the gradient of the stress-strain curve at an applied vertical load of

σref . Note the use of the major principal stress in Equation 2.4.

Eoed = Eref
oed

( −σ3 + c cot (ϕ)

−σref + c cot (ϕ)

)m
(2.4)

The stress dependent stiffness equations are not valid when the principal stress

term falls below a critical value i.e. when the numerators in Equations 2.1 to 2.4

become negative. Hence a lower limit of −c cot(ϕ) is placed on the stress component.
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Figure 2.2: Oedometer curve and reference stiffness

Stress dependency exponent m

The stress dependency exponent is used in the calculation of the stress dependent

Young’s moduli. This can be calculated from a series of triaxial tests at different

confining stresses. A simple method of calculating this parameter is to compare the

secant stiffness E50 for three or more confining stresses, then adjusting the value of

m in Equation 2.1 until it matches with the experimental values of E50.

A value of m = 0 means that there is no stress dependent stiffness, and the

stiffness remains constant, despite any changes in stress. A value of m = 1 means

that the stiffness is directly proportional to the minor principal stress σ1.

2.1.2 Failure parameters

Friction angle ϕ

This is the angle of internal friction at failure; as the mean stress p increases, the

soil grains compact, and the allowable shear stress q before failure also increases.

The rate of increase is defined by the friction angle ϕ. This is the same friction

angle which is used in many soil models such as Mohr-Coulomb. The friction angle
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CHAPTER 2. THE HARDENING SOIL MODEL

can be found by plotting several Mohr’s circles to determine the failure envelope;

the friction angle is related to the slope of this failure envelope.

Cohesion c

The failure envelope may intersect the shear stress axis when plotted. The cohesion

defines where on the axis the intersect occurs. Typically, sands have very little

cohesion and clays have a higher cohesion. Increasing the cohesion in the HS model

has the effect of shifting the elastic domain along the mean stress axis, allowing

tensile stresses to develop in the soil.

Failure ratio Rf

The failure ratio defines the ratio of the maximum asymptotic shear stress qa to the

failure ratio qf (see Figure 2.1).

2.1.3 Dilatancy

The dilatancy characteristics of soil describe its volumetric behaviour. Loose sands

tend to contract with shearing and reduce in volume as particles rearrange to fill

voids. Dense sands tend to dilate with shearing (until a critical state is reached),

and increase in volume as particles ‘climb’ over one-another during the formation of

shear planes.

Dilatancy angle ψ

Using an associated flow rule over-predicts dilatancy in soils, therefore a non-associated

flow rule is typically used where the dilatancy angle is lower than the friction angle

(ψ ≈ ϕ− 30◦). For loose sands, the dilatancy angle is close to zero which generates

only contracting strains.

The hardening soil model uses Rowe’s stress dilatancy theory (Rowe, 1962) in
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its implementation (Equation 2.5) which relates the mobilised dilatancy angle ψm

to the critical state friction angle ϕc and the mobilised friction angle ϕm.

sin (ψm) =
sin (ϕm)− sin (ϕc)

1− sin (ϕm) sin (ϕc)
(2.5)

The mobilised friction angle may be calculated by several methods depending on

the implementation. The original HS model uses a Mohr-Coulomb type approach for

the calculation of the mobilised friction angle (2.6). The newer formulation by Benz

uses the Matsuoka-Nakai failure criterion (2.7), and if using the Lode dependent

formulation, mobilised friction angle is given by (2.8).

sin (ϕm) =
σ1 − σ3

σ1 + σ3 + 2c cot (ϕ)
(2.6)

sin (ϕm) =

√
9I3 − I1I2

I3 − I1I2

(2.7)

where I1, I2 and I3 are the first, second and third stress invariants given by the

solution to the eigenvalue problem
∣∣σij − λδij∣∣ = 0

sin (ϕm) =
3q

6χ(p+ c cot (ϕ)) + q
(2.8)

where p = σkk/3 is the mean stress, q =
√

3J2 is the von Mises effective shear stress.

χ is a Lode angle dependency which is discussed later. The critical state friction

angle is given by

sin (ϕc) =
sin (ϕ)− sin (ψ)

1− sin (ϕ) sin (ψ)
(2.9)

The definition of dilatancy angle used by Schanz et al. (1999) is that of Rowe
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(1962) with a lower cutoff.

sin (ψm) =
sin (ϕm)− sin (ϕc)

1− sin (ϕm) sin (ϕc)
≥ 0 (2.10)

Benz (2007) describes three additional methods which can be used to model the

dilatancy cutoff. The first is that of Wehnert (2006) which imposes a non-zero limit

to the dilatancy angle.

sin (ψm) =
sin (ϕm)− sin (ϕc)

1− sin (ϕm) sin (ϕc)
≥ 0.07 (2.11)

Although as Benz (2007) notes, the lower limit in (2.11) effectively represents an

additional material parameter.

A scaled approach (Søreide, 1990) is also mentioned by Benz (2.12). This pro-

vides a single non-linear function rather than a bilinear one.

sin (ψm) =

(
sin (ϕm)− sin (ϕc)

1− sin (ϕm) sin (ϕc)

)
sin (ϕm)

sin (ϕ)
(2.12)

The form of dilatancy relationship used in the HS small model is that of Li and

Dafalias (2000). Here, dilatancy is defined as the ratio of plastic volumetric strain

to plastic shear strain and is given by

tan (ψm) =
(
Meln (pp/p)/15 − η

)
/10 (2.13)

where

pp
p

=
η sin (ϕc(1− sin (ϕm)))

M sin (ϕm(1− sin (ϕc)))
(2.14)

and η = q/p is the stress ratio, M is the critical stress ratio, pp is the cap hardening

parameter which controls volumetric strain.
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Figure 2.3: Mobilised dilatancy with mobilised friction for different theoretical mod-
els (redrawn from Benz, 2007)

This approach is a simplification of the original method by Li and Dafalias (2000);

assumptions were made regarding the slope of the critical state line in (e − ln p)

space. These assumptions have been made to avoid the addition of advanced soil

parameters. These assumptions follow the full theory only for contracting states,

and when dilation is detected, the original Rowe equation (2.5) is used.

Each method for calculating the mobilised dilatancy angle is represented in terms

of the mobilised friction angle (Figure 2.3).

Initial void ratio e0

This is the void ratio at the start of the analysis. This parameter is only required

for the dilatancy cut-off, therefore is optional.

Limiting void radio ec

The void ratio varies throughout each analysis and is related to the volumetric strain.

Dense sands increase in void ratio when sheared up to a limit where they cannot

expand any more, this is known as the critical state. The original formulation of
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the hardening soil model imposes a limit to the void ratio by a user defined critical

void ratio ec. If the void ratio (2.15) exceeds this value, then the dilatancy angle is

set to zero.

e = (1 + e0) exp (εv0 − εv)− 1 (2.15)

where e0 and εv0 are the initial void ratio and volumetric strain, εv is the current

void ratio.

sin (ψm) = 0 if e ≥ ec (2.16)

2.2 Hardening shear yield surface

The main difference between versions of the HS model is the hardening shear yield

surface. Essentially, this surface is designed to follow the hyperbola (2.17) in drained

triaxial compression (Figure 2.1); described by Kondner and Zelasko (1963) as im-

plemented by Duncan and Chang (1970).

ε3 =
qa

2E50

σ1 − σ3

(σ1 − σ3)− qa
(2.17)

where qa = qf/Rf is the asymptotic shear stress. The failure stress qf is given by

qf =
2c cos (ϕ)− 2σ1 sin (ϕ)

1− sin (ϕ)
(2.18)

and Rf is a shear failure ratio and is typically taken as 0.9. Equation 2.18 is

equivalent to the Mohr-Coulomb criterion for triaxial compression and extension.

This hyperbola gives reasonable approximations to triaxial results while using

physical parameters, and the simplicity of the model makes it convenient for mod-
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elling such tests. Duncan and Chang (1970) also used this model to simulate the

load-displacement relationship of a circular footing in a finite element analysis. Re-

sults of this simulation were reasonable with 2% difference from experimental results

in a serviceability range (displacements less than 10% of the footing width) and 15%

difference at soil failure.

2.2.1 Shear surface in the original HS model

To reproduce the hyperbola in Figure 2.1 (page 21), Schanz et al. (1999) proposed

a hardening yield function of the form

fs =
qa
E50

q

qa − q
− 2q

Eur
− γp (2.19)

where the asymptotic shear stress qa is calculated in terms of the mean stress instead

of the minor principal stress. The plastic shear strain γp governs hardening in this

surface, its evolution is described later in Equation 2.27.

qa =
1

Rf

6 sin (ϕ)

3− sin (ϕ)
(−p+ c cot (ϕ)) (2.20)

The model presented by Schanz et al. (1999) is formulated in principal stress

space. The yield function may be expressed in terms of principal stresses as follows:

fs12 =
qa
E50

(σ1 − σ2)

qa − (σ1 − σ2)
− 2(σ1 − σ2)

Eur
− γp (2.21)

fs13 =
qa
E50

(σ1 − σ3)

qa − (σ1 − σ3)
− 2(σ1 − σ3)

Eur
− γp (2.22)

These yield functions may be visualised in principal stress space as in Figure 2.4.

For a sample which has undergone no shearing, the plastic shear strain γp is
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σ3

σ2

σ1

Figure 2.4: Representation of shear (cone) surface and cap surface in the HS model
(redrawn from Schanz et al., 1999)

equal to zero. As shearing progresses, the shear surface hardens and the value of γp

increases. Return mapping is discussed in more detail in Section 3.8. However, it is

necessary in the definition of the evolution relationships to understand the role of

plastic strains in return mapping.

During yielding of an elasto-plastic material the total strain vector is composed

of an elastic component εe and plastic component εp.

∆ε = ∆εe + ∆εp (2.23)

A trial stress state is calculated from the total strain increment ∆ε and the

elastic Hookean matrix (D matrix)

σtr = σ0 +De∆ε (2.24)

where σ0 is the converged stress at the start of the increment. If the trial stress σtr

exceeds the yield criterion, the stress must be returned to the yield surface according

to the flow rule. The amount of stress to be eliminated is summed during return

mapping and is described by the plasticity multiplier ∆λ.
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σ = σtr −∆λDep
∂g

∂σ
(2.25)

where Dep is the consistent tangent matrix which relates infinitesimal stresses and

strains. The formulation of this matrix is described in detail in Section 3.8.2.

For the shear yield surface and in this formulation of the HS model, the increment

of plastic shear strain γp is equal to the plastic multiplier to the shear surface.

∆γp = hs∆λs (2.26)

where hs = 1. For multiple surface stress return mapping, the plastic multiplier ∆λs

is that of the shear surface only.

The plastic shear strain used in the shear yield surface can now be updated

γp = γp + ∆γp (2.27)

Plastic potential to the shear surface.

The Drucker-Prager surface (Drucker et al., 1952) is a conical surface (Figure 1.4b)

which is circular in the π-plane. Plastic potential functions define the direction

in stress space in which stress is returned to the yield surface. The Lode angle is

constant in this function conveniently making stress returns radial in the π-plane.

The plastic potential used in the HS model is given as

gs12 =
σ1 − σ2

2
− σ1 + σ2

2
sin (ψm) (2.28)

gs13 =
σ1 − σ3

2
− σ1 + σ3

2
sin (ψm) (2.29)

Similarly to the yield surface, the plastic potential function has two components
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when written in terms of the principal stresses. The mobilised friction angle is cal-

culated using Rowe’s formula (2.5) with the dilatancy cutoff if necessary (Equation

2.15).

2.2.2 Shear surface in the HS-smooth model

The shear yield surface in the second version of the HS model (Benz, 2007) is

somewhat more sophisticated than its predecessor. An asymptotic limit is placed

on the mobilised friction angle instead of the shear stress.

fs =
3q

2Ei

(
1−sin (ϕm)

sin (ϕm)

)
(

1−sin (ϕm)
sin (ϕm)

)
−Rf

(
1−sin (ϕ)

sin (ϕ)

) − 3q

2Eur
− γp (2.30)

where q is the von Mises shear stress, Ei and Eur are the initial and unload-reload

moduli as defined in Equations 2.3 and 2.2. ϕm is the mobilised friction angle;

depending on the implementation, this may take the form of either Equations 2.6,

2.7 or 2.8. This surface is formulated in general stress space, avoiding the need for

complex return mapping schemes which involve switching coordinate axes between

principal and Cartesian. γp is the plastic shear strain and is used as a harden-

ing parameter. Its hardening rule is slightly different from the original HS model

(Equation 2.26) and can be expressed as:

∆γp = hs∆λs (2.31)

where hs = 1.5

γp = γp + ∆γp (2.32)

∆λs is the plasticity multiplier associated with the shear surface during a single

or multi-surface stress return.
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Plastic potential to the modified shear surface

The Drucker-Prager cone surface (Drucker et al., 1952) is used as a plastic potential

in the HS model. Similarly to the original HS model, this version uses the mobilised

dilatancy angle ψm to control the apex angle of the cone. As the model here is

formulated in Cartesian stress space, the plastic potential takes the form:

gs = q − (p+ c cot (ϕ))

(
6 sin (ψm)

3− sin (ψm)

)
(2.33)

This cone has full rotational symmetry about the isotropic compression line

σ1 = σ2 = σ3.

2.3 Hardening cap surface

The cap yield surface limits the amount of volumetric strain and its influence domi-

nates over the shear surface in oedometer loading. Again, different formulations are

used in the two main versions of the model

2.3.1 Cap surface in original HS model

The cap yield surface, which can be seen represented in principal stress space in

Figure 2.4 and in q-p space in Figure 2.5, limits the plastic volumetric strains in

oedometer loading. The version proposed by Schanz et al. (1999) takes a similar

form to the cap surface in the Modified Cam-Clay model. The equation for the cap

surface is

fc =

(
q̃

α

)2

+ p2 − p2
p (2.34)

where p is the mean stress, pp is the mean stress associated with zero shear strain;

i.e. the pre-consolidation pressure, α is an auxiliary material parameter controlling
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the height of the ellipse and q̃ is a special shear stress measure (2.35) and is used to

ensure the cap and shear surfaces are the same shape at their intersection.

q̃ = σ1 + (δ − 1)σ2 − δσ (2.35)

where

δ =
3 + sin (ϕ)

3− sin (ϕ)
(2.36)

The hardening law of the cap surface is as follows

∆pp = hc∆λc (2.37)

where

hc = 2H

(
σ3 + c cot (ϕ)

σref + c cot (ϕ)

)m
p (2.38)

H is a function of the bulk stiffness in primary loading Kc and the unload-reload

bulk modulus Ks

H =
KsKc

Ks −Kc

(2.39)

The unload-reload bulk stiffness is calculated from the unload-reload reference

modulus and Poisson’s ratio

Ks =
Eref
ur

3(1− 2νur)
(2.40)

The ratio Ks/Kc is an auxiliary model parameter and is calibrated to known

values of K0 and Eoed. The stress dependency term in brackets in (2.38) is present
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due to the definition of the elastic swelling modulus (2.40), which uses a reference

value for Young’s modulus. It is possible to instead use the current value of the

unload reload modulus Eur defined in (2.2) in place of the reference value Eref
ur , and

remove the stress dependency terms in (2.38).

Plastic potential to the cap surface

The cap surface in the HS model is associated, meaning that the plastic potential is

the same as the yield function, i.e.

gc =

(
q̃

α

)2

+ p2 − p2
p (2.41)

2.3.2 Cap surface in the HS-smooth model

The cap surface for the second version of the HS model is very similar to that of

Schanz et al. (1999). A modification is made to allow for the new shear surface.

The new cap yield function is given as

q

ppp

αpp

Figure 2.5: Cap surface in q-p space
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fc =

(
q

χα

)2

+ p2 − p2
p (2.42)

Note the change from the special stress measure q̃ to the standard deviatoric

stress q. The Lode dependency χ is used instead of q̃ to alter the shape of the

cap surface. The maximum value of χ is 1 for triaxial compression, meaning that

this yield function is identical to (2.34) for triaxial compression. The Lode angle

dependency in the Matsuoka-Nakai (LMN) model is as defined by Bardet (1990):

χ =

√
3$

2
√
$2 −$ + 1

1

cos (ϑ)
(2.43)

where

ϑ =


1
6

arccos
(
−1 + 27$2(1−$)2

2($2−$+1)3
sin2(3θ)

)
, if θ ≤ 0

π
3
− 1

6
arccos

(
−1 + 27$2(1−$)2

2($2−$+1)3
sin2(3θ)

)
, otherwise

(2.44)

and

$ =
3− sin (ϕ)

3 + sin (ϕ)
(2.45)

Hardening law of modified cap surface

The evolution of the hardening variable pp is identical to that of Schanz et al. (1999)

in Equation 2.37.

Plastic potential to the modified cap surface

The cap surface used in the HS-smooth model is non-associated, meaning that the

plastic potential function is different to the yield function. The only difference is

that the Lode angle is frozen during return mapping (2.46), this is done to ensure

volumetric returns are radial in the π-plane. The importance of this is most relevant
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when stresses are returned to both the shear and cap surfaces simultaneously, as the

plastic potential to the shear surface (and failure surface) is also radial in the π-

plane. This case is of particular importance because loading conditions in most of

the basic laboratory tests activate the shear and cap surfaces for primary loading.

This is also a common occurrence in many boundary value problems.

gc =

(
q

χtrM

)2

+ p2 − p2
p (2.46)

2.4 Failure criteria

2.4.1 Mohr-Coulomb criterion

The Mohr-Coulomb soil model is often used in geotechnical engineering practice.

Its simplicity combined with its accurate prediction of soil failure have made it a

commonly used tool for soil design problems. Only two parameters are required by

this model: the friction angle at failure ϕ and the internal cohesion c. The concept

of the failure model is based on that of limiting shear stress.

τ = c+ σn tan (ϕ) (2.47)

where τ is the limiting shear stress and σn is the normal stress applied to the soil,

as shown in Figure 2.6.

The yield criterion in principal stress space may be expressed as follows (Owen

and Hinton, 1980)

fMC = (σ1 − σ3)− 2c cosϕ− (σ1 + σ3) sinϕ (2.48)

Along with the ordering of principal stresses σ1 ≥ σ2 ≥ σ3, Equation (2.48) fully

represents the cone in principal stress space (Figure 2.7). In the π-plane (Figure
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σn

τ

σ3 σ2 σ1 c cotϕ
ϕ

Figure 2.6: Mohr-Coulomb yield criterion and principal stresses

2.8) the Mohr-Coulomb surface is an irregular hexagon with the maximum strength

occurring at each principal stress axis.

σ1
=
σ2

=
σ3

σ3

σ1

σ2

Figure 2.7: Mohr-Coulomb failure sur-
face in principal stress space

σ3

σ1

σ2

MC

MN

Figure 2.8: π-plane projection of Mohr-
Coulomb criterion and Matsuoka-Nakai
criterion

When working in Cartesian stress space, it is necessary to reformulate (2.48) into

stress invariants. Owen and Hinton (1980) substitute the invariants I1,
√
J2 and θ

into (2.48) using the following relationship:



σ1

σ2

σ3


=

2
√
J2√
3



sin (θ + 2π
3

)

sin (θ)

sin (θ + 4π
3

)


+
I1

3



1

1

1


(2.49)
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Substituting the principal stresses from (2.49) into (2.48) gives a form of the

Mohr-Coulomb criterion in terms of the computationally convenient stress invariants

I1,
√
J2 and θ. Owen and Hinton (1980) give the Mohr-Coulomb failure criterion in

terms of these invariants:

I1

3
sin(ϕ) +

√
J2

(
cos(θ)− 1√

3
sin(θ) sin(ϕ)

)
= c cos(ϕ) (2.50)

where I1 is the first invariant of the stress tensor and J2 is the second invariant

of the stress deviator tensor. In terms of the invariants used in this thesis, the

Mohr-Coulomb criterion may be expressed as:

fMC = p sin(ϕ) +
q√
3

(
cos(θ)− 1√

3
sin(θ) sin(ϕ)

)
− c cos(ϕ) (2.51)

2.4.2 Matsuoka-Nakai criterion

A major limitation of the Mohr-Coulomb criterion is that it does not consider the

intermediate principal stress σ2. This causes strength predictions to be overly con-

servative with intermediate stress states. The Matsuoka-Nakai criterion (Matsuoka

and Nakai, 1974) overcomes this limitation by utilising the concept of the spatially

mobilised plane (see Figure 2.9, in which each combination of shear stresses are

considered).

σ1σ2σ3

ϕm,2,3
ϕm,1,2
ϕm,1,3

τ

Figure 2.9: Spatially mobilised plane concept; each principal stress envelope is con-
sidered (Nakai and Matsuoka, 1983)
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The equation for the spatially mobilised plane is given as

tan

(
45◦ +

ϕm,i,j
2

)
=

√
1 + sin

(
ϕm,i,j

)
1− sin

(
ϕm,i,j

) (2.52)

Each mobilised friction angle ϕm,i,j is limited to the friction angle at failure

ϕ. Expressing (2.52) as a failure criterion gives the Matsuoka-Nakai (MN) stress

envelope.

fMN =

√
9I3 − I1I2

I3 − I1I2

(2.53)

When plotted in 3-D stress space, the MN criterion circumscribes each edge of

the Mohr-Coulomb failure envelope, or the corners of the envelope in the π-plane

(Figure 2.8).

2.5 Tension limit

Only the modified HS model by Benz employs a tension yield surface, however one

could easily be implemented in the original HS model. The tension yield surface is

associated and non-hardening; and limits each stress direction to a maximum tensile

stress σt.

ft = σi − σt (2.54)

where i = 1, 2, 3.

2.6 Other contributions to the HS model

Although the development of the HS model is mostly attributed to two partic-

ular works (Schanz et al., 1999; Benz, 2007), with additional documentation by
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Benz et al. (2008), other authors have also suggested and implemented changes and

improvements. Marcher and Vermeer (2001) implemented a void ratio dependent

friction angle with the HS model, which is able to model softening in soils. Further

work was conducted on this line of work by Möller et al. (2004) where softening

was instead implemented by applying a softening rule to the cohesion term used in

the HS model. Results from this model appear to be promising in the analysis of

tunnels in clay.

The modelling of undrained behaviour predicted by the HS model was addressed

by Truty and Obrzud (2015), who implemented a mechanism for including the effects

of pore pressure, and applied coupling mechanism between the hardening of the shear

and cap surfaces. This model also used the small-strain stiffness feature by Benz

(2007), and was able to predict the surface settlements above two tunnels in London

clay with reasonably good accuracy.

Concluding remarks

In conclusion, a description of the hardening soil model in its current state has been

given in this chapter. It is worth noting that each of the main contributors to the

development of this model (Schanz et al., 1999; Benz, 2007; Benz et al., 2008) have

performed validation analyses to compare against data from experiments, either

performed by themselves, or extracted from case studies. The performance of the

model in these analyses is discussed later in Chapter 4, where a new version of the HS

model is compared to the current version and against existing and new experimental

data.

42



Chapter 3

A robust implementation of the

HS model

3.1 Motivation

In preliminary work for this thesis, several attempts were made at implementing the

HS model as described in the literature (Schanz et al., 1999; Benz, 2007). On each

occasion, it was found that although the models produced accurate results, their

implementations lead to analyses which could converge poorly.

The main area of concern is the formulation of the shear yield surface fs (Equa-

tions 2.19 and 2.30). Both versions of the yield surface suffer from the same prob-

lem which occurs whenever the trial shear stress qtr = q(σtr) exceeds the asymptotic

shear stress qa, and the yield function fs becomes negative (Figure 3.1). Considering

the denominator in the first parts of Equations (2.19) and (2.30); as q approaches qa,

or as sin(ϕm) approaches the failure friction angle sin(ϕ), the yield function tends

to infinity. Exceeding these values switches the sign of the denominator, and as a

result the yield function becomes negative.

The converged stresses should be limited to the failure shear stress qf (which is

less than or equal to qa). However, during the stress return procedure, the stress may
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fs

qtrqa

Not yielding Yielding

0

Yielding occuring
but not detected

Figure 3.1: Asymptote in shear yield function for high trial stresses

exceed the valid range of the yield function and produce invalid results or numerical

errors.

It is therefore essential with this model to limit the step sizes as the soil ap-

proaches failure. This approach is not ideal for a robust commercial implementation

where users may apply any step size. It is for this reason that the shear yield function

is modified here.

The second area of improvement is the hardening rule for the shear surface. In

both formulations of the HS model (Schanz et al., 1999; Benz, 2007), the hardening

rule for the shear surface is incremental in form; where the plastic shear strain

term γp is accumulated with an incremental hardening rule (Equation 2.26). This

incrementation is performed in an unchecked manner, and causes the solution to

drift. Improved convergence is observed when γp is calculated directly from the

total plastic strains using a non cumulative relationship.

Additionally, the return mapping scheme has been improved from the imple-

mentation by Benz (2007), which uses the closest point projection method with

reductions on the residuals for the stress only. The proposed scheme also reduces
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the residuals of the plastic strains and the state variables, resulting in a robust

algorithm which can return from very large strain steps.

The modifications to the HS model are detailed in Section 3.2. Much of the

formulation is akin to the original formulations, these are described in detail in

Chapter 2, and a summary of the full model is included at the end of this chapter.

3.2 Changes to the shear yield surface

To address the asymptote in the shear yield function, the hyperbola by Duncan and

Chang (1970), as shown in Figure 2.1 (page 21) is considered

ε3 =
qa

2E50

q

q − qa
(3.1)

Due to the influence of the cap surface, the predicted secant stiffness E50 can

differ from the supplied value, therefore the substitution Ei ≈ 2E50 is made. The

initial stiffness Ei can be adjusted such that the predicted value of E50 matches the

supplied value.

ε3 =
qa
Ei

q

q − qa
(3.2)

Unloading from any point on the hyperbola using the elastic stiffness gives the

current plastic shear strain

εp3 =
qa
Ei

q

q − qa
+

q

Eur
(3.3)

To obtain an equation relating the plastic shear strain γp to the current shear

stress, from Equation 1.13, the definition of the plastic shear strain in triaxial stress

space (σ1 = σ2) is
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γp =
2

3

(
εp1 − εp3

)
(3.4)

Considering a state of pure shear (εpv = εp1 + εp2 + εp3 = 0) leads to the simple

relation

εp1 = −1

2
εp3 (3.5)

Substituting the pure shear version of the plastic strains (3.5) into the triaxial

definition of the plastic shear strain (3.4) gives

γp = −εp3 (3.6)

Finally, substituting (3.6) into the hyperbolic plastic strain (3.3) and rearranging

gives a relation very similar in form to the yield surface in the original HS model

0 =
qa
Ei

q

qa − q
− q

Eur
− γp (3.7)

The aim of this section is to reformulate the shear yield surface in a similar

fashion to classical plasticity models such as the Mohr-Coulomb or Drucker-Prager

models. The yield function should take a form similar to the Mohr-Coulomb cone,

however the hardening rule should control the steepness of the cone. To remain

equivalent to the original HS models, the new criterion must:

� Harden from initial loading

� Produce triaxial compression shear curves which follow Kondner’s hyperbola

(Equation 3.1)

� Have a limiting shear stress which is below the asymptotic shear stress qa

of Kondner’s hyperbola. The final position of the yield surface should also
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coincide with the standard failure criterion (Mohr-Coulomb, or Matsuoka-

Nakai)

To meet the first criterion, the hardening function should start from zero. To

meet the third criterion, the hardening function should be limited to Rf . To match

Kondner’s hyperbola, the hardening function should be based on the plastic strain

equilibrium in Equation 3.7. Basic manipulation of Equation 3.7 leads to the fol-

lowing relationship

q

qa − q
− qEi
qaEur

− γpEi
qa

= 0 (3.8)

The following substitutions can be made:

rq =
q

qa
(3.9)

ru =
Eur
Ei

(3.10)

Leading to the quadratic equation

rq −
rq
ru

(
1− rq

)
− γpEi

qa

(
1− rq

)
= 0 (3.11)

Solving for rq in Equation 3.11 gives

rq =
1

2

(
1− ru +

γpEiru
qa

)
+

1

2

√(
ru − 1− γpEiru

qa

)2

+
4γpEiru
qa

(3.12)

where rq is also limited to an upper value of Rf . The hardening function is plotted

in Figure 3.2 for different values of qa to demonstrate that it is used to scale a

failure criterion and is dimensionless. The hardening function has an abrupt limit
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Figure 3.2: Shear surface hardening function with plastic shear strain (Rf = 0.9)

at Rf = 0.9 and increasing the asymptotic shear stress qa effectively delays the

reaching of this limit, and therefore soil failure when applied to the yield surface.

