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The Purcell factor quantifies the change of the radiative decay of a dipole in an electromagnetic environment
relative to free space. Designing this factor is at the heart of photonics technology, striving to develop ever smaller
or less lossy optical resonators. The Purcell factor can be expressed using the electromagnetic eigenmodes of the
resonators, introducing the notion of a mode volume for each mode. This approach allows an analytic treatment,
reducing the Purcell factor and other observables to sums over eigenmode resonances. Calculating the mode
volumes requires a correct normalization of the modes. We introduce an exact normalization of modes, not
relying on perfectly matched layers. We present an analytic theory of the Purcell effect based on this exact mode
normalization and the resulting effective mode volume. We use a homogeneous dielectric sphere in vacuum, which
is analytically solvable, to exemplify these findings. We furthermore verify the applicability of the normalization
to numerically determined modes of a finite dielectric cylinder.
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In his short communication [1] published in 1946, Purcell
introduced a factor of enhancement of the spontaneous
emission rate of a dipole of frequency ω resonantly coupled
to a mode in an optical resonator, which is now known as the
Purcell factor (PF). He estimated this factor as

F = 6πc3Qn

ω3Vn

, (1)

with the speed of light c, the quality factor Qn of the optical
mode n, and its effective volume Vn, the latter being evaluated
as simply the volume of the resonator. This rough estimate of
Vn has subsequently been refined [2,3] to

1

Vn

= [e · En(rd )]2, (2)

where rd is the position of the dipole and e the unit vector of its
polarization. In this expression, the electric field of the mode
En(r) is normalized [2] as

1 =
∫
V

ε(r)E2
n(r)dr, (3)

where ε(r) is the permittivity of the resonator. The in-
tegration is performed over the “quantization volume” V .
However, for an open system this volume is not defined,
and simply extending V over the entire space leads to a
diverging normalization integral since eigenmodes of an open
system grow exponentially outside of the system due to their
leakage. This issue was mostly ignored in the literature and
patched by phenomenologically choosing a finite integration
volume. Such an approach can result in relatively small
errors when dealing with modes of high Qn, as we will
see later. However, the fundamental problem of calculating
the exact mode normalization and thus of the mode volume
remained.

Recently, a solution to this problem has been suggested.
Kristensen et al. [4,5] have used the normalization which
was introduced by Leung et al. [6] for one-dimensional (1D)
optical systems and later applied [7] to three dimensions. In
this approach, the volume integral in Eq. (3) is complemented

by a surface term and the limit of infinite volume V is taken:

1 = lim
V→∞

∫
V

ε(r)E2
n(r)dr + ic

2ωn

∮
SV

E2
n(r)dS, (4)

where ωn is the complex eigenfrequency of the mode and SV is
the boundary of V . It was found [4] that for high-Q modes, the
surface term was leading to an approximately converging value
of the normalization with increasing V , for the limited volume
range available in numerical simulations. We show later that
Eq. (4), which we call in the following the Leung-Kristensen
(LK) normalization, is diverging in the limit V → ∞, with a
leading term scaling with the radius R of a spherical volume
V as exp(2iωnR/c)/R2 (see Appendices C and G).

In an alternative method introduced by Sauvan et al. [8],
the mode volume is determined from the mode field calculated
using a perfectly matched layer (PML), which is widely used
in electromagnetic software packages. A PML is an effective
absorbing layer with material properties derived from a coordi-
nate transform from real to complex coordinates. It allows one
to effectively provide outgoing boundary conditions within a
finite simulation volume. In this way, the divergence of the
normalization Eq. (3) is removed by converting the radiative
losses to the outside region into absorptive losses within the
simulation volume. It has been shown in [8] on a 1D analytic
example that the resulting mode normalization is independent
of the PML coordinate transform for frequency-independent
(nondispersive) transforms (see also Appendix D).

The normalization of eigenstates is also at the heart of
any perturbation theory, and only in 2010 such a theory,
the resonant-state expansion (RSE), was formulated [9] and
subsequently applied to 1D, 2D, and 3D systems [9–14],
showing its ability to accurately and efficiently calculate
resonant states (RSs)—the eigenmodes—of a perturbed open
optical system, using the spectrum of RSs of a simpler,
unperturbed one. The normalization of RSs introduced in [9]
is a key element of the RSE.

Here, we present a rigorous theory of the Purcell effect,
based on an exact formula for the mode volume in a general
finite three-dimensional optical system, described by a local
frequency-dependent permittivity. We illustrate this theory on
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the exactly solvable model of a dielectric spherical resonator.
We also verify the applicability of the normalization to
numerically determined modes of a finite dielectric cylinder
for which no analytical solution is known.

In the weak coupling regime, the spontaneous emission rate
of a quantum dipole, which is determining the local density
of states and the spectral function of the resonator, has the
form [15–17]

γ (ω) = − ω2

ε0�c2
μ · Im Ĝ(rd ,rd ; ω)μ, (5)

as detailed in Appendix A. Here, μ = μe is the electric dipole
moment and ε0 is the vacuum permittivity. The dyadic Green’s
function (GF) Ĝ which contributes to Eq. (5) respects the
outgoing wave boundary conditions and satisfies Maxwell’s
wave equation with a delta function source term,(

ω2

c2
ε̂(r) − ∇ × ∇×

)
Ĝ(r,r′; ω) = 1̂δ(r − r′), (6)

where ε̂(r) is the dielectric tensor of the open optical system
and 1̂ is the unit tensor. The permeability is assumed to be
μ̂(r) = 1̂ throughout this paper for simplicity. With modern
electromagnetic software, Eq. (6) can be solved numerically
by replacing the δ-like source term with a finite-size dipole at
a given position r′. The mode volume can then be evaluated by
calculating numerically the EM field emitted at frequencies
close to the pole of the GF under consideration using an
iterative algorithm converging towards the pole, as has been
recently shown [18]. Our approach is instead based on the
exact form of the solution of Eq. (6).

