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Abstract 

Absorption of photon energy by neuronal mitochondria leads to numerous downstream 

neuroprotective effects. Red and near infrared (NIR) light are associated with significantly less 

safety concerns than light of shorter wavelengths and they are therefore, the optimal choice 

for irradiating the retina. Potent neuroprotective effects have been demonstrated in various 

models of retinal damage, by red/NIR light, with limited data from human studies showing its 

ability to improve visual function. Improved neuronal mitochondrial function, increased blood 

flow to neural tissue, upregulation of cell survival mediators and restoration of normal 

microglial function have all been proposed as potential underlying mechanisms of red/NIR 

light. 
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The therapeutic properties of light have been known since antiquity, as far back as 1400 BC, 

where it was used by Hindus to treat skin disorders [1]. The ancient Egyptians, Greeks and 

Romans were also reportedly aware of the beneficial effects of sunlight which they used to 

treat various ailments [2]. The evidence for the use of phototherapy in those time, however, 

is purely anecdotal. It was not until 1903 that the therapeutic power of light gained scientific 

recognition, when Niels Finsen was awarded the Nobel Prize in medicine for the discovery of 

UV light as a treatment for skin tuberculosis (lupus vulgaris) [3].  

Red light was, later, found to have biostimulatory effects; an unintentional discovery made 

by Endre Mester, in 1967, who wanted to assess the ability of 694 nm lasers to cause 

carcinogenesis in mice [4]. The mice in both the light-treated and untreated groups were 

shaved prior to laser exposure. The results found that the light-treated group did not develop 

cancer, but more intriguingly, the hair grew back on the laser treated mice at a faster rate 

than the untreated group.  

In more recent times, there has been a surge in the use of red and near infrared (NIR) lasers 

and LEDs in clinical and preclinical research [5]. As red and NIR light have relatively long 

wavelengths, they have the advantage of a greater penetration depth over shorter 

wavelengths, making them an ideal choice for the treatment of neural tissue [6]. In addition 

to light being able to penetrate into the tissue of interest, another requirement is that the 

photon energy corresponds to the absorption characteristics of the chromophores 

responsible for triggering the beneficial effects upon photoexcitation. It appears that red and 

NIR light correspond to the absorption maxima of such chromophores as will be discussed 

later. For various reasons, LEDs are most commonly used as the light source in these studies. 

Most importantly, red/NIR LED therapy has been approved for use in humans and has been 
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deemed as a non-significant risk by the U.S. Food and Drug Administration. Although shorter 

wavelengths of visible light and UV light are also employed for therapeutic purposes, their 

safety for use in humans, especially for the eye, is less clear [7, 8]. With the ultimate objective 

of exploring the efficacy of phototherapy as a treatment for neurodegeneration in the human 

retina, this review will focus only on the use of wavelengths that are least likely to cause 

adverse effects, that is, red and NIR light[9].  

2.0 The potential of red/NIR light as a treatment for neurodegeneration 

2.1 Evidence from in vitro studies 

Red and NIR light have been shown to provide protection against the deleterious effects of 

mitochondrial electron transport chain inhibitors and excitotoxic cell death in neurons in vitro 

[10-12]. Since impaired mitochondrial function and excitotoxicity are common causes of cell 

death in neurodegenerative conditions, the ability of red/NIR light to protect against these 

challenges in vitro has emphasized the potential of this therapy in various neurodegenerative 

conditions.     

2.2 The effects of red/NIR light in models of neurodegeneration 

Red/NIR light therapy has shown great potential in the treatment of acute neurodegenerative 

conditions, showing neuroprotective effects in rodent models of spinal cord injury, traumatic 

brain injury and stroke [13-18].  

Furthermore, red light has been shown to have beneficial effects in animal models of some 

of the most prevalent neurodegenerative diseases. A reduction in cell loss and other markers 

of disease severity was seen with red/NIR light treatment, in rodent models of multiple 

sclerosis, Alzheimer’s and Parkinson’s disease [19-26].  
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2.3 The potential of red/NIR light as a successful treatment for neurodegeneration in humans 

While transcranial red/NIR light therapy is yielding remarkable results in numerous rodent 

models of neurodegeneration, the real question is how well these results will translate when 

applying this therapy to human patients.  

Interestingly, in a neurotoxin-induced monkey model of Parkinson’s disease, 670 nm light was 

delivered directly to the macaque midbrain using an implanted optical fibre which was 

activated over the period of time of 5-7 days when the neurotoxin precursor, 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP), was injected [27]. The study found a reduction in 

clinically-assessed behavioural impairment with this method of red light delivery in this 

primate model as well as neuroprotection to the dopaminergic neurons of the substantia 

nigra. Although a more invasive method of delivery than transcranial red light treatment, no 

major adverse effects were observed following surgical implantation of the optical fibre. 

However, it would have been of great interest if the effects of transcranial light delivery were 

also tested in this model, for comparison.  

3.0 Red light treatment in retinal degenerative diseases 

Since the retina is an extension of the CNS, the neuroprotective effects of red/NIR light, as 

discussed above, should also be observed in this tissue. In fact, irradiating the retina with red 

or NIR light seems more likely to be successful as a non-invasive treatment for human patients 

as the issue of tissue penetration is avoided. 

3.1 The safety of light treatment on the retina 

The greatest concern arising when aspiring to use red light therapy to treat retinal 

degeneration, is the potential retinal damage that may occur upon direct exposure of the 
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retina to light with high levels of irradiance. The dangers of high levels of irradiance on the 

retina is highlighted in a study on anesthetised monkeys [28]. It was found that white light 

with a retinal irradiance of 270 mW/cm2 caused irreversible damage to the photoreceptors 

and retinal pigment epithelium. White light is made up of light of all wavelengths in the visible 

light spectrum, with light of shorter wavelengths and higher frequencies having a greater 

damaging effect on photoreceptors. Blue light, with a relatively short wavelength, was found 

to cause irreversible damage to S cones [29].  While exposure to green and red light caused 

damage to M and L cones, respectively, the damage to these cones was reversible, with a full 

recovery of function seen after a few weeks. More recent studies on macaque monkey, 

however, have demonstrated that yellow light of 568 nm wavelength can cause retinal 

damage manifested as disruption of the retinal pigment epithelium at the dose below the 

Maximal Permissible Exposure established by the American National Standard Institute’s 

(ANSI) as a standard for the safe use of lasers [30]. 