To aid with convergence in load controlled tests, a small gradient Gf is given to rq

after reaching Rf . A value in the order Gf = 10−6 would be suitable, depending on

the convergence criteria adopted.

The yield function proposed by Panteghini and Lagioia (2013) is based on the

Matsuoka-Nakai yield criterion (Equation 2.53), and formulated in terms of the more

convenient stress invariants p, q and θ. The hardening function rq is multiplied by

the mean stress term.

fs = q +
Mrq
ρRf

(p− c cotϕ) (3.13)

Including Rf in the denominator scales the hardening function to between 0 and

1, such that the final position of the yield surface is identical to the original failure

criterion. ρ is the scaled Lode angle dependency function.

ρ =
Θ(θ)

Θ(π/6)
(3.14)

where Θ is the unscaled Lode angle dependency. ρ is scaled by dividing by the Lode

dependency case for triaxial compression.
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Θ(θ) = 2
√

3 cos

[
1

3
arccos

(
ξ sin(−3θ)

)]
(3.15)

The parameter ξ is related to the friction angle at failure ϕ

ξ =
sinϕ

(
9− sin2 ϕ

)(
3 + sin2 ϕ

)1.5 (3.16)

The parameter M from Equation 3.13 is defined as

M =
3
√

3η

Θ(π/6)
(3.17)

where

η =
2 sinϕ√
3 + sin2 ϕ

(3.18)

This concludes the definition of the updated shear yield surface. As an alterna-

tive, the Mohr-Coulomb yield criterion can be used with the same hardening rule.

fs,MC =
rq
Rf

(
p sin(ϕ)− c cos(ϕ)

)
+

q√
3

(
cos(θ)− 1√

3
sin(θ) sin(ϕ)

)
(3.19)

Both yield functions are plotted in the π-plane (Figure 3.3), with different values

of the hardening function for the smooth criterion. Both functions are also plotted

in q-p stress space (Figure 3.4); the shape of both yield function plots are identical

(in triaxial space) for all values of the hardening function rq. In these examples, the

friction angle is taken as ϕ = 30◦, the cohesion as c = 10 kN/m2, and the failure

ratio Rf = 0.9.

It is also important to note that the yield loci in Figure 3.4 are straight. The orig-

inal HS model produces curved lines for each given value of the hardening parameter
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Figure 3.3: π-plane projection of the proposed yield surface with different values of
hardening function rq; comparison with Mohr-Coulomb failure criterion
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Figure 3.4: Yield surface for the proposed model (Equation 3.13) in q-p triaxial com-
pression stress space, with different values of the hardening function rq; comparison
with Mohr-Coulomb failure criterion
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(see Benz, (2007) page 78).

The plastic potential function to the shear yield surface is the same as its yield

function, except that the friction angle ϕ is replaced by the mobilised dilatancy

angle ψm.

gs = q +
Mψrq
ρψRf

(p− c cotϕ) (3.20)

where

ρψ =
Θψ(θ)

Θψ(π/6)
(3.21)

Θψ(θ) = 2
√

3 cos

[
1

3
arccos

(
ξψ sin(−3θ)

)]
(3.22)

ξψ =
sinψm

(
9− sin2 ψm

)(
3 + sin2 ψm

)1.5 (3.23)

Mψ =
3
√

3ηψ
Θψ(π/6)

(3.24)

ηψ =
2 sinψm√
3 + sin2 ψm

(3.25)

Alternatively, the approach used in the original HS implementation (Schanz

et al., 1999) may be used; which is the Drucker-Prager cone surface, sized according

to the mobilised dilatancy angle, as described in Equation 2.33.
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3.3 Changes to the cap yield surface

The yield surface function of the cap surface remains identical to that proposed by

Schanz et al. (1999), as shown in Equation 2.42. The shaping parameter χ relates

to the terms used in the derivation of the shear yield surface in the HS-LC model

by

χ =
M

ρ

(
3− sinϕ

6 sinϕ

)
(3.26)

The hardening of the cap surface remains in its incremental form as it was found

that using a rule based on the total volumetric strain created a coupling effect with

the shear yield surface, generating undesired behaviour. The following incremental

form for the evolution of the cap surface is used

∂pp
∂εpv

=
Ks

Ks
Kc
− 1

(3.27)

where Ks/Kc is an auxiliary parameter. In the HS-LC model, the value of Ks is

dependent on the current unload-reload Young modulus Eur instead of the reference

modulus Eref
ur used in the previous versions of the HS model.

Ks =
Eur

3(1− 2νur)
(3.28)

3.4 Tension yield surface

The previous versions of the HS model were formulated in principal stress space, and

make use of a three-surface Rankine tension yield criterion (Equation 2.54). As the

HS-LC model is formulated in general Cartesian stress space, it is more convenient

to place a tensile limit on the mean stress:
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ft = p− σt (3.29)

Similarly to the previous versions of the HS model, this tension surface is asso-

ciated (gt ≡ ft) and does not harden.
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3.5 Summary of the proposed model

Stiffness parameters

Initial modulus: Ei = Eref
i

(
−σ1+c cot(ϕ))
−σref+c cot(ϕ)

)m
Unload-reload modulus: Eur = Eref

ur

(
−σ1+c cot(ϕ))
−σref+c cot(ϕ)

)m
Mobilised dilatancy

Mobilised friction angle: sin (ϕm) = 3q
6χ(p+c cot (ϕ))+q

Critical friction angle: sin(ϕc) = sin(ϕ)−sin(ψ)
1−sin(ϕ) sin(ψ)

Mobilised dilatancy angle: sin(ψm) = sin(ϕm)−sin(ϕc)
1−sin(ϕm) sin(ϕc)

≥ 0

Yield surfaces

Shear: fs = q + Mrq
ρRf

(p− c cotϕ)

Cap: fc = p2 +
(

q
χα

)2

− p2
p

Tension: ft = p− σt

Plastic potential surfaces

Shear: gs = q +
Mψrq
ρψRf

(p− c cotϕ)

Cap: gc = p2 +
(

q
χα

)2

− p2
p

Tension: gt = p− σt

Hardening rules

Shear: Related directly to plastic strains

Cap: ∂pp
∂εpv

= Ks
Ks
Kc
−1

Tension: No hardening
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3.6 Auxiliary parameters

All versions of the HS model require calibration to a set of given parameters. These

given parameters are:

� Oedometer modulus Eref
oed

� Lateral earth pressure coefficient K0

� Secant modulus Eref
50

The auxiliary parameters used to calibrate the model are:

� Bulk stiffness ratio Ks/Kc

� Cap steepness α

� Initial stiffness Eref
i

Each auxiliary parameter affects the calculated values of all three given param-

eters, therefore calculation of these parameters is non-trivial. However, the initial

stiffness Eref
i primarily affects the secant stiffness Eref

50 , and the other two parame-

ters both affect K0 and Eref
oed similarly.

The reason for including the secant modulus calibration is that the influence of

the cap in the model changes the predicted value of E50 throughout the simulation.

The initial stiffness can be used to modify the initial gradients of a triaxial curve,

in order to achieve the desired secant modulus.

The auxiliary parameters are also dependent on the other material parameters,

therefore the relationship between the calibration parameters and auxiliary param-

eters is difficult to define for all possible sets of material properties.

A procedure has been adopted to calculate these parameters. First, the auxiliary

parameters are given nominal values, an oedometer simulation is run up to the
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reference stress σref , and a triaxial simulation with a confining stress of σref is run.

The secant modulus is calculated from the triaxial results using Eref
50 = q50/ε50.

The lateral earth pressure coefficient K0 is calculated from the ratio between the

horizontal and vertical stresses generated in the oedometer simulation K0 = σx/σy.

The calculated value of K0 may vary slightly throughout the test and the average

value is taken. The oedometer modulus Eref
oed is also calculated from the oedometer

simulation by calculating the gradient of the stress-strain curve at the reference

stress Eref
oed = σref/εref .

The values are varied using trial and improvement until the calculated values of

Eref
oed , Eref

50 , andK0 match those supplied by the user. The HS model is quite sensitive

to these parameters, therefore adequate calibration is crucial. Benz (2007) published

auxiliary parameters used in simulations. As the model described here differs from

the original formulations, the auxiliary parameters will also differ; however, they are

calibrated to the same set of given parameters.
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3.7 Summary of parameters in the HS-LC model

Each of the parameters discussed in this section are summarised in Table 3.1. Cal-

ibration parameters are not used directly in the model, however, the auxiliary pa-

rameters are adjusted to match predicted results with the calibration parameters.

Table 3.1: Material parameters used in the different versions of the HS model

Symbol Name Units / Notes HS HS-smooth HS-LC

Eref
ur Unload-reload reference modulus kN/m2 4 4 4

Eref
i Initial reference modulus kN/m2 auxiliary 4 4

Eref
50 Secant reference modulus kN/m2 calibration 4 4 4

Eref
oed Oedometer reference modulus kN/m2 calibration 4 4 4

σref Reference stress kN/m2 4 4 4

m Stress dependency exponent 4 4 4

c Cohesion kN/m2 4 4 4

ϕ Friction angle at failure ◦ 4 4 4

ψ Dilatancy angle ◦ 4 4 4

ν Poisson ratio 4 4 4

K0 Lateral earth pressure coefficient calibration 4 4 4

Rf Asymptote failure ratio 4 4 4

σt Tensile limit kN/m2 4 4

α Cap shape parameter auxiliary 4 4 4

Ks/Kc Cap hardening parameter auxiliary 4 4 4

e0 Initial void ratio 4 4

ec Critical void ratio 4 4

3.8 The closest point projection method

The HS-LC model has now been fully defined, and several options are available

for the management of stress equilibrium during plastic loading. The purpose of

stress return algorithms is to calculate the portion of the given strain step which
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is plastic, two main categories of stress return algorithms are described below. It

is worth noting that the following descriptions are based on a pre-calculation of a

trial stress state, for which a stress state is assumed based on pure elastic loading.

Other options are available (such as sub-stepping or step size control) but are not

considered here.

Explicit algorithms: A strain step here works from the current step; the gradi-

ents of the yield surface(s) and plastic potential(s) are calculated from the current

position. An example of this method is the cutting plane algorithm. This algorithm

is described in detail by Simo and Hughes (2006) and Huang and Griffiths (2009).

The main advantage of this method is its simplicity and the use of first order gradi-

ents only. However, as the gradients are calculated at the current state, the mapped

return path may diverge from the yield surface if the step size is too large.

Implicit algorithms: The key difference with implicit algorithms is that the yield

function and plastic potential gradients are always calculated at the subsequent step.

This way, the solution will always be returned to the yield surface, regardless of the

step size (subject to no numerical errors). Simo and Hughes (2006) and Huang and

Griffiths (2009) describe this method, which is also employed by Benz (2007) in his

formulation of the HS model.

The closest point projection (CPP) method, which is classed as a backward Euler

method, is an implicit stress return mapping scheme. The returned stress path is

based on the gradients at the final stress state (Figure 3.5).

A trial stress is calculated using the elastic stiffness matrix, the last converged

stress and the strain increment.

σtr = σLC +De∆ε (3.30)

As the functions governing the size and shape of the yield surfaces are non-linear,
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σLC

σtr

σ1

f0

f1

g0

g1f2

fn

g2

gn

σ2

σn

Figure 3.5: The closest point projection method

and hardening is active, an iterative process is used. The aim of the CPP method

is to satisfy the equilibrium conditions:

f(σ,µ) ≤ 0 (3.31)

∆λ ≥ 0 (3.32)

∆λf(σ,µ) = 0 (3.33)

where f(σ,µ) is the yield function which forms a surface in 3-D stress space, σ is

the converged stress state, µ represents one or more state variables which define the

position of the yield surface and ∆λ is the plasticity multiplier which governs the

size of the plastic strain steps.

As there are several yield surfaces present in the hardening soil model, and

the evolution rules take different forms (Figure 3.6), a separate CPP algorithm is

required for each yield surface and each possible combination of yield surfaces. The

formulation of the CPP algorithms are documented in the following sections.
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Figure 3.6: Yield surfaces in the HS model and their approximate stress return zones

3.8.1 CPP algorithms

The formulation of the CPP algorithms used in the HS-LC are described in this

section. The full algorithms for each yield surface and each possible combination of

yield surfaces are detailed in the Appendix (starting on page 239).

3.8.1.1 Shear surface return

The objective of the CPP algorithm for the shear surface is to satisfy the yield

criterion. This yield function uses the plastic strains directly to drive the hardening

rule.

fs(σ,σLC , ε
p) = 0 (3.34)

The plastic strain residual is given by

R = −∆εp + ∆λ
∂gs
∂σ

= 0 (3.35)

Expanding (3.35) as a Taylor’s series, and substituting d∆λ = δλ gives

60



CHAPTER 3. A ROBUST IMPLEMENTATION OF THE HS MODEL

R+ δR = R− δεp + δλ
∂gs
∂σ

+ ∆λ
∂2gs
∂σ2

δσ = 0 (3.36)

Rearranging to obtain the plastic strain increment

δεp = R+ δλ
∂gs
∂σ

+ ∆λ
∂2gs
∂σ2

δσ (3.37)

Expanding (3.34) as a Taylor’s series

fs +
∂fs
∂σ

T

δσ +
∂fs
∂εp

T

δεp = 0 (3.38)

Substituting the plastic strain increment (3.37) into (3.38)

fs +
∂fs
∂σ

T

δσ +
∂fs
∂εp

T
(
R+ δλ

∂gs
∂σ

+ ∆λ
∂2gs
∂σ2

δσ

)
= 0 (3.39)

Grouping the δσ gives

fs + F T
s δσ +

∂fs
∂εp

T (
R+ δλ

∂gs
∂σ

)
= 0 (3.40)

where

F T
s =

∂fs
∂σ

T

+ ∆λ
∂fs
∂εp

T ∂2gs
∂σ2

(3.41)

During the CPP iterations, the change in stress between iterations is

δσ = −Deδε
p (3.42)

Substituting the plastic strain increment (3.37) into (3.42)
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δσ = −De

(
R+ δλ

∂gs
∂σ

+ ∆λ
∂2gs
∂σ2

δσ

)
(3.43)

Rearranging (3.43) gives

δσ = −Ae

(
R+ δλ

∂gs
∂σ

)
(3.44)

where

Ae =

(
I + ∆λDe

∂2gs
∂σ2

)−1

De (3.45)

and I is the identity matrix. Finally, the plasticity multiplier is calculated through

substitution of (3.44) into (3.40) and rearranging for δλ.

δλ =
fs − F T

s AeR+ ∂fs
∂εp

T
R

F T
s Ae

∂gs
∂σ
− ∂fs

∂εp
T ∂gs
∂σ

(3.46)

The consistent tangent matrix is found by determining the relationship between

incremental stresses and strains for a particular state.

dσ = De (dε− dεp) (3.47)

During the formulation of the consistent tangent, it is assumed that the stress

state is on the yield surface (f = 0) and the residuals R are equal to zero. Substi-

tution of the previously defined relationships leads to the consistent tangent matrix

in the form:

Dep =
dσ

dε
= Ae −

Ae
∂gs
∂σ
F T
s Ae

F T
s Ae

∂gs
∂σ
− ∂fs

∂εp
T ∂gs
∂σ

(3.48)
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3.8.1.2 Cap surface return

Due to the incremental form of the cap surface hardening rule, the CPP algorithm

to the cap surface is slightly different to that of the shear surface. Many of the

terms in the cap CPP algorithm are identical to the shear surface; only with the

subscript changing from fs to fc, for example. An additional residual is required for

the hardening parameter, the CPP algorithm for the cap surface must also reduce

this to zero

Rh = −∆pp + ∆λ
∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ

= 0 (3.49)

The Taylor series expansion of (3.49) leads to the definition of the hardening

parameter increment

δpp = Rh +
∂pp
∂εpv

∂εpv
∂εp

T
(
δλ
∂gc
∂σ

+ ∆λ
∂2gc
∂σ2

δσ

)
(3.50)

The expansion of the yield function is also different to accommodate the inclusion

of only the hardening parameter instead of the plastic strains.

fc +
∂fc
∂σ

T

δσ +
∂fc
∂pp

δpp = 0 (3.51)

Substituting (3.50) into (3.51) and grouping the δσ terms gives

fc + F T
c δσ +

∂fc
∂pp

(
Rh + δλ

∂pp
∂εpv

∂εpv
∂εp

∂gc
∂σ

)
= 0 (3.52)

where

F T
c =

∂fc
∂σ

T

+ ∆λ
∂fc
∂pp

∂pp
∂εpv

∂εpv
∂εp

T ∂2gc
∂σ2

(3.53)

Substituting the stress increment relation in Equation 3.44 (with the cap surface
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subscript) and rearranging gives the increment of the plasticity multiplier.

δλ =
fc − F T

c AeR+ ∂fc
∂pp
Rh

F T
c Ae

∂gc
∂σ
− ∂fc

∂pp

∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ

(3.54)

The consistent tangent matrix for the cap surface is as follows

Dep = Ae −
Ae

∂gc
∂σ
F T
c Ae

F T
c Ae

∂gc
∂σ
− ∂fc

∂pp

∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ

(3.55)

3.8.1.3 Tension surface return

The CPP algorithm for the tension surface is very similar to the shear surface

algorithm, however as there is no hardening in this surface therefore some of the

terms used in the algorithm reduce to zero. As previously, only significant changes

from the shear surface formulation will be described here. The second derivatives

of the plastic potential are also zero, however they have been included here in case

of future change. One significant difference from the shear surface algorithm is that

the Taylor series expansion of the yield criterion does not include a hardening term

ft +
∂ft
∂σ
δσ = 0 (3.56)

The δσ terms do not need to be grouped in this case, however, this is done here

to provide consistency between each surface formulation.

F T
t =

∂ft
∂σ

T

(3.57)

The plasticity multiplier does not contain any hardening terms

δλ =
ft − F T

t AeR

F T
t Ae

∂gt
∂σ

(3.58)
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Similarly with the consistent tangent matrix

Dep = Ae −
Ae

∂gt
∂σ
F T
t Ae

F T
t Ae

∂gt
∂σ

(3.59)

3.8.1.4 Shear and cap surface return

When the shear and cap surfaces are both active, the stress state must return to the

line which is the intersection of both surfaces. As the cap surface is uncoupled from

the shear surface, its formulation remains identical to before. The terms relating

to the shear surface must change to take into account the modified plastic strain

increment. The calculation of the plasticity multipliers also changes to take into ac-

count the double return strategy. The total plastic strain residual now incorporates

hardening from both surfaces

R = −∆εp + ∆λs
∂gs
∂σ

+ ∆λc
∂gc
∂σ

= 0 (3.60)

Expanding (3.60) as a Taylor series and simplifying leads to a form of the plastic

strain increment which involves both surfaces.

δεp = R+ δλs
∂gs
∂σ

+ δλc
∂gc
∂σ

+

(
∆λs

∂2gs
∂σ2

+ ∆λc
∂2gc
∂σ2

)
δσ (3.61)

The expansion of the shear and cap yield surfaces remains identical to (3.38) and

(3.51) respectively, however the new definition of the plastic strain increment (3.61)

must be substituted into (3.38). Grouping the δσ after this substitution leads to

fs + F T
s δσ +

∂fs
∂εp

T (
R+ δλs

∂gs
∂σ

+ δλc
∂gc
∂σ

)
= 0 (3.62)

where
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F T
s =

∂fs
∂σ

T

+
∂fs
∂εp

T
(

∆λs
∂2gs
∂σ2

+ ∆λc
∂2gc
∂σ2

)
(3.63)

The 2-surface form of the plastic strain increment (3.61) is now substituted into

the incremental stress relationship (3.42).

δσ = −De

R+ δλs
∂gs
∂σ

+ δλc
∂gc
∂σ

+

(
∆λs

∂2gs
∂σ2

+ ∆λc
∂2gc
∂σ2

)
δσ

 (3.64)

The stress increment is simplified to

δσ = −Ae

(
R+ δλs

∂gs
∂σ

+ δλc
∂gc
∂σ

)
(3.65)

where

Ae =

(
I + ∆λsDe

∂2gs
∂σ2

+ ∆λcDe
∂2gc
∂σ2

)−1

De (3.66)

Substituting (3.65) into (3.62) and (3.52), then rearranging into matrix form

gives an expression for the plasticity multipliers to be solved.


fs − F T

s AeR+ ∂fs
∂εp
R

fc − F T
c AeR+ ∂fc

∂pp
Rh

 =


F T
s Ae

∂gs
∂σ
− ∂fs

∂εp
T ∂gs
∂σ

F T
s Ae

∂gc
∂σ
− ∂fs

∂εp
T ∂gc
∂σ

F T
c Ae

∂gs
∂σ

F T
c Ae

∂gc
∂σ
− ∂fc

∂pp

∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ



δλs

δλc


(3.67)

The following substitution can be used:
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Ωf = Ω


δλs

δλc

 (3.68)

3.8.1.5 Shear and tension surface return

The implementation of the shear and tension CPP algorithm is very similar to the

shear and cap algorithm, however, as the tension surface does not exhibit any hard-

ening, some of the expressions are simplified. There is also no hardening parameter

residual to consider.

The Taylor series expansion of the tension yield criteria is identical to the single

surface version (3.56). The plastic strain increment is similar to that of the shear

and cap algorithm (3.61) and substitution into the incremental stress relation (3.42)

gives

δσ = −De

R+ δλs
∂gs
∂σ

+ δλt
∂gt
∂σ

+

(
∆λs

∂2gs
∂σ2

+ ∆λt
∂2gt
∂σ2

)
δσ

 (3.69)

Simplifying leads to

δσ = −Ae

(
R+ δλs

∂gs
∂σ

+ δλt
∂gt
∂σ

)
(3.70)

where

Ae =

(
I + ∆λsDe

∂2gs
∂σ2

+ ∆λtDe
∂2gt
∂σ2

)−1

De (3.71)

Substituting (3.70) into the previous expansions for each surface (3.40) and (3.56)

(with the modified subscripts), then rearranging into matrix form gives the expres-

sion for the plasticity multipliers.
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fs − F T

s AeR+ ∂fs
∂εp
R

ft − F T
t AeR

 =


F T
s Ae

∂gs
∂σ
− ∂fs

∂εp
T ∂gs
∂σ

F T
s Ae

∂gt
∂σ
− ∂fs

∂εp
T ∂gt
∂σ

F T
t Ae

∂gs
∂σ

F T
t Ae

∂gt
∂σ



δλs

δλt


(3.72)

The selection of which surface(s) to return is complex, as a simple zoning method

(Figure 3.6) cannot be used. Section 3.8.3 describes the algorithm used in the HS-LC

model which selects the active yield surface(s) based on a trial and error approach.

This method is very similar to that described by Benz (2007).

3.8.2 Consistent tangent matrix

The consistent tangent matrix (CTM) relates infinitesimal stresses and strains (3.73).

It is used to calculate the stress gradients when one or more yield surfaces are active.

An important benefit of using the CTM is the preservation of the quadratic rate of

convergence in the global Newton-Raphson iterative scheme.

Much of the theory for defining the consistent tangent matrix is discussed already,

however it is worth noting that in the formulation of the CTM, the stress state is

assumed to already be on one or more yield surfaces and the residuals relating to

the active surface(s) are zero. The plasticity multiplier(s) ∆λ from the previous

iteration are also required. The consistent tangent is defined as:

Dep =
dσ

dε
(3.73)

If the stress state lies on a single yield surface, then the consistent tangent is

given as
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Dep = Ae −
Ae

∂g
∂σ
F TAe

F TAe
∂g
∂σ
− ∂f

∂εp

T ∂g
∂σ

(3.74)

When two surfaces are active, a more complex approach is used which takes into

account the gradients and hardening rules from both surfaces.

Dep = Ae −
(
Ω−1

)
1,1
Ae

∂g1

∂σ
F T

1 Ae −
(
Ω−1

)
1,2
Ae

∂g1

∂σ
F T

2 Ae

−
(
Ω−1

)
2,1
Ae

∂g2

∂σ
F T

1 Ae −
(
Ω−1

)
2,2
Ae

∂g2

∂σ
F T

2 Ae

(3.75)

Single vector subscripts 1 and 2 may be replaced by s, c, or t, depending on

which surfaces are currently active. The subscripts in Ω remain as 1 and 2.

The CTM is non-symmetric in the HS model whenever the shear surface is active,

this is because the shear surface uses a non-associated flow rule. The CTM for the

cap and tension surfaces are symmetric. The terms in Ω are also non-symmetric

when returning to the shear and cap surfaces, as their hardening rules are based on

total plastic strains, and incremental plastic strains respectively.

3.8.3 Return strategy

Due to the nature of the hardening rules in the HS model, a simple zoning approach

cannot be used. Figure 3.6 indicates the problem with using a zoning method;

the actual zones do not necessarily correspond to the gradients of each yield surface.

Therefore, a trial and error approach is adopted. The full return strategy is described

in Figure 3.7.

The most dominant surface in the HS model is the shear surface. For example,

when a trial stress state yields both the shear and cap surface, after returning to

the shear yield surface, the cap surface is often no longer active.
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Figure 3.7: Return mapping algorithm used in the HS-LC model
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3.9 Stiffness update

The Young modulus used in the elastic stiffness matrix and shear yield function is

dependent on the minor principal stress σ1. A stress of zero in the standard HS

formulation leads to a stiffness of zero. This presents a numerical difficulty which

can be solved by imposing a lower limit to the soil stiffness.

In the proposed formulation of the HS model, this limit is applied by using the

atmospheric pressure pa as an input parameter, and minimising the stress used in

the Young modulus calculation to a factor of the atmospheric pressure. With this

new model, Equation 2.1 becomes:

E50 = Eref
50

(−min(σ1, Yfpa) + c cot (ϕ)

−σref + c cot (ϕ)

)m
(3.76)

and similarly for the other Young moduli. By default, pa = −100 kN/m2 is a

reasonable approximation of the atmospheric pressure, and Yf = 0.001 is a suitable

value for the minimum factor which does not significantly affect results after the

stress increases above this level.

During testing of the HS-LC model (discussed later in Chapter 4), it was found

that some step size dependency occurred in certain simulations, namely oedometer

tests where a soil is subject to confined vertical loading. In the basic model, the

Young moduli are based on the stresses from the last converged state, and are

frozen throughout a given increment. For tests where the minor principal stress

σ1 remains constant, this is ideal, as the Young moduli remain constant throughout

the shearing phase. However, in oedometer simulations and more complex boundary

value problems, the stiffness changes in each load increment.

Using the last converged stress for the soil stiffness causes the solution to drift.

This is most prominent in Figure 4.4 which is discussed later in Chapter 4.

To overcome this issue, it is proposed that a modified Newton-Raphson type

method is adopted. In the Modified Newton-Raphson (MNR) method, the stiff-
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ness for the first two or more iterations is updated. The standard Newton-Raphson

method updates the stiffness on every iteration, and an explicit method only calcu-

lates the stiffness for the first iteration.

The standard Newton-Raphson method converges the fastest but requires cal-

culation of the tangent stiffness matrix on every iteration. The explicit method

only requires the calculation of the tangent matrix to be performed once, however

is slower to converge. The MNR method is a compromise of both methods, where

a tangent stiffness which is more accurate than that used in the explicit method, is

used throughout the increment.

In this application, the MNR method is not used to improve convergence or

speed, but to reduce step size dependency. The yield function and plastic potential

gradients (and hence the tangent stiffness matrix) are updated on each iteration,

making this method more akin to the standard Newton-Raphson method. However,

in this implementation of the HS model, Young moduli are updated for a controlled

number of iterations, then frozen for the remainder of the increment.