In the following we provide exact expressions for the mode
normalization, mode volume, and resulting PF, which use only
the mode field in a finite volume and its frequency, so that they
are applicable for modes calculated by any available means.

Inside the optical system, i.e., within the volume of
inhomogeneity of ε̂(r), the GF has the following spectral
representation [9,11,13]:

Ĝ(r,r′; ω) = c2
∑

n

En(r) ⊗ En(r′)
2ωn(ω − ωn)

, (7)

in which the sum is taken over all RSs (see also Appendix B).
RSs are the optical modes of the system, the eigensolutions
of Maxwell’s wave equation satisfying the outgoing wave
boundary conditions. The eigenfrequency ωn = �n − i�n of
a RS is generally complex and contains the position �n

of the resonance and its half width at half maximum �n.
RSs with �n �= 0 contribute in pairs: Each RS with ωn and
En has a counterpart with the eigenfrequency −ω∗

n and the
wave function E∗

n. The quality factor of a RS is given by
Qn = �n/2�n. The spectral representation Eq. (7) requires
that the RSs (with ωn �= 0) are normalized according to

1 =
∫
V

En(r) · ε̂(r)En(r) dr

+ c2

2ω2
n

∮
SV

[
En · ∂

∂s
(r · ∇)En − ∂En

∂s
· (r · ∇)En

]
dS,

(8)

where the first integral is taken over a simply connected
volume V enclosing the inhomogeneity of the system, while
the second integral is taken over the closed surface SV of the
volume V , with the normal derivative ∂/∂s = n̂ · ∇ using the
outward surface normal n̂. Equation (8) is the correct mode
normalization, consistent with the spectral representation
Eq. (7) of the GF, and is valid for any finite volume V
containing the system – the volume dependencies of both
integrals in Eq. (8) exactly compensate each other. It is suited
for arbitrary finite open optical systems, and we show examples
for exactly solvable spherical systems and for nonspherical
system calculated numerically (see Appendix G).

The expression in the surface term of Eq. (8) can be
simplified in spherical coordinates to radial derivatives, using
r · ∇ = r∂/∂r . Furthermore, choosing V in the form of a finite
sphere in 3D or a finite cylinder in 2D yields ∂/∂s = ∂/∂r and
a simpler form of the normalization of RSs [9,11,13], see
Eq. (B.18) of Appendix B. A derivation of the normalization
Eq. (8) using a spherical volume V is given in [13]. Since a
convenient normalization volume V can be different from a
sphere, we have generalized here the normalization to an ar-
bitrarily shaped simply connected volume and have presented
it in the form independent of the coordinate system used. The
related derivation of Eq. (8) is provided in Appendix B. In
the presence of a frequency dispersion of the permittivity,
which is important, e.g., in metallic resonators, the dielectric
constant ε̂(r) in Eq. (8) is replaced by ∂(ω2ε̂(r,ω))/∂(ω2), as
also shown in Appendix B, and in the case of the dispersion
also of the background material (replacing the vacuum treated
above), the surface term in Eq. (8) acquires an additional factor
ε−1(ω)∂(ω2ε(ω))/∂(ω2).

Comparing the LK and the exact normalization, we note that
Eq. (4) has an additional prefactor ωn/c, the wave vector, while
Eq. (8) calculates explicitly the normal derivatives of the fields,
which results in the factor ωn/c only for fields propagating
normal to the surface of integration. This observation clarifies
the qualitative difference between the two normalizations:
the LK normalization assumes normal propagation, while the
exact normalization takes into account the actual propagation
direction. The exact normalization in the form of Eq. (8)
depends on both first and second spatial derivatives of the
fields. However, as shown in Appendix B, one can use
Maxwell’s equations to convert Eq. (8) into a form containing
only first derivatives, see Eq. (B27). This can be advantageous
for application to RSs calculated using numerical solvers such
as the finite element method (FEM), as shown in Appendix G.
We find that Eq. (8) is robust against the choice of grids
and PML thickness used in the FEM. Furthermore, since it
can be evaluated close to the system, the surface area can
be minimized, reducing the numerical error and the required
simulation domain. The LK normalization instead not only
diverges for large R, as shown below, but also has significant
errors for small R, since the non-normal field propagation
results in an error scaling as R−2. Therefore, even for RSs
of high Qn for which the divergence with R is slow, the LK
normalization requires one to use a simulation domain much
larger than the system size, which is computationally costly.

The spectral representation Eq. (7) determines the exact PF,
taking into account the contribution of all significant modes.
Indeed, using Eqs. (5) and (7), the PF in the weak coupling
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regime is obtained as

F (ω) = γ (ω)

γ0(ω)
= 3πc3

ω

∑
n

Im
1

Vnωn(ωn − ω)
, (9)

which requires using the exact mode volume Vn given by Eq. (2)
with the electric field En(r) of the RS respecting the correct
normalization Eq. (8).

Here γ0 = ω3μ2/(6πε0�c3) is the radiative decay rate of
the dipole in free space [1], which can be deduced from
Eq. (5) using the GF of empty space [19], as shown in
Appendix A. If a single mode n dominates in Eq. (9),
the PF on resonance (ω = Re ωn) can be approximated as
F (ω) ≈ 6πc3Qn/[ω2Re(ωnVn)]. For a high-Q mode, the
eigenfrequency and mode volume are approximately real, and
the latter formula reproduces Purcell’s result Eq. (1) when
using the correct mode volume Vn.