Albeit transient and less severe than light of shorter wavelengths, damage to L cones upon 

exposures to high levels of red light would be a cause for concern when considering red light 

as a treatment for retinal degeneration. This concern has been addressed with numerous in 

vivo studies. These studies have shown that therapeutic effects were achieved, in the absence 

of retinal damage, when rodent retinas were exposed to 670 nm light with a therapeutically 

effective irradiance and exposure times [31-33]. Further, this included irradiance of 60 

mW/cm2 which is the highest irradiance level found in studies of in vivo models of retinal 

degeneration where positive results were achieved using 670 nm light. This demonstrates the 

safety of using 670 nm light as a treatment for retinal degeneration. 
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In addition to photoreceptor damage, the possibility of photothermal damage to the retina 

and surrounding ocular structures evokes further concern when considering using light to 

treat retinal degeneration [34]. Comparing the effects of green, red and NIR laser light 

exposure on the temperature rise in the human choroid, it was found that the longer 

wavelengths led to a smaller degree of choroidal heating, due to the decrease in absorption 

by melanin with increasing wavelength [35]. The variation in choroidal heating between green 

and red wavelengths was minor compared with the difference between green and NIR 

wavelengths.  

Still the question remains as to which would be the optimal wavelength for use as a 

neuroprotective agent in the retina. Addressing this, the efficacy of red and NIR light were 

compared in a model of partial optic nerve transection [33]. It was found that although 

protective effects were seen in retinas treated with both red and NIR light, 670 nm light was 

more effective in improving visual function compared with 830 nm light. However, in a rat 

model of light induced retinal degeneration protective effects were observed with 670 nm 

light treatment, but no protection was seen with 830 nm light [33]. It is therefore not 

surprising that most studies testing the effectiveness of phototherapy on neurodegeneration 

in the retina use red light at 670 nm.  

3.2 670 nm light therapy in models of photoreceptor damage  

As discussed above, exposing the retina to bright light can cause photoreceptor damage, an 

event that can occur with excessive sunlight exposure or accidental exposure to high intensity 

artificial light sources. Models of light induced photoreceptor damage are also used to 

simulate retinal degenerative diseases, involving photoreceptor specific death. Emphasising 

the vast and diverse effects of light on biological tissue, irradiating the retina with red light 
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provided protection against the structural damage to the outer retina and loss in 

photoreceptor function in a rat model of light induced photoreceptor degeneration [32]. 

Methanol can also induce damaging effects on the retina causing photoreceptor toxicity due 

to the ability of its metabolite, formic acid, to inhibit cytochrome c oxidase, the terminal 

enzyme of the electron transport chain. In a rat model of methanol induced retinal toxicity, 

red light treatment brought about a significant recovery of rod and cone mediated function, 

in addition to preventing methanol induced changes to outer retinal morphology [36]. These 

studies show the ability of red light to protect against loss of photoreceptor function, an event 

that would cause severe visual impairment and would otherwise be irreversible. 

3.3 The effects of red light on inflammation in the outer retina 

Inflammation in the retina has been implicated in many retinal diseases including age related 

macular degeneration (AMD) and diabetic retinopathy, and as such, looking at ways to 

alleviate inflammation in these conditions is thought to reduce the severity of symptoms 

associated with these diseases [37]. Also, an upregulation in inflammatory proteins has been 

observed following light damage in rats, demonstrating pathological features similar to “dry” 

AMD [38]. In addition to its ability to protect against light induced photoreceptor damage, red 

light treatment was found to reduce the complement propagation that occurs in the retina 

following light damage. Red light treatment was also tested in an aged genetic mouse model 

of AMD, the complement factor H knockout, which, likewise, presents with reduced retinal 

function and increased inflammation [39]. In contrast to most studies with red/NIR light, 

where the light source was held directly in front of the animal, the environmental light was 

supplemented with red light, for this study. Even though the red light exposure was indirect, 
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the levels reaching the retina were sufficient to reduce inflammation in the outer retina, in 

this model. 

In addition to inflammation associated with disease pathology, inflammation increases in the 

retina with age. Red light was effective in reducing proinflammatory cytokines and a chronic 

marker of inflammation in the aged mouse retina, demonstrating the potential of red light to 

also alleviate the visual decline associated with normal aging [40]. These studies draw 

attention to the ability of red light to produce anti-inflammatory effects associated with outer 

retinal degeneration, whether by induced damage, disease pathology or normal aging.  

3.4 The effects of red light on neurodegeneration in the inner retina  

Retinal ganglion cell (RGC) death and optic nerve degeneration are hallmarks of optic 

neuropathy, a frequent cause of vision loss, of which the causes are many.  Red light therapy 

has been trialled in a rat model of diabetic retinopathy and positive outcomes have been 

reported. There was a significant reduction in the diabetes induced RGC death and a 50% 

improvement in the diabetes-induced reduction in ERG amplitude with exposure to red light 

[41]. Highlighting the beneficial effects of red light on the retinal vasculature, red light also 

prevented the diabetes-induced increase in leukostasis in the retinal vasculature, an event 

which is implicated in the pathogenesis of diabetic retinopathy. Further, the diabetes-induced 

increase in retinal expression of an adhesion molecule, essential for leukostasis, ICAM-1, was 

also prevented with red light. Similarly, in a model of secondary degeneration of RGCs, 

resulting from traumatic injury to the optic nerve, red light was found to be protective [42]. 

The secondary damage, following partial optic nerve transection, normally leads to further 

loss of RGCs and visual function; however, normal visual function was restored with red light 

treatment[42]. Furthermore, treatment with 670 nm light in a rat model of partial optic nerve 
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transection, resulted in improved vision, 7 days post injury [33]. Additionally, dendropathy of 

retinal ganglion cells, an event found to be associated with visual loss in experimental models 

of glaucoma and autosomal dominant optic atrophy, was partially prevented, in an axotomy 

model of neurodegeneration, with red light treatment [43]. Protection against RGC and optic 

nerve degeneration, arising from different conditions, appears to be possible with red light 

treatment. Since RGC dysfunction and optic nerve degeneration are common features among 

numerous other types of optic neuropathies red light has the potential to provide protection 

in these conditions also.  