Additionally, the level of which the stiffness is modified can be controlled by a

weight factor r. Some portion of the last converged stress can be used to calculate

the Young moduli, this should provide some additional stability in the model whilst

removing some or all of the step size dependency. Application of this factoring can

be applied as follows:

E50

(
σLC(1− r) + σLIr

)
(3.77)

where σLC is the last converged stress, σLI is the stress at the end of the previous

iteration, and r is the stiffness update weight factor, which ranges from 0 to 1. A

value of r = 0 gives the original explicit method, and a value of r = 1 makes the

model use purely the updated stress. Any values in-between use a combination of

both.

This updated procedure is performed until the absolute relative change in Young
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modulus between iterations Echange reduces below a pre-set tolerance Etol:

Echange =

∣∣E50 − (E50)LI
∣∣

E50

≤ Etol (3.78)

It is the responsibility of the user to determine if their model is step size con-

verged. This is done simply by running simulations with different step sizes and

determining at what size of step when adjusted slightly does not significantly affect

the results. There can be significant computational cost in decreasing step size,

and the methods described in this section should allow the user to lower these costs

by reducing the number of steps required. However, it is still vital that step size

dependency is checked to ensure accurate results.

The proposed model as described in this chapter will hereinafter be referred to

as the HS-LC model. By default, the dilatancy model by Rowe with the zero cutoff

is used (Equation 2.10). The failure criterion used in this study is that proposed

by Panteghini and Lagioia (2013). Use of the model may or may not include the

stiffness update procedure described in Section 3.9; by default, it is not used and

the stiffness is based on the last converged state. Some of the model verifications

use the stiffness update procedure, and details of the parameters used are noted.

73



74



Chapter 4

HS-LC model validation

This chapter describes a series of validations of the improved hardening soil model

formulated in Chapter 3. It is important to assess the performance of the soil model

before it is applied to the composite model described later, therefore a selection of

case studies for unreinforced soils are described here.

The chosen scenarios are a combination of laboratory tests, and more complex

boundary value problems. The work of Schanz et al. (1999) and Benz (2007) provide

several case studies to compare against the new hardening soil model.

All simulations are performed in the finite element software LUSAS. Single ele-

ments are used for simpler simulations such as triaxial and oedometer tests. These

simulations are symmetrical about the vertical axis, therefore axisymmetric quadri-

lateral elements are used. For the boundary value problems, more detailed descrip-

tions are included in their respective sections.

Each set of results is discussed in full within this chapter; this includes the

description of each problem, the results, and a discussion of the results. Later

case studies will build on the discussions from previous analyses; hence this chapter

forms a narrative, starting with very basic simulations, leading to more complex

field simulations.

In addition, some of the material variables, namely the initial modulus Eref
i ,
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cap steepness α and the cap hardening Ks/Kc parameters, must be modified for

the HS-LC model. These parameters however, are calibrated to the same values

of oedometer modulus Eoed, stiffness ratio K0 and secant modulus Eref
50 as the HS

model. The material properties used in the HS-LC model are detailed in Table 4.1.

4.1 Oedometer tests

This first test is taken directly from the work of Schanz et al. (1999), and is based on

a simple one dimensional loading of a dry sand. Normally this type of test is reserved

for consolidation analysis of clays and silts; time is usually an important factor in

an oedometer test because the clay must be allowed to consolidate. However, using

a sand means that displacements may be assumed to occur instantaneously with

applied loads, as the grain repacking is immediate due to the lack of cohesion.

The test consists of a cylinder of sand, packed to a certain density, and loaded

vertically (Figure 4.1a). The cylinder, base and loading cap are made from stiff

materials, such that the soil may be assumed to only deform vertically.

Domain: The domain of the oedometer problem was taken to be a 5 × 5 cm square

(Figure 4.1b), with its left side coincident with the axis of symmetry; representing

a cylinder. The actual size and proportions of the quadrilateral have no effect on

the results, as this problem can equally be modelled with a single Gauss point.

Boundary conditions: The sand was subject to roller supports along its bound-

aries, this allows the mesh to slide along the boundaries, but not move through

them. The axis of symmetry automatically enforces this boundary. The prescribed

displacement on the top surface also forms a boundary and the mesh was free to

move horizontally on the top surface. The load curve for the prescribed displacement

is shown in Figure 4.3.
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Table 4.1: Material parameters used in the hardening soil model simulations. For all materials; σref = −100 kN/m2, pa = −100 kN/m2,
σt = 0 kN/m2, Yf = 10−3, Gf = 10−4

ID Name D Eref
50 Eref

ur Eref
i Eref

oed m c ϕ ψ ν KNC
0 Rf α Ks/Kc

t/m3 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 ◦ ◦

LS1 Loose sand 23890 60000 68913 16500 0.65 0.0 34 0.8 0.20 0.44 0.9 0.959 1.650

DHS Dense Hostun sand 30000 90000 109303 30000 0.55 0.0 42 16 0.25 0.40 0.9 1.140 1.761

LHS Loose Hostun sand 12000 60000 37420 16000 0.75 0.0 34 0 0.25 0.44 0.9 1.049 1.875

C1 Clay 2150 11500 6685 1050 0.8 0.0 20 0 0.20 0.66 0.9 1.015 5.373

S1 Sand 2.0 25900 79189 45000 25900 0.5 0.0 35 0 0.45 0.426 0.85 1.504 8.817

L1 Very dense silt 1.161 100625 300000 333000 80000 0.65 23.94 35 0 0.45 0.50 0.85 1.38 11.80

L2 Dense silty sand 1.081 69000 172500 212000 63000 0.6 23.94 35 0 0.45 0.426 0.85 1.48 9.10

L3 Dense sand 0.705 52500 157500 160000 52500 0.6 0.0 35 0 0.45 0.426 0.85 1.52 8.40

DLS Dense Leighton Buzzard sand 1.665 32700 98100 107241 32700 0.85 20.0 34.6 1.8 0.30 0.40 0.95 1.296 1.720

LLS Loose Leighton Buzzard sand 1.608 15000 45000 39642 15000 0.55 5.0 14.5 0.0 0.30 0.75 0.95 0.564 2.439
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Figure 4.1: Oedometer test; (a) 3-D configuration and (b) axisymmetric model used
with boundary conditions and loading

Mesh: Similarly to the domain, the actual mesh used is not significant in this

analysis. The mesh used in this example was a single eight-noded quadrilateral.

The results are obtained from the mid-side node on the left side of the square, as

this represents the centre of the sand. This selection is arbitrary as the results are

constant throughout the mesh.

Materials: The soil tested was a loose sand, the properties of the sand used in the

HS-LC model are listed as LS1 in Table 4.1. Most of the parameters here are identical

to those found in the original source paper by Schanz et al. (1999). Some of the

values were not published and had to be calculated from the available experimental

data. The auxiliary parameters α, Ks/Kc, and Eref
i were also calibrated using a trial

and error approach by running the model several times and varying these parameters

until a suitable match with the experimental data (Schanz et al., 1999) was found.

From the experimental data, it was found that the secant modulus Eref
50 was
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CHAPTER 4. HS-LC MODEL VALIDATION

rounded to one significant figure; this suggests a minor inaccuracy. In this study,

a revised value was used based on experimental triaxial test results on the same

sand. Also, a small dilatancy angle was introduced to reflect observations in the

experimental triaxial results, as the sand exhibited some increase in volume after

extensive shearing.

Convergence criteria: The chosen residual force norm criterion was 0.001%, and

the incremental displacement norm criterion was 0.01% for this test.
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Figure 4.2: Single element oedometer simulation, comparison with experimental and
predicted results from Schanz et al. (1999)

Discussion: Both versions of the HS model replicate the experimental data well,

as shown in Figure 4.2. The primary loading curves are very similar for both pre-

dictions and experimental results.

The loading path for this simulation is shown in Figure 4.3 and includes several

unloading and reloading cycles. Figure 4.3 also shows the required number of it-

erations for each increment. As can be expected for this heavily restrained, single

element test; each increment converges in a single iteration.
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Figure 4.3: Load curve and converged iteration numbers for oedometer test

The published data from the original HS model prediction only includes one

unloading cycle. The gradient of this unloading cycle matches the experimental

results. The HS-LC model also predicts the unloading gradients well, however, the

path for unloading is predicted to be identical to the reloading path. This does not

reflect the observed behaviour where the unloading and reloading paths are different.

The reason for identical unloading and reloading paths is due to the assumed

elastic behaviour when below the yield surfaces. Plasticity does not come into effect

until the primary loading curve is reached again, and the yield surface(s) become

active.

The experimental unloaded paths show some stress dependency, i.e. the gradient

for the first unloaded path is less steep than the final unloaded path. The HS-LC

model repeats this observation but to a greater degree. The mechanism which

controls this in the model is the stress dependent unload-reload stiffness, which is

based on the minor principal stress σ1. The curvature of the unloaded paths for the

experimental and HS-LC predicted results are similar.

Another feature of the predicted results for both the HS and HS-LC models
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Figure 4.4: Oedometer loading paths for different step sizes (load controlled test,
total vertical load σ3 = −100 kN/m2

is the distinct change in gradient towards the end of each unloading cycle. This

occurs when the vertical stress falls below the radial stress in the soil, changing the

orientation of the major principal stress. This feature is also present in the third

and fourth unloading cycle of the experimental results, but to a lesser extent.

The calibrated auxiliary parameters α, Ks/Kc from this test are used in the

simulation of a triaxial test using the same sand (see Section 4.2), this triaxial test

was also used to calibrate the initial modulus Ei, which was used in this oedometer

simulation.

The analysis of this oedometer test also includes an investigation of step size de-

pendency in the HS-LC model. Figure 4.4 shows the oedometer loading response for

the same soil and the same total load applied over different numbers of increments.

This series of tests shows some significant step size dependency, where the 50 step

test shows a much softer initial state than the smaller step size tests. The solution

appears to converge between the 250 and 500 step results where the responses are

very similar. It is important to note that these tests were performed with equal
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Figure 4.5: Oedometer loading paths for different step sizes using updated Young’s
moduli, Etol = 0.05, and r = 0.33

stress increments. A more sensible approach for this type of test is to use smaller

step sizes at the start of the test, however this approach was chosen to demonstrate

the issue with step size dependency.

The paths of each test after approximately σy < −20 kN/m2 are very similar. A

translation of each load curve horizontally produces a set of curves which are more

similar than shown in Figure 4.4. This indicates that the model is most sensitive to

step size at low stress levels.

The stiffness update method detailed in Section 3.9 is used to address the issue of

step size dependency. In this method, the Young moduli, used in the calculation of

the elasticity matrixDe and within the shear yield surface fs, are updated for the first

few increments, and frozen thereafter. A weighting factor is also applied to include

some portion of the Young moduli from the last converged state (Equation 3.77). In

this study, the stiffness is updated using a tolerance of Etol = 0.05, and a weighting

factor of r = 0.33 is used.

The results obtained using these parameters are shown in Figure 4.5. The 500
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Figure 4.6: Converged iteration numbers for oedometer step size study

step results from the previous study (Figure 4.4) are included in this figure for

comparison. The stiffness update has significantly reduced the step size dependency

for this problem, requiring only 100 steps to achieve the same results as the 500

step analysis using the fully explicit method. In the prior example (Figure 4.4), the

50 step test load curve is below the converged solution. With the updated stiffness

results (Figure 4.5), the 50 step simulation produces a curve which is higher. The

reason for this is that the stresses are not fully converged when the stiffness updates

and subsequently freezes. This can cause the minor principal stress σ1 used in the

modulus calculation to be higher than the final converged result, resulting in a higher

stiffness.

The first oedometer simulation (Figure 4.3) converges in only 1 iteration for

each increment. This is a strain controlled simulation, with restrained boundaries,

therefore the problem has zero degrees of freedom. Step size dependency is less of

an issue in this analysis as the vertical strain is not allowed to drift.

The analyses in the step size study are stress controlled tests, where the vertical

strain is the unknown variable. For the first step size tests using the explicit method
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Figure 4.7: Converged iteration numbers for oedometer step size study using up-
dated Young moduli, Etol = 0.05, and r = 0.33

(Figure 4.6), most increments converged in 2 iterations or fewer. The first step in

the 500 step analysis required 3 iterations, the most likely cause of this is that the

stress level is close to the minimum factor for stress dependency Yf as described in

Equation 3.76, which does introduce a change in gradient of the stiffness. The final

few iterations of the 500 step analysis required 0 iterations for convergence, this

is because the soil stress is very close to the reference stress σref , and the elastic

trial solution σtr is effectively equal to the converged solution, and the trial state is

deemed to be converged.

Use of the stiffness update increases the number of iterations required for conver-

gence (Figure 4.7). The iterations from the 500 step analysis using the fully explicit

method from Figure 4.6 are also included for comparison. For these analyses, in-

crements required 4 or fewer iterations to converge. This is to be expected as the

stiffness is changing within the increment, and an additional layer of non-linearity

is present in the model.

To obtain a step size converged solution, two approaches have been explored.

One approach is to decrease the step size, this comes at a cost of requiring more
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load steps. The second approach is to use the stiffness update method as described in

Section 3.9, however this comes at a cost of having to deduce the optimal parameters,

and also requiring more iterations for each increment. In any case, it is clear that

it should be established as to whether or not the solution is step size converged.

4.2 Triaxial tests

The triaxial test uses standardised apparatus and procedure to determine the shear-

ing properties of soils. Further details of the steps involved in a triaxial test can be

found in Section 6.2.1. Essentially, the test consists of two main stages; an initial

compression (or consolidation), followed by an unconfined vertical compressive load.

Schanz et al. (1999) provided triaxial experimental data of a loose sand, along

with predictions using the HS model. Benz (2007) also provided experimental data

and predictions using the HS-smooth model of three more soils. This data is used

as a comparison for the new HS-LC model.

Domain: Similarly to the oedometer tests, the actual geometry of the problem is

not important. In LUSAS, the triaxial test was modelled as a square in axisymmetric

space, and therefore represents a cylinder. The height and width of the square used

in this example were modelled as 5 cm.

Boundary conditions: The bottom surface of the soil was supported in the ver-

tical direction and free to move horizontally, this allows for volumetric contraction

and expansion. The axis of symmetry inherently suppresses any movement through

the axis, therefore is equivalent to a horizontal support, with free vertical movement.

Mesh: A single eight-noded quadrilateral element was used to model the triaxial

test. Results are extracted from the left mid-side node.
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Figure 4.8: Triaxial test; axisymmetric model used with boundary conditions and
loading

Materials: A selection of materials are used in this series of tests. The first

material was the same as the previous oedometer test (LS1), the purpose of including

this simulation is to verify that the same set of parameters can reproduce results

from the original HS model (Schanz et al., 1999) for both oedometer and triaxial

loading conditions.

Three more materials are included in the triaxial compression study. The ma-

terial parameters are taken from the second development of the HS model (Benz,

2007); namely dense Hostun sand (DHS), loose Hostun sand (LHS) and a kaolin clay

(C1). Only the auxiliary parameters are modified from the original work such that

the calibration parameters Eref
50 , Eref

oed , K0, are equivalent between the two models.

Throughout the analyses, the modified Rowe dilatancy relationship (Equation

2.10) was used.
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Figure 4.9: Triaxial test results (experimental and predicted) of a loose sand (LS1)

Loading: For the first analysis, the soil was given an initial residual compressive

stress of 300 kN/m2. A vertical displacement was prescribed to the top surface at

a rate of 0.0125 cm per increment for 80 increments, giving a total axial strain of

20% at the end of the test.

For the remaining triaxial analyses, the soil was given an initial residual com-

pressive stress of either 100, 300, or 600 kN/m2. The vertical displacement was

applied over 50 increments, at a rate of 0.01 cm per step, giving a total axial strain

of 20% by the end of the test.

Convergence criteria: The residual force norm criterion used in this simulation

was 0.001%, and the incremental displacement norm criterion was 0.01%.

Discussion: In reference to the first simulation (Figure 4.9), The shear response

for both the HS and HS-LC models match the experimental data very well (Figure

4.9a); the failure point on the HS-LC model clearly becomes active at a strain of

ε3 = −0.08 where no shear increase is observed, however, the initial gradient is very

slightly under-predicted.

The volumetric response (Figure 4.9b) using the HS-LC model is somewhat dif-
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Figure 4.10: Triaxial test results with different step sizes (L1)

ferent to the original HS prediction. The initial gradient is steeper, which would

indicate that the HS-LC model exhibits more contractive behaviour than the HS

model initially, however both results are within the range of experimental variation.

The post-failure gradient of the experimental results is slightly dilative, this is not

captured in the original HS model because a dilatancy angle of ψ = 0◦ was used,

but it is captured in the HS-LC model using ψ = 0.8◦. This is not a reflection of

the capability of the HS model, but a minor issue with the selection of parameters.

A step size dependency study is included in Figure 4.10, where the same triaxial

test is repeated with different numbers of steps to achieve the same total strain. The

80 step simulation produces a smooth curve, then a change in gradient when failure

is initialised. The larger step size tests appear to meet the 80 step shear curve at

the end of each load step. For the volumetric curve, the results match until the

curve changes at a strain of ε3 = −0.05. After this point, the larger step results

project past the 80 step results until the next increment begins, where the gradients

match thereafter.

The convergence for each of the different step sizes (Figure 4.11) is similar. Most

increments converged in 2 iterations or fewer; however, the 8 step test required 12

iterations for the first increment.
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Figure 4.11: Converged iteration numbers for triaxial step size study using HS-LC
model

Referring to the second series of triaxial tests (Figures 4.12, 4.13, 4.14), it appears

that the HS-LC model has replicated the results produced by the HS-smooth model

excellently in both the shear and volumetric responses.

The HS-LC simulations predict the initial shear response very similarly to the

HS-smooth model. There is a slight difference in predicted shear responses towards

soil failure such that the HS-LC model produces curves which are steeper than the

HS-smooth model when approaching failure. This effect is most prominent in the

σ1 = −600 kN/m2 dense Hostun sand simulation (Figure 4.12).

The experimental volumetric results for the loose sand and the clay are replicated

near-perfectly using the HS-LC model. The volumetric results from the dense sand

differ slightly: the HS-LC model exhibits a more prolonged compression phase than

the HS-smooth model, i.e. dilatancy occurs later. This difference is most obvious in

the 600 kN/m2 simulation in Figure 4.12. It is likely that the difference in dilatancy

relationship used in each simulation is the cause of this difference; the HS-smooth

model uses the dilatancy model by Li and Dafalias (2000) shown in Equation 2.13,

and the HS-LC model uses the modified dilatancy model by Rowe (1962) shown in

Equation 2.10.
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90



CHAPTER 4. HS-LC MODEL VALIDATION

0 0.025 0.05 0.075 0.1
0

500

1,000

1,500

q
(k
N
/m

2
)

0 0.025 0.05 0.075 0.1

−0.02

−0.01

0

ε v

0 0.025 0.05 0.075 0.1
0

500

1,000

1,500

q
(k
N
/m

2
)

0 0.025 0.05 0.075 0.1

−0.02

−0.01

0

ε v

0 0.025 0.05 0.075 0.1
0

500

1,000

1,500

−ε3

q
(k
N
/m

2
)

0 0.025 0.05 0.075 0.1

−0.02

−0.01

0

−ε3

ε v

Experimental
HS-smooth
HS-LC

σ1 = −100 kN/m2

σ1 = −300 kN/m2

σ1 = −600 kN/m2

Figure 4.13: Experimental and predicted triaxial test results on loose Hostun sand
(LHS), experimental and HS predictions from Benz (2007), and predictions with the
HS-LC model
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mental and HS predictions from Benz (2007), and predictions with the HS-LC model
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Figure 4.15: Converged iteration numbers for triaxial tests using the HS-LC model
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Overall, the experimental results are captured well by both models. The shear

response of the dense sand is predicted very well for the 100 and 300 kN/m2 tests,

however the strength of the 600 kN/m2 soil is over-predicted. The volumetric re-

sponse of the 100 kN/m2 dense sand is also predicted incorrectly for both models,

in the experimental test, the soil shows dilatant behaviour immediately. However,

the validity of this response (and other experimental results) in this series are ques-

tionable because no repeat experiments are shown.

The volumetric contraction of the loose Hostun sand (Figure 4.13) is under-

predicted by both the HS-smooth and HS-LC models. With these models, there is

very little control for this type of behaviour. It is believed that using the dilatancy

model by Wehnert (2006) in Equation 2.11 could improve this prediction, as the non-

zero dilatancy encourages contractive behaviour at a low shear stress. The shear

response of the loose Hostun sand is also predicted very closely, however, the 600

kN/m2 strength is over-predicted.

Experimental results are not available for the 100 and 300 kN/m2 clay tests

(Figure 4.14), however, both the shear and volumetric predictions for the 600 kN/m2

clay match the experimental results very well.

Convergence for the triaxial tests was very good (Figure 4.15); every increment

converged in 3 iterations or fewer for all materials. Most increments converged in 1

increment, and peaks in required iterations occurred during changes in the model.

For example, the transition into the dilatant mode of the modified Rowe stress

dilatancy relationship (Equation 2.10) and initiation of soil failure (rq ≥ Rf ).

4.3 Circular footing

A 1.22 m (4 ft) radius circular footing on a sand was analysed. Predictions from

using the Duncan-Chang (DC) model are available (Mitchell and Gardner, 1971) and

can be directly compared with the HS model, as it shares many common parameters

with the DC model; additional parameters were obtained by simulating triaxial and
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oedometer tests and calibrating to given parameters. Mitchell and Gardner (1971)

also performed a linear elastic analysis of this footing problem using an analytical

method by Huang (1967), this has been included in comparisons.

Domain: The problem domain is shown in Figure 4.16. The footing radius is

1.22 m, and the soil domain extends 9.14 m horizontally and vertically from the

centre of the footing base.

Boundary conditions: The base of the soil was fully fixed, and the vertical

boundaries are supported horizontally, with the axis of symmetry, the horizontal

restraint is inherently included.

Mesh: The problem is initially modelled using a fairly coarse axisymmetric mesh

with 170 quadratic, quadrilateral elements. The footing and the soil are modelled

using the same continuous mesh. The mesh was refined near the footing, and made

increasingly coarse further away from the footing.

A mesh convergence study was also performed here, which compares three dif-

ferent meshes of 170, 576, and 2115 elements, as shown in Figures 4.16, 4.17, and

4.18 respectively.

Materials: The footing was modelled as concrete with Young’s modulus 30 GN/m2

and Poisson’s ratio 0.2. The sand material properties can be found in Table 4.1 and

are denoted S1.

Loading: Loading was performed in four stages: First, a nominal isotropic com-

pressive stress of 5 kN/m2 was applied to resolve convergence issues from starting

at zero stress. Second, the self weight of the soil was taken into account by applying

a gravity body force acceleration (g = 9.807 m/s2). Third, the overburden pressure

was applied; this is equivalent to 0.914 m (3 ft) of soil above the base of the footing.
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Figure 4.16: Footing analysis mesh and geometry (coarse 170 element mesh)

Finally, the footing load was applied as a constant pressure on the footing only at a

rate of 1 kN/m2 per step, taking a total of 240 steps.

Convergence criteria: The residual force norm criterion was 0.1%, and the in-

cremental displacement norm criterion was 1.0%. The stiffness update procedure

was used with a modulus change tolerance of Etol = 0.05, and a weighting factor of

r = 0.33.

Discussion: The results from the numerical simulation of the footing (Figure 4.19)

are in close agreement with previous results from Mitchell and Gardner (1971) in

both the linear elastic simulation, and the non-linear DC simulation. This is to be

expected as the HS model is formed from the same basis as the DC model, also many

of the main material parameters are identical. The major difference between the

models is the implementation: the DC model is based on an incremental relationship,

and the HS model is based around plasticity.
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Figure 4.17: Footing analysis mesh and geometry (medium 576 element mesh)
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Figure 4.18: Footing analysis mesh and geometry (fine 2115 element mesh)

97



0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

Footing load σf (kN/m2)
S
et
tl
em

en
t
(m

)

Linear elastic
DC

HS-LC

Figure 4.19: Circular footing settlements with linear elastic, Duncan-Chang, and
HS-LC model
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98



CHAPTER 4. HS-LC MODEL VALIDATION

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

Footing load σf (kN/m2)

S
et
tl
em

en
t
(m

)

Coarse mesh
Medium mesh
Fine mesh

Figure 4.21: Circular footing predicted settlements using the HS-LC model with
different mesh densities
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Figure 4.22: Circular footing stress profile beneath centreline using HS-LC model
with different mesh densities

99



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

Increment

T
ot
al

lo
ad

fa
ct
or

Initial stress
Self weight
Overburden
Footing load

Figure 4.23: Load curves circular footing tests

The DC model does not use any total strain relationships or residuals to check

if the internal stresses are balanced. Therefore, convergence to the true solution

cannot be guaranteed (Bower and Duxbury, 2014). This may be the reason for

the apparent scattering of the DC results in Figure 4.19. The DC model is also

somewhat sensitive to the step size (Bower and Duxbury, 2014); the load in the DC

simulation was applied in steps of 24 kN/m2 (500 psf). It may be possible to reduce

this apparent randomness in the DC model by reducing the step size, utilizing a

sub-stepping scheme, or by refining the mesh.

Similarly with the vertical stress profile (Figure 4.20), the DC model produces

profiles which oscillate near the top surface of the soil, particularly for the higher

applied loads. The HS model also produces results which oscillate to a lesser degree

near the surface. It is believed that this is due to the coarse mesh used in both

simulations.

The mesh convergence study analysed compared results for the load-settlement

curve (Figure 4.21) and the vertical stress profile (Figure 4.22) for meshes of three

different densities. The predicted load-settlement curves for each mesh are visually
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Figure 4.24: Converged iteration numbers for circular footing tests

very similar, indicating that the problem is not dependent on the mesh density. The

vertical stress profile is, in general, very similar for each mesh. The most significant

difference here is the prediction of vertical stress near the soil surface. The coarse

mesh appears to provide a slightly unstable solution, where the results oscillate

slightly. However, the medium and fine meshes both produce very similar curves

which do not oscillate.

The DC model tends to exhibit lower stresses than the linear elastic model near

the soil surface and matches the elastic results well when deeper into the soil. The

HS model predicts higher stresses than the elastic model near the soil surface, and

lower stresses deeper into the soil. The reason for the lack of vertical stress increase

in the deep soil when using the HS model is that a higher portion of the stress is

transferred horizontally. As no experimental are data available for this problem, it

is difficult to comment on the accuracy of each model.
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4.4 Leesburg footing

A second footing was analysed, which is a square footing located in the town of

Leesburg, New Jersey, USA. The footing rests on several layers of soil, each with

different material properties. Experimental data and predictions using the DC model

are provided by Mitchell and Gardner (1971).

Domain: The footing used in the experimental study was a 1.524 m (5 ft) square,

however it was analysed as a circular footing with an equivalent area such that the

analysed footing diameter is 1.72 m. This is the same method used to analyse the

footing in the work of Mitchell and Gardner (1971). The total depth of the soil was

modelled as 7.312 m and the width of the axisymmetric domain was 15.0 m. The full

geometry of the problem, including the depth of each layer is shown in Figure 4.25.

A second analysis was conducted which models the full three-dimensional ge-

ometry of the footing. In this model, a cuboid which represents the footing was

placed in the centre of a larger cuboid which represents the soil. The symmetry of

the geometry is exploited such that the domain is reduced to a quarter of the full

geometry.
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Figure 4.25: Leesburg footing geometry and mesh
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Boundary conditions: The base of the soil was fully fixed, and the far field

boundary was supported in the horizontal direction only. The axis of symmetry is

inherently supported horizontally.

For the three-dimensional analysis, the planes where the symmetry are cut were

restrained from moving perpendicularly to each plane, making the ‘cut’ model equiv-

alent to the full geometry. The base of the soil was fixed in all directions, and the

vertical faces opposite the footing were restrained in all directions except for verti-

cally.

Mesh: For the axisymmetric analysis, the soil and footing were modelled using

1089 linear, quadrilateral, axisymmetric elements. For the three-dimensional analy-

sis, 22197 quadratic, tetrahedral elements were used to model the soil and footing.