For illustration, we have calculated the mode volume
and PF of a dielectric spherical resonator of radius a with
homogeneous permittivity (ε = 4) surrounded by vacuum, for
a point dipole placed at |rd | = 0.9a with direction e = (0,0,1)
in spherical coordinates [see sketch in Fig. 1(a)]. The
inverse mode volume of several eigenmodes with the angular
momentum l = 7 and transverse electric (TE) polarization,
summed over the degenerate states with azimuthal number
m = −l, . . . ,l, is shown in Fig. 1(a). The RSs of the sphere
can be classified as leaky modes, whispering gallery modes
(WGMs), and Fabry-Pérot (FP) modes, as indicated. The
chosen dipole position is close to the field maximum of the
fundamental WGM (n = 1), which as a result contributes with
a small and nearly real mode volume. With increasing mode
order and going into the FP modes, the mode volumes oscillate
as the field maxima and minima move across the dipole
position. Interestingly, the phase of the mode volumes rotates
accordingly, yielding negative mode volumes at the positions
of the field minima, at which the mode field is imaginary.
This also illustrates that the radiative decay into the modes
is not a simple superposition of Lorentzian lines describing
independent channels, but instead shows interference. This
is a consequence of the fact that modes of equal l, m, and
polarization couple into the same outgoing loss channel.

The resulting partial PF for l = 7 TE modes [see Fig. 1(b)]
is dominated by the n = 1 WGM providing on resonance a
PF of about 20. The complex mode volume leads to non-
Lorentzian features in the spectrum, via the mode interference.
The total contribution to the PF of all modes for each loss
channel (for spherical symmetry all modes with equal m, l, and
polarization) is strictly positive, as expected. To exemplify the
issues with the LK normalization, we show the resulting PF for
two finite integration volumes given by spheres of radius R =
2a and R = 30a. The observed deviation, which is increasing
with R, is due to an underestimation of the contribution of
leaky and FP modes and also leads to negative PF values, which
are unphysical. Taking the limit R → ∞, the mode volume
diverges exponentially, according to Eq. (4), see Fig. 3 in
Appendix C. This is also true for high-Q modes but commences
at larger R, so that the PF vanishes. In metallic resonators the
modes have generally low Q factors, yielding a fast exponential
growth (see Fig. 4 in Appendix C) and significant errors of
Eq. (4) for any V .

FIG. 1. (a) Mode volumes for a dielectric sphere in vacuum, with
permittivity ε = 4 and radius a, for l = 7 TE modes and a point
dipole placed at |rd | = 0.9a with direction e = (0,0,1) in spherical
coordinates (see sketch). The mode volume is presented as the sum
of the inverse mode volume over all degenerate states m = −l, . . . ,l.
Its amplitude is shown by the circle area and its phase by the color.
The volume of the sphere Va = 4πa3/3 is shown for comparison.
The position of the circles in the complex frequency plane is given
by the mode eigenfrequency ωn. (b) Partial Purcell factor calculated
via Eq. (9) for l = 7 and TE polarization, for the geometry of (a), using
the exact mode normalization (blue line) and the LK normalization
evaluated for integration volumes given by a sphere of radius R = 2a

and R = 30a, as labeled.

To exemplify the validity of the spectral representation
based on the exact normalization, we compare the resulting
PF with the one calculated using the analytic GF of a sphere.
We take into account both TE and transverse magnetic (TM)
polarizations and sum over all significant values of l and m.
Examples of mode volumes and partial PFs for the TM modes
are shown in Figs. 5 and 6 of Appendix E for two different
directions of the dipole. The resulting PF for a dipole at a
distance 0.9a from the center of the sphere averaged over its
polarization directions is shown in Fig. 2, with partial PFs
shown separately for TE modes in Figs. 2(a) and 2(b) and
for TM modes in Fig. 2(b). In the low-frequency limit the well
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FIG. 2. Purcell factor versus transition frequency ω calculated by
Eq. (9) using modes with l < 38 and |ωn| < 40c/a. The dipole is
placed at |rd | = 0.9a as in Fig. 1, and the PF is averaged over the
polarization directions. (a) Full PF (black line) and partial PF for TE
modes only (blue line). (b) Zoom of (a), showing additionally the
partial PF for TM modes (red line).

known static value of the field reduction by a factor of 3/(2 + ε)
inside a dielectric sphere in vacuum is reproduced, leading
to F (0) = 0.25 for ε = 4. Comparing these results with the
ones obtained using the analytic GF of a sphere shows good
agreement, as detailed in Appendix F. The spectral zoom in
Fig. 2(b) allows one to see the extremely sharp WGM lines on
top of much wider resonances and their separation into TE and
TM modes. Purcell factors up to 1010 are found in resonance
to WGM of similarly high Q factors.

In conclusion, we have provided a general exact analytic
form of the normalization of eigenmodes in an arbitrary finite
open optical resonator. We have shown that this exact normal-
ization can be used with high accuracy also for RSs determined
by numerical solvers, while the flexible normalization volume
it uses does not constrain the size of the computational
domain at the same time. The correct normalization is of key
importance for the electromagnetic theory, as it determines
the spectral representation of the dyadic Green’s function of
Maxwell’s wave equation, which can be used for calculation of
any observable, such as scattering and extinction cross sections
and local density of states [20].
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and Materials. The authors acknowledge discussions with T.
Weiss and M. B. Doost, and thank G. Zorinyants for per-
forming numerical calculations for the RSs of a nonspherical
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APPENDIX A: SPONTANEOUS EMISSION OF A
QUANTUM DIPOLE IN AN ARBITRARY

DIELECTRIC SYSTEM

The full Hamiltonian describing a quantum dipole coupled
to photon states in an arbitrary open optical system is given [15]
by

H = H0 + V, (A1)

where

H0 =
∑

k

�ωka
†
kak + �ωdd

†d (A2)

is the noninteracting part and

V = −i
∑

k

(ϕkd
†ak − ϕ∗

k a
†
kd) (A3)

is the interaction between the dipole and photons in the rotating
wave approximation. Here a

†
k is the bosonic photon creation

operator in state k, d† is the fermionic creation operator for
the two-level system of the quantum dipole, with ωd being the
ground-to-excited state transition frequency, and

ϕk =
√

�ωk

2ε0
μ · fk(rd ) (A4)

is the coupling matrix element, in which μ is the electric dipole
moment of the point dipole placed at r = rd , ε0 is the vacuum
permittivity, and fk(r) is a vector eigenfunction of the electric
field of the continuum state k satisfying the Maxwell wave
equation

−∇ × ∇ × fk(r) + ω2
k

c2
ε̂(r)fk(r) = 0 (A5)

with a real eigenfrequency ωk � 0. The symmetric tensor ε̂(r)
of the dielectric constant describes the open optical system
under study and for simplicity is assumed here frequency-
independent.