However, the successful outcomes achieved in the discussed experimental models were seen 

when red light was administered immediately after induced optic nerve injury, a treatment 

strategy that would be unachievable in a real life clinical setting. Although the therapeutic 

window of opportunity for red/NIR light therapy in models of traumatic optic neuropathy has 

not been explored, it has been assessed in other CNS injury models. NIR light therapy 

improved motor function in a rabbit model of embolic stroke when treatment was 

administered 6 hours post-embolization but was ineffective when administered 12 hours post 

embolization [44]. The findings show that neuroprotection can be achieved when red/NIR 

light is administered for up to 6 hours after the induced injury, showing the therapy to be 

applicable to a clinical setting. Other studies on animals demonstrated effectiveness of near-

infrared light in a mouse model of traumatic brain injury when administered 4 hours after 

injury, with additional treatments administered at one day and two days post injury[45, 46]. 

The transcranial treatment upregulated brain-derived neurotrophic factor (BDNF), improved 

neurological functions, reduced the size of the lesion, stimulated formation of new neurons 

and synaptogenenesis. There is also a growing body of evidence suggesting that people 
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affected by chronic traumatic brain injury or after stroke can benefit from transcranial 

irradiation with red/near-infrared light [47, 48] 

3.5 Red/NIR light as a therapy for patients with retinal disease 

The protective effects seen with red light treatment, in the absence of adverse effects, in 

numerous in vivo models of retinal degeneration, strongly suggest this non-invasive 

treatment should be trialled in patients with retinal degeneration. Progress to this end has 

commenced with trials of red and NIR light therapy yielding promising results in patients with 

AMD. In one such study, a brief exposure of NIR light (780 nm), from a semiconductor laser 

diode, to AMD patients, twice per week for two weeks, resulted in a significant improvement 

in their visual acuity [49]. This improvement in vision was seen in patients with both wet and 

dry AMD and was maintained for 3-36 months after treatment. Moreover, no adverse effects 

of the treatment were seen. In this study, the laser was applied transconjunctivally, to the 

macula, when the eye was in adduction. In another study looking at the effects of 

photobiomodulation on patients with dry AMD, the retina was irradiated through the pupil 

with red light (670 nm), from the FDA approved Warp 10 LED light source, 3 times per week 

for 6 weeks [50]. The visual acuity and contrast sensitivity remained significantly improved for 

12 months after treatment; however, the improvement in visual acuity began to decline after 

4 months. The results provide vital information on the time at which patients may benefit 

from re-treatment, in addition to providing pilot data on the safety and effectiveness of 670 

nm light from an LED source. Red/NIR light has also been trialled in diabetic macular edema 

and Leber’s hereditary optic neuropathy, however, there are no results available from these 

studies. A summary of all the studies using red/NIR light as a treatment intervention in 

conditions associated with neurodegeneration in the retina is available in Table 1. From all 
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the studies listed, red/NIR light is showing the greatest potential as a treatment for AMD. 

Since positive outcomes have been observed in patients with AMD, this paves the way for the 

application of this therapy in other retinal degenerative conditions, particularly those where 

positive outcomes have been seen in preclinical studies. 

Responsible 
party 

Last verified on 
ClinicalTrials.gov 

Condition 

Duration 
of 

treatment 
period 

Number 
of 

patients 

Duration 
of 

improved 
vision 
after 

treatment 

Status 

Harry T 
Whelan 

01/09/2013 
Diabetic 
Macular 
Edema 

3 months 20 
No results 
available 

Completed 

Ivandic and 
Ivandic 
2008 

N/A 
Wet and dry 

AMD 
2 weeks 203 

Up to 36 
months 

Completed and 
published{Ivandic, 

2008} 

Merry, 
Graham 

01/11/2011 

Non-
exudative 

Age-related 
Macular 

Degeneration 

6 weeks 9 
Up to 12 
months 

Completed and 
published{Merry, 

2013} 

Merry et al., 
2016 

N/A 

Non-
exudative 

Age-related 
Macular 

Degeneration 

3 weeks 24 3 months 
Completed and 

published{Merry, 
2016} 

University 
of Sydney 

01/06/2014 
Diabetic 

retinopathy 
4 weeks N/A N/A Planned 

LumiThera, 
Inc. 

01/04/2016 
Age-related 

Macular 
Degeneration 

3 weeks 30 N/A Planned 

Harry T 
Whelan 

01/09/2014 

Leber’s 
hereditary 

optic 
neuropathy 

3 months 4 N/A 

Terminated (0/4 
patients 

completed the 
study) 

Table 1: A summary of the completed, planned and terminated clinical trials, using red/NIR 
light as a treatment intervention in conditions associated with retinal neurodegeneration. 
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4.0 The effects of red/NIR light on mitochondrial dysfunction 

Although the therapeutic benefits of red/NIR light therapy have been demonstrated in a 

number of different disease models, in addition to AMD patients, the underlying molecular 

mechanisms are less well understood [5]. The question is no longer whether or not light has 

biological effects, it is rather how these effects are mediated at a cellular and molecular level 

[51].  

4.1 Cytochrome c Oxidase: the photoacceptor for red/NIR light 

Endeavors to uncover the underlying molecular mechanisms suggest a major role for 

cytochrome c oxidase (COX) which is the terminal enzyme of the electron transport chain, 

transferring electrons from cytochrome c to molecular oxygen [52], [53]. 

COX is a large multicomponent protein, containing two copper centers (CuA and CuB) and two 

heme iron containing centers (heme a and heme a3), which absorbs photons in the red to NIR 

region of the electromagnetic spectrum [53]. These transition metals are also the 

intermediate redox sites in the electron transfer pathway from cytochrome c to oxygen, a 

process which is coupled to the pumping of protons across the inner mitochondrial 

membrane. The electrons pass from cytochrome c to CuA then passed to heme a, from heme 

a to heme a3-CuB and finally to molecular oxygen.  