Contact spring elements were used in the joint between the footing and the soil.

These are special joint elements in LUSAS which do not activate until the two

designated contact surfaces meet. The perpendicular spring stiffness is set very high

(100 GN/m2), to simulate a rigid contact surface. The sliding spring stiffness was

set to 1 MN/m2 to simulate some sliding friction. It was found that adjustment of

the spring stiffness had little influence of the footing displacement results. A total of

8 linear joint elements were used in the axisymmetric model, and 81 joint elements

were used in the three-dimensional analysis.

A mesh convergence study was also performed on both the axisymmetric and 3-D

analysis. The results were found to not differ significantly when using 275, 1089, or

4497 axisymmetric elements. Similarly for the 3-D analysis, using meshes of 8688,

22197 or 41204 tetrahedral elements did not significantly alter the results.

Materials: There are four soil layers considered in this analysis; a sandy topsoil,

a very dense silt (L1), a dense silty sand (L2), and a dense sand (L3). Full material

properties used in this analysis are shown in Table 4.1. The sandy topsoil layer was

not modelled as part of the domain, but was applied as a vertical distributed load
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representing the self weight of this layer which is 1.762 t/m3. The thickness of this

layer was 0.851 m.

Loading: An initial compressive stress of 10 kN/m2 was first applied to the soil,

this is to avoid having invalid initial conditions of zero stress. This was of a low

enough magnitude as to be negligible compared to the other applied loads. The self

weight of the soil was modelled using a gravity body force applied to the entire soil.

The different densities of each soil were automatically taken into account. The next

loading phase was the overburden pressure from the ‘sandy topsoil’ layer, which was

modelled as a uniformly distributed load of 14.71 kN/m2 applied to the top of the

‘very dense silt’ layer. The final stage was the loading of the footing, which was a

600 kN/m2 face load applied to the top of the footing.

The initial compressive stress was an assumed residual stress state for the soil,

each subsequent loading phase was applied over 10 increments, giving a total of 30

increments for the analysis.

Convergence criteria: The residual force norm criterion used was 0.1%, and the

incremental displacement norm criterion was 1.0%. The stiffness update procedure

was used with a modulus change tolerance of Etol = 0.05, and a weighting factor of

r = 0.33.

Discussion: The axisymmetric predictions for the HS and the DC model are in

close agreement (Figure 4.26). There is some deviation towards the end of the

simulation (σf > 500 kN/m2) where the gradient predicted with the HS-LC model

is slightly less steep than that of the DC model. It was found that adjustment of

the post-shear-failure gradient in rq (Equation 3.12) did alter this effect slightly.

Modification of the arbitrarily assigned spring stiffness also had very little impact

on the results in Figure 4.26.

The load-displacement curve for the three-dimensional analysis initially follows
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Figure 4.26: Leesburg footing settlements with experimental, DC, and HS-LC model
results, experimental and DC results from Mitchell and Gardner (1971)
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Figure 4.27: Cropped shear stress contour plot from the fully loaded Leesburg foot-
ing in the axisymmetric analysis
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Figure 4.28: Converged iteration numbers for the axisymmetric Leesburg footing
test
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Figure 4.29: Shear stress contour plot from the fully loaded Leesburg footing in the
three-dimensional analysis
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Figure 4.30: Converged iteration numbers for the three-dimensional Leesburg footing
test

the axisymmetric results closely. However, the two solutions diverge slightly after

a footing load of σf = 300 kN/m2, at this stage, the 3-D solution becomes slightly

stiffer.

The shear stress plot of the axisymmetric results (Figure 4.27) show the distri-

bution of shear stress around the footing. The area immediately under the centre of

the footing undergoes less shear stress than the surrounding soil. This is because the

loading conditions at this point are predominantly isotropic. A stress concentration

develops at the edge of the footing, this is to be expected as the vertical load applied

to the soil is discontinuous, and stops when outside the range of the footing.

Similar behaviour is observed for the 3-D analysis shear stress plot (Figure 4.29).

The region under the centre of the footing undergoes very little shearing. The shear

stress in this model is highly concentrated at the corner of the footing, and a lower

shear stress concentration is located along the edges of the footing. This is because

the discontinuity of loading is high at the footing edge, and highest at the footing

corner.

Neither model is able to recreate the experimental results exactly with the given

parameters; the stiffness at the start of the simulations is under-predicted, resulting
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in the footing settlement being over-predicted. It may be possible to further improve

this prediction by using the HS-LC model with altered parameters. The dilatancy is

not modelled appropriately here therefore the method most likely to improve these

results would be to use a more realistic set of Poisson’s ratios and dilatancy angles.

This simulation has indicated the robustness of the proposed model by only re-

quiring ten increments for each loading stage (as shown in Figure 4.28). The conver-

gence criteria were a residual force norm of 0.1%, and an incremental displacement

norm of 1.0%. Each increment in the axisymmetric analysis (Figure 4.28) converged

in 3 iterations or fewer; peaks in loading are observed when a new load stage starts.

The increments in the 3-D analysis (Figure 4.30) typically converged in 5 iterations

or fewer, with peaks of 15 and 20 iterations at the start of the gravity and footing

load stages respectively. It was found that lowering the density of the 3-D mesh

significantly reduced the required number of iterations at these stages. The higher

mesh density around the loading discontinuity created a steeper gradient and a

higher shear stress at this point. It is likely that this increase in shear stress caused

the solution to become less stable.

Ideally, the mesh used should be dense enough to capture behaviours around

points of interest, such as the edge and corners of footings. However, in problems

such as this, using too fine a mesh may create instabilities in the global solution.

If a dense mesh were to be used for a problem such as this, then the problem can

be stabilised using smaller step sizes. This is not a problem unique to the HS-LC

model, as it can occur with many other material models and can also be resolved

by modifying the geometry at the singularity (Huebner et al., 2001).

Concluding remarks

In this chapter, the performance of the HS-LC model was evaluated by comparing

results from the previous versions of the HS model (Schanz et al., 1999; Benz, 2007),

and from published experimental results. These comparisons consisted of both lab-
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oratory based tests, and more complex problems; namely, footings on soil. For each

case, the HS-LC model produced results which were in good agreement with the

published results.

Alongside these results, a study on the influence of step size was also performed.

For simulations of triaxial tests, it was found that the step size did not influence

the results. However, for oedometer simulations, some step size dependency was

observed. A method to resolve this issue was described Section 3.9 and is tested in

this chapter. Use of this method significantly reduced the influence of the step size.

A mesh convergence study was also performed on the simulation of a circular

footing. Here, three meshes were studied and it was found that each of them pro-

duced very similar results.

The performance of the HS-LC model was also evaluated by investigating the

required number of iterations for each load increment to converge. For the basic lab-

oratory simulations, the convergence rate was very good, with increments typically

converging in 3 or fewer iterations. The more complex, boundary value problems

also typically converged in less than 3 iterations per increment, however, some peaks

in required iterations were observed, particularly during changes to load conditions;

e.g. when the load on a footing initiates.
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Chapter 5

A literature review on

fibre-reinforced soils

The requirements for engineering soils are becoming increasingly demanding; with

larger structures being built and less choice in where to put them, engineers cannot

always be selective with site choice and soils often need to be improved. Such im-

provements can be achieved by methods such as vibro-compaction and drop weight

compaction to increase the soil friction angle, or by importing stronger soils. Use

of geosynthetics is another option to improve soil strength which can be applied in

conjunction with other methods. These include geogrids, geomats, gemembranes

for applications such as retaining walls (Yang et al., 2009; Yoo and Jung, 2004),

embankments (Alamshahi and Hataf, 2009) and footings (Latha and Somwanshi,

2009; Sireesh et al., 2009).

Adding short manufactured fibres to the soil is a relatively new soil strengthening

technique. The idea of this came from the well used concept of plant roots for slope

stability (Waldron, 1977). The network of roots embeds into the surface of the

soil, crossing potential shear failure surfaces and preventing the movement of soil

particles.

Manufactured short fibres come in many forms. Common materials include

polypropylene (Yetimoglu and Salbas, 2003; Cai et al., 2006; Tang et al., 2007; Di-
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ambra et al., 2010; Tang et al., 2010; Ibraim et al., 2012), polyethylene (Estabragh

et al., 2014), polyamide (Michalowski and Čermák, 2003), steel (Michalowski and

Zhao, 1996) and natural fibres such as coir (Sivakumar Babu et al., 2008; Maliakal

and Thiyyakkandi, 2013) and oil palm empty fruit bunch (Ahmad et al., 2009).

Different geometries are also available and all affect the strength of the composite

material. Variations in fibre characteristics include:

� length (typically 6 mm to 50 mm)

� diameter / thickness (typically 30 µm to 1 mm)

� crimped or straight

� textured or smooth.

5.1 Experimental studies

Experimental evidence using several types of fibre and different soils typically show

a significant improvement of shear strength in triaxial compression tests (Diambra

et al., 2010; Consoli et al., 1998; Maher and Gray, 1990; Li and Zornberg, 2013;

Michalowski and Čermák, 2003; Michalowski and Zhao, 1996; Sadek et al., 2010)

along with a decrease in dilatancy for dense sands (Diambra et al., 2010; Consoli

et al., 1998; Michalowski and Čermák, 2003; Michalowski and Zhao, 1996; Sadek

et al., 2010). The strength of the composite is also heavily dependent on the dis-

tribution of fibre orientations (Michalowski and Čermák, 2002) such that the fibres

aligned with the direction of the largest extension have the largest effect on the

strength. Ibraim et al. (2012) also compared different sample preparation methods,

producing distribution functions of fibre orientation for the moist-tamping technique

and several variations with different fibre types.

Diambra et al. (2013) conducted a series of triaxial tests on three fibre types and

at different concentrations. 35 mm length, 0.1 mm diameter, crimped fibres; 20 mm

length, 0.03 mm diameter, monofilament fibres; and 40 mm length, 0.12 × 1.45 mm

112



CHAPTER 5. A LITERATURE REVIEW ON FIBRE-REINFORCED SOILS

rectangular, platy fibres were included in the testing program. Each fibre was made

from polypropylene, however the Young moduli for each fibre was found to differ,

with Ef = 900, 2600, 4000 MN/m2 for the crimped, monofilament and platy fibres

respectively. Increasing the fibre content was found to increase the soil strength and

increase dilatancy in triaxial compression (the soil was defined as a loose sand). In

triaxial extension, the shear strength was largely unaffected by the presence of fibres,

however the dilatancy was again increased. This increase in dilatancy is attributed

to the increased occupation of voids in the composite.

For the same given fibre content and at the same confining stress, Diambra et al.

(2013) found that the larger, rectangular fibres gave the least strength increase; the

20 mm monofilament fibres gave the largest strength increase, however the compos-

ite was observed to reach a distinct peak shear stress; the 35 mm crimped fibres

contributed slightly less to the strength. However no peak shear stress was observed

in the measured strain range of 30%.

Use of organic fibres may be limited for many engineering applications. One of

the biggest concerns with their use is their degradation, particularly as they tend

to be hydrophilic. Rahman et al. (2007) investigated the effects of coating oil palm

empty fruit bunch (OPEFB) fibres with allyl methacrylate and methanol (after de-

waxing). Accelerated weathering tests subjected the wetted soil-fibre composites

to repeated cycles of light and temperature. It was found that the untreated fibres

degraded at a faster rate than the polymer coated fibres. For 100 hours of accelerated

weathering, the untreated fibre lost 3% of its weight, 21% of its tensile strength and

24% of its length; whereas the polymer treated fibre lost 2% of its weight, 8% of

its tensile strength and 10% of its length. Urea coating was also tested with similar

improvements to degradation properties.

Triaxial testing of OPEFB fibres (both treated and untreated) was performed

by Ahmad et al. (2009) for a selection of fibre concentrations and lengths. Strength

improvements were observed with the OPEFB fibres and additional strength was

obtained from treatment of the fibres. The greatest strength improvement was seen
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from 30 mm length fibres at a concentration of 0.5%, where the friction angle was

increased by 25% and the cohesion was increased by 35%. Fibre concentration of

0.25% was also investigated and was also found to improve the soil strength, albeit

to a lesser extent. Three lengths of fibre were also tested; 15, 30, and 45 mm;

it was found that the 30 mm fibre provided the greatest strength improvement,

followed by the 45 mm fibre. A reduction in dilatancy was also observed with fibre

inclusion. Finally, it was found that the polymer coating on the fibres improved the

strength properties of the composite, this was attributed to a larger fibre diameter

and increased fibre tensile strength.

Maliakal and Thiyyakkandi (2013) investigated the influence of coir fibres (co-

conut husk) on clayey soil. The average diameter of these fibres was 0.24 mm,

and the average tensile strength was reported to be 10100 kN/m2. Similarly to the

aforementioned studies, use of fibres increased the shear strength of the soil. Dif-

ferent fibre concentrations of 0%, 0.5%, 1% and 2% (by mass) were studied and it

was found that within this range, increasing the fibre content increased the shear

strength of the soil by 200% for the fibre concentration of 0.5%, and 280% for the

concentration of 2%. Fibre lengths of 12, 24, and 36 mm were also studied at a

concentration of 1%, with the longest fibre length increasing the shear strength of

the soil by 220%, and the shortest by 200%.

A body of knowledge regarding the behaviour of fibre-reinforced soil is well es-

tablished in the literature. Due to the lack of case studies on field projects using

fibre-reinforced soils, it can be concluded that use of this technology is not yet widely

applied in routine design. Development of accurate models to predict the behaviour

of soil-fibre composites is one step which can contribute to the widespread use of

this technology. Several such models have been proposed, and are discussed in the

following section. These models range in complexity, and later models are typically

based on theory developed for prior models.
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5.2 Previously proposed soil-fibre models

In this section, five different soil-fibre models are explored, and their main features

are discussed. The first is proposed by Maher and Gray (1990), which is based

on earlier work by Gray and Ohashi (1983), and takes a simplified model based

on the behaviour of a single fibre, and then homogenises this model into a soil

model through a statistical approach. This model is then used to predict the failure

envelope of fibre-reinforced soils.

The second model discussed was proposed by Michalowski and Čermák (2003),

and is based on a previous model by Michalowski and Zhao (1996). This model uses

an energy approach to predict the failure envelope of fibre-reinforced soils. The next

model by Diambra et al. (2010) uses a combination of mechanical and empirical re-

lationships, along with the statistical integration approach used by Maher and Gray

(1990), to predict the stress-strain paths of soil-fibre composites in triaxial tests.

A number of modifications were then made to this model by Diambra and Ibraim

(2015), which replace some of the empirical relationships with micromechanical re-

lationships. Additionally, a more advanced soil model was used to analyse the soil

portion.

Another model, which only looks at the behaviour of a single fibre, was proposed

by Zhu et al. (2014). This model is based on the observed behaviour of a fibre

during a pullout test in clay, and uses a combination of mechanical relationships

and calibrated parameters. Each of the aforementioned models are now discussed

in the following section.

5.2.1 Statistical distribution model with shear strength in-

crease

The strength increase for a particular shear plane can be identified for each orienta-

tion by to the portion of fibres crossing the plane. Maher and Gray (1990) applied
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a probability function to the strength increase model varying both the fibre orien-

tation and the position of the shear plane along the fibre length. They base their

model on the micromechanical model of Gray and Ohashi (1983).

The assumptions used in the micromechanical model (Gray and Ohashi, 1983)

are as follows

� Fibres extend equal lengths over each side of the shear plane

� The fibres are elastic

� The fibres are oriented in a single direction

� The fibres are thin enough such that shear and bending stiffness is negligible

dx

Shear
zone

Deformed
root

Intact
root

θi

σf

σf

τ

τ

θψ

dz

Figure 5.1: Fibre-reinforcement model: fibres obliquely crossing a shear zone (re-
drawn from Gray and Ohashi, 1983)

In reference to Figure 5.1 the increase in shear strength is due to the pullout

resistance of the embedded fibre length. This shear strength increase is given by

∆SR = tf

[
sin
(
90− θψ

)
+ cos (90− θψ) tan (ϕ)

]
(5.1)

tan (θψ) =

[
1

k + (tan−1 θi)−1

]
(5.2)
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where θψ is the orientation of the fibre relative to the shear plane (for fibres per-

pendicular to the shear plane, tan (θψ) = dz/dx), ϕ is the internal angle of friction

of the unreinforced sand, k is the shear distortion ratio (k = dx/dz), θi is the initial

orientation of the fibre relative to the shear zone, dx is shear displacement, dz is the

thickness of the shear zone. The mobilised tensile strength per unit area of soil is

given by

tf =

(
Af
A

)
σf (5.3)

where σf is the tensile stress carried by the fibre, A and Af are the cross sectional

areas of the soil and fibres respectively; the ratio of these is synonymous to the

volume fraction.

30 60 90 120 150

−5

5

10

15

Initial fibre orientation θi (degrees)

S
h
ea

r
st

re
n
gt

h
in

cr
em

en
t

∆
S
R

(k
N

/m
2
)

Reed fibres
Stiff fibres

Figure 5.2: Influence of fibre orientation on shear strength in a reinforced shear box
test (redrawn from Gray and Ohashi, 1983), soil is a dune sand with friction angle
ϕ = 39◦, stiff fibre results from Jewell (1980)

Jewell (1980) showed experimentally and Gray and Ohashi (1983) with this

model that varying the initial fibre orientation changed the composite strength (Fig-

ure 5.2) with the optimum orientation being approximately 60◦ to the shear plane.

Maher and Gray (1990) made use of this feature to model randomly distributed short

fibres. The orientation of the fibres on a horizontal axis (Equation 5.4) and vertical
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inclination (Equation 5.5) is varied according to the probability density functions:

Pθ(θi) =
1

2π
dθi (5.4)

Pi(i) =
1

π
di (5.5)

This corresponds to a fully random orientation distribution within a spherical co-

ordinate system. The position of the failure plane along the fibre length is described

statistically by

Px(x) =
2

L
dx (5.6)

which represents a uniform distribution of fibre positions relative to the shear plane.

Comparison with experimental results (Figure 5.3) shows reasonably good pre-

dictions of failure envelopes in principal stress space for different soil and fibre types.

The principal stress envelopes are either linear, bi-linear or curved; this is also cap-

tured in the predictions.

The critical confining stress where the failure envelope changes shape is indicative

of the fibre contribution. For most of the tests, the fibre content was kept constant

at wf = 3%. The range of confining stresses studied was also constant between

50 kN/m2 and 400 kN/m2. The change in gradient of the failure envelope indicates

that the fibres contribute less to the strength of the composite. The gradient of this

section is equal to the gradient of the failure envelope for an unreinforced soil.

The nature of the failure envelope was found to be dependent on many factors,

including fibre modulus, fibre aspect ratio, soil particle size and particle shape.

It was also found that the increase in fibre content is approximately proportional

to the shear strength increase. However an asymptotic upper limit of fibre content

does exist where no increase in strength is observed (Maher and Gray, 1990).
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Figure 5.3: Experimental and predicted failure envelopes in principal stress space
for soils reinforced with different fibres (redrawn from Maher and Gray, 1990)
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5.2.2 Energy-based homogenisation method

A failure criterion describing the ultimate state of fibre-reinforced soils was developed

by Michalowski and Čermák (2003) for axisymmetric conditions. The model is based

on earlier work by Michalowski and Zhao (1996) which defines a failure criterion for

fibre-reinforced soil in plane strain conditions. The formulation begins with the

equation governing the dissipation rate of a single fibre with the strain rate ε̇θ

oriented in the direction of the fibre, which is presented as:

ḋ =
1

2
πrf l

2
f〈ε̇θ〉σ̄r tanϕi (5.7)

and is given for fibres in the elastic region where rf is the fibre radius, lf is the

length of the fibres, ϕi is the frictional angle for the fibre-soil interface, and σ̄r is the

average radial stress acting on the fibre. For fibres which are yielding, the following

relationship is used:

ḋ = πr2
f lfσ0

(
1− 1

4η

fy
σ̄n tanϕi

)
〈ε̇θ〉 (5.8)

Note the Macauley brackets around the strain term denoting fibre contributions for

tensile strains only. η is the fibre aspect ratio lf/rf , and fy is the fibre yield stress.

This expression is then integrated over a unit sphere to obtain the energy dis-

sipation rate per unit volume. For an isotropic distribution of orientations, the

dissipation rate in the composite when the fibres are not yielding is given by

Ḋr =
1

3
wfηMσ̄n tanϕi ˙̄ε3 (5.9)

and when the fibres are yielding

Ḋr =
wffy

3
M

(
1− 1

4η

fy
σ̄n tanϕi

)
˙̄ε3 (5.10)

where M is a material constant related to the friction angle of the granular matrix.
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Figure 5.4: Failure criterion for fibre-reinforced soils (redrawn from Michalowski and
Čermák, 2003), wf = 2%, η = 150, ϕ = 38◦, ϕi = 15◦, fy = 100 MN/m2

The yield surface for this composite model shows two distinct surfaces (Figure

5.4). In three-dimensional stress space, the yield surface may be visualised as a cone;

axisymmetric about the line σ1 = σ2 = σ3. The yield surface for the unreinforced

sand is linear, and the introduction of the fibres increases the angle of the cone.

When the fibres begin to yield, the cone becomes non-linear. The transition into

non-linearity is described as the critical confining stress σcrit1 .

Predictions of the model capture the failure envelope for reinforced sands and

is consistent with experimental data. Figure 5.5a with a 0.5% fibre content shows

a small increase in the size of the failure envelope for higher confining stresses. At

low confining stress (−σ1 ≈ 100 kN/m2) neither the experimental nor the prediction

show any increase in maximum −σ3 from the unreinforced sand.

At 1.5% fibre content (Figure 5.5) the failure envelope is expanded further, al-

lowing a higher σ3 before failure. At low confining stress there is now some strength

increase; this is captured in the predictions.

Overall, it is evident that this model is able to predict the failure of fibre-

reinforced sand with good accuracy. Figure 5.5, along with additional figures in

the paper by Michalowski and Čermák (2003), show that the failure criterion pro-

posed is a good match for the experimentally derived failure surface. The predictions
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Figure 5.5: Experimental and predicted failure criteria for unreinforced and rein-
forced coarse sand with different concentrations of polyamide fibres (redrawn from
Michalowski and Čermák, 2003)

with this model appear to be closer to the experimental data than shown with the

model proposed by Maher and Gray (1990), however, fewer variations are tested,

therefore it is not appropriate to directly compare the accuracy of both models.

5.2.3 Fibre contribution matrix with empirical debonding

A model based on the rule of mixtures was presented by Diambra et al. (2010), and

calculates the strength contribution of the matrix (soil) and fibre separately, these

contributions are summed according to their respective volume fractions as

σ = σmvm + σfvf (5.11)

With the rule of mixtures, the fibres are assumed to be distributed uniformly

throughout the matrix. The fibres and matrix are governed by their own constitutive

law, making this model ideal to apply to a variety of soil plasticity models (e.g.

Mohr-Coulomb).
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The stress state for a composite is considered as the sum of the contributions by

the fibre and the matrix. σm and σf are the stresses carried by the matrix and fibre

respectively, vm and vf are the volume fractions of the matrix and fibre respectively

such that vm + vf = 1. Voigt’s hypothesis holds for this model whereby the strains

in the fibre and matrix are assumed to be identical.

ε = εm = εf (5.12)

A non-uniform distribution function is used to describe the variation of orienta-

tions with a particular sample preparation method.

ρ(ϑ) =
2ab| cos (θ)|

cos2 (ϑ) (b2 − a2) + a2
(5.13)

where a and b are curve fitting parameters to match the given orientation distribu-

tion.

A probability function is inserted into the spherical integral. In the axial and

radial coordinate system, the fibre stiffness matrix is

vf


dσf,3

dσf,1

 =

Effb


∫ ϑ2
ϑ1
ρ(ϑ) cos (ϑ) sin4 (ϑ) dϑ

∫ ϑ2
ϑ1
ρ(ϑ) cos3 (ϑ) sin2 (ϑ)dϑ

1
2

∫ ϑ2
ϑ1
ρ(ϑ) cos3 (ϑ) sin2 (ϑ) dϑ 1

2

∫ ϑ2
ϑ1
ρ(ϑ) cos5 (ϑ) dϑ




dε3

dε1


(5.14)

The integral limits in (5.14) represent the range where the fibres are active,

i.e. in tension, for triaxial states. In triaxial compression, the active fibres are

predominantly closer to the horizontal plane, therefore ϑ1 = 0 and ϑ2 = ϑc. In
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triaxial extension, ϑ1 = ϑc and ϑ2 = π/2, where

ϑc = arctan

(√
−dε1

dε3

)
(5.15)

This model does not take into account the position of the fibre relative to a shear

plane, instead this effect becomes part of a fibre debonding function defined as

fb = Ke

(
1− exp

{
−cs

p′

pref

})
(5.16)

where Ke is an fibre-particle bonding efficiency coefficient and cs is a stress depen-

dency coefficient. The fibre slip is related to the mean effective stress p′, and is

normalised by a reference stress pref .

This function takes permanent fibre debonding into account with fb = 1 for full

length bonding and fb = 0 for complete debonding of fibres. For the latter case, the

fibres do not contribute to the composite strength.

Used alongside the Mohr-Coulomb soil model, Diambra et al. (2010) reported

that this fibre model produces comparable results to triaxial compression tests (Fig-

ure 5.6) with predictions within around 5% of experimental results. Unreinforced

specimens exhibit a limiting shear stress, with even low amounts of reinforcement

(0.3%) the composite appears to undergo linear hardening indefinitely.

Experimental data show that an increase in fibre content increases the dilatancy

during shearing. This trend is replicated in the model. However, the actual values of

volumetric strain are not captured accurately with differences of up to 50% between

experiments and predictions. This inaccuracy may be due to the chosen matrix

material model. Diambra et al. (2013) applied the same fibre model to a more

advanced soil model, known as the Severn-Trent model (Gajo and Muir Wood,

1999), shown in Figure 5.7. Here the non-linearity in the q − εq and εp − εq plots

are captured by the model. Unreinforced simulations of the volumetric effects are

within 10% of the experimental results and the reinforced sample simulations are

124



CHAPTER 5. A LITERATURE REVIEW ON FIBRE-REINFORCED SOILS

0 0.1 0.2 0.3 0.4
0

500

1,000

1,500

q
(k
N
/m

2
)

σ1 = −30 kN/m2

0 0.1 0.2 0.3 0.4
0

500

1,000

1,500

σ1 = −60 kN/m2

0 0.1 0.2 0.3 0.4
−0.04

−0.02

0

0.02

−ε3

ε v

0 0.1 0.2 0.3 0.4
−0.04

−0.02

0

0.02

−ε3

Experiment
Model prediction
wf = 0.0%
wf = 0.3%
wf = 0.6%
wf = 0.9%

Figure 5.6: Experimental and predicted triaxial test results on loose sand-fibre com-
posite at different fibre contents and confining stresses; the Mohr-Coulomb soil model
is used here (redrawn from Diambra et al., 2010)
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results on loose sand-fibre composite at different fibre contents and confining stresses,
the Severn Trent soil model is used here (redrawn from Diambra et al., 2013)
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within 20% for the fibre contents of 0.6% and 0.3% and less accurate for 0.9% fibre

content.

These improvements in the predictions from Diambra et al. (2010) to Diambra

et al. (2013) suggest that the accuracy of the soil-fibre composite models is heavily

dependent on the chosen soil constitutive model. Therefore, advanced soil models

should be used to predict unreinforced soil behaviour before attempting to introduce

an overlaying fibre model.

5.2.4 Fibre pullout model in clay

A micromechanical model for the slip of a single fibre in a clay matrix was proposed

by Zhu et al. (2014). The driving component of this model is the pullout force,

where a single fibre is pulled through a fixed volume of soil. Zhu et al. (2014)

make several observations regarding the different pullout stages. During the first

stage, elastic slip occurs where the mobilised shear stress increases linearly with slip

displacement and is fully recoverable until a critical interface shear stress is reached

τmax. A softening phase then occurs in clays where the interface shear stress reduces

linearly with displacement, this effect first occurs at the fibre ends where the most

slip occurs. The interface shear stress continues to soften until a residual stress is

reached τres. At this stage; strength contribution of the fibres can no longer increase.