Following Glauber [15], we consider the Schrödinger
equation describing the full system (� = 1 is used below for
brevity of notations),

i
d

dt
|�(t)〉 = H |�(t)〉, (A6)

and take its formal solution in the form

|�(t)〉 = e−iH t |�(0)〉, (A7)

where |�(t)〉 is the wave function of the dipole-photon system.
We are interested in the probability for the dipole to stay in
the excited state and calculate the probability amplitude in the

235438-4



EXACT MODE VOLUME AND PURCELL FACTOR OF OPEN . . . PHYSICAL REVIEW B 94, 235438 (2016)

following way:

α(t) = 〈�(0)|�(t)〉 = 〈0|de−iH td†|0〉 = 〈0|d(t)U (t)d†|0〉.
(A8)

In the above equation, the dipole moment operator is written
in the interaction representation, d(t) = eiH0t de−iH0t . We have
also assumed that in the initial state, the photon subsystem is
in its ground state and the quantum dipole is in its excited state,
i.e., |�(0)〉 = d†|0〉, where |0〉 is the ground state of the full
system. The evolution operator U (t) = eiH0t e−iH t satisfies the
equation

i
dU (t)

dt
= V (t)U (t), (A9)

where V (t) = eiH0tV e−iH0t . Its solution can be written as an
infinite perturbation series

U (t) = 1 + (−i)
∫ t

0
V (t1)dt1

+ (−i)2
∫ t

0
V (t1)dt1

∫ t1

0
V (t2)dt2 + · · · . (A10)

To calculate α(t), we evaluate

V (t1)V (t2)d†|0〉
= −eiH0t1

∑
k1

(
ϕk1d

†ak1 − ϕ∗
k1

a
†
k1

d
)

× e−iH0(t1−t2)
∑
k2

(
ϕk2d

†ak2 − ϕ∗
k2

a
†
k2

d
)
e−iH0t2d†|0〉

= eiωd (t1−t2)
∑

k

|ϕk|2e−iωk (t1−t2)d†|0〉. (A11)

Then for t > 0, α(t) can be written in the form of an integral
equation:

α(t) = e−iωd t −
∑

k

|ϕk|2
∫ t

0
dt1

∫ t1

0
dt2

× e−iωd (t−t1)e−iωk (t1−t2)α(t2), (A12)

which can be solved explicitly in the Fourier space,

α̃(ω) = −i

ω − ωd − (ω)
, (A13)

where α̃(ω) is the time Fourier transform of α(t), and the
self-energy (ω) is given by a formula

(ω) = 1

�2

∑
k

|ϕk|2
ω − ωk + iδ+

, (A14)

in which δ+ → 0+ and � has been restored. Note that
the problem described by Eqs. (A1)–(A3) is the famous
exactly solvable Fano-Anderson problem. Indeed, owing to the
bilinear form of the interaction Eq. (A3) the exact perturbation
series for the self-energy ends in first order [21].

Let us express the self-energy (ω) in terms of the dyadic
GF of Maxwell’s wave equation. The full time-dependent GF
Ĝ(r,r′; t − t ′) satisfies the equation

−∇ × ∇ × Ĝ − ε̂(r)

c2

∂2Ĝ
∂t2

= 1̂δ(r − r′)δ(t − t ′) (A15)

and has the following explicit form in terms of the continuum
eigenstates, the solutions of Eq. (A5):

Ĝ(r,r′; t − t ′) = c2

i

∑
k

fk(r) ⊗ f∗
k (r′)

2ωk

e−iωk |t−t ′|. (A16)

Note that substituting Eq. (A16) into Eq. (A15) and using
Eq. (A5) results in the closure relation for the continuum
eigenstates,

ε̂(r)
∑

k

fk(r) ⊗ f∗
k (r′) = 1̂δ(r − r′). (A17)

Fourier-transforming the GF given by Eq. (A16) versus t − t ′
we obtain

Ĝ(r,r′; ω) = c2
∑

k

fk(r) ⊗ f∗
k (r′)

ω2 − ω2
k + iδ+

. (A18)

Then, for a positive frequency ω, we find, using Eq. (A4),

I (rd ,ω) ≡ μ · Im Ĝ(rd ,rd ; ω)μ

= − πε0c
2

�

∑
k

|ϕk|2
ω2

k

δ(ω − ωk), (A19)

that allows us to express the self-energy in terms of the
projection I (r,ω) of the GF tensor:

(ω) = 1

�2

∑
k

∫ ∞

0

|ϕk|2δ(ω′ − ωk)dω′

ω − ω′ + iδ+

= − 1

πε0c2�

∫ ∞

0

I (rd ,ω
′)ω′2

ω − ω′ + iδ+
dω′. (A20)

For the GF of a homogeneous medium with the dielectric
constant ε we have

Im Ĝ0(r,r; ω) = −
√

εω

6πc
1̂, (A21)

as shown below, so that the integral in Eq. (A20) diverges for
large ω′, which is the well known divergence problem of the
Lamb shift, usually treated by introducing a frequency cutoff.
For an inhomogeneous open optical system this integral is,
however, convergent. Indeed, using the spectral representation
of the GF in terms of resonant states (RSs) with complex
eigenfrequencies ωn [9,13]