4.2 The absorption of photons by photoacceptors in COX  

One theory proposed to explain how photon energy is absorbed by COX, centers on its heme 

molecules [54]. Heme is comprised of a porphyrin ring with an iron atom at its center that can 

continuously switch its oxidation states between ferrous (Fe2+) and ferric (Fe3+) by accepting 

or donating an electron. The porphyrin ring is made up of four pyrrole rings that are 
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connected through their carbon atoms via  bonds. The electrons in these  bonds are 

delocalised, moving back and forth from one configuration to another, creating resonance. 

Electrons, like photons, have a dual nature, behaving like particles or electromagnetic waves, 

thereby creating a resonating electromagnetic cloud in the porphyrin ring. Photons with 

similar wavelengths are absorbed by this cloud, increasing its energy. The energy from these 

photons causes photoexcitation of electrons of Fe2+, bringing them to an unstable higher 

energy level.  Upon absorption of sufficient energy, these electrons are released from the 

orbitals of Fe2+ causing the oxidation of Fe2+ to Fe3+. The oxidised iron atom can then accept 

electrons from cytochrome c, thus increasing the electron flux through the electron transport 

chain.  

Experimental evidence shows that red/NIR light has the ability to upregulate the enzymatic 

activity of complex IV, increase the mitochondrial membrane potential and increase ATP 

production [39, 40, 51, 55-58]. These mitochondrial specific effects of photobiomodulation 

may offer a partial explanation for its beneficial effects in neurodegenerative diseases 

associated with mitochondrial dysfunction. However, in genetic or toxin induced models of 

Parkinson’s disease, where loss of dopaminergic cells was triggered by complex I dysfunction, 

neuroprotective effects were seen with red/NIR light treatment. The absorption of photon 

energy by the heme group in complex IV may explain how photobiomodulation can increase 

ATP production when complex IV is inhibited but fails to explain how this effect can be 

achieved in models with complex I inhibition.  

It has been hypothesised by Zielke et al. that the electrons released in this oxidation process 

are free to reduce NAD+ and FAD, providing substrates for complex I and II, respectively, 

creating a closed circuit of electron transfer [54]. In the case of aberrant functioning of COX 
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the flux of electrons through this closed circuit would maintain the proton pumping functions 

of complex I and III, thereby maintaining the electrochemical gradient across the 

mitochondrial membrane required for ATP synthesis. However, since oxygen is very 

electronegative it would be most likely that the released electrons would be readily accepted 

by the oxygen molecule bound to the reduced heme a3-CuB component of COX, reducing it 

to water. In the event of aberrant COX activity the released electron would most likely react 

with unbound oxygen molecules, forming reactive oxygen species. Therefore, how red/NIR 

provides neuroprotection against complex I dysfunction is not explained by its direct action 

on the COX. 

5.0 The nitric oxide theory of red/NIR light therapy 

5.1 The role of nitric oxide in mitochondrial respiration 

Nitric oxide (●NO) has important roles in the regulation of blood pressure and vasculature 

tone, however, excessive ●NO production, as seen in neurodegenerative diseases, can cause 

impairment of mitochondrial respiration and apoptosis [59]. Mitochondria harbor nitric oxide 

synthase (NOS) to produce NO, which they use to hinder respiration, as an intrinsic 

mechanism to prevent oxygen from reaching precariously low levels [9]. ●NO, at low 

concentrations, competes with oxygen to bind to the reduced heme a3-CuB component of 

COX [52]. This prevents COX from reducing molecular oxygen, thus impairing the proton 

pumping abilities of the enzyme and essentially the energy production ability of the 

mitochondria. Additionally, ●NO was found to cause inhibition of complex I, II and IV-

dependent respiration in mitochondrial suspensions, where the inhibitory action of ●NO was 

found to be more profound at lower oxygen tensions [60]. Interestingly, this inhibitory action 

of ●NO was overcome by reoxygenation of mitochondrial suspensions for a mere 10 seconds, 
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resulting in complete recovery of complex I and IV dependent oxygen consumption and a 50% 

recovery of complex II dependent respiration.  This shows that the inhibitory actions of ●NO 

are almost completely reversible upon restoration of normal oxygen levels. Therefore, this 

intrinsic mechanism would protect a tissue if the depleted oxygen supply were temporary, by 

putting the mitochondria in a state of conservation until the return of normal oxygen levels. 

However, prolonged inhibition of respiration would deplete ATP levels and bring about cell 

death [61]. 

5.2 The effects of red/NIR light on ●NO-mediated mitochondrial dysfunction 

Red/NIR light has been proposed to influence the photodissociation of ●NO from COX, thereby 

allowing oxygen to reclaim its binding site, permitting the ATP production process to resume 

[52]. This would be most beneficial in pathological situations where ●NO levels are higher than 

normal physiological amounts, favouring the binding of ●NO rather than O2 to COX. 

Experiments have shown that irradiating cells with red/NIR light increases COX activity in 

normal healthy neurons and restores the activity in COX inhibited neurons [10]. However, the 

increase in COX activity appears to be mediated by an increase in the expression of the 

proteins in the COX complex, suggesting that a mechanism, additional to the disinhibition of 

COX, may also be involved[62]. Furthermore, exposure of cells to an irreversible COX inhibitor 

was overcome by NIR light treatment, providing further support to the claim that restoration 

of activity is mediated by upregulating the expression of COX proteins [10]. 

An indirect effect of red/NIR light on COX activity helps explain how beneficial effects are also 

seen in neurodegenerative conditions that are associated with impairment of other electron 

transport chain complexes. The absorption of photon energy from red/NIR light by COX may 

indeed have direct effects on the enzyme itself, however, this initial event may trigger further 
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downstream events, which may have more far-reaching effects. As ●NO is widely known for 

its function as an intercellular signaling molecule, the release of ●NO upon red/NIR light 

exposure would increase its bioavailability allowing it to function as a signaling molecule [63]. 

It has been suggested that ●NO intracellular signaling could play a role in the upregulation of 

COX proteins upon red/NIR light exposure. Intracellular signaling from the mitochondria to 

the nucleus may be triggered by other byproducts of mitochondrial respiration, levels of 

which may be altered by red/NIR light, therefore, will be discussed in more detail later in this 

review.  