τmax

τres

S1 S2

1
G

G

1

S

τ

Figure 5.8: Proposed fibre slip model: interface shear stress against slip displacement
(redrawn from Zhu et al., 2014)

A simple force equilibrium of a infinitesimal fibre slice is taken
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dF (x) = −2πrfτ(x)dx (5.17)

Substituting a mechanical relationship between F (x) and τ(x), and differentiat-

ing, leads to the second order differential equation

d2F

dx2
− β2F = 0 (5.18)

where

β =

√
2G

rfEf
(5.19)

and G is the shear modulus of the matrix.

Applying the boundary conditions F (lf ) = 0 and F (0) = F0 where F0 is the

pullout force, the solution for the elastic stage becomes

Fe(x) = F0
sinh (β(lf − x))

sinh (αlf )
(5.20)

The subsequent stages are formulated similarly, with varying boundary con-

ditions. Simulations using this pullout model (Figure 5.9) produce results which

closely match the experimental pullout data. Tang et al. (2010) performed a series

of pullout tests on different water contents and dry densities, and this model was

able to accurately reproduce results for dry densities of 1.4, 1.5, 1.6, 1.7 g/cm3 and

water contents of 14.5, 16.5, 18.5, 20.5%, however, some non-linearity in the elastic

stage is missed in most predictions.

Although this model produces accurate results, it is unclear if it is directly ap-

plicable to granular soils. However, as the formulation is based on the pullout force

rather than the matrix displacement, it may not be possible to implement in a

homogenised model in its current form.
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Figure 5.9: Simulated and experimental fibre pullout results (redrawn from Zhu
et al., 2014)

5.2.5 Shear lag soil model

Following from previous work (Diambra et al., 2010, 2013), Diambra and Ibraim

(2015) presented a further development of their soil-fibre model, which takes into

account the non-uniform stress within a fibre during loading (Diambra and Ibraim,

2015). The shear lag model, first proposed by Cox (1952), is based on the transfer

of strain from the matrix to the fibre, through a shear layer acting at the interface

(Figure 5.10). At some distance R the shear stress in the soil is assumed to equal

zero and the deformation contours remain straight.

To model a single fibre, a composite cylinder of radius Rc and length lf containing

matrix material and a single fibre in the centre is considered (Figure 5.11). The size

of this influence cylinder is governed by the volume fraction of the fibres (assuming

fully homogeneous, random fibre positions).

Rc = rf

√
1

vf
(5.21)

where rf is the fibre radius and vf is the volume fraction of fibres to soil. The radius

of the shear stress carrying cylinder is given by the average of the fibre radius and

the composite cylinder radius.
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Figure 5.10: Shear lag concept, showing strain contours of (a) un-deformed state and
(b) deformed state (Hull and Clyne, 1996) as cited in Diambra and Ibraim (2015)
(redrawn)

R =
Rc + rf

2
(5.22)

Based on the approach by Aveston and Kelly (1973) the effects on the cylinder

are governed by two behaviours. Firstly, an axial stress is applied to the outside

surface of the cylinder σm. The volume of the cylinder then carries pure shear, with

the maximum shear stress at the fibre-matrix interface τi.

To determine the stress in the fibre, a force equilibrium is taken on an infinites-

imal length of fibre in a strained state.

δσf = −2
τi
rf
dx (5.23)

Similarly to the model by Zhu et al. (2014), substituting a micro-mechanical

relationship between the interface shear stress τ and the axial fibre stress σf , and

differentiating, leads to

δ2σf
δx2

=
n2

r2
f

(
σf − Efε

)
(5.24)
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Figure 5.11: Geometry and stress transfer in idealised soil-fibre composite (redrawn
from Diambra and Ibraim, 2015)

where n is a parameter related to the interface shear strength and fibre geometry,

Ef is the axial Young modulus of the fibre, ε is the applied far field composite strain,

i.e. the strain at a distance R from the fibre axis. Imposing the boundary conditions

of zero end forces, the solution to (5.24) is

σf (x) = Efε

1−
cosh

(
nx
rf

)
cosh

(
nl∗f
2rf

)
 (5.25)

where x is the position along the fibre
(
−lf/2 ≤ x ≤ lf/2

)
and l∗f is the effective

fibre length which is a reduction of the true fibre length. Discrete element modelling

by Maeda and Ibraim (2008) indicated the full length of the fibre may not be fully

mobilised, therefore the approach used here is to reduce the fibre length according

to the grain size and fibre diameter.

To model debonding, a fibre debonding function is used. This is similar to the

approach taken by Diambra et al. (2010), however the level of debonding is now

governed by the effective aspect ratio; which is a given parameter.

fb =
s∗

s
− tanh (ns∗)

ns
(5.26)

where s is the true aspect ratio of the fibre lf/2rf and s∗ is the effective aspect
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Figure 5.12: Experimental and predicted triaxial compression test results for differ-
ent fibre lengths (Diambra and Ibraim, 2015)

ratio l∗f/rf . This debonding function is more advanced than that used previously

(5.16), taking into account particle size, fibre aspect ratio, fibre and soil stiffness,

fibre content and confining stress. From here, the implementation of this model is

similar to that of Diambra et al. (2010), discussed in Section 5.2.3.

Predictions for this model follow the experimental results closely (Figure 5.12).

The underlying soil model chosen here was the Severn Trent model. Increasing fibre

length increases composite shear strength (for the same fibre content). Deviatoric

q-εq paths predict the initial stiffness well, however composite stiffness after matrix

yielding is somewhat under-predicted. Volumetric strain predictions give reasonable

results, producing more dilatancy with added reinforcement. Experimental results

suggest no particular correlation between fibre length and dilatancy, however the

model exhibits decreasing dilatancy with increasing fibre length.
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Table 5.1: Comparison of key features in several soil-
fibre composite models
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Confining stress dependency 4 4 4 4

Fibre content 4 4 4 4

Fibre aspect ratio 4 4 4 4

Dilatancy effects 4 4 4

Debonding 4 4 4

Post peak slip softening 4

Variation of orientation 4 4 4 4

Variation of position 4

Fibre distribution function 4 4 4

Fibre yielding 4 4

5.2.6 Summary of soil-fibre models

The soil-fibre composite models available in the literature each make their own set

of assumptions to model a limited number of features. These features are listed in

Table 5.1. Key features include dependency on confining stress, fibre content, aspect

ratio and orientation; these are included in most models. Advanced features include

fibre-soil debonding, consideration for dilatancy and contraction, and fibre yielding;

however the latter is not required as fibre yielding occurs beyond the strain/stress

levels seen in practice (Michalowski and Čermák, 2003). Post peak softening is a

feature necessary for fibres in a clay matrix; a drop in shear strength is observed

after a peak, until a residual shear strength is reached (Zhu et al., 2014).
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A convenient feature present in several models is the option to choose differ-

ent orientation distribution functions. Some models initially assume an isotropic

distribution and incorporate this into the formulation. Other models allow the dis-

tribution function to be changed. This is useful for analysing various preparation

methods. The moist tamping technique (involving the layering of soil and fibres,

then compacting each layer) leads to the fibres preferentially oriented near the hori-

zontal plane (Ibraim et al., 2012). Whereas other preparation methods may lead to

different distributions.

The current state of soil-fibre modelling is limited to single point representations

of the behaviour of an assumed representative volume element (RVE). Ideally, a

constitutive model should be applicable with generic analysis techniques such as the

finite element method. The models by Michalowski and Čermák (2003), Diambra

et al. (2010), and Diambra and Ibraim (2015) appear to be formulated in such a

way that they could readily be coded into a full finite element analysis algorithm.

The models by Maher and Gray (1990) and Zhu et al. (2014) would require further

work to ensure that the model can be driven by stresses and strains in the soil.

Additionally, the prediction of soil-fibre composite failure has so far proved to be

successful (Maher and Gray, 1990; Michalowski and Čermák, 2003), with models able

to replicate the failure envelope of soil-fibre composites with reasonable accuracy.

The shear stress-strain paths predicted by the models of Diambra et al. (2010) and

Diambra and Ibraim (2015) were shown to also be reasonably accurate. However,

the prediction of volumetric strains could be improved.

In the current study, based on previous work outlined in this chapter, a new

model will be formulated to exploit the strengths of these existing models, whilst

attempting to address their shortcomings. The model formulation, which makes use

of experimental data detailed in Chapter 6, is described in Chapter 7. Using the

rule of mixtures, this composite model is composed of the HS-LC model described

in Chapter 3, and the proposed fibre model described in Chapter 7.
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Chapter 6

Experimental program

In order to develop a new model to describe the behaviour of fibre-reinforced soils,

it is important to have a detailed understanding of the effects of fibre inclusion for

a variety of fibre types and soil conditions. Therefore a series of experimental tests

were performed on unreinforced sand and fibre-reinforced sand. The first objective

was to identify the characteristics of the sand alone, the second was to investigate

the influence of fibres. The purpose of the unreinforced tests is to isolate the soil

contribution to the composite strength. The laboratory testing was performed as

part of two MSc projects, which the author co-supervised (Chatzopoulos, 2015;

Wang, 2015). A summary of the test sets performed is listed below; these tests are

a combination of standard laboratory soil tests and purpose-built tests.

� Fibre pullout tests for different confining stresses (100 kN/m2, 200 kN/m2,

300 kN/m2, 400 kN/m2, 500 kN/m2)

� Drained triaxial tests with different fibre contents (0.0, 0.3, 0.6, 0.9% by dry

mass) at 300 kN/m2 confining stress

� Drained triaxial tests with different confining stresses (100 kN/m2, 300 kN/m2,

500 kN/m2) for unreinforced sand and 0.3% reinforcement by dry weight

� Drained triaxial tests using three different fibre types at different confining

stresses (200 kN/m2, 400 kN/m2, 600 kN/m2)
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Table 6.1: Soil classification of the sand used in testing

min. void ratio emin 0.55

max. void ratio emax 0.83

avg. particle size d50 0.532 mm

coefficient of uniformity Cu 2.16

particle density ρs 2.814 g/cm3

� Drained triaxial tests with samples prepared using three different methods

� Dissection of reinforced samples prepared using the same three methods

In Section 6.1 the materials used in testing are described, Section 6.2 details

of the apparatus used for the tests listed above. The triaxial tests are described

together however the sample preparation methods are described separately. The

results from each set of tests are then compared and discussed in Section 6.3. It is

the aim of this chapter to form the basis of a new model, which is proposed in the

following chapter.

6.1 Material properties

6.1.1 Leighton Buzzard sand

A single sand type was used throughout the testing program; this is Leighton Buz-

zard sand and is compacted to different bulk densities for different tests. Further

properties of the sand used in each test are described in the relevant sections. Using

a proctor compaction test, sieve analysis, and a particle, density test the properties

in Table 6.1 were determined (Chatzopoulos, 2015). In addition, the particle size

distribution is shown in Figure 6.1.

The optimum water content was determined using the standard proctor test and

was found to be 18%. A different void ratio was chosen for each test type, and each

is detailed under the relevant sections.

136



CHAPTER 6. EXPERIMENTAL PROGRAM

10−2 10−1 100 101

0

20

40

60

80

100

Particle size (mm)

P
er
ce
n
ta
ge

p
as
si
n
g
b
y
w
ei
gh

t

Figure 6.1: Particle size distribution of the sand used in testing

A sieve analysis of the soil determined the particle size distribution (Figure 6.1).

The coefficient of uniformity of the soil was found to be Cu = 2.16 and the average

particle size was found to be d50 = 0.535 mm. Less than 35% of the soil particles

are smaller than 0.06 mm which puts the soil into the category of a ‘slightly clayey

sand’ under the British Soil Classification System (Dumbleton, 1981).

6.1.2 Fibres

A selection of different fibres were tested in the experimental program. All fibres

tested are made from polypropylene. Figure 6.2 shows a 2:1 scale sketch of each fibre

and Table 6.2 details their geometric properties. The Conplus fibres (F2,F3,F4)

are straight and cylindrical, they are monofilament, however, due to their small

diameter, are prone to clumping. Hence, they normally require thorough mixing

when adding to a soil for reinforcement. The diameter of the Conplus fibres is 18

µm and comes in three separate lengths of 6, 12, and 18 mm.

The Loksand fibres (F1) also have a cylindrical cross section, however they have

been crimped along the fibre length, resulting in bending and kinking. The diameter

of the Loksand fibres is 88 µm and the length is 35 mm.

The full length of the Durus S400 fibre (F5) is 45 mm and its diameter is 1 mm.

The surface of the fibre is embossed on one side and has a rough texture, and has an
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Table 6.2: Geometric properties of fibres used in testing

ID Name Type Radius (mm) length (mm)

F1 Loksand crimped 0.044 35

F2 Conplus6 monofilament 0.009 6

F3 Conplus12 monofilament 0.009 12

F4 Conplus18 monofilament 0.009 18

F5 Durus S400 embossed 0.5 22.5 (45)

oval cross section. For triaxial tests using this fibre, the fibres were cut in half; this

was because the largest available triaxial cell was 70 mm in diameter. It was thought

that decreasing the fibre length would achieve a more homogeneous composite and

would be easier to mix in the triaxial mould. The full fibre length was used in the

fibre pullout tests, however only a limited portion of the fibre was exposed to the

soil.

Loksand

Durus S400 (halved)

Conplus6

Conplus12

Conplus18
10 mm

Figure 6.2: Fibres used in the experimental study

Although material testing of the polypropylene fibres was not performed in this

study, similar studies using similar fibres (Ibraim et al., 2012; Diambra et al., 2010)

report the material properties for polypropylene fibres shown in Table 6.3. The
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Table 6.3: Properties of polypropylene

Young’s modulus Ef 900 N/mm2

Tensile strength σmaxf 200 N/mm2

Density ρf 910 kg/m3

reported fibre modulus is that of the initial stiffness in a tensile test. The density

of polypropylene is taken from the data sheets provided with the fibres.

6.2 Testing setup and procedures

6.2.1 Triaxial tests

A series of consolidated drained triaxial tests (with volume change measurement)

were performed in accordance with clause 7 of BS 1377-8:1990. The diameter of the

soil samples is 70 mm and the height is 140 mm. The void ratio for each specimen

before consolidation is 0.75 for the first documented tests using 35 mm Loksand

fibres.

The rate of loading during the shearing stage was 2 mm per minute with a

maximum displacement of 30 mm, which corresponds to 20% vertical strain in the

specimen. Each test was repeated once or twice, depending on how similar the first

two results were.

Several methods for preparing the triaxial samples were used and are listed below.

It is known that the preparation method significantly affects the strength of the

composite (Ibraim et al., 2012; Michalowski, 1997), therefore the distribution method

for each preparation must be characterised.

Layered stirring

The soil and fibres were split into six separate volumes and stirred separately. Each

part was tipped into the mould, stirred again within the mould and tamped to
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achieve the desired void ratio. This process was repeated for the remaining five

layers.

Stirring

In this method, the entire sample was stirred with the fibres then tipped into the

triaxial mould. Stirring was continued as the sample was tipped. The soil was then

tamped to achieve the target void ratio.

Tumbling

The sand, water and fibres were placed into a sealed container and shaken vigorously.

The mixture was then tipped into the mould and tamped from the top. This method

and the stirring method are somewhat cruder than the layering methods, and a less

uniform composite is produced. However, it would more likely reflect how a soil-fibre

composite would be produced on a large scale in the field.

6.2.2 Fibre pullout tests

In order to test the frictional properties of a single fibre, a pullout testing appa-

ratus (Figure 6.3) was devised (Chatzopoulos, 2015); taking inspiration from the

arrangement used by Li and Zornberg (2013). The sand was compacted, to a void

ratio of e = 0.59, in a 60 x 60 x 60 mm acrylic box which had an open top and

two holes in opposite sides with stainless steel tubes glued into the holes. The size

of this tube was large enough that the fibre could slide freely through, and small

enough that sand particles would be unlikely to enter the gap between the fibre and

tube. The gap between the tubes on the inside of the box was 20 mm, this is to

ensure the exposed fibre surface remains constant throughout the test. A loading

cap covered the entire top surface of the sand and was attached to a loading frame

which applied the confining stress to the sand. A hand crank applied the pullout

force which was measured by a load cell, and pullout displacement was measured
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using linear variable differential transformers (LVDTs).

The strength of the knot was also tested by comparing the force-displacement

curves for the knotted fibre-cable against cable only, no distinct ‘jump’ in the force

displacement curves for the knotted test was observed (in the stress range beyond

expected in the pullout tests), it was therefore concluded that the knot strength was

sufficient (Chatzopoulos, 2015).

Dry sand
20mm gap

Glue

Steel tubes

Fibre

LVDT1

LVDT2

Load cell 1

Load cell 2

Applied confining load

Hand crank
Rigid rod

Acrylic box

60mm

Knot
Knot

Loading cap

Steel cable

Steel cable

Acrylic box

Load cell 2LVDT2

LVDT1

Hand crank

Rigid plate
(fixed to rod)

Figure 6.3: Schematic of fibre pullout test (Chatzopoulos, 2015)

The purpose of this test was to determine the friction characteristics of the

fibre-soil interface. It was anticipated that only a negligible amount of fibre-cable

extension would occur, and the fibre would travel through the soil as a rigid body. To

confirm this assumption, a second LVDT recorded the tail displacement, if LVDT1

and LVDT2 recorded the same displacements, then it could be confirmed that this

assumption is true.

The fibre-cable arrangement was threaded through the steel tubes and posi-
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tioned such that the leading end of the fibre was just inside the leading plastic tube

(rightmost tube in Figure 6.3).

The sand used in the pullout test was dry and packed in three equal layers while

the fibre was in position. The fibre was held taught as to avoid sagging during sand

packing. A target void ratio of e = 0.59 was chosen for this set of tests, which was

achieved using vibro-compaction.

A loading cap (from standard shear box apparatus) of the same plan dimensions

as the box was then placed onto the top of the sand. The load cap was fitted with a

2000 Newton analogue force gauge and connected to a loading frame which applied

the vertical load. A 100 Newton digital force gauge (load cell 1) was attached to the

fibre and the rigid rod to measure the pullout force. The rigid plate was required for

the measurement of the frontal fibre displacement, one end of LVDT1 was attached

to the crank support and the tip was resting against the rigid plate.

The gauges were synchronised with the recording computer and set to zero. The

fibre was then loaded by rotating the hand crank. As the loading is effectively

manual, a stopwatch was used to ensure the fibre was pulled at an approximate rate

of 2 mm per minute.

6.2.3 Sample dissection

A series of tests to characterise the fibre distributions for each of the preparation

methods used in triaxial testing was undertaken (Wang, 2015). The fibres used in

this part of the study were the Durus S400 fibres (F5); the largest fibres were chosen

for ease of observation.

First, the samples were prepared in accordance with the three methods described

in Section 6.2.1, the samples were prepared in a latex tube within a cylindrical steel

mould. Each sample was then fully saturated, frozen, then removed from the steel

mould and placed back into the freezer. In order to allow enough time to examine

the samples, each composite cylinder was quartered using a wet-cut chop saw. The
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first cut was made half way along the height of the cylinder, producing two smaller

cylinders, the second and third cuts were made along the length of each smaller

cylinder to produce four semi-circular prisms. Each quarter sample was then placed

back into the freezer such that each could be examined from its frozen state. It

was observed during cutting that the fibres were cleanly cut by the saw, with no

credence that fibres had been disturbed.

Each quarter sample was then placed upright into a tray and the sand was

carefully scraped away from the top to reveal partially embedded fibres. The angle

from the vertical axis of each protruding fibre was measured with a protractor and

classified in 15◦ intervals. This fibre was then removed by gently pulling it axially

and then discarded. This process was repeated until all the fibres from the quarter

sample were exhumed and classified, half fibres from the cutting process were also

taken into account. The remaining quarters of the sample were then examined in

the same manner.

6.3 Experimental results

6.3.1 Triaxial tests

In this first series of triaxial tests (Chatzopoulos, 2015), both the shear and volu-

metric responses were recorded. The samples in Figures 6.4 to 6.7 were prepared

using the layered stirring method as described in Section 6.2.1. In the volumetric

strain plots, positive strains are dilative and negative strains are compressive. The

axial compressive strains are negative by the current sign convention, however they

are plotted on negative axes to allow comparison with other geotechnical works.

Firstly, the unreinforced sand exhibits typical triaxial behaviour. In Figure 6.4a,

each curve has an initial steep region, then curves as the shear stress increases. A

distinct limit in the shear stress is observed for each test, and increasing the confining

stress on the sand increases the soil shear capacity. The repeatability of the shear
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Figure 6.4: Drained triaxial test results for unreinforced sand at different effective
confining stresses

response is very good.

In Figure 6.4b the deviatoric load first compresses the soil, however, at a certain

point, the soil begins to dilate. The chosen void ratio has created a densely arranged

packing structure of the sand grains. This causes the soil to dilate as the particles

attempt to ‘climb over’ one another. Counter-intuitively, the sample with the highest

degree of dilatancy is the one confined to 300 kN/m2, and the lowest is the sample

confined to 500 kN/m2. It is suspected that the compaction of the samples in the

consolidation phase of the triaxial test generates different void ratios at the start of

the deviatoric loading phase, and that the relationship between the confining stress

and the void ratio is non-linear. The repeatability of the volumetric results is, in

general, reasonably good. However there is a great difference in the 300 kN/m2

results, therefore the volumetric results should be treated with some scepticism.

Next, a similar set of triaxial tests were performed, but using sand reinforced

with 0.3% (by mass) Loksand fibres (Figure 6.5). With regard to the shear plot

(Figure 6.6a), the first observation to make is the increase in shear strength. The

unreinforced sand reaches a distinct limit in shear stress, however the addition of

fibres allows the shear stress to increase indefinitely (within the strain range investi-

gated). Instead of the soil failing and tending towards a zero gradient, the composite

reaches a constant, non-zero gradient. Again, the response in shear stress shows a

good repeatability.
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Figure 6.5: Drained triaxial test results of Loksand fibres (F1) at content wf = 0.3%
at different effective confining stresses

The volumetric response for the reinforced samples (Figure 6.6b) has changed

significantly due to the addition of fibres. The composite now does not exhibit dila-

tancy, and is more characteristic of a loose sand. The degree of dilatancy reduction

is still affected by the confining stress, and the 300 kN/m2 is still the most dila-

tant. The repeatability of these volumetric results is better than the unreinforced

specimens.

A comparison of the triaxial response of different fibre contents using Loksand

fibres can be seen in Figure 6.6. The shear response (Figure 6.6a) intuitively shows

that increasing the fibre content also increases the composite strength. However,

the initial stiffness appears to have decreased; for example a deviatoric strain of

εy = −0.02 gives a shear stress of q = 800 kN/m2 for the unreinforced specimen,

and a shear stress of q = 400 kN/m2 for the 0.9% reinforced specimen.

The volumetric strains (Figure 6.6b) also reduce with increasing fibre content.

The presence of fibres appears to inhibit soil dilation, and the reduction in volumetric

strain at the end of the test is close to linearly proportional to the fibre content. On a

global scale, dilatancy occurs when the horizontal strains exceed the vertical applied

strain in a triaxial test. One possible explanation for the reduction in dilatancy is

that the fibres on the horizontal plane are active, and preventing the specimen from

expanding horizontally.

The Durus fibres (F5) are then compared with the Loksand fibres (F1) at a single
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Figure 6.6: Drained triaxial test results at 300 kN/m2 effective confining stress for
sand reinforced with Loksand fibres (F1) with different fibre concentrations

fibre content of wf = 0.3% and a single confining stress σ1 = −300 kN/m2 (Figure

6.7). From Figure 6.7a, it would appear that some nominal strength improvement

over the unreinforced sand is developed with the use of the Durus S400 fibres.

However, the composite still reaches a distinct shear stress limit. Similarly for the

volumetric response (Figure 6.7b), some reduction in dilatancy is observed but not

to the same magnitude as with the Loksand fibres.

There are two possible explanations for the difference in failure behaviour of the

Durus S400 fibres and the Loksand fibres. The first being the ratio of exposed fibre

surface area to fibre volume, with the Durus S400 fibres having a much lower ratio.

The second reason may be due to the higher stiffness of the Durus S400 fibres; the

Loksand fibres are very flexible and when compressed in sand, may bend and twist,

tangling with the sand grains and increasing the bond strength; this aspect was also

discussed by Diambra et al. (2013).

The second series of triaxial tests (Wang, 2015) investigates the effect of fibre

length and fibre preparation method on the strength properties of the composites.

In this part of the study, Conplus fibres are used which are available in lengths of

6, 12, and 18 mm. The preparation method used in the length study is the stirring

method, as described in Section 6.2.1. Results of triaxial tests with sand reinforced

with the Conplus fibres of different lengths are shown in Figures 6.8, 6.9 and 6.10.

The addition of any length of fibre appears to have affected the shear response
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Figure 6.7: Drained triaxial test results at effective confining stress of -300 kN/m2

with fibre content wf = 0.3% for different fibre types (F5,F1)

very little when compared to the unreinforced response. Therefore it is impossible

to comment on the effect of fibre length from this data. The reason for this lack of

strength improvement is most likely due to the fibre geometry: The Loksand fibres

have a diameter of 88 µm, and the Conplus fibres have a diameter of 18 µm. It

is possible that the sand is not able to bond to the fibre surface. Another reason

may be the fibre length; the Loksand fibres are 35 mm long and the largest Conplus

fibres are 18 mm long. There may not be enough fibre surface available to develop

a shear band, hence the fibre strength is not mobilised.

The third in the series of reinforced triaxial tests is the comparison of different

preparation methods. Three different methods were used to mix the fibre and sand;

these were the the layered stirring, stirring, and tumbling methods, and are described

in Section 6.2.1. Triaxial tests in this study are performed at confining stresses of

200 kN/m2, 400 kN/m2, and 600 kN/m2 (Figures 6.11, 6.12, and 6.13).

The triaxial sample preparation study showed a poor repeatability of the stirring

method for the 200 kN/m2, however the higher confining stress results show better

repeatability. It was expected that a higher proportion of fibres near the horizontal

orientation would produce a stronger composite. It is difficult to confirm this result

from the preparation method study (Figures 6.11 to 6.13) because the level of vari-

ation between repeats appears to exceed the strength increase. This expected result

can be seen for the 400 kN/m2 test shown in Figure 6.12 and to a lesser extent for

the 600 kN/m2 test shown in Figure 6.13.
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Figure 6.8: Drained triaxial test results with 6 mm Conplus fibres (F2) at fibre
content wf = 0.3% for different effective confining stresses
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Figure 6.9: Drained triaxial test results with 12 mm Conplus (F3) fibres at fibre
content wf = 0.3% for different effective confining stresses
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Figure 6.10: Drained triaxial test results with 18 mm Conplus fibres (F4) at fibre
content wf = 0.3% for different effective confining stresses
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Figure 6.11: Drained triaxial test results at an effective confining stress of σ1 =
−200 kN/m2 with 12 mm Conplus fibres (F3) at fibre content wf = 0.3% for different
preparation methods

0 0.05 0.1 0.15 0.2
0

100

200

300

400

Deviatoric strain −εy

S
h
ea
r
st
re
ss
q
(k
N
/m

2
)

stirring

layering

tumbling

Figure 6.12: Drained triaxial test results at an effective confining stress of σ1 =
−400 kN/m2 with 12 mm Conplus fibres (F3) at fibre content wf = 0.3% for different
preparation methods

0 0.05 0.1 0.15 0.2
0

200

400

600

Deviatoric strain −εy

S
h
ea
r
st
re
ss
q
(k
N
/m

2
)

stirring

layering

tumbling

Figure 6.13: Drained triaxial test results at an effective confining stress of σ1 =
−600 kN/m2 with 12 mm Conplus fibres (F3) at fibre content wf = 0.3% for different
preparation methods
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6.3.2 Fibre pullout tests

The fibre pullout tests as described in Section 6.2.2 used the full length Durus S400

fibres. The reason for this choice of fibre was the ease of mounting to a cable for

loading and measurement. The other fibre types are manufactured by shaving from a

plate which has the same width as the fibre length. They are not made by extrusion

then cut to length; if this were the case then it would be possible to use a longer

uncut fibre.