Ĝ(r,r′; ω) = c2
∑

n

En(r) ⊗ En(r′)
2ω(ω − ωn)

(A22)

(see also Appendix B), we obtain for any r inside the system

I (r,ω) = c2

2ω
Im

∑
n

g2
n(r)

ω − ωn

, (A23)

where

gn(r) = μ · En(r). (A24)

We note that RSs contribute to Eq. (A22) in pairs: Each RS
n with the eigenfrequency ωn and electric field eigenfunction
En(r) has a counterpart −n with ω−n = −ω∗

n and E−n(r) =
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E∗
n(r). Their joint contribution to Eq. (A23) is given by

Im

[
g2

n(r)

ω − ωn

+ g∗
n

2(r)

ω + ω∗
n

]

= A′′
n(ω − ω′

n) + A′
nω

′′
n

(ω − ω′
n)2 + ω′′

n
2 + −A′′

n(ω + ω′
n) + A′

nω
′′
n

(ω + ω′
n)2 + ω′′

n
2 ,

(A25)

where g2
n(r) = A′

n + iA′′
n and ωn = ω′

n + iω′′
n. Therefore

I (r,ω) ∝ 1/ω3 at ω → ∞ and the integral in Eq. (A20)
converges.

For small values of ω, it is more practical to use a different
form of the GF [9,13]

Ĝ(r,r′; ω) = c2
∑

n

En(r) ⊗ En(r′)
2ωn(ω − ωn)

, (A26)

which follows from Eq. (A22) and the sum rule (see Ap-
pendix B) ∑

n

En(r) ⊗ En(r′)
ωn

= 0. (A27)

Then I (r,ω) can be written as

I (r,ω) = c2

2
Im

∑
n

g2
n(r)

ωn(ω − ωn)
, (A28)

and the contribution of the pair of poles takes the form

Im

[
g2

n(r)

ωn(ω − ωn)
− g∗

n
2(r)

ω∗
n(ω + ω∗

n)

]

= B ′′
n (ω − ω′

n) + B ′
nω

′′
n

(ω − ω′
n)2 + ω′′

n
2 − −B ′′

n (ω + ω′
n) + B ′

nω
′′
n

(ω + ω′
n)2 + ω′′

n
2 ,

(A29)

where g2
n(r)/ωn = B ′

n + iB ′′
n , so that I (r,ω) ∝ ω in the limit

ω → 0.
Note that for the poles of the GF on the imaginary ω axis

which do not have counterparts, g2
n(r) is real, and both low-

and high-frequency asymptotics of I (r,ω) obtained above are
preserved. Moreover, for the same reason, static modes (having
ωn = 0) do not contribute to the spontaneous emission, as the
corresponding term of the GF is purely real (the modes are
localized).

Using Eqs. (A23) or (A28), (ω) can be calculated
analytically for any finite number of RSs, thus providing direct
access to the analytic continuation of α̃(ω) into the complex ω

plane and to its pole structure. Owing to the causality principle,
α̃(ω) has poles only in the lower half plane, which results in
the following expression for the probability amplitude in the
time domain:

α(t) = θ (t)
∑

j

cj e
−iωj t , (A30)

where

1

cj

= 1 − d(ω)

dω

∣∣∣∣
ω=ωj

(A31)

and ωj = ωd + δωj − iγj are the poles of α̃(ω). Such an
analysis is important for the strong coupling regime. In the
weak coupling regime instead, (ω) can be considered as a
small correction, and α̃(ω) can be treated in the single-pole
approximation leading to

α(t) = θ (t)e−i(ωd+δω)t−γ t , (A32)

where δω − iγ = (ωd ) is the self-energy correction to the
pole of GF of the dipole, calculated “on-shell,” i.e., at ω = ωd .
The Lamb shift δω and the spontaneous emission rate γ then
take the following explicit form:

δω = 1

πε0c2�
−
∫ ∞

0

I (rd ,ω)ω2dω

ω − ωd

, (A33)

γ (ωd ) = − ω2
d

ε0c2�
I (rd ,ωd ), (A34)

where the principal value integral is introduced in Eq. (A33).
Equations (A32)–(A34) are know in the literature as the
Weisskopf-Wigner approximation [16].

Let us check that Eq. (A34) produces the correct expression
for the spontaneous emission rate in the case of a homogeneous
dielectric medium. The GF of the free space satisfies the
equation

− ∇ × ∇ × Ĝ0(r,r′; ω) + k2Ĝ0(r,r′; ω) = 1̂δ(r − r′), (A35)

where k2 = εω2/c2 and ε is the dielectric constant of the
medium. The solution of Eq. (A35) has the form [19]

Ĝ0(r,r′; ω) = −
(

1̂ + 1

k2
∇ ⊗ ∇

)
eik|r−r′|

4π |r − r′| , (A36)

or, more explicitly [22],

Ĝ0(r,r′; ω) = C 1̂ + D
b ⊗ b

b2
, (A37)

where b = r − r′, b = |b|, and

C = −
(

1 + ikb − 1

k2b2

)
eikb

4πb
= 2 − k2b2

8πk2b3
− i

k

6π
+ kO(kb),

(A38)

D = −3 − 3ikb − k2b2

k2b2

eikb

4πb
= −6 + k2b2

8πk2b3
+ kO(kb),

(A39)

expanded up to zeroth order in kb. Taking the limit r′ → r, so
that b → 0, we obtain Eq. (A21) and finally