5.3 The indirect effects of Red/NIR light on mitochondrial dysfunction 

The findings by Cassina and Radi suggest that increasing the delivery of oxygen to the 

mitochondria, as would occur with increased blood flow to the tissue, would improve 

mitochondrial function in tissues with ●NO-mediated mitochondrial electron transport chain 

inhibition [60]. It has been found that the exposure of blood vessels to red light from an LED 

source can induce photorelaxation of blood vessels, an event that would increase blood flow 

and, in turn, oxygen delivery to the irradiated tissue [64]. Exposure of porcine coronary 

arteries to red light caused their vasodilation, as measured by wall tension in the exposed 

vessels. Since nitric oxide is known to have a primary role in the regulation of vasculature 

tone, and NOS is activated upon absorption of visible light, the vasodilation effect seen upon 

red light exposure is thought to be mediated through nitric oxide [65].  Additionally, red/NIR 

light can trigger the photodissociation of ●NO from nitrosyl hemoglobin and nitrosyl 

myoglobin[63]. The ●NO released from hemoglobin in the blood would contribute to the 

vasodilation effects of red/NIR light. Depending on the physiological situation, 

photobiomodulation can either reduce or increase ●NO levels, however, the molecular events 
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determining whether the effect will be an inhibitory or a stimulatory one are yet to be 

identified [66]. An increase in ●NO upon red light exposure would provide beneficial effects 

in conditions such as TBI, where increased cerebral blood flow could increase mitochondrial 

function in hypopxic cells (Figure 1) [67]. As mentioned earlier in the review, hypoxia can 

trigger inhibition of respiration through the binding of ●NO to COX. The phototdissociation of 

NO from COX in hypoxic tissue may not cause a significant improvement in mitochondrial 

function since there would be limited oxygen available to reclaim the binding site on COX. 

However, if combined with an increase in cerebral blood flow, the associated increase in 

oxygen levels would lead to a more substantial improvement in mitochondrial function. This 

proposes a partial explanation for the neuroprotective effects seen upon red/NIR light 

exposure.  

Figure 1: The direct and indirect actions of red/NIR light on nitric oxide improve 
mitochondrial function in neurons vulnerable to degeneration, in acute neurodegenerative 
conditions such as TBI.  
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5.4 The effects of red/NIR light on cellular function  

As mentioned above, the ability of red/NIR light to increase free ●NO can have beneficial 

effects in cells where mitochondria are dysfunctional. Providing further support to this theory, 

it was found that red/NIR light was protective against hypoxia and re-oxygenation injury in 

cultured cardiomyocytes. The observed protection was dependent on an increase in ●NO as 

the protective effects were abolished in the presence of ●NO scavengers [68]. Further, it was 

observed that the increase in NO seen upon red/NIR exposure was partially prevented by the 

non-selective inhibition of all isoforms of NOS. Of note, there are three isoforms of NOS: 

Neuronal NOS (nNOS), which is expressed in the central nervous system and plays a role in 

synaptic plasticity and central regulation of blood pressure, endothelial NOS (eNOS), which is 

mostly expressed in endothelial cells and primarily functions in controlling blood pressure, 

and inducible NOS (iNOS), which can be expressed in many cell types in response to cytokines 

and other agents to generate large amounts of ●NO[69]. The findings show that the increase 

in ●NO by red/NIR light is mediated in part by its action on NOS, however, the exact isoform 

of NOS responsible for the protective effects has not been determined. The source of the 

remaining NO could be that which is released during the photodisociation of ●NO from COX 

in the mitochondria as discussed above.  

This in vitro model of cardiac ischemia provides useful insight into how red/NIR light mediates 

its effects via ●NO in ischemic conditions. Since the experiment was done in vitro, the 

observed protective effects most likely arose from the local effects of an increase in 

intracellular ●NO rather than an indirect effect of ●NO by increasing blood flow to the ischemic 

tissue. Although reperfusion is essential to limit cell death after hypoxia, paradoxically, this 

event itself causes further cell death due to excess ROS production [70]. The increase in free 
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●NO upon red/NIR light exposure would increase its availability to bind to COX and cause the 

reversible S-nitrosation of Complex I, events which would slow down the reactivation of the 

electron transport chain during the crucial initial stages of reperfusion [71]. In this particular 

pathological situation red/NIR light, administered upon reoxygenation, could reduce the 

harmful levels of ROS produced during reperfusion injury by reversibly inhibiting the electron 

transport chain.  

Contrastingly, in an in vivo model of cerebral ischemia, where excess ●NO production is said 

to be associated with neurotoxic effects, red/NIR light has been shown to have the ability to 

reduce the levels of ●NO by down-regulating the activity and expression of all isoforms of NOS 

[72].  Both studies focus on ●NO to explore the underlying mechanism responsible for the 

protective effect of red/NIR light in models of ischemia, yet, in these examples, the effects on 

●NO were found to be conflicting. The respective increase and decrease in ●NO levels seen 

upon red/NIR light irradiation in the discussed models, was dependent on the respective 

activation and inhibition of NOS. Although theories have been proposed to explain the 

increase in NOS activity in response to red/NIR light irradiation, how red/NIR light inhibits 

NOS activity is less clear. Since the expression of the three isoforms of NOS showed a similar 

trend to the specific activities of the NOS enzymes in response to red/NIR light, red/NIR light 

must be somehow suppressing the expression of NOS, but the mechanism responsible for this 

effect is unknown[72].     

This observed dual effect of red/NIR light on intracellular ●NO levels has great relevance in 

the field of neurodegenerative conditions. ●NO at physiological amounts confers 

neuroprotection, however, if produced in excess, ●NO has neurotoxic effects [73]. In the in 

vivo model of cerebral ischemia mentioned above the light was administered immediately 



22 
 

after middle cerebral artery occlusion but the levels of NOS activity were not measured until 

4 days post injury, the time at which the NOS levels peaked before returning to pre-injury 

levels. In the in vitro model of cardiac ischemia the light was also administered immediately 

after hypoxia but the ●NO levels were measured after just 2 hours of reoxygenation. It is 

possible, therefore, that red/NIR light triggers an initial increase in ●NO levels, sufficient to 

reduce ROS production and bring about the observed cytoprotective effects. Furthermore, as 

the cell is then in a state of elevated ●NO levels and reduced ROS levels this may be sufficient 

to switch off the endogenous trigger that induces the increased expression of NOS and the 

subsequent delayed surge in ●NO levels, which only contribute to the toxic effects at that late 

stage of ischemia. However, as shown in Figure 2, low levels of ●NO are produced during the 

early stages of ischemia to induce neuroprotective effects in the absence of red/NIR light, yet 

an increase in ●NO is responsible for the neuroprotective effects achieved with red/NIR light 

in the in vitro model of ischemia. Therefore, how does the ●NO produced by red/NIR light 

provide further neuroprotective effects in the early stages of ischemia? Also unanswered is 

how the increase in ●NO  by red/NIR light and the associated reduction in ROS production 

would downregulate the delayed surge in NO production in the later stages of ischemia when 

the ●NO produced in the absence of red/NIR light fails to do so. 