The pullout tests were performed at different vertical confining stresses and each

test was repeated at least once. Referring to Figure 6.14, each load-displacement

curve has a distinct peak load before dropping to a reasonably level residual load.

The path to the peak load is linear in most cases as is the first drop to the residual

load.

The residual section then appears to oscillate. These oscillations are most likely

due to shear planes developing at the micro-scale; as the fibre is pulled, the grains

climb over one-another. When this happens, the fibre slips under a reduced load

until another set of shear planes are developed. The amplitude of the oscillations

increases along with the confining stress; this suggests that the grains are more

densely packed under the higher load, requiring more force to break each shear

band.

Figure 6.15 shows a linear relationship between confining stress and the peak

and residual loads. The gradient of these curves is important for characterising the

interface for this particular choice of soil and fibre. It is expected that a different

fibre or a different soil would produce different gradients.

The gradient of the peak pullout data is Fp/σc = 0.044 and the gradient of the

residual data is Fp/σc = 0.031. The initial gradient of each the pullout curve is

also important for the purpose of modelling this behaviour. The initial gradient was

found not to be related to the confining stress, as no correlation was observed. The

mean gradient for this particular fibre and soil was found to be Fp/S = 33.5 N/mm
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(individual values vary between 26.7 and 38.6 for the different confining stresses).
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(b) σc = 0.2 N/mm2
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(c) σc = 0.3 N/mm2
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(d) σc = 0.4 N/mm2
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(e) σc = 0.5 N/mm2

Figure 6.14: Fibre pullout results at different vertical stresses using 45 mm Durus
S400 fibres, 20 mm fibre length is in contact with the soil

6.3.3 Sample dissection

A total of three prepared samples were analysed using the approach as outlined in

Section 6.2.3; one for each preparation method. Figures 6.16, 6.17, and 6.18 show
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Figure 6.15: Peak and residual pullout forces for different confining stresses

the observed portion of fibre orientations, grouped in intervals of 15◦. This portion

is calculated by dividing the number of fibres in the group, and dividing by the total

number of fibres found in the sample.
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Figure 6.16: Fibre orientations for layering method
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Figure 6.17: Fibre orientations for stirring method

The layering method (Figure 6.16) places almost all of the fibres near the hori-

zontal plane. The sample was divided into six equal layers which were approximately

the same height as the fibre length. It is possible that the stirring process caused the

fibres to lay horizontally due to the stirrer colliding with the fibres. Additionally,

the tamping process may have had a flattening effect.
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Figure 6.18: Fibre orientations for shaking method

In the triaxial tests (Figure 6.12), samples prepared using the layering method

have the highest shear strength. This is consistent with the distribution curve as the

horizontal fibres act to resist the expansion of the sample in the horizontal plane.

As more of the fibres are near the horizontal plane for this preparation method, then

the radial expansion of the sample is resisted more.

The stirring method (Figure 6.17) has a more even distribution of fibres; with

a significant portion outside the 0-15◦ range. This method uses no layering in

preparation of the sample. The reason for this change in distribution may be due

to the method in which the mixture is poured into the mould. With this method,

the mould is filled in a single pour.

The triaxial curves for this preparation method (Figure 6.12) show a similar

peak shear stress, however there is a drop in shear stress after extensive straining;

this effect is also seen in Figures 6.11 and 6.13. One possible explanation for this

drop in strength may be due to some inhomogeneity in the sample; this method is

somewhat crude in comparison to the layering method and this is reflected in the

repeatability in the triaxial test curves.

Samples prepared using the tumbling method show the most uniform distribution

of fibre orientations (Figure 6.18). A majority of the fibres are still horizontal,

however there is a significant portion in the vertical direction. The triaxial results

correlate with this observation such that the samples prepared using the tumbling

method tend to be weaker in shear. Similarly to the stirring method (Figure 6.17),

the sample is placed into the mould with a single pour, also a residual shear stress is
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observed in the 400 kN/m2 test (Figure 6.12). Again, poor repeatability is observed,

possibly due to the crudeness of the preparation method.

Concluding remarks

This chapter has presented the experimental work of two MSc projects, co-supervised

by the author (Chatzopoulos, 2015; Wang, 2015), for the purpose of providing data

to compare against a new soil-fibre composite model. A set of characterisation tests

allow for the determination of both soil and fibre parameters. A set of triaxial tests

give a good basis to understand the influence of fibres in soils and give a benchmark

for model calibration.
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Chapter 7

A new soil-fibre model

Thus far, a reasonable understanding of soil-fibre behaviour has been established

both by a review of the literature in Chapter 5 and directly through the experimen-

tation documented in Chapter 6. With this information, it is possible to establish a

mechanical model to capture the behaviour of fibres when mixed throughout a soil.

In this chapter, a new fibre model is formulated which is based on micro-

mechanical soil-fibre interactions; experimental observations are also taken into ac-

count and used to build some of the more complex behavioural features such as

interface debonding. The model formulated is based on the shear lag concept (Cox,

1952), and draws on ideas from several other authors including Maher and Gray

(1990) and Diambra and Ibraim (2015). The proposed model also differs previous

models in that debonding is considered at the microscopic scale. Calibration against

experimental data is also possible through manipulation of several material param-

eters which have real physical meaning. Prior work on this proposed fibre model

has already been documented by Bower et al. (2016b) and Bower et al. (2016a).

The proposed model can be coupled with a range of constitutive soil models,

although in this study, it is intended to be used alongside the HS-LC model, as

described in Chapter 3. The HS model can easily be calibrated to triaxial stress-

strain curves for unreinforced soils. The fibre model is then superimposed onto the

HS-LC model by use of the rule of mixtures.
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To gain an understanding of the mechanics of fibre behaviour at the fibre scale,

a finite element study is conducted in Section 7.1 which analyses the stress transfer

mechanism from soil to fibre for an elastic, and an inelastic soil. A model to predict

the behaviour of a single fibre is then proposed in Section 7.2, which is based on

micro-mechanical interactions between the soil and fibre, taking into consideration

the predicted behaviour of the soil-fibre interaction from the finite element study and

data from the experimental study conducted in Chapter 6. The stress distribution

calculated with the proposed fibre model is then compared against that of the finite

element study.

The single fibre model is then transformed into a homogenised model in Section

7.3, which takes an assumed distribution of fibres, as they would be distributed in

a soil, and uses the single fibre model to predict the global behaviour of a sand

reinforced with randomly distributed fibres. The final model uses parameters which

allow the control of fibre volume fraction, geometry, stiffness, bond strength, and

orientation distribution. A sensitivity analysis of each parameter is conducted in

Section 7.4, where each parameter is adjusted independently, and the effects of

these changes are noted in the simulation of triaxial tests.

7.1 A finite element study of soil-fibre interaction

The purpose of this section is to establish an expected stress-strain distribution

for a single fibre within a soil. Both fully bonded, and partially debonded cases

were considered and the fibre was modelled as a linear elastic material; in order to

control the stress level at which debonding occurs, a yield criterion based only on

the shear stress was used for the soil; this was the von Mises criterion. From the

fibre pullout experimental tests (performed in Section 6.3.2), it was found that after

initial debonding, the pullout force reduced to a residual level, therefore softening

behaviour was enabled for the yield surface:
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fVM =
√
J2 −HVM(γp) (7.1)

where J2 is the second invariant of the deviatoric stress tensor, and relates to the

shear stress by q =
√

3
√
J2, and HVM is a linear hardening function which relates

directly to the plastic shear strain.

The problem was analysed using finite element software LUSAS. The geometry

of the full problem is shown in Figure 7.1, this can be simplified by exploiting the

rotational symmetry and was modelled in the finite element model as an axisymmet-

ric domain as shown in Figure 7.2. Note that only half of the fibre was considered

due to symmetry. The soil and fibre are modelled as different materials where the

fibre was always elastic, and the soil was either modelled as fully elastic or elasto-

plastic with the von Mises plasticity model. The two materials were attached with

linear spring joint elements acting in the horizontal direction only. The soil was then

given a uniform tensile force on the end face. The soil and fibre were restrained in

the loaded direction on the opposite end to the applied forces; this was to enforce

symmetry.

Fibre Soil F

Axial force
acting on soil,
F

lf

2R

df = 2rf

Figure 7.1: Schematic of single fibre pullout model (not to scale)

The problem was modelled using 5100 quadratic, quadrilateral, axisymmetric

elements and 61 linear joint elements. As this is a geometrically non-linear problem,

the total tensile force was split over several increments; for the fully bonded case
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Figure 7.2: Schematic of axisymmetric finite element fibre pullout model (not to
scale)

10 increments are used, and 40 increments were used for the debonding case. The

primary convergence criteria are the residual force norm which was set to 1.0%,

and the incremental displacement norm, which was set to 0.1%. The co-rotational

formulation was used in the multi-frontal Newton-Raphson solver to assist with the

geometric non-linearity in this problem. A mesh convergence study and step size

dependency study were conducted to ensure the results obtained here are reasonable.

7.1.1 Elastic soil and fully bonded fibre

Based on the mechanical properties of the polypropylene (Diambra et al., 2013;

Ineos, 2014), the fibre was modelled using a Young modulus of 900 N/mm2 and

Poisson’s ratio of 0.42. The soil was modelled using a Young modulus of 20 N/mm2

and Poisson’s ratio of 0.25; this was based on typical properties of sand. The linear

joint, which represents the bond between the soil and the fibre, has a horizontal

spring stiffness of 10 N/mm2. The actual value of this spring stiffness is unimportant,

as it is not the purpose of this study to quantify the stress transfer, but to better

understand the nature of it, however, a value was chosen that was half of the stiffness

of the soil. The total load applied to the face of the soil was 1 N/mm2. The radius

of the fibre was modelled as 0.5 mm, and the half length of the fibre modelled was

22.5 mm, to match the geometry of the Durus S400 fibre. A 0.5 mm gap was used

between the soil and fibre and the total radius of the composite is 41 mm, this is

to ensure that the influence region of the fibre is fully contained within the soil

158



CHAPTER 7. A NEW SOIL-FIBRE MODEL

cylinder.
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Figure 7.3: The variation of the shear stress in fully elastic soil after loading is
applied (image is zoomed to stress concentration at fibre end)

From Figure 7.3, the highest shear stress in the soil occurs adjacent to the fibre

ends. Also, the shear stress becomes almost constant at the outside surface of the

composite, suggesting that the fibre has very little influence in this region.
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Figure 7.4: Interface slip and fibre axial stress distributions along the length of the
fibre with elastic soil (normalised to maximum values)

The slip along the fibre length is also calculated. Slip is defined as the difference

in the displacement of the matrix and fibre across the interface. Figure 7.4a shows

the interface slip which is zero at the fibre centre, and increases to maximum at the

fibre end. This trend is non-linear. The axial stress in the fibre (Figure 7.4b) is also
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non-linear and is maximum at the fibre centre. The axial stress decreases to zero at

the end of the fibre.

The displacement of the soil at the end of the composite is shown in Figure 7.5.

There is very little soil displacement adjacent to the fibre; this is because the fibre is

much stiffer than the soil and the bond between the soil and fibre prevents the soil

from moving. At the furthest distance from the fibre, the displacement is maximum,

this is because there is no restraint in the horizontal direction at the outside of the

composite. The gradient profile is also important here, as the gradient close to the

fibre is very steep, and the gradient furthest from the fibre is very shallow. This

suggests that the fibre has a limited range of influence; at a radius of 20 mm, the

horizontal soil displacement is almost uniform.
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Figure 7.5: Horizontal displacements at the rightmost line of soil

7.1.2 Elasto-plastic soil and fully bonded fibre

A similar analysis was performed for a soil undergoing plastic strains. The same

loads were applied to the same materials and geometry, however the von Mises yield

criterion was included with the soil with an initial yield stress of 0.1 N/mm2 and

a hardening slope of -0.16 which is active until a residual stress of 0.05 N/mm2 is

reached. These values were chosen such that the soil towards the end of the fibre

would yield whereas the soil towards the fibre centre would remain fully elastic. A
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negative hardening gradient was included to replicate the softening observed in the

experimental pullout tests (Section 6.3.2).
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Figure 7.6: Plot of plastic work done for a elasto-plastic soil (image is zoomed to
stress concentration at fibre end)

Figure 7.6 depicts the plastic work done in the soil due to the tensile load in the

presence of the fibre. The plastic work done represents the amount that the yield

surface in the von Mises model has moved, and is therefore synonymous with the

plastic shear strains. The highest plastic shear strain is at the fibre end, where the

most slip has occurred; this decreases towards zero towards the centre of the fibre.

The plastic shear strains are also confined to a band narrower than the radius of

the fibre, indicating that the plasticity induced by the fibre inclusion is a localised

effect. On a global scale, the plasticity introduced by the presence of the fibre is

not spread to the rest of the soil; this is shown by a plastic work done of zero at

any distance further than 1.0 mm from the fibre in Figure 7.6. Therefore debonding

should be included in the new composite model at a micro-mechanical level.

Applying the same tensile load of 1 N/mm2, the slip distribution for the fully

loaded soil is shown in Figure 7.7a. There is a clear change in gradient at x =

3lf/8 where soil plasticity starts to take effect. Extrapolating the elastic region, the

maximum slip at the fibre end is significantly reduced. The gradient in the yielding

region is linear and the steepness of the curve is higher.

The stress distribution in the fibre (Figure 7.7b) is also effected by the soil

plasticity. The distribution in the yielding region is linear, and the distribution in

the elastic region is curved, but much flatter than the fully elastic results.
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Figure 7.7: Interface slip and fibre axial stress distributions along the length of the
fibre with elasto-plastic soil (normalised to maximum values)

Several conclusions may be drawn from this finite element study of soil-fibre

interaction:

� For a fully bonded fibre, the distribution of axial stress is non-linear, with the

highest tensile stress in the centre of the fibre, and zero stress at the fibre end.

This is in agreement with the hyperbolic distribution by Cox (1952).

� The slip between fibre and soil is maximum at the ends of the fibre, and zero

at the centre, and is also non-linear.

� Plasticity and softening at the fibre-soil interface reduces the amount of axial

stress which can be transferred across the interface. Use of the von Mises

plasticity model with linear softening created a linear distribution of slip and

fibre stress in the debonded region.

� As plastic strains develop in the soil, and the fibre begins to debond, a higher

portion of the axial stress is carried by the central region of the fibre.

� The radius of influence of the fibre was approximately 20 mm, 40 times the

radius of the fibre in this case.
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The following sections describe the formulation of a constitutive soil-fibre model,

which is based on micro-mechanical interactions, physical relationships, and the

findings from this finite element study.

7.2 Model formulation

Based on the literature review, experimental study, and finite element study car-

ried out; a new soil-fibre interaction model is formulated in this section. At the

smallest scale, the model captures the behaviour of a single fibre; this model is then

homogenised to obtain the overall contribution from the full network of fibres in the

macro scale.

7.2.1 Behaviour of a single fibre

The model formulated here is first described in terms of a single fibre of radius rf ,

and length lf . This fibre is modelled as a cylinder within a larger cylinder of soil

(Figure 7.8). The composite is considered as a cylinder with a radius Rc defined by

the fibre packing density. The calculation of this radius is explored later in Section

7.3.1.

εma 2R 2Rc

2Rc

εma

lf

x

Figure 7.8: Deformation contours due to presence of fibre during axial straining
(redrawn from Matthews and Rawlings, 1999)

The shear lag model, originally proposed by Cox (1952), models the elastic slip

of a single short fibre within a continuous matrix. As shown in Figure 7.8, the strain
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in the matrix is partially transferred to the fibre through friction between the fibre

and the matrix. In granular soils this creates a shear stress in the matrix around

the fibre, this is named the shear influence zone; outside this zone the strains are

assumed to be purely axial in nature. The size of this influence zone is assumed to

coincide with the location of average axial displacement (Aveston and Kelly, 1973)

as cited in (Diambra and Ibraim, 2015).

R =
rf +Rc

2
(7.2)

The calculated strains in the fibre are reported to be insensitive to the exact

value of R (Diambra and Ibraim, 2015).

The cross-sectional area of the matrix and fibre are simply defined as follows

am = π
(
R2 − r2

f

)
(7.3)

af = πr2
f (7.4)

Based on typical mechanical properties of manufactured fibres and soil, the fibres

are assumed to be significantly stiffer than the soil they are reinforcing Also, the

fibre is expected to slip in the soil before the material yields (Diambra et al., 2013;

Zhu et al., 2014). Therefore, a linear elastic stress-strain relationship is assumed:

σf = Efεf (7.5)

where σf and εf are the axial strain and stress at any point along the fibre, and

Ef is the uniaxial Young’s modulus of the fibre. The fibres are modelled as one

dimensional elements, i.e. radial effects are neglected for axial strains.
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The stress-strain relationship in the matrix is also assumed to be linear. Although

the fibre model is to be used alongside a soil plasticity model, this plasticity will be

transferred into the fibre model by applying a limiting bond strength; this will be

discussed later in Section 7.2.3.

σm = Emεm (7.6)

In order to maintain equilibrium conditions, the following relationships must be

enforced:

af
dσf
dx

+ am
dσm
dx

= 0 (7.7)

afEf
dεf
dx

+ amEm
dεm
dx

= 0 (7.8)

7.2.2 Fully bonded fibre

To continue development of the formulation, the forces on an infinitesimal length of

fibre (Figure 7.9) are considered and the basic shear lag equation is formed:

dσf
dx

= −2τ

rf
(7.9)

dεf
dx

= − 2τ

Efrf
(7.10)

The slip is defined as the difference between the matrix and fibre displacement

at any point, as defined in Equation 7.11, and the interface shear stress is assumed

to related directly to the amount of slip (Equation 7.12).
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Figure 7.9: Infinitesimal length of fibre; free body diagram

S = um − uf (7.11)

τ = ksS (7.12)

Differentiating (7.11) gives the following relationships

dS

dx
+ εf = εm (7.13)

d2S

dx2
+

dεf
dx

=
dεm
dx

(7.14)

Substitution of (7.14), (7.12) and the shear lag equation (7.10) into the equilib-

rium condition (7.8) gives:

(
afEf + amEm

) ksS

Efrf
+ amEm

d2S

dx2
= 0 (7.15)

Simplifying leads to:
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d2S

dx2
− β2S = 0 (7.16)

where

β2 =
2
(
afEf + amEm

)
ks

EfrfamEm
(7.17)

A general solution to this differential equation takes the form:

S = A cosh(βx) +B sinh(βx) (7.18)

which must be solved by applying known boundary conditions. As the loading

condition is assumed to be symmetric, the slip between the matrix and fibre at the

centre of the fibre is zero. Applying this condition yields A = 0. At the fibre ends,

the stress and strain in the fibre are zero, and the matrix strain εm is assumed to be

equal to the applied composite strain εma. Another option for describing the matrix

strain is to record elastic and plastic components of the matrix strain, and relate

them to elastic and plastic components of interface slip. However, the former of the

two methods has been adopted for this study due to its simplicity; one disadvantage

of doing this is that unloading cycles may be poorly represented, as all fibre strains

are based on the total matrix strain, with no knowledge of loading history.

Equation 7.13 contains each stress component and can be used to solve for this

boundary condition. Substituting the condition into (7.13) gives:

Bβ cosh(βx) + 0 = εma (7.19)

Solving for B then gives the final slip relationship for the fully bonded case as

S(x) =
εma sinh(βx)

β cosh
(
β
lf
2

) (7.20)
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Figure 7.10: Tensile fibre stress σf (solid) and interface shear stress τ (dashed)
distributions for fully bonded fibre

The stress in the fibre can be obtained by integrating the shear lag relationship

in Equation 7.9. Integrating from the fibre end to the position of interest gives the

fibre stress at any position.

σf (x) =
−2ks
rf

∫ lf/2

x

S(z) dz (7.21)

which, when integrated within the given limits becomes:

σf (x) =
2ksεma
rfβ2

 cosh(βx)

cosh
(
β
lf
2

) − 1

 (7.22)

Plotting the fibre axial stress and the interface shear stress with the position in

the fibre gives the hyperbolic distributions shown in Figure 7.10.

7.2.3 Debonding fibre

Through extended straining in the composite, the slip between the matrix and fibre

will become plastic. From a micro-mechanical perspective, this would correspond

to soil particles bonding and debonding with different sections of the fibre.

From the experimental pullout results in Section 6.3.2, a distinct peak load is

observed in each of the pullout tests, followed by a drop to a fairly constant residual

stress. The residual stress oscillated in the experimental results, however for the

purposes of modelling, the mean value is used.
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Fp, uf

σc
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Fibre
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Figure 7.11: Fibre pullout schematic; soil is fully contained in a box, and loaded from
the top, the fibre is then pulled from one end and its remains unchanged throughout
the test.

Peak load
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Figure 7.12: Idealised results from fibre pullout test showing distinct loading stages.

There is a clear increase in peak and residual strength with increased confining

stress (Figure 6.15). The initial gradient before debonding was found to not be

effected by this confining stress. A total of five confining stresses were tested and

each test was repeated a total of 3 times. The experimental peak and residual forces

are plotted in Figure 6.15. An idealised configuration of the fibre pullout test is

shown in Figure 7.11, which relates to an idealised form of the experimental results

shown in Figure 7.12.

These values can be converted into pullout shear stresses by dividing by the fibre

area in contact with the soil. Assuming a K0 = 1− sinϕ distribution to horizontal

stresses, the radial compressive stress σr acting on the fibre can be estimated to

the average of the horizontal and vertical stress. With this information, linear
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Figure 7.13: Assumed shear stress distribution for a debonding fibre

relationships can be obtained relating the radial stress to the peak pullout shear

strength:

τb = κbσr (7.23)

and the residual shear strength:

τr = κrσr (7.24)

Based on results from the finite element study in Section 7.1; an assumption is

made regarding the stress distribution in the fibre during debonding. As the shear

stress is highest at the fibre ends, the shear stress will debond at the fibre end first,

and debonding will progress towards the centre of the fibre with extended strain. It

is then assumed the shear stress at the bonding-debonding boundary is τb, the shear

stress at the fibre end becomes τr. A plot of the assumed shear stress distribution is

shown in Figure 7.13. With this model it is possible for the residual shear stress τr

to be lower than, equal to, or higher than the debonding shear stress τb. A similar

approach was used by Brighenti (2004), whereby the composite was modelled using

representative volume elements (RVEs), and the matrix portion was modelled using

a bi-linear softening stress-strain curve.

The shear stress in the debonded region is now linear, the gradient of the
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debonded region is given by kb. The equation for shear stress in this region is

given by

τ = τb + kb

(
x− lf − lb

2

)
(7.25)

The shear-slip relationship in (7.12) still holds, therefore

S(x) =
1

ks

(
τb + kb

(
x− lf − lb

2

))
(7.26)

The first debonding occurs at the fibre end when the shear stress equals the

debonding shear stress. Thus, the debonding slip is defined as

Sb =
τb
ks

(7.27)

Equation 7.27 satisfies the debonding region slip (7.26) for the case of x =

(lf−lb)/2. The stress is calculated similarly to the fully bonded case (7.21), whereby

the slip function is integrated from the fibre end. Performing the same integration

for the debonded region leads to

σf (x) = − 2

rf

τb( lf
2
− x
)

+ kb

(
l2f
8
− x2

2
− lf − lb

2

(
lf
2
− x
)) (7.28)

The stress at the bonded-debonded interface is found by substituting x = (lf −

lb)/2 into Equation 7.28.

σfb = − lb
rf

(
τb +

kblb
4

)
(7.29)

The bonded region follows the same derivation as before, however the new bound-

ary conditions must be applied to the differential equation
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S(x) = C cosh(βx) +D sinh(βx) (7.30)

Similarly to before, the slip at the centre of the fibre (x = 0) is zero. This leads

to C = 0. At the debonding interface, the slip is equal to the debonding slip Sb.

Enforcing this boundary condition allows solving for D, and the expression for the

slip in the bonded region can be written as:

S(x) =
Sb sinh(βx)

sinh
(
β
lf−lb

2

) (7.31)

At this stage, the applied matrix strain which drives the problem is not included

in the debonded formulation. Enforcing the third boundary condition requires the

matrix strain εma to calculate the debonded length. The third boundary condition

is that the stress is equal to the debonding stress (7.29) at x = (lf − lb)/2. This

condition should hold for the debonded region (7.28) and the central bonded region.

It is assumed that the central bonded region is unaffected by the debonding of

the fibre ends. The equivalent bonded end shear stress τe is used to describe the

shear stress at the end of the fibre, if the bond strength were infinite.

τe =
ksεma tanh

(
β
lf
2

)
β

(7.32)

Substituting (7.32) into the bonded slip relation (7.31) at the fibre end and

rearranging gives

τb =
ksεma sinh

(
β
lf−lb

2

)
β cosh

(
β
lf
2

) (7.33)

Substituting (7.33) into the slip function for the debonded region (7.26) at the

fibre end, gives an expression for the residual shear stress.
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τr =
ksεma sinh

(
β
lf−lb

2

)
β cosh

(
β
lf
2

) +
kblb
2

(7.34)

From the linear portion of the curve in Figure 7.13, an expression for the debonded

length can be obtained.

lb =
2

kb
(τr − τb) (7.35)

The variable kb is not a material parameter and must be eliminated from the

problem by substitution. Equations 7.34 and 7.35 are independent and are used to

solve for the debonded length lb. Using the exponential equivalents of the hyperbolic

trigonometric functions, and through further algebraic manipulation, a quadratic

equation involving lb can be formed. Solving this quadratic equation gives an ex-

pression for the debonded length which relates directly to the applied matrix strain

εma.

lb = lf −
2

β
arcsinh

Sbβ cosh
(
β
lf
2

)
εma

 (7.36)

One advantage of using this method is that a variety of debonding shear stress

distributions can be used, subject to re-solving of the necessary equations. The

solution for lb can also be found by using an iterative procedure such as Newton-

Raphson or bisection methods.

7.2.4 Comparison with finite element study

The stress distributions from the micro-mechanical model are compared against the

finite element study carried out in Section 7.1. Figure 7.14 shows the slip and stress

distributions for the fully bonded, and partially debonded fibre. The fibre length is

kept constant and the aspect ratio A is altered by modifying the fibre radius. An
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Figure 7.14: Fully bonded fibre slip and stress distributions with different aspect
ratios. Comparison of FEA model (solid) and micro-mechanical model (dashed),
results have been normalised to the maximum values, aspect ratios are linearly
distributed; (a) and (b) show the fully bonded case, (c) and (d) show the debonding
case

even distribution of fibre radii are analysed such that the following aspect ratios are

used: A = 15, 30, 45, 60, 75, where the aspect ratio is equal to lf/2rf . The aspect

ratio of the fibre analysed in the finite element study was A = 45.

The first observation which can be made is that the slip and stress distributions

are able to closely match the results from the finite element study. The distribu-

tions corresponding to A= 45 match the FEA results the closest; this is the same

geometrical configuration as used in the FEA study.

Focussing on the elastic results in Figures 7.14a and 7.14b, increasing the aspect

ratio tends to decrease the slip at the fibre centre, concentrating the slip toward the
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fibre ends. The fibre stress results appear to be less sensitive to A, however the

stress is more evenly spread over the fibre with a higher A.

Regarding the debonding slip distribution in Figure 7.14c, the limiting interface

shear stress τb and the residual shear stress τr were calculated directly from the finite

element study. Both the slip and stress results for the debonding case appear to be

more sensitive to the change in aspect ratio than in the fully bonded case. In Figure

7.14c, the highest aspect ratio fibre has the slip most concentrated at the fibre end,

with a lower aspect ratio, the bonded length decreases, and the distribution becomes

more linear in the bonded region.

The debonding stress distribution in Figure 7.14d shows a similar trend, where

the lower aspect ratio produces more linear results. The axial stress in the de-bonded

region is linear, and becomes non-linear in the bonded region.

7.3 Homogenisation

To include the effects of randomly distributed fibres in a soil, the problem must be

homogenised into a representative volume element (RVE); ready for use in the finite

element stress space.