γ0(ω) = − ω2

ε0�c2
μ · Im Ĝ0(rd ,rd ; ω)μ =

√
εω3μ2

6πε0�c3
, (A40)

in agreement with [1]. Note that using the spectral representa-
tion of the GF in the form of Eq. (A26), the spontaneous decay
rate γ (ω) of an inhomogeneous open optical system also scales
like ω3 at ω → 0 [I (rd,ω) ∝ ω as shown above]. This makes
the PF F (ω) = γ (ω)/γ0(ω) finite at ω → 0.
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APPENDIX B: SPECTRAL REPRESENTATION OF
THE GREEN’S FUNCTION AND NORMALIZATION

OF RESONANT STATES

The Green’s function Ĝ(r,r′; ω) of an open optical system
is a tensor which satisfies Maxwell’s wave equation with a
delta-function source term (below c = 1 is used for brevity of
notations),

−∇ × ∇ × Ĝ(r,r′; ω) + ω2ε̂(r; ω)Ĝ(r,r′; ω) = 1̂δ(r − r′),
(B1)

and outgoing wave boundary conditions. Treating Ĝ(r,r′; ω)
as a function of a complex ω we use the fact that the GF has
a countable number of simple poles in the lower half plane
at ω = ω̃n. We further note that for ω → ∞, the GF vanishes
inside the area of inhomogeneity of ε̂(r; ω). Note that the
frequency dependence of the permittivity tensor is included.
Then according to the Mittag-Leffler theorem [23,24] we can
write

Ĝ(r,r′; ω) =
∑

n

R̂n(r,r′)
ω − ω̃n

, (B2)

where R̂n(r,r′) is the residue of the GF at ω = ω̃n.
Now, for each RS having the eigenfrequency ωn and the

electric field En(r) satisfying the homogeneous Maxwell wave
equation

−∇ × ∇ × En(r) + ω2
nε̂(r; ωn)En(r) = 0 (B3)

and outgoing or incoming wave boundary conditions, we
introduce an analytic continuation Fn(r,ω), such that

lim
ω→ωn

Fn(r,ω) = En(r). (B4)

Fn(r,ω) is defined as a solution of the inhomogeneous Maxwell
wave equations

−∇ × ∇ × Fn(r; ω) + ω2ε̂(r; ω)Fn(r; ω) = (ω2 − ω2
n)σ n(r),

(B5)
in which σ n(r) is an arbitrary function vanishing outside the
system and normalized in such a way that∫

V
En(r) · σ n(r) dr = 1, (B6)

where V is an arbitrary simply connected volume including
all the inhomogeneities of ε̂(r; ω). In the case of degenerate
modes, ωm = ωn for m �= n, the source σ n(r) has to be chosen
in such a way that, additionally,

∫
V Em(r) · σ n(r) dr = 0.

Solving Eq. (B5) with the help of the GF Eq. (B2) we obtain

Fn(r; ω) =
∑
n′

ω2 − ω2
n

ω − ω̃n′

∫
V

R̂n′(r,r′)σ n(r′) dr′. (B7)

Taking the limit of Eq. (B4) and using the fact that Ĝ(r,r′; ω)
is a symmetric tensor, which follows from the reciprocity
theorem [25], we find

R̂n(r,r′) = En(r) ⊗ En(r′)
2ωn

(B8)

and ωn = ω̃n, leading to the spectral representation Eq. (A26).
Substituting it into Eq. (B1) and using Eq. (B3) results in the

closure relation∑
n

ω2ε̂(r; ω) − ω2
nε̂(r; ωn)

2ωn(ω − ωn)
En(r) ⊗ En(r′) = 1̂δ(r − r′),

(B9)
which splits into sum rules, including Eq. (A27), and a simpler
closure relation [14]

1

2

∑
n

ε̂(r; ωn)En(r) ⊗ En(r′) = 1̂δ(r − r′). (B10)

As already noted in Appendix A, combining Eq. (A26) and the
sum rule Eq. (A27) leads to an alternative form of the spectral
representation Eq. (A22) which was used in the RSE [9,13].

The form of the GF Eq. (A26) determines the normalization
of RSs which technically follows from Eq. (B6) by substituting
σ n(r) from Eq. (B5) and taking the limit ω → ωn (below the
argument r is omitted for brevity):

1 =
∫
V

dr En · σ n

= lim
ω→ωn

∫
V

dr En · −∇ × ∇ × Fn + ω2ε̂(ω)Fn

ω2 − ω2
n

− lim
ω→ωn

∫
V

dr Fn · −∇ × ∇ × En + ω2
nε̂(ωn)En

ω2 − ω2
n

= lim
ω→ωn

∫
V

dr Fn · ω2ε̂(ω) − ω2
nε̂(ωn)

ω2 − ω2
n

En

+ lim
ω→ωn

∫
V (Fn · ∇ × ∇ × En − En · ∇ × ∇ × Fn)dr

ω2 − ω2
n

=
∫
V

dr En · ∂(ω2ε̂(ω))
∂(ω2)

∣∣∣∣
ω=ωn

En

+ lim
ω→ωn

∮
SV

dS

(
En · ∂Fn

∂s
− Fn · ∂En

∂s

)
ω2 − ω2

n

, (B11)

where after using some vector algebra we have applied the
divergence theorem to convert a volume integral into a surface
integral over the closed surface SV , the boundary of V , with
∂/∂s denoting the directional derivative normal to this surface.
We have also used the fact that ∇ · En = ∇ · Fn = 0 outside
the system.