There is much evidence to show that ●NO acts as a neuroprotective agent through its various 

cellular effects. One such effect is the induction of the signaling molecule cyclic guanosine 

3’,5’-monophosphate (cGMP), a molecule with a key role in vasodilation and mitochondrial 

biogenesis [74]. Mitochondrial biogenesis has been found to occur in response to red/NIR 

light irradiation [75]. Diseases with a mitochondrial origin such as Leber’s hereditary optic 
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neuropathy, retinitis pigmentosa and autosomal dominant optic atrophy would benefit from 

the associated increase in mitochondrial biogenesis, as a way of supporting neuronal survival.  

Figure 2: A proposed explanation for the observed dual effect of red/NIR light on NO in 
models of ischemia.  

5.5 The effects of reactive nitrogen species on mitochondrial function 

There is much evidence to show that ●NO, at higher doses, is toxic to neurons; however, this 

NO-mediated toxicity is not produced by ●NO alone, but by the formation of reactive nitrogen 

species (RNS) [76]. As a by-product of mitochondrial respiration the superoxide radical anion 

(O2
●―) is formed when electrons from Complex I or III are transferred to oxygen molecules 

instead of their respective substrates: ubiquinone and cytochrome c [77]. If the amount of 

superoxide produced in the cell increases to a level that would exceeds the antioxidant 

capacity of the cell, oxidative stress will result. In that pro-oxidant state, the production of 

●NO can cause the generation of additional cytotoxic compounds.  The reaction of NO with 

the superoxide radical anion (O2
●―) leads to the generation of the powerful oxidant 

peroxynitrite (ONOO―), which causes detrimental effects in the cell, through its interactions 

with lipids, proteins and DNA [76].  
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Nitric oxide, superoxide and peroxynitrite are often generated in excess during inflammatory 

and pathological conditions, contributing to the associated toxic effects [78]. Peroxynitrite 

can induce mitochondrial dysfunction and cell death in neurons by its ability to inhibit many 

mitochondrial proteins including complex I, II and IV, and ATP synthase. It can also increase 

mitochondrial proton permeability, an effect which may be caused by lipid peroxidation [79]. 

Impairment of normal mitochondrial function causes depletion of ATP and generation of free 

radicals, causing cellular dysfunction and further oxidative stress. Peroxynitrite has been 

found to be involved in the pathogenesis of many neurodegenerative disorders [80]. Since 

the formation of peroxynitrite depends on the availability of ●NO, inhibition of nitric oxide 

synthase activity, as was found to occur in cerebral ischemic-rats irradiated with red light, 

may reduce the amount of peroxynitrite produced and the associated deleterious effects in 

neurodegenerative disorders [72].  

6.0 Red/NIR light in the mitochondrial signaling pathway 

Causing further controversy in the efforts to uncover the underlying molecular mechanism of 

red/NIR light therapy, is the effect that it has on ROS and RNS production. It is also uncertain 

whether an increase or a decrease in these molecules, in the cell, in response to red/NIR light 

exposure would be the most therapeutically beneficial. In some physiological situations red 

light mediates its therapeutic effects by increasing levels of free radicals but in other 

circumstances by reducing the levels of free radicals. Consequently, a further look at the 

molecular effects of free radicals in neurodegeneration is required to uncover the underlying 

mechanism of red/NIR therapy. 

6.1 The role of ROS and RNS in neurodegeneration 
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Postmortem analysis of the brains of patients with various neurodegenerative diseases shows 

an increase in ROS and RNS in the affected brain regions [81, 82]. It is known that these 

reactive species can cause oxidative and nitrative damage to cellular components thereby 

having toxic effects on the cell [83]. It may be deduced from this association that the increase 

in ROS and RNS is contributing to the cellular death and that an antioxidant may be beneficial 

in such conditions. Since red/NIR light has been found to be protective in models of such 

conditions it could, therefore, be possible that the therapeutic benefits of red/NIR light could 

be due, in part, to an antioxidant effect. One possible mechanism of providing the antioxidant 

protection is the photodissociation of ●NO, which at low concentrations can exert an 

antioxidant effect [84-87].  

Because red/NIR light has been found to increase the activity of the electron transport chain, 

and ROS/RNS production is a byproduct of such activity, sometimes it is presumed that 

red/NIR light increases ROS production. It can be argued, however, that by removing NO-

mediated inhibition of COX, the electron flow is restored and therefore the likelihood of 

donating an electron from Complex I or III to oxygen (which results in generation of 

superoxide radical anion) is reduced [77]. Thus by enabling the electron flow in the electron 

transport chain, the risk of formation of superoxide is decreased. 