7.3.1 Fibre radius of influence

The portion of fibres in the composite affects the spacing between the fibres. Based

on data obtained from the finite element study, the radius of influence of the fibre

is approximately 40 times the fibre radius. In the literature, fibre concentrations of

between vf = 0.1% and vf = 1.0% are typically investigated (Diambra et al., 2010;

Ibraim et al., 2012; Li and Zornberg, 2013). This relates to an average distance of

10 times the fibre radius for a fibre concentration of vf = 1.0%, and 30 times for

a concentration of vf = 0.1%. From the FEA plot of horizontal soil displacements

in the composite (Figure 7.5), the level of influence at this range is low. Therefore
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(a) Square packing (b) Hexagonal packing

Figure 7.15: Idealised fibre arrangements and their respective composite radii Rc

it is not unreasonable to assume the simplification that the fibres do not influence

each-other, as this is unlikely to affect the predicted composite strength.

A simple and convenient method for describing the fibre spacing is to assume

a uniform distribution in two dimensions (Figure 7.15); this theory is taken from

the field of unidirectional composites. This theory also assumes a uniform packing

arrangement as typically applied in uni-directional fibre composites. The actual

positioning in the soil is random, not uniform, however an average distribution is

assumed for the homogenised model.

Several options for packing arrangements are available. The simplest is the

square arrangement (Figure 7.15a) where each fibre is layered in a grid pattern. From

a basic geometric calculation, the maximum possible fibre volume fraction (assuming

that the fibres are touching and are unidirectional) is vf = 0.785 (Altenbach et al.,

2004). The most efficient arrangement is the hexagonal layout (Figure 7.15b); this

minimises the distance between fibres and using a similar calculation, the maximum

possible volume fraction is vf = 0.907 (Altenbach et al., 2004).

The hexagonal arrangement is to be used in this model, as it appears to more ac-

curately reflect a homogenised random distribution. Whilst this choice is somewhat

arbitrary, for the same volume fraction, use of the square packing arrangement pro-

duced a negligible difference in strength contribution from the fibres. This is most

likely due to the low volume fractions considered in soils. The spacing of fibres Rc
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Figure 7.16: Spherical coordinate system and elemental volume used in integration
(redrawn from Michalowski and Zhao, 1996)

is related to the fibre volume fraction vf and the fibre radius rf

Rc =
rf√
2
√

3vf
π

(7.37)

for the hexagonal arrangement. This is not to be confused with the radius of influ-

ence R, which is calculated using Equation 7.2.

7.3.2 Fibre orientation distribution

It is known that the orientation of the fibres has a significant effect on the response

of composites, and that different fibre placement techniques produce different ori-

entations (Wang, 2015; Ibraim et al., 2012); with layering and stirring methods

exhibiting a horizontal preference. For most foreseeable civil engineering applica-

tions, it can be safely assumed that there is a uniform distribution of fibres on the

horizontal plane (i.e. when observed vertically from above).

For the purposes of the homogenisation technique adopted here, the distribution

of fibre orientations can be described as a function of the current orientation. It
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is also important that the integration of the function over the orientation domain

must equal to one, as to not artificially increase the fibre volume fraction. It is

also possible to achieve the same effect by dividing a distribution function by the

mean value of the function; however this study will enforce the criterion shown in

Equation 7.38, which uses the spherical coordinate system from Figure 7.16.

1

2π

∫ 2π

0

∫ π/2

0

ρϑ(ϑ, φ) cos(ϑ) dϑ dφ = 2π (7.38)

The horizontal plane has a uniform distribution of fibre orientations, therefore

the distribution function with respect to the horizontal is given a constant value of

1; this is why it is not included in Equation 7.38. Therefore, integrating with respect

to the vertical plane gives the simplified criterion.

1

2π

∫ π/2

0

ρϑ(ϑ) cos(ϑ) dϑ = 1 (7.39)

Characterisation

The simplest vertical orientation distribution is the uniform distribution. The func-

tion takes the form of a fixed value which must satisfy (7.39).

ρϑ(ϑ) =
1

2π
(7.40)
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Figure 7.17: Fibre orientations for layering method, showing actual portions (bars)
and modelled distribution function (line), markers represent midpoint of each range
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Figure 7.18: Fibre orientations for stirring method
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Figure 7.19: Fibre orientations for shaking method

The actual and modelled distributions are shown in Figures 7.17, 7.18, and 7.19

for each preparation method. Both the layering and stirring methods produced

distributions with a strong bias towards horizontal fibres; with the layering method

this effect is more pronounced. The shaking method produces a more uniform

distribution, where a larger portion of the fibres are vertical. Michalowski (1997)

proposed the following function to describe the orientation distribution of fibres,

assuming axial symmetry on the horizontal plane.

ρϑ(ϑ) = A+B
∣∣cos(ϑ)

∣∣n (7.41)

The parameters A, B, and n can be adjusted to fit the experimental distribution

and to satisfy (7.39).
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7.3.2.1 Spherical integration

Exact integrations of the fibre contribution over the surface of the sphere are com-

putationally expensive. This is why a numerical approach is adopted. Much like a

simple Gauss-Legendre integration over a finite element domain, sampling positions

on the surface of the sphere are chosen and assigned weights. The points are chosen

by finding the position of the corners of regular and irregular polyhedra. Weights

are assigned to each point by minimising the errors from a Taylor series expansion

of an algebraic function over the integrated domain.

Various integration rules are available with different numbers of sampling posi-

tions. Bažant and Oh (1986) provide a comparison of regimes ranging from 20 to

122 sampling positions. As to be expected, the regimes using a higher number of

sampling points provided more accurate results, but at a higher computational cost.

The 66 point rule (as illustrated in Figure 7.20) is considered for this study, this

is an 11th order approximation and it is a good compromise of cost and accuracy

(Bažant and Oh, 1986).

Full orthogonal symmetry is also observed in this method. The integration is

implemented by looping through each direction, the coordinates of each point repre-

sent a direction cosine. The fibre contribution for each direction is multiplied by its

direction cosine vector, then added to the running total of the fibre contribution in

180



CHAPTER 7. A NEW SOIL-FIBRE MODEL

the chosen stress space. The symmetry about the horizontal plane is observed and

33 additions are required for the full summation (Equation 7.43). Integration over

the length of the fibre is also considered, this is to take into account to the different

positions of the fibre relative to the integration point. This distribution is taken as

uniform (2/lf ). The integration over the fibre length and over the spherical domain

is given as:

σf =
1

2π

∫ π/2

0

∫ 2π

0

2

lf

∫ lf/2

0

(Ψ(ϑ))Tρϑ(ϑ)σf (x, εma) dx dφ dϑ (7.42)

and in the form for numerical integration as:

σf =
33∑
id=1

widρϑ(ϑid)(Ψid)T
2

lf

∫ lf/2

0

σf (x, εma) dx (7.43)

where Ψ is a matrix containing the direction cosines for each integration point, and

wid is the current sampling weight. Note that the integration over φ is not included

in (7.43) because the orientation distribution is uniform, hence the density function

is a constant ρφ = 2π.

The axial matrix strain εma is calculated for each integration direction by trans-

forming the Cartesian strain vector ε with the current direction cosine vector Ψid .

The radial stress on the fibre is computed in a similar manner and the average of

the two other orthogonal directions is taken as the radial stress on the fibre σr.

The total fibre stress is then added to the total matrix contribution using the

rule of mixtures.

σ = vmσm + vfσf (7.44)

The matrix stress σm is calculated from the given total strain vector ε using

a choice of constitutive soil model; this study considers the use of the fibre model

alongside the HS-LC model as described in Chapter 3. However, it is also possible to
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use other constitutive soil models such as the Mohr-Coulomb model or the Modified

Cam-Clay model.

7.3.2.2 Stiffness tensor

The relationship between incremental stresses and strains (i.e. the D matrix) for

the fibre behaviour is defined here. As the fibres are considered to be fully elastic,

and the fibre strain is directly related to the applied soil strain, a single definition

of the stiffness tensor is required. The fibre stiffness tensor is first calculated in its

total form

Df =
1

2π

∫ π/2

0

∫ 2π

0

2

lf

∫ lf/2

0

(Ψ(ϑ))Tρϑ(ϑ)
dσf (x, εma)

dεma
dxΨ(ϑ) dφ dϑ (7.45)

However, for use in computations, it is calculated from a numerical integration,

similarly to the fibre stress tensor.

Df =
33∑
id=1

widρϑ(ϑid)(Ψid)T
2

lf

∫ lf/2

0

dσf (x, εma)

dεma
dxΨid (7.46)

The total stiffness of the composite is calculated using the rule of mixtures. The

D matrix from the soil may be elastic, or the 4th order consistent tangent matrix,

depending on the current state of the soil model.

D = vmDm + vfDf (7.47)

This version of the D matrix is required to preserve the quadratic rate of con-

vergence for the global Newton-Raphson iterative scheme (see Section 3.8 for more

details on the Newton-Raphson scheme and the consistent tangent matrix).
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7.4 Parametric study

A study of the fibre parameters is performed, where the fibre model is superimposed

onto the re-formulated hardening soil model (as discussed in Chapter 3). A series

of triaxial tests are simulated and the resulting shear and volumetric behaviour

are compared using the parameters shown in Table 7.1. A summary of the soil

parameters is also shown in Table 7.2; the parameter m = 0 has been chosen to

remove stress dependency in the HS model, thus clarifying the effects of the fibres.

As debonding significantly affects the distribution of stress along the fibre, a

selection of the basic parameters are repeated for one debonding result; this is why

the bond strength parameter κb in Table 7.1 has two base values.

The model is run in a single point constitutive driver with a Newton-Raphson

solver. The composite is first taken to a confining stress of -0.3 N/mm2, then a

vertical strain is prescribed to the composite at a rate of ∆εy = 0.003 per step,

taking a total of 100 steps to achieve a total vertical strain of 30%.

Table 7.1: Key values used in parametric study

Parameter Base value Values studied

R/rf 5 3, 5, 7, 9, 11

Ef 900 N/mm2 500, 700, 900, 1100, 1300 N/mm2

vf 1.08% 0.36, 0.72, 1.08, 1.44, 1.80%

ks 0.8 N/mm2 0.4, 0.6, 0.8, 1.0, 1.2 N/mm

lf 35 mm 15, 25, 35, 45, 55 mm

rf 0.05 mm 0.01, 0.03, 0.05, 0.07, 0.09 mm

n 7 3, 5, 7, 9, 11

κb 0.05, 0.02 0.002, 0.01, 0.02, 0.03, 0.04, 0.05

κr 1.1 0.5, 0.75, 1.0, 1.25, 1.5

The purpose of this study is to analyse both the sensitivity and the effect on

strength, for each parameter. Figures 7.22 to 7.33 show shear and volumetric results

from triaxial compression simulations. Each figure is then discussed independently

and a summary is included at the end of this chapter. The results for an unreinforced
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Table 7.2: Assumed soil parameters used in each analysis

Parameter Value

Eref
50 20 N/mm2

Eref
ur 60 N/mm2

σref -0.1 N/mm2

m 0

ν 0.25

ϕ 40◦

ψ 10◦

c 0.0 N/mm2

Rf 0.9

soil are also included on each graph with a solid line.

Sensitivity must also be classified in order to quantify descriptions of the param-

eter dependencies. A low sensitivity is any difference between shear stress results

less than 10%, a medium sensitivity is a difference between 11% and 30%, and a

high sensitivity is classed as greater than 30% difference in shear stress results. For

the differences in volumetric strain, this correlates to classification boundaries of

26% and 57%. This difference is quantified by Equation 7.48, as is accompanied

by Figure 7.21 and the following description: As the abscissa points of each set of

curves are the same, the difference between the highest and lowest curve is calculated

directly at each abscissa point. The mean value of all curves is then calculated and

used to weight the difference. The total sensitivity is the sum of all the weighted

differences, multiplied by 100, and divided by number of data point sets.

sensitivity =
100

N

N∑
i=1

∣∣∣yi1 − yi5∣∣∣ 5∑
j=1

5

yij
(7.48)
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Figure 7.21: Method for the determination of the difference between curves with the
same abscissa points

7.4.1 Shear radius R/rf

A particular assumption was made in Section 7.2.1 for the formation of Equation

7.2. The assumption is that the solution to fibre problems is insensitive to the exact

value of the fibre influence radius R. The radius of this zone is calculated as the

average of the fibre packing radius (according to a hexagonal distribution array) and

the fibre radius.

In Figure 7.22, it appears that some significant variation does exist in the model

with the variation of R. Increasing the influence radius increases the shear strength

and increases the dilatancy reduction in the model. The dependency from R/rf = 3

to R/rf = 5 is significantly larger than that between R/rf = 9 and R/rf = 11,

suggesting that the sensitivity does reduce as the influence radius increases. The

sensitivity of this parameter is classed as medium. Comparing to the horizontal

displacements calculated in the soil for the finite element study (Figure 7.5), a ratio

of R/rf = 3 corresponds to a horizontal soil displacement of 2.23 mm, a ratio of

R/rf = 7 corresponds to 3.35 mm, and R/rf = 11 corresponds to a displacement of

3.71 mm. As these values are changing fairly significantly with material properties

typically used in soil-fibre composites, it is possible that the assumption made in

the formulation of Equation 7.2 may not be valid. This is the assumption that the

composite stress in the fibre is insensitive to composite radius.
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Figure 7.22: Variation of shear radius R/rf for bonded case κb = 0.05
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Figure 7.26: Variation of fibre length lf for bonded case κb = 0.05

0 0.1 0.2 0.3
0

1

2

3

εy

q
(N

/m
m

2
)

0 0.1 0.2 0.3

−0.04

−0.02

0

0.02

0.04

εy

ε v

Unreinforced
rf = 0.01 mm
rf = 0.03 mm
rf = 0.05 mm
rf = 0.07 mm
rf = 0.09 mm

Figure 7.27: Variation of fibre radius rf for bonded case κb = 0.05

187



0 0.1 0.2 0.3
0

1

2

3

εy

q
(N

/
m
m

2
)

0 0.1 0.2 0.3

−0.04

−0.02

0

0.02

0.04

εy

ε v

Unreinforced
n = 3
n = 5
n = 7
n = 9
n = 11
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7.4.2 Fibre modulus Ef

As might be expected, Figure 7.23 shows that an increase in Young’s modulus in

the fibre increases the shear strength of the composite. The dilative effects are

also increased further. The level of sensitivity is classed as low and decreases with

increasing modulus.

7.4.3 Fibre volume fraction vf

As shown in Figure 7.24, an increase in fibre volume fraction (or fibre content)

provides an increase in shear strength and a decrease in dilatancy. The sensitivity

of this parameter is high, with a doubling of fibre content leading to a strength

increase of 150% and a very high reduction in dilatancy.

7.4.4 Slip stiffness ks

As the slip stiffness increases, the composite shear strength decreases and the dila-

tancy also increases (Figure 7.25). This result is perhaps a little counter-intuitive,

however it may be attributed to the approaching of debonding; as the slip stiffness

increases, debonding commences sooner, hence lowering the overall strength. The

sensitivity of this parameter is low and the change observed after 20% strain can

be attributed to the premature debonding, where even with the higher debonding

constant of κb = 0.05, debonding still initiates.

7.4.5 Fibre length lf

Figure 7.26 shows that increasing the fibre length creates an increase in shear

strength and a decrease in dilatant effects. It is important to note that the fi-

bre volume fraction does not change throughout this test set. In mechanical terms,

the strength increase can be largely attributed to an increase in the average length
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of fibre on each side of a slip plane for example. The sensitivity is medium and

reduces with increasing fibre length.

7.4.6 Fibre radius rf

Figure 7.27 shows an increase in the fibre radius causes a decrease in the soil strength

and an decrease in dilatancy reduction. The sensitivity of this parameter is high

and appears to be slightly non-linear. As the fibre radius decreases, the contact area

between the soil and fibres increases, thus increasing the frictional component of the

fibres.

7.4.7 Orientation exponent n

The orientation exponent controls the portion of fibres which are horizontal. From

the Poisson effect, a restriction in horizontal strains will also restrict the vertical

strains. As the fibres can only act in tension, they are only active as the triaxial

cell radius expands; i.e. near the horizontal plane. Therefore, an increase in the

fibre concentration near the horizontal plane should increase the shear strength and

reduce the dilatancy. This is reflected in the results as a high sensitivity, with a near

linearly proportional relationship shown in Figure 7.28.

7.4.8 Bond strength κb

The bond strength limits the amount of shear stress that the fibre-soil interface

can carry. As shown in Figure 7.29, decreasing the bond strength limits the shear

capacity of the composite and reduces the volumetric influence of the fibres. When

the bond strength is reduced to κb = 0.002, the fibres provide very little strength

increase, and the soil reaches an ultimate limit state. There is a high sensitivity to

this parameter and it shows a linear relationship between the parameter value and

the soil strength (and dilatancy reduction).
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7.4.9 Residual strength κr (debonded)

The residual strength determines the behaviour of the interface after debonding

initialises at the fibre ends. If τr is lower than τb, then softening is modelled, if

it is equal to τb then a perfectly plastic slip relation is used, and if it is greater

than τb then hardening is modelled. In Figure 7.30 there is no clear distinction

between hardening and softening relationships other than that the shear strength

increases along with residual strength, and the dilatancy increases. The effects of

debonding for this case seem to begin at an early stage of approximately 8% strain.

The sensitivity of this parameter is low for the debonding case and the progression

is linear. For a set of fully bonded fibres, this parameter has no effect on the results

7.4.10 Fibre modulus Ef (debonded)

Using the same series of Young moduli for the debonded case (Figure 7.31), the

sensitivity has reduced even lower than that of the bonded case (Figure 7.23). It is

apparent that the bond strength dominates the results when debonding is in effect.

7.4.11 Fibre volume fraction vf (debonded)

As shown in Figure 7.32, the sensitivity to volume fraction is also reduced when

debonding is active, but to a lesser extent that the Young modulus. The composite

has reached failure for the lowest fibre content at a strain of 26%. The sensitivity is

still classed as medium and its variation is linear.

7.4.12 Fibre length lf (debonded)

Similarly to the fibre modulus and volume fraction, as seen in Figure 7.33, the

sensitivity of the results to the fibre length has also reduced with debonding present

in the model. The sensitivity is now medium but the progression is still reduces

slightly with increasing fibre length.
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Concluding remarks

The mechanisms behind the strength improvement due to fibres have been explored

in a finite element study of a single fibre surrounded a fully elastic soil, and an

elasto-plastic soil (based on the von Mises plasticity model with softening). The

distribution of fibre stress and interface slip were determined for both cases and

this influenced and helped to confirm these distributions calculated using the model

proposed in this chapter.

The proposed soil-fibre composite model was formulated based on micro-mechanical

relationships at the fibre level, results from the experimental study (discussed in

Chapter 6), and results from the finite element study. This model uses concepts

from the well known shear lag model (Cox, 1952), and introduces more advanced

effects observed in soil such as fibre debonding. The proposed model was then used

in a statistical, spherical integration to model the macroscopic behaviour of a soil

reinforced with short fibres which are randomly distributed through the soil.

The experimental study indicated that the preparation method used in the fabri-

cation of soil-fibre composites had an impact on the behaviour of the composite due

to the change in orientation distribution of the fibres. The proposed soil-fibre model

takes this effect into account through an orientation distribution function, which

describes and controls the portion of fibres which lay at each vertical orientation.

A sensitivity study was then conducted on each of the material parameters used

in the fibre model. This study used the HS-LC model as the constitutive soil model,

and modelled the same triaxial test with different fibre parameters. It was found

that the model was sensitive to each of the parameters to varying degrees, and many

of the general trends (for example with fibre length, and volume fractions) were

consistent with the experimental study and findings in the literature (discussed in

Chapter 5). The range of parameters explored in the sensitivity study caused results

from the model to display a range of features including the increase of strength

contribution with fibre content, reduction in dilatancy with fibre content, and the
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onset of debonding. The sensitivity to the composite radius R was higher than

initially expected, this contradicts one of the assumptions used in the formulation

of the model which was that fibres are spaced so sparsely that their influence does

not spread across fibres. As this assumption may be invalid to a degree, extra care

may be required with use of the model, particularly in the selection of parameters.
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Chapter 8

Fibre model validation

The purpose of this chapter is to assess the accuracy of the fibre model proposed

in Chapter 7, which is used alongside the new implementation of the HS-LC model

described in Chapter 3. To validate the proposed model, results predicted with the

model are compared with results obtained in the experimental program detailed in

Chapter 6.

In the experimental program, several different fibres were studied. Each of these

fibre types, and other parameters used in the fibre model are described in Table 8.1.

Several preparation methods were utilised in the experimental program, resulting

in different distributions of fibre orientations. Each of the parameters used in the

orientation distribution function are described in Table 8.2. The material properties

of the sand used in the experimental study were determined from calibration of

unreinforced triaxial tests; these are described alongside the prior materials used in

the HS-LC model in Table 4.1.

8.1 Unreinforced triaxial tests

The first series of tests is the analysis of unreinforced dense Leighton Buzzard sand

at different confining stresses. This series of tests is used to determine the material

parameters to use in the HS-LC model. The failure parameters ϕ and c were cal-
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Table 8.1: Material parameters used in fibre model

ID Fibre name lf rf Ef ks κb κr

mm mm N/mm2 N/mm

F1 Loksand 35.0 0.044 900 0.050 0.06 1.1

F2 Conplus6 6.0 0.009 900 0.050 0.008 1.1

F3 Conplus12 6.0 0.009 900 0.050 0.008 1.1

F4 Conplus18 6.0 0.009 900 0.050 0.008 1.1

F5 Durus S400 22.5 0.500 900 0.534 0.484 1.3

Table 8.2: Fibre orientation distribution parameters used in Equation 7.41

ID Distribution name A B n

D1 Layered 0.003 2.499 15

D2 Stirred 0.008 1.209 7

D3 Shaken 0.100 0.532 8

culated by plotting the envelope of soil failure at different confining stresses. The

secant stiffness parameter Eref
50 was calculated from the triaxial q-ε curve, and the

other stiffness parameters Eref
ur and Eref

oed were approximated based on standard re-

lationships typically used in the HS-LC model (Schanz et al., 1999; Benz, 2007):

Eref
ur ≈ 3Eref

50 , Eref
oed ≈ Eref

50 .

The volumetric properties ν and ψ were determined from the experimental εv-

ε plots. The lateral earth pressure coefficient KNC
0 is approximated from Jaky’s

formula KNC
0 ≈ 1 − sinϕ (Jaky, 1948). The auxiliary parameters are adjusted to

match the other given parameters, as described in Section 3.6.

Results obtained using the calibrated parameters are shown in Figure 8.1 for

different confining stresses; these are compared with experimental data. The shear

response is captured very well, the failure shear limit matches the experimental

limit closely. The curvature of the shear response is very similar to the experimental

curves for the 100 and 300 kN/m2 confining stress, however, the 500 kN/m2 exper-

imental data reaches failure much later than predicted, this feature of the model is

characterised by the failure ratio parameter Rf . The initial gradients of the shear
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Figure 8.1: Experimental and predicted triaxial test results on unreinforced Leighton
Buzzard sand (S2)
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curves also match the experimental curves.

The experimental volumetric response shows an initial compressive stage, fol-

lowed by a dilatant stage where the overall soil volume increases. This is reflected

in each predicted result. There is no particular trend in the degree of dilatancy with

each confining stress. The 300 kN/m2 experimental result shows the highest dila-

tancy, and the 500 kN/m2 test is the least dilatant. The cause of this may be due

to experimental variation, or it may be that the sand reaches a critical packing ar-

rangement where the increase in dilatancy peaks at a confining stress of 300 kN/m2.

The HS-LC predictions produce volumetric curves similar to all three sets of

experimental curves in Figure 8.1. The curves are not repeated precisely, but show

the same degree of dilatancy. The predicted results show decreased dilatancy with

increasing confining stress, this is also seen in the 100 kN/m2 and 500 kN/m2 results.

8.2 Triaxial fibre concentration study

The parameters obtained in the study of the unreinforced sand are next used in the

HS-LC model alongside the proposed fibre model. Many of the parameters used in

the fibre model are obtained directly, this includes the fibre geometry and material

properties. The interface parameters for the fibre and sand were not measured

directly, except for the Durus S400 fibres, which was investigated with a series of fibre

pullout tests (Section 6.3.2). For the Loksand and Conplus fibres, the parameters

are calibrated to triaxial data. For the Loksand fibres, the parameters ks, κb, and

κr are calibrated to the results at 100 and 300 kN/m2 confining stress for a fibre

concentration of wf = 0.3%. The Loksand fibres were prepared using the layering

method, and the orientation distribution parameters A, B, and n for distribution

D1 (Table 8.2) are used in the model.

Triaxial experimental results and predictions of wf = 0.3% Loksand fibres for

different confining stresses are shown in Figure 8.2. The presence of the fibres has

increased the shear strength of the soil, delaying the onset of failure to beyond the
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axial strain investigated in this study. The presence of fibres reduced the stiffness of

the soil at low strains, a feature not fully captured in the model. The shear strength

of the 500 kN/m2 reinforced test is also under-predicted slightly.

The experimental volumetric response in Figure 8.2 is significantly less dilatant

than unreinforced soil (Figure 8.1). The volumetric response here is more character-

istic of a loose sand. The model predicts some loss of dilatancy, however, this is not

enough to match the experimental results. The experimental dilatancy decreases

with an increasing confining stress, the model predicts behaviour opposite to this.

The next series of tests compares the effect of changing the fibre concentration

(Figure 8.3). In these tests, the confining stress remains constant at 300 kN/m2.

An increase in fibre concentration increases the shear strength, this is captured well

in the model predictions. Again, the experimental results show that the presence of

the fibres reduces the initial stiffness of the composite, this is most prevalent in the

wf = 0.9% test. This is captured in the model predictions but to a lesser extent.

The experimental volumetric results show that the fibres cause the soil to only

undergo compression during shearing. The mechanism for this may be that the

sand particles are held further apart due to the presence of the fibres. The model

does predict some decrease in dilatancy, but the effect is not pronounced enough to

match the experimental results.

8.3 Triaxial fibre type study

The next study investigates the different behaviours with use of different fibre types.

Loksand and Durus S400 fibres are compared directly at the same confining stress

and fibre concentration (Figure 8.4). The interface parameters are calculated from

the fibre pullout data (Section 6.3.2). The elastic interface gradient ks is calculated

from the initial gradient of each pullout curve; it was found that this gradient was

not dependent on the confining stress, therefore a constant value is used in the

model. The bond strength parameter κb is dependent on the confining stress and is
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calculated from the peak pullout value. The residual strength must be estimated,

as the boundary conditions for the pullout test are different from the in situ fibre

behaviour. The value of κb was chosen to be approximately 20% higher than that

of the calibrated Loksand parameter, this value is assumed due to the increased

roughness of the Durus fibres.

The experimental data shows that the Durus fibres do not increase the shear

strength of the soil significantly, a shear stress increase of approximately 8% was

observed. This is reflected in the model results with a nominal shear strength in-

crease predicted. The Loksand fibres appear to increase the shear stress indefinitely

within the strain range investigated, this is also predicted with the model.

Presence of either fibre type decreases the amount of dilatancy in the soil. The

Loksand fibre decreased the dilatancy the most. This is captured in the model

predictions, however, like the other volumetric data presented so far, the actual

paths are not predicted closely. The Durus volumetric path is modelled very closely,

however this may be a coincidence, as it is the only reinforced volumetric path which

is predicted closely.

8.4 Triaxial fibre length study

The next part of the study investigates the effect of fibre length on soils. Conplus

fibres are used here, and triaxial results for different lengths of Conplus fibres are

shown in Figures 8.5 to 8.7. This series of triaxial tests are performed on the same

sand, but samples were prepared to a different void ratio. The properties for this

sand are shown in Table 4.1 with the identification LLS.