For any surface SV , the limit in the last term in Eq. (B11)
can be evaluated explicitly by using the functional dependence
of the electric field outside the system, where ε̂(r) = 1̂ up to
a scalar constant. For any mode with ωn �= 0, the RS wave
function outside the system is given by En(r) = Qn(ωnr),
where Qn(q) is a vector function satisfying the equation

∇q × ∇q × Qn(q) = Qn(q) (B12)

and the proper boundary conditions at system interfaces and
at q → ∞. The analytic continuation of En(r) can therefore
be taken in the form

Fn(r,ω) = Qn(ωr). (B13)

In doing this, one could require, for example, that Fn(r,ω)
outside the system has the same expansion in terms of vector
spherical harmonics as En(r) itself, so that the frequency
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dependence of Fn(r,ω) comes only from the argument ωr
of the vector spherical harmonics, and not from the expansion
coefficients. This imposes certain condition on the choice of
σn(r). It can be shown, however, that using instead an arbitrary
frequency dependence of the coefficients in the expansion of
Fn(r,ω) does not change the value of the limit in Eq. (B11), so
that σn(r) can again be an arbitrary function vanishing outside
the system.

Now, using the Taylor expansion of Eq. (B13) about the
point ω = ωn,

Fn(r,ω) ≈ Qn(ωnr) + (ω − ωn)
∂Qn(ωr)

∂ω

∣∣∣∣
ω=ωn

= En(r) + ω − ωn

ωn

(r · ∇) En(r), (B14)

and substituting it into Eq. (B11), we obtain

1 =
∫
V

dr En · ∂(ω2ε̂(ω))
∂(ω2)

∣∣∣∣
ω=ωn

En

+ c2

2ω2
n

∮
SV

dS

[
En · ∂Kn

∂s
− Kn · ∂En

∂s

]
, (B15)

where

Kn(r) = (r · ∇) En(r), (B16)

and the speed of light is restored.
We note that the normalization of static modes (ωn = 0) is

different and has been treated in [13]. They do not contribute
to the radiative decay, as explained in Appendix A, and thus
are not further considered here.

In the absence of dispersion, the first integral in the nor-
malization Eq. (B15) is simplified to

∫
V dr En · ε̂En, yielding

Eq. (8) of the main text. Using also spherical coordinates in
the surface integral, Eq. (B15) reduces to

1 =
∫
V

dr En · ε̂En

+ c2

2ω2
n

∮
SV

dS

[
En · ∂

∂s
r
∂En

∂r
− r

∂En

∂r
· ∂En

∂s

]
, (B17)

where r = |r|, the radius in spherical coordinates. Finally, if
ε̂(r) = 1̂ε(r) and the surface of integration is chosen in the
form of a sphere of radius R with the center at the origin,
the normalization Eq. (B15) takes its original form published
in [9]:

1 =
∫
VR

ε(r)E2
n dr

+ c2

2ω2
n

∮
SR

[
En · ∂

∂r
r
∂En

∂r
− r

(
∂En

∂r

)2
]
dS, (B18)

whereVR is the volume and SR is the surface area of the sphere.
Let us also note that if the homogeneous space outside the
system is not vacuum but a medium described by a frequency-
dependent uniform permittivity ε(ω), the surface term of the
normalization Eq. (B15) acquires an additional factor

1

ε(ω)

∂(ω2ε(ω))
∂(ω2)

∣∣∣∣
ω=ωn

, (B19)

which can be easily obtained following the derivation in
Eq. (B14). Obviously this factor is equal to 1 for nondispersive
media.

The normalization of RSs with the surface term as given,
e.g., in Eq. (B15) contains second-order spatial derivatives
of the RS field. In some numerical implementations like
those considered in Appendix G below, using second-order
derivatives can lead to an accumulation of numerical errors.
It is therefore useful to provide a version of normalization
which contains only first derivatives of the field. This can
be obtained by noting that the surface integral in Eq. (B15)
actually presents the flux through a closed surface SV of the
field

�1(r) =
∑

i=x,y,z

(Ei∇Ki − Ki∇Ei), (B20)

in which E = En and K = Kn defined by Eq. (B16). Then,
using Gauss’s theorem, this surface integral can then be
transformed to the flux of another field �2 linked to the first
one through

�1 = �2 + ∇ × A, (B21)

where A(r) is an arbitrary field. By representing �1 as

�1 = ∇(E · K) − 2
∑

i=x,y,z

Ki∇Ei, (B22)

and then using the fact that

2∇(E · K) = ∇(r · ∇)E2

= −∇E2 + r∇2E2 − ∇ × (r × ∇E2), (B23)

where E2 = E · E, the second-order derivatives of the E field
are partly removed from Eq. (B22) by the curl. The remaining
term containing ∇2E2 can be transformed to lower orders by
applying Maxwell’s wave equation in vacuum, ∇2E = −k2E,
so that

1

2
∇2E2 = −k2E2 +

∑
i,j=x,y,z

(
∂Ei

∂xj

)2

. (B24)

Then we obtain

A(r) = − 1
2 r × ∇E2 (B25)

and

�2 = −1

2
∇E2 − k2rE2 + r

∑
ij

(
∂Ei

∂xj

)2

− 2
∑

i

Ki∇Ei

(B26)
(i,j = x,y,z), the latter not containing derivatives of the field
E higher than first order. Omitting for simplicity of notation the
dispersion in the volume integral, the modified normalization,
equivalent to Eq. (B15) but containing only first derivatives of
En(r) in the surface term, takes the form

1 =
∫
V

dEn · ε̂En dr + c2

2ω2
n

∮
SV

�2 · dS, (B27)

where �2(r) is given by Eq. (B26), with E(r) = En(r) and
K(r) = Kn(r) defined by Eq. (B16).

The orthogonality of two RSs with indices n and m has
the form similar to the normalization Eq. (B11) or Eq. (B15)
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and can be obtained by multiplying Eq. (B3) with Em(r),
integrating over the volume V , and subtracting a similar
result with n and m swapped. This leads, after a similar
transformation to the surface term made with help of the
divergence theorem, to

0 =
∫
V

dr En · [ω2
mε̂(ωm) − ω2

nε̂(ωn)
]
Em

+
∮

SV

dS

[
En · ∂Em

∂s
− Em · ∂En

∂s

]
. (B28)

APPENDIX C: LEUNG-KRISTENSEN NORMALIZATION

Following Leung et al. [7], Kristensen et al. [4] have
introduced a normalization of RSs in the form of Eq. (4) of
the main text, which we call here LK normalization. We found
that this normalization is only correct for so-called s waves,
i.e., l = 0 modes of a spherically symmetric system, where l is
the orbital quantum number. However, owing to the vectorial
nature of the electromagnetic field, l = 0 eigenmodes do not
exist, so that the LK normalization is incorrect for all modes
in electrodynamics.