Investigation into the effects of red/NIR light on ROS production by various groups provides 

inconsistent results as some found a reduction in ROS upon irradiation while others found 

that ROS was, in fact, upregulated [83]. Regardless of the effect of red/NIR light on ROS levels, 

it is unclear whether an antioxidant or pro-oxidant effect would be most beneficial when 

employing red/NIR light as a neuroprotective agent. Regulated ROS production could trigger 

signaling pathways involved in cell protection, but unregulated ROS production could result 
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in cellular damage and cell death [88]. In addition, when ROS levels are too low, this also has 

detrimental effects for the cell. The concept that lower, non-toxic levels of ROS are essential 

for promoting cell survival by inducing an adaptive responses is called mitochondrial hormesis 

or mitohormesis [89]. Exposure to red/NIR light may trigger a transient increase in ROS levels, 

sufficient to induce this adaptive response and provide neuroprotective effects. This 

explanation seems plausible in situations where light is administered as a pre-treatment as 

the cells could employ this adaptive response to protect against a subsequent injury-induced 

increase in ROS levels. However, if the cell is already in a state of elevated ROS levels, as in 

many pathological situations, it is unclear as to how an additional increase in ROS by red/NIR 

light would provide neuroprotective effects. From the current literature, it is clear that the 

mechanism for the effect of red/NIR light on ROS production, in addition to the cellular 

mechanisms responsible for balancing the ROS levels required for maintaining optimal 

mitochondrial and cellular function are not fully understood. However, since maintaining 

redox homeostasis is paramount for the optimal functioning of the cell and neuronal survival, 

we suggest that the exposure to red/NIR light may restore redox homeostasis in pathological 

conditions where it is perturbed. Therefore, in cells with elevated ROS levels, red/NIR light 

may cause mild cellular stress by an unknown mechanism that may induce an adaptive 

response, which includes the upregulation of genes with a role in redox homeostasis. We 

suggest that the observed increase in ●NO upon red/NIR light irradiation, by the various 

mechanisms discussed in section 5, may facilitate the production of peroxynitrite through the 

reaction of ●NO with ROS. The elevated RNS levels may induce an adaptive response by 

triggering a different signaling pathway to that which is triggered by ROS. 

6.2 ROS/RNS as signaling intermediates 
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The upregulation of ROS and RNS, such as peroxynitrite, are thought to promote cell viability 

and increase proliferation owing to their ability to function as signal intermediates (Figure 3). 

ROS, which is produced by the ETC complexes as a byproduct of cellular respiration permits 

communication from the mitochondria to the rest of the cell. This mitochondrial signal 

transduction can activate various signaling pathways resulting in the expression of a plethora 

of genes including those involved either directly or indirectly in the suppression of apoptosis, 

cell survival or cell proliferation. Curiously, among the genes affected by red/NIR light 

irradiation, were those with roles in anti-oxidation[83]. 

Figure 3: The upregulation of ROS or RNS by red/NIR light triggers the translocation of the 
transcription factor NFĸB to the nucleus, enabling NFĸB to alter gene expression. 

6.3 The mitochondrial signaling pathway 

ROS is thought to mediate its protective effect via the activation of the redox sensitive 

transcription factor nuclear factor (NF)-ĸB which is proposed to be sensitive to an increase in 

ROS generation. In support of this theory it was found that an increase in ROS production by 

mitochondrial inhibitors brought about a concurrent increase in NFĸB, while the exposure to 
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antioxidants reduced the NFĸB activation [90]. NFĸB can both induce and repress gene 

expression by binding to ĸB elements in the promoter and enhancer regions of the gene. This 

transcription factor has been shown to induce the expression of numerous genes with 

functions in cell survival, the stress response and inflammation [90]. When superoxides are 

produced in the mitochondria they are metabolized to H202 which is thought to activate NF-

ĸB by triggering the dissociation of inhibitor of ĸB kinase from NFĸB. This allows NF-ĸB to 

translocate to the nucleus where it can alter gene expression (Figure 3) [91]. 

The redox sensitive signaling pathways however differ with cell type making it difficult to 

predict the outcome of red/NIR light therapy if attempting to find a general cellular 

mechanism [91]. It is no surprise that the results obtained appear to be inconsistent with 

varying cell type. This may provide some explanation for the differential results that have 

been observed with the use of red/NIR light therapy in different cell types. For example, 

irradiation of traumatized muscle tissue with red light therapy reduced the levels of ROS and 

NFĸB activation and the associated increase in the expression of proinflammatory genes [92]. 

On the other hand NIR light has been shown to induce ROS production and NFĸB activation 

in murine embryonic fibroblasts [90].  

In a similar fashion, peroxynitrite production triggers this stress response, causing the up or 

downregulation of cell signaling cascades in a cell dependent manner [93]. Peroxynitrite 

signaling is mediated by tyrosine nitration of proteins, particularly those involved in 

phosphotyrosine-dependent signaling. The oxidant is also involved in signaling via mitogen 

activated protein kinase, protein kinase B and C, NFĸB and the insulin receptor. Of note, these 

pathways which converge on the upregulation of mediators of cell survival, growth and 

proliferation are also activated by other stress stimuli such as ROS.  
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In support of the theory that red/NIR light causes upregulation in the expression of genes 

associated with cell survival, is the increased neuroprotective effects observed when red/NIR 

light is administered before the induced injury in models of neurodegeneration, compared to 

when administered after injury [94]. This suggests that red/NIR light could be mediating its 

protective effects by instigating the production of ROS/RNS at levels sufficient to cause the 

upregulation of stress response genes, with negligible damage to the irradiated tissue. If the 

same tissue was subsequently exposed to a toxic agent, the cell would be equipped with the 

appropriate defense mechanisms to cope with such an insult. The destructive effects to the 

tissue in such an instance would be remarkably less, such as is seen in various pretreatment 

models [31, 38, 95]. This knowledge could be exploited in neurodegenerative diseases with a 

pre-symptomatic phase. The observation demonstrates that red/NIR light therapy would be 

most effective as a preventative therapeutic treatment, administered before the onset of 

clinical symptoms and irreversible damage. With respect to retinal degenerative disease this 

preventative treatment approach would be particularly relevant in inherited optic 

neuropathies such as Leber’s hereditary optic neuropathy. Individuals with a LHON-causing 

mtDNA pathogenic variant could be monitored so that treatment with red/NIR light could 

begin upon detection of pre-symptomatic abnormalities as a pre-treatment for the clinical 

symptoms. In the event of a more acute neurodegenerative condition such as TBI, exploiting 

the enhanced therapeutic effects of red/NIR light observed when used as a pretreatment 

would not be feasible. Therefore, the neuroprotective potential of red/NIR light therapy, as 

seen in the pre-treated animal models, may be somewhat limited in a real life clinical setting.  
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7.0 The effects of red/NIR light on the anti-inflammatory response 

Peroxynitrite and ROS are also produced by macrophages during inflammation, which are 

responsible for the cytotoxic effects [96]. As mentioned above, red/NIR light has shown the 

ability to reduce the presence of these reactive species in irradiated tissues, thereby 

attenuating some of the cytotoxic effects of the inflammatory response. Furthermore, 

modulation of the immune response, itself, was seen in many studies with red/NIR light 

treatment [39, 40, 66].  Yet, how red/NIR light mediates this anti-inflammatory effect is poorly 

understood.  