The experimental data shows that the Conplus fibres do not significantly in-

crease the shear strength of the sand, nor do they significantly alter the volumetric

behaviour. Most of the shear curves show a loss in strength after initial failure, this

is not captured with the HS model as it does not incorporate shear softening.
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Figure 8.5: Experimental and predicted triaxial test results at 200 kN/m2 confining
stress, on Loose Leighton Buzzard sand (LLS) reinforced with different lengths of
Conplus fibres (F2, F3, F4), samples prepared using the stirring method (D2)
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Figure 8.6: Experimental and predicted triaxial test results at 400 kN/m2 confining
stress, on Loose Leighton Buzzard sand (LLS) reinforced with different lengths of
Conplus fibres (F2, F3, F4), samples prepared using the stirring method (D2)
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Figure 8.7: Experimental and predicted triaxial test results at 600 kN/m2 confining
stress, on Loose Leighton Buzzard sand (LLS) reinforced with different lengths of
Conplus fibres (F2, F3, F4), samples prepared using the stirring method (D2)
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A very small strength increase of between 5% and 20% was observed in the

experimental results between the 18 mm and 6 mm fibres. A shear strength in-

crease of 14% to 17% was predicted with the proposed model. In general, the shear

predictions are within the range of experimental variation.

The volumetric response of the soil was not measured for this series of tests,

therefore it is impossible to comment on the accuracy of the predicted volumetric

behaviour. With each confining stress, the increase in fibre length increases the

amount of compaction in the soil. Between 6 mm and 18 mm fibres, the volumetric

strain at the end of the studied strain range (ε3 = −0.2) is increased by 14.4% at

200 kN/m2, 12.3% at 400 kN/m2, and 11.0% at 600 kN/m2 confining stress.

8.5 Triaxial sample preparation study

The final part of the triaxial study investigates the influence of the sample prepa-

ration method. In Section 7.3.2, the orientation parameters for three preparation

methods were determined. These parameters are used in the predictions of triaxial

tests, which used samples prepared using these methods. The orientation parameters

for each preparation method are shown in Table 8.2.

Results from each preparation method are compared in Figures 8.8 to 8.10.

12 mm Conplus fibres are prepared using each method, and tested at different confin-

ing stresses. For each shear curve, the layered preparation produced the strongest

soil-fibre composites, and the shaking method produced the weakest. The shear

strength increase observed was nominal; between 7.5% and 27.3% (for tests under-

taken at 600 kN/m2 and 200 kN/m2 confining stress respectively). The soil-fibre

model predicted shear strength increases between 15.0% and 20.0%.

The predicted shear curves are mostly within each range of experimental repeata-

bility for each test. Again, experimental volumetric data is not available for this set

of tests. The model predictions show that the layered method increased the amount

of compaction in the soil the most; following patterns from the previous tests, this,
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Figure 8.8: Experimental and predicted triaxial test results at 200 kN/m2 confining
stress, on Loose Leighton Buzzard sand (LLS) reinforced with 12 mm Conplus fibres
(F3), samples prepared using the different methods (D1, D2, D3)
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Figure 8.9: Experimental and predicted triaxial test results at 400 kN/m2 confining
stress, on Loose Leighton Buzzard sand (LLS) reinforced with 12 mm Conplus fibres
(F3), samples prepared using the different methods (D1, D2, D3)
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Figure 8.10: Experimental and predicted triaxial test results at 600 kN/m2 confining
stress, on Loose Leighton Buzzard sand (LLS) reinforced with 12 mm Conplus fibres
(F3), samples prepared using the different methods (D1, D2, D3)
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along with the shear response, indicates that the layered method reinforces the soil

the most effectively.

Concluding remarks

In summary, the first thing to note from the experimental results is that the Durus

and Conplus fibres do not significantly improve the strength of soils, in contrast

to the Loksand fibres, which are far more effective. This is predicted well in the

proposed soil-fibre model. The cause of this is the relation between the sand particle

size and the fibre geometry. The Conplus fibres are too thin and short to sufficiently

grip to the sand particles. These fibres are designed for use in concrete, which offers

different bonding conditions to the granular soil. The Durus S400 fibres also do

not significantly improve the strength of the soil. These fibres are much larger,

with a diameter similar to the mean particle size of the sand. For a given fibre

concentration, the Durus fibres as a whole have a much smaller surface area than

the smaller fibre types. The roughness of the Durus fibres provides a surface with a

higher friction, which makes up slightly for the lack of surface area.

The Conplus fibres, which only provided nominal strength increase, were more

effective at the longer lengths; this is also captured in the model. The post-peak

failure behaviour for the Conplus tests is not captured in the model because the

base soil model does not incorporate shear softening.

Overall, the volumetric behaviour is not predicted well by the model. Presence

of the fibres significantly reduces soil dilatancy, and increases compaction. The

model does repeat this trend, however to a much smaller magnitude. It is possible

that there is some other mechanism which is not currently captured in the model.

One such explanation is that the presence of a fibre restricts the ability of the sand

particles to interlock in the same way that they would with no fibre. On a local

scale, this would mean that the sand is looser near each fibre. On a macroscopic

scale, the loosening of sand around each fibre could sum to a significant global effect,
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creating the reduction in dilatancy observed in the experimental results.

Another possible cause for this is one of the assumptions used in the formulation

of the model. This is that each fibre is assumed to be independent, and strains are

not transferred between fibres. Results from the finite element study indicated that

the radius of influence of the fibre was higher than the typical spacing between fibres

as observed in prepared reinforced samples. Therefore, it may be possible that this

assumption is creating some inaccuracy in the model.
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Chapter 9

Conclusions

This thesis is divided into two main areas of study. The first was to produce an

improved implementation of the hardening soil model, the second was to produce a

suitable constitutive model for the analysis of fibre-reinforced soils.

A literature review of one specific soil model was conducted, this was the harden-

ing soil model, which has had developments and contributions from several authors.

The main features and material parameters of the model were explored as well the

available optional model components.

Initial research and implementation of the HS model indicated several areas for

potential improvement. The first and most major issue identified with the original

HS model was the formulation of the hardening shear yield surface. In this for-

mulation of the model model (Schanz et al., 1999), and in the updated HS-smooth

model (Benz, 2007), the position of the shear surface is related to both the current

shear stress, and the state of the hardening variables. Therefore, for a given set

of hardening variables, the shear surface is dependent on the stress state, and not

fixed.

This issue was addressed in the formulation described in Chapter 3 and involved

removing the stress dependency from the yield surface position. The modified yield

surface is akin to a more typical cone surface, with a non-linear hardening rule. The
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formulation of this surface was derived from the same principles as both previous

HS models. The hardening rule was based on Kondner’s hyperbola (Kondner and

Zelasko, 1963), as implemented in the Duncan-Chang model (Duncan and Chang,

1970).

The second major change to the HS model was the return mapping scheme. All

versions of the HS model have used a form of the closest point projection algorithm,

which is a type of backward Euler method. The implementation in this study

includes residuals of the hardening parameters (or state variables) in the algorithm,

and in the convergence criteria; resulting in a robust method.

The third change to the model was the use of a tensile yield surface based on the

mean stress only. The previous versions of the HS model both used three Rankine

surfaces; which is well suited for these models as they are derived in principal stress

space. The model proposed here is derived in general stress space, avoiding the need

to perform axis transformations.

It was shown in Sections 4.1 and 4.2 that the new model is able to produce very

similar results to the two previous implementations of the HS model (Schanz et al.,

1999; Benz, 2007). This is true for both simple laboratory tests, and more complex

field simulations.

Due to differences in the formulations of each model, the auxiliary parameters

α, Ks/Kc, E
ref
i required for each model are different. These auxiliary parameters

are not entered by the user, but are calibrated to given values of KNC
0 , Eref

oed , and

Eref
50 , the procedure for the calculation of these parameters was clarified.

Mesh dependency and step size dependency were also investigated with the HS-

LC model. It was shown that results generated using the HS-LC model were not

heavily altered by increasing or decreasing the mesh density. Step size dependency

can be an issue with the HS-LC model, this is because some of the stress dependent

variables are based on the last converged stress, and increasing the step size causes

the solution to drift. This issue was addressed by adding an option to allow these
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variables to update using a modified Newton-Raphson approach. It is recommended

that a step size convergence study and a mesh convergence study are conducted with

use of the HS-LC model, particularly when performing design work.

A literature review was undertaken covering the current state of soil-fibre compu-

tational modelling. Several models were discussed, including those which model the

behaviour of a single fibre, and those which may be used to model soil reinforced

with randomly distributed fibres. The main components of each model were ex-

plored along with the fundamental mechanisms behind them. The accuracy of each

model was discussed, based on results published by each of the respective authors.

An experimental study was conducted to determine the behaviour of soil-fibre

composites. This study consisted of a range of tests, including triaxial compression

tests, fibre pullout tests, and sample dissection. Within the series of triaxial tests,

the effect of changing the fibre length, type, concentration and preparation method

were studied. Each of these effects are detailed below:

� An increase in fibre content wf leads to an increase in strength

� An increase in fibre length lf leads to an increase in strength

� Sample preparation methods which cause a higher portion of fibres to lay

horizontal produce the strongest composites in triaxial tests

It was also found that the radius of the fibre had a significant impact on the com-

posite strength, where too small a radius would fail to bind with the soil particles,

and too large a radius would not create enough contact surfaces between the soil

particles and fibre. In summary, it appears that there is an optimum fibre radius,

for each particular sand, which is effective in reinforcing soil.

A constitutive model was developed to predict the behaviour of soil fibre com-

posites. This model comprised of two levels: the first was to predict the behaviour

of a single fibre surrounded by soil, and is driven by strains in the soil. The second
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takes the behaviour of the single fibre, and integrates this effect over each orientation

to predict the behaviour of soil reinforced with randomly distributed fibres.

The micromechanical model of the single fibre used theory from the shear lag

model (Cox, 1952) and was developed further to take into account fibre debonding.

Parameters used in this model allowed control of bond stiffness, bond strength, fibre

geometry and fibre material. These parameters all have physical meaning, however

the bond strength and stiffness are difficult to measure directly as they require a

pullout test to be conducted. Instead, these parameters can be calibrated from

triaxial tests with the model in its globally integrated form.

The fully integrated model is used to predict the behaviour of fibres randomly

distributed in the soil. This was performed through a statistical integration method,

as described by Maher and Gray (1990). Computationally, this integration was

performed by a numerical approach described by Bažant and Oh (1986). To take

into account the effect of different preparation methods, an orientation distribution

function was used an included in the global integration.

Results from the proposed soil-fibre model were compared against the experimen-

tal results and it was found that the model was reasonably accurate at replicating

shear stresses in the triaxial tests. The volumetric behaviour was not fully captured,

as dilatancy was not reduced enough by the model. Clearly, a better understanding

of soil-fibre composites is required to sufficiently model this behaviour.

9.1 Future work

This thesis has presented two constitutive models for predicting the behaviour of

soil and of fibre-reinforced soil. There are several aspects in both models which may

be subject to future improvement.

One contribution previously made to the HS model was the development of

the HS-small model by Benz (2007); Benz et al. (2009). This model takes into
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account the effect of increased stiffness observed in soils under small strains. The

HS-LC model currently does not include this advanced feature. The addition of

this behaviour to the model requires the modification of the elastic stiffness matrix,

where the Young modulus is modified according to the small-strain model by Hardin

and Drnevich (1972). In order to implement this change, the hardening rules, and

CPP algorithms would also need to be modified to preserve the quadratic rate of

convergence of the global Newton-Raphson solution method.

The auxiliary parameters α, Ks/Kc, and Eref
i are currently calculated through

calibration of triaxial and oedometer simulations. This process can be time con-

suming and sometimes very difficult to match predicted results to the calibration

parameters KNC
0 , Eref

oed , and Eref
50 . Instead of performing this calibration directly it

may be possible to use methods such as multivariate regression, or machine learning

methods to calculate the auxiliary parameters based on a series of training data

obtained from the direct calibration. Such methods would calculate the auxiliary

parameters quickly, however at the expense of obtaining the training data.

One of the areas which should be addressed with the fibre model is the prediction

of volumetric strains. The model under-predicted the reduction of dilatancy due to

the presence of fibres. Two potential explanations for this issue were proposed. One

remedy for this issue may be to include some empirical relationship which relates

the fibre content to the dilatancy angle used in the soil fraction of the constitutive

model. However, in order to gain a full understanding of the mechanisms involved

in this behaviour, it may be necessary to investigate the effects of a single fibre in

sand in more detail than was conducted in this thesis.

Discrete element modelling of the sand and fibre during pullout may give some

clues to the cause of this behaviour. It may also be possible to capture this be-

haviour experimentally, for example, a single fibre could be placed along one side of

a transparent box which is then filled with compacted sand. Using high resolution

cameras, it may be possible to track the movement of sand particles as the fibre is

pulled through the sand.
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behaviour of clays. Géotechnique, 50(4):431–447.

Cox, H. (1952). The elasticity and strength of paper and other fibrous materials.

British Journal of Applied Physics, 3(3):72–79.

Craig, R. F. (2004). Craig’s soil mechanics. Spon Press, London, 7th edition.

Das, B. M. (2011). Geotechnical engineering handbook. J Ross Publishing Inc, Fort

Lauderdale, FL, USA.

Diambra, A. and Ibraim, E. (2015). Fibre-reinforced sand: interaction at the fibre

and grain scale. Géotechnique, 65(4):296–308.

Diambra, A., Ibraim, E., Muir Wood, D., and Russell, A. R. (2010). Fibre reinforced

sands: Experiments and modelling. Geotextiles and Geomembranes, 28(3):238–

250.

Diambra, A., Ibraim, E., Russell, A., and Muir Wood, D. (2013). Fibre reinforced

sands: from experiments to modelling and beyond. International Journal for

Numerical and Analytical Methods in Geomechanics, 37(15):2427–2455.

Diambra, A., Russell, A. R., Ibraim, E., and Muir Wood, D. (2007). Determination

of fibre orientation distribution in reinforced sands. Géotechnique, 57(7):623–628.
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Nomenclature

Acronyms

2-D Two-dimensional

3-D Three-dimensional

A Aspect ratio

BS British standards

CPP Closest point projection

CTM Consistent tangent matrix

DC Duncan-Chang

FE Finite element

FEA Finite element analysis

FEM Finite element method

HS Hardening soil

HS-LC Hardening soil - Lusas Cardiff

HS-smooth Hardening soil - smooth

LMN Lode Matsuoka-Nakai

LVDT Linear variable differential transformer

MC Mohr-Coulomb

MN Matsuoka-Nakai

MNR Modified Newton-Raphson

OPEFB Oil palm empty fruit bunch
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RVE Representative volume element

VM von Mises

Symbols

β Fibre slip integration constant

χ HS cap shaping function

∆λ Plastic multiplier

η Shear yield surface shaping parameter

ηψ Shear plastic potential shaping parameter

γ Shear strain

γp Plastic shear strain

κb Debonding constant (peak)

κr Debonding constant (residual)

φ Fibre horizontal orientation

Ψ Vector of direction cosines

ψ Dilatancy angle

ψm Mobilised dilatancy angle

ρ Scaled Lode angle dependency function

ρψ Scaled Lode angle dependency function for plastic potential

σref Reference stress level

σ1 Minor principal stress

σ2 Intermediate principal stress

σ3 Major principal stress
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σf Axial stress in fibre

σm Stress carried by matrix parallel to the fibre axis

σn Normal stress

σr Radial stress acting on fibre from matrix

σt Tension limit

σy Uniaxial yield stress

τ Shear stress / interface shear stress

τb Debonding interface shear stress

τr Residual interface shear stress

Θ Lode angle dependency function

θ Lode angle

Θψ Lode angle dependency function for plastic potential

εf Axial strain in fibre

εm Axial strain in matrix

εv Volumetric strain

εma Axial strain in matrix at fibre end

εv0 Initial volumetric strain

ϕ Friction angle

ϕc Critical state friction angle

ϕm Mobilised friction angle

ϑ Fibre vertical orientation

µ Vector representing material state variables
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σ0 Converged stress at start of increment

σLC Stress vector from last converged state

σLI Stress vector from the last iteration

σtr Trial stress vector

σ Stress vector, made up of Cartesian components σx, σy, σz, σxy, σyz,

σzx

εe Elastic component of the strain vector

εp Plastic component of the strain vector

ε Strain vector, made up of Cartesian components εx, εy, εz, εxy, εyz,

εzx

De Elastic Hookean matrix

Df Fibre stiffness matrix

Dm Matrix (soil) stiffness matrix

Dep Consistent tangent matrix

ξ Shear yield surface shaping parameter

ξψ Shear plastic potential shaping parameter

A Orientation distribution parameter

af Cross-sectional area of fibre

am Cross-sectional area of matrix

B Orientation distribution parameter

c Cohesion

D Density

e Void ratio
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e0 Initial void ratio

Ef Young modulus of fibre

Ei Initial Young modulus

Eref
i Initial Young modulus at reference stress level

Em Young modulus of matrix

E50 Secant Young modulus

Eref
50 Secant Young modulus at reference stress level

Echange Change in Young modulus between iterations

Eoed Oedometer Young modulus

Eref
oed Oedometer Young modulus at reference stress level

Etol Tolerance for change in Young modulus

Eur Unload-reload Young modulus

Eref
ur Unload-reload Young modulus at reference stress level

f Yield function

fc HS cap yield function

fs HS shear yield function

ft HS tension yield function

fDP Drucker-Prager yield function

fMC Mohr-Coulomb yield function

fMN Matsuoka-Nakai yield function

fs,MC Alternative HS shear yield function

fVM von Mises yield function
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g Plastic potential function

gc HS cap plastic potential function

Gf Post-failure triaxial stiffness

gs HS shear plastic potential function

gt HS tension plastic potential function

H HS cap hardening gradient

HVM von Mises hardening gradient

I1 First invariant of the stress tensor

I2 Second invariant of the stress tensor

I3 Third invariant of the stress tensor

J2 Second invariant of the deviatoric stress tensor

J3 Third invariant of the deviatoric stress tensor

K0 Lateral earth pressure coefficient

kb Debonded interface shear stress gradient

Kc Primary loading bulk modulus

Ks Unload-reload bulk modulus

lb Length of fibre debonded region

lf Fibre length

M Shear yield surface shaping function

m Stress dependency exponent

Mψ Shear plastic potential shaping function

n Orientation distribution parameter
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p Mean stress

pa Atmospheric pressure

q Shear stress

qa Asymptotic shear stress

qf Shear stress at soil failure

R Single fibre radius of influence

r Stiffness update weight factor

Rc Single fibre composite radius

Rf Failure shear stress ratio

rf Fibre radius

rq Shear stress ratio

ru Stiffness ratio

S Fibre-soil interface slip

vf Fibre volume fraction

vm Matrix volume fraction

Yf Factor for minimum stress dependency
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CPP algorithms

Algorithm 1 Closest Point Projection algorithm for HS-LC shear surface

Initialisation
∆λ = 0; δλ = 0; ∆εp = 0; εp = εp,n−1

Trial stress
σ = σ0 +De∆ε
Update yield function
fs = fs(σ, ε

p)
fs,tol = |fs| · 10−6

i = 1
while (|fs| > fs,tol or ‖R‖ > 10−8) and i < 100 do

Calculate derivatives
∂fs
∂σ

; ∂gs
∂σ

; ∂2gs
∂σ2 ; ∂fs

∂εp

Calculate consistent constitutive matrix

Ae =
(
I + ∆λDe

∂2gs
∂σ2

)−1

De

Calculate residual plastic strain

R = −∆εp + ∆λ∂gs
∂σ

Update plasticity multiplier

δσ = −Ae

(
R+ δλ∂gs

∂σ

)
F Ts = ∂fs

∂σ

T
+ ∆λ ∂fs

∂εp
T ∂2gs
∂σ2

δλ =
fs−F Ts AeR+

∂fs
∂εp

T

R

FT
s Ae

∂gs
∂σ
− ∂fs
∂εp

T ∂gs
∂σ

∆λ = ∆λ+ δλ

Update plastic strains

δεp = R+ δλ∂gs
∂σ

+ ∆λ∂
2gs
∂σ2 δσ

∆εp = ∆εp + δεp
εp = εp + δεp

Update stress
σ = σ + δσ
Update yield function
fs = fs(σ, ε

p)
i = i+ 1

end while
return σ, εp, ∆λ
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Algorithm 2 Closest Point Projection algorithm for HS-LC cap surface

Initialisation
∆λ = 0; δλ = 0; ∆pp = 0; ∆εp = 0; pp = pn−1

p ; εp = εp,n−1

Trial stress
σ = σ0 +De∆ε
Update yield function
fc = fc(σ, pp)
fc,tol = |fc| · 10−6

i = 1
while (|fc| > fc,tol or ‖R‖ > 10−8 or |Rh| > 10−8) and i < 100 do

Calculate derivatives
∂fc
∂σ

; ∂gc
∂σ

; ∂2gc
∂σ2 ; ∂fc

∂pp
; ∂pp
∂εpv

; ∂εpv
∂εp

Calculate consistent constitutive matrix

Ae =
(
I + ∆λDe

∂2gc
∂σ2

)−1

De

Calculate residual plastic strain and hardening parameter residual

R = −∆εp + ∆λ∂gc
∂σ

Rh = −∆pp + ∆λ∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ

Update plasticity multiplier

δσ = −Ae

(
R+ δλ∂gc

∂σ

)
F Tc = ∂fc

∂σ

T
+ ∆λ∂fc

∂pp

∂pp
∂εpv

∂εpv
∂εp

T ∂2gc
∂σ2

δλ =
fc−F Tc AeR+

∂fc
∂pp

Rh

F Tc Ae
∂gc
∂σ
−∂fc
∂pp

∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ

∆λ = ∆λ+ δλ
Update plastic strains

δεp = R+ δλ∂gc
∂σ

+ ∆λ∂
2gc
∂σ2 δσ

∆εp = ∆εp + δεp
εp = εp + δεp

Update stress
σ = σ + δσ
Update hardening parameter

δpp = Rh + ∂pp
∂εpv

∂εpv
∂εp

T
(
δλ∂gc

∂σ
+ ∆λ∂

2gc
∂σ2 δσ

)
∆pp = ∆pp + δpp
pp = pp + δpp
Update yield function
fc = fc(σ, pp)
i = i+ 1

end while
return σ, εp, pp, ∆λ
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Algorithm 3 Closest Point Projection algorithm for HS-LC tension surface

Initialisation
∆λ = 0; δλ = 0; ∆εp = 0; εp = εp,n−1

Trial stress
σ = σ0 +De∆ε
Update yield function
ft = ft(σ)
ft,tol = |ft| · 10−6

i = 1
while (|ft| > ft,tol or ‖R‖ > 10−8) and i < 100 do

Calculate derivatives
∂ft
∂σ

; ∂gt
∂σ

; ∂2gt
∂σ2

Calculate consistent constitutive matrix

Ae =
(
I + ∆λDe

∂2gt
∂σ2

)−1

De

Calculate residual plastic strain

R = −∆εp + ∆λ∂gt
∂σ

Update plasticity multiplier

δσ = −Ae

(
R+ δλ∂gt

∂σ

)
F Tt = ∂ft

∂σ

T

δλ =
ft−F Tt AeR

FT
t Ae

∂gt
∂σ

∆λ = ∆λ+ δλ
Update plastic strains

δεp = R+ δλ∂gt
∂σ

+ ∆λ∂
2gt
∂σ2 δσ

∆εp = ∆εp + δεp
εp = εp + δεp

Update stress
σ = σ + δσ
Update yield function
ft = ft(σ)
i = i+ 1

end while
return σ, εp, ∆λ
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Algorithm 4 Closest Point Projection algorithm for HS-LC shear and cap surfaces

Initialisation
∆λs = 0; δλs = 0; ∆εp = 0; εp = εp,n−1

∆λc = 0; δλc = 0; pp = pn−1
p

Trial stress
σ = σ0 +De∆ε
Update yield functions
fs = fs(σ, ε

p)
fc = fc(σ, pp)
fs,tol = |fs| · 10−6

fc,tol = |fc| · 10−6

i = 1
while (|fs| > fs,tol or |fc| > fc,tol or ‖R‖ > 10−8 or |Rh| > 10−8) and i < 100 do

Calculate derivatives
∂fs
∂σ

; ∂gs
∂σ

; ∂2gs
∂σ2 ; ∂fs

∂εp
∂fc
∂σ

; ∂gc
∂σ

; ∂2gc
∂σ2 ; ∂fc

∂pp
; ∂pp
∂εpv

; ∂εpv
∂εp

Calculate consistent constitutive matrix

Ae =
(
I + ∆λsDe

∂2gs
∂σ2 + ∆λcDe

∂2gc
∂σ2

)−1

De

Calculate residual plastic strain and hardening parameter residual

R = −∆εp + ∆λs
∂gs
∂σ

+ ∆λc
∂gc
∂σ

Rh = −∆pp + ∆λc
∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ

Update plasticity multipliers

δσ = −Ae

(
R+ δλs

∂gs
∂σ

+ δλc
∂gc
∂σ

)
Ω =

 F T
s Ae

∂gs
∂σ
− ∂fs

∂εp
T ∂gs
∂σ

F T
s Ae

∂gc
∂σ
− ∂fs

∂εp
T ∂gc
∂σ

F T
c Ae

∂gs
∂σ

F T
c Ae

∂gc
∂σ
− ∂fc

∂pp

∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ


Ωf =

 fs − F T
s AeR+ ∂fs

∂εp
R

fc − F T
c AeR+ ∂fc

∂pp
Rh


 δλs

δλc

 = Ω−1Ωf

∆λs = ∆λs + δλs
∆λc = ∆λc + δλc
Update plastic strains

δεp = R+ δλs
∂gs
∂σ

+ δλc
∂gc
∂σ

+
(

∆λs
∂2gs
∂σ2 + ∆λc

∂2gc
∂σ2

)
δσ

∆εp = ∆εp + δεp
εp = εp + δεp

Update stress
σ = σ + δσ
Update yield functions
fs = fs(σ, ε

p)
fc = fc(σ, pp)
i = i+ 1

end while
return σ, εp, pp, ∆λs, ∆λc
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Algorithm 5 Closest Point Projection algorithm for HS-LC shear and tension sur-
faces

Initialisation
∆λs = 0; δλs = 0; ∆εp = 0; εp = εp,n−1

∆λt = 0; δλt = 0
Trial stress
σ = σ0 +De∆ε
Update yield functions
fs = fs(σ, ε

p)
ft = ft(σ)
fs,tol = |fs| · 10−6

ft,tol = |ft| · 10−6

i = 1
while (|fs| > fs,tol or |ft| > ft,tol or ‖R‖ > 10−8 and i < 100 do

Calculate derivatives
∂fs
∂σ

; ∂gs
∂σ

; ∂2gs
∂σ2 ; ∂fs

∂εp
∂ft
∂σ

; ∂gt
∂σ

; ∂2gt
∂σ2

Calculate consistent constitutive matrix

Ae =
(
I + ∆λsDe

∂2gs
∂σ2 + ∆λtDe

∂2gt
∂σ2

)−1

De

Calculate residual plastic strain and hardening parameter residual

R = −∆εp + ∆λs
∂gs
∂σ

+ ∆λt
∂gt
∂σ

Update plasticity multipliers

δσ = −Ae

(
R+ δλs

∂gs
∂σ

+ δλt
∂gt
∂σ

)
Ω =

 F T
s Ae

∂gs
∂σ
− ∂fs

∂εp
T ∂gs
∂σ

F T
s Ae

∂gt
∂σ
− ∂fs

∂εp
T ∂gt
∂σ

F T
t Ae

∂gs
∂σ

F T
t Ae

∂gt
∂σ


Ωf =

 fs − F T
s AeR+ ∂fs

∂εp
R

ft − F T
t AeR


 δλs

δλt

 = Ω−1Ωf

∆λs = ∆λs + δλs
∆λt = ∆λt + δλt
Update plastic strains

δεp = R+ δλs
∂gs
∂σ

+ δλt
∂gt
∂σ

+
(

∆λs
∂2gs
∂σ2 + ∆λt

∂2gt
∂σ2

)
δσ

∆εp = ∆εp + δεp
εp = εp + δεp

Update stress
σ = σ + δσ
Update yield functions
fs = fs(σ, ε

p)
ft = ft(σ)
i = i+ 1

end while
return σ, εp, ∆λs, ∆λt
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