Mitochondria play a major role in the activation of the inflammasome, a molecular platform 

that activates proapoptotic proteins, cytokines and other mediators of inflammation upon 

detection of infectious agents or cellular damage [97]. ROS can similarly activate the 

inflammasome.  The production of mitochondrially-derived ROS is known to increase when 

mitochondria are dysfunctional. Decreased electron flux through the electron transport chain 

reduces the ability of COX to fully reduce oxygen to water, thereby increasing the formation 

of ROS. The action of red/NIR light in improving the functions of the mitochondrial electron 

transport chain could reduce the amount of ROS generated, which may reduce the activation 

of the inflammasome. Alternatively, the mitochondrial signal transduction triggered by an 

increase in ROS/RNS as discussed above, could also upregulate the expression of anti-

inflammatory or antioxidants proteins, to either directly or indirectly dampen the 

inflammatory response. However, it has been found that low level laser irradiation (LLLI) can 

reduce the gene expression of anti-inflammatory cytokines as well as pro-inflammatory 

cytokines [66]. In this particular situation LPS was used to elicit an inflammatory like 

phenotype, triggering the expression of pro-inflammatory cytokines in addition to the anti-
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inflammatory cytokine, IL-10. The anti-inflammatory cytokine is also triggered during the 

inflammatory response to limit the host immune response, thereby minimising the damage 

caused to the affected tissue during the inflammatory response [98]. The findings 

demonstrate that LLLI is able to dampen the entire inflammatory response as oppose to 

specifically downregulating proinflammatory cytokines, suggesting that red/NIR light may be 

acting further upstream, influencing factors governing the inflammatory response. Also, there 

appears to be a correlation between the inflammatory level in the tissue and the extent of 

the inhibition of the inflammatory response [66]. It was found that LLLI had little effect on the 

inflammatory response at low levels of inflammation, but, produced a potent anti-

inflammatory effect at high levels of inflammation[66]. This shows an ability of red/NIR light 

to restore homeostasis in the tissue. In fact, ROS is produced by the microglia itself, and plays 

an important role in the induction of pro-inflammatory genes [99]. Therefore, restoring the 

redox balance in microglia may facilitate the transition of the microglia from an activated to 

a resting state.  

It has been suggested that the mitochondrial dysfunction seen in many neurodegenerative 

diseases not only affects neurons, but also the microglia [100]. Experimental findings have 

shown that complex I inhibition in microglia inhibited the IL-4 mediated reduction in pro-

inflammatory cytokines and the secretion of the neuroprotective insulin-like growth factor-1. 

The inflammatory response triggered by pathogens or damaged neurons functions to protect 

the neural tissue, but if this response is not attenuated the response would switch from a 

protective one to a deleterious one [101]. When activated, microglia secrete anti-

inflammatory cytokines in addition to pro-inflammatory cytokines to control the 

inflammatory response, preventing unnecessary damage to neural tissue. Electron transport 

deficiencies in microglia, appear to perturb the anti-inflammatory arm of the immune 



32 
 

response [100]. Since red/NIR light has been shown to improve the function of the electron 

transport chain in neurons, it can be suggested that a similar effect would be seen in microglia 

with mitochondrial dysfunction.  

 

8.0 Conclusion 

Wavelengths of light in the red to NIR region of the electromagnetic spectrum are optimal for 

the photostimulation of mitochondria as a treatment for neurodegeneration in the retina.  

The photon energy of red/NIR light appears to correspond to the absorption maxima of 

chromophores present in complex IV of the electron transport chain, triggering 

biostimulatory effects. Additionally, red and NIR light have an increased ability to penetrate 

tissue and are associated with significantly less safety concerns than light of shorter 

wavelengths. The potential for this treatment to be a success in patients is high. This is 

supported, firstly, by the potent neuroprotective effects demonstrated in various models of 

retinal damage. Secondly, data from human studies, albeit limited, shows the ability of red 

and NIR light to improve visual function. Furthermore, no adverse effects were observed in 

these previously published studies. The findings suggest that red/NIR light therapy is safe and 

effective as a non-invasive treatment for retinal neurodegeneration.  

Much evidence has been gathered in efforts to elucidate the underlying mechanism 

responsible for the neuroprotective effects of red/NIR light, but the mechanism remains 

unclear. Experimental findings suggest that there are many possible molecular and cellular 

effects of red/NIR light, which could all contribute to the observed neuroprotective effects, 

when explored separately, but when taken collectively some effects appear to contradict 
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others. Improved neuronal mitochondrial function, increased blood flow to neural tissue, an 

increase in ●NO levels, slowing down of the reactivation of the mitochondrial electron 

transport chain during reperfusion, increased mitochondrial biogenesis, a reduction in ROS 

levels, a reduction in ●NO levels, upregulation of cell survival mediators and restoration of 

normal microglial function have all been proposed as potential underlying mechanisms of 

red/NIR light. The increased ability of the neuron to survive during challenging conditions may 

be due to the resulting net effect of a number of red/NIR light induced molecular and cellular 

events. The effects that prevail in a particular cell/tissue may depend on the state of the 

cell/tissue at the time of irradiation and the subsequent challenges to which the cell is 

exposed to. 

 Aside from the fact that the mechanism of action is unclear, the lack of consensus 

surrounding the optimal parameters of red/NIR light, such as irradiance, radiant exposure and 

wavelength, for different conditions is a cause for concern. Although beneficial effects have 

been found using several different parameter combinations, efforts to find the best possible 

effect with the least possible risk are, for the most part, not done. This unconventional 

experimental approach has been established based on the assumption that red/NIR light 

therapy is safe, but this approach would not be tolerated for any other therapeutic 

interventions. In order for advances to be made in this field a much more detailed collection  

of experiments needs to be done to establish the optimal parameters for each condition with 

a potential for treatment with red/NIR light.       
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