We illustrate this finding for TE modes of a dielectric
sphere. We compare the mode volume V LK

n , calculated using
the LK normalization for a finite spherical domain VR , with
the correct one, Vn, calculated using the exact normalization
Eq. (8). To do so, we introduce the ratio Nn(R) between the
two mode volumes so that

V LK
n = VnNn(R). (C1)

This ratio is given by the sum of the volume and surface
normalization integrals in Eq. (4):

Nn(R) = In(R) + Sn(R) (C2)

with

In(R) =
∫
VR

ε(r)E2
n(r)dr (C3)

and

Sn(R) = i

2kn

∮
SR

E2
n(r)dS. (C4)

Here VR is the volume of a sphere of radius R, SR is its
surface, and kn = ωn/c is the RS wave number. For the LK
normalization to be correct, the factor Nn(R) has to converge to
unity in the limit R → ∞. To show that this is not the case we
derive the resulting error at finite R by calculating Nn(R) for
the correctly normalized En(r) and consider the limit R → ∞.

For a dielectric sphere of radius a in vacuum, described by
the dielectric constant

ε(r) =
{
n2

r for r � a,

1 for r > a,
(C5)

the eigenfunctions of the TE modes normalized via Eq. (8)
have the form (in spherical polar coordinates) [13]

ETE
n (r) = AlRl(r,kn)

⎛⎜⎜⎜⎜⎝
0

1

sin θ

∂

∂ϕ
Ylm(�)

− ∂

∂θ
Ylm(�)

⎞⎟⎟⎟⎟⎠, (C6)

where Ylm(�) are the spherical harmonics,

Rl(r,k) =
{
jl(nrkr)/jl(nrka) for r � a,

hl(kr)/hl(ka) for r > a,
(C7)

jl(z) and hl(z) ≡ h
(1)
l (z) are, respectively, the spherical Bessel

and Hankel functions of first kind,

Al =
√

2

l(l + 1)a3
(
n2

r − 1
) (C8)

are normalization constants, and kn are the solutions of the
secular equation

nrjl+1(nrkna)

jl(nrkna)
= hl+1(kna)

hl(kna)
. (C9)

Using these properties, we evaluate the volume and surface
normalization integrals for R � a as

In(R) = l(l + 1)A2
l

∫ R

0
R2

l (r,kn)ε(r)r2dr

= 2

a3
(
n2

r − 1
)[n2

r

∫ a

0

j 2
l (nrknr)

j 2
l (nrkna)

r2dr

+
∫ R

a

h2
l (knr)

h2
l (kna)

r2dr

]
= 1 + (R/a)3

n2
r − 1

h2
l (knR)

h2
l (kna)

[
1 − hl−1(knR)hl+1(knR)

h2
l (knR)

]
(C10)

and

Sn(R) = iR2

2kn

l(l + 1)A2
l R

2
l (R,kn) = i

knR

(R/a)3

n2
r − 1

h2
l (knR)

h2
l (kna)

,

(C11)

and consequently find

Nn(R) = 1 + 1

n2
r − 1

(
R

a

)3
h2

l (knR)

h2
l (kna)

Qn(R), (C12)

where

Qn(R) = 1 − hl−1(knR)hl+1(knR)

h2
l (knR)

+ i

knR
. (C13)

To investigate the behavior of Nn(R) for large knR, we use the
asymptotic formula for hl(z) at large arguments:

hl(z) = (−i)l+1 eiz

z

l∑
p=0

(l + p)!

(l − p)!p!

1

(−2iz)p
.

We find that in Qn(R), the 0th-, 1st-, and 2nd-order terms in
1/(knR) are vanishing, so that

Qn(R) = Cl(knR)

(knR)3
(C14)

and consequently

V LK
n

Vn

= Nn(R) = 1 + Cl(knR)(
n2

r − 1
)
(kna)3h2

l (kna)

e2iknR

(knR)2
,

(C15)
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FIG. 3. (a) Frequencies of l = 7 TE modes (RSs) of a dielectric
sphere in vacuum, with permittivity ε = 4 and radius a. (b) Relative
error of the approximate mode volume |V ap

n /Vn − 1| as a function of
the radius R of the sphere of integration, for the modes shown in (a).
V ap

n is calculated using Eq. (3), having no surface term, and Eq. (4),
having the incorrect surface term used in the literature [4,5,7].

where Cl(z) = (−1)l il(l + 1) + O(1/z). Similarly, for the
normalization without the surface term, i.e., with the volume
term only, Eq. (3) of the main text, we find

V vol
n

Vn

= In(R) = 1 + Dl(knR)(
n2

r − 1
)
(kna)3h2

l (kna)
e2iknR, (C16)

where Dl(z) = (−1)l i + O(1/z2). Clearly, Eq. (4) brings an
improvement compared to Eq. (3): the last term in Eq. (C15)
is decreasing with R for Q � 1 modes, such as WGMs,
so that |e2ikn(R−a)| ≈ 1 up to rather large R. However both
normalizations diverge for R → ∞ due to the exponential
factor e2iknR .

This is exemplified in Figs. 3(b) and 4(b) where the relative
errors in the mode volume, V

ap
n /Vn − 1 (with V

ap
n = V LK

n

or V
ap
n = V vol

n ), are shown for several RSs of a dielectric
and a metal sphere, respectively, with corresponding eigen-
frequencies given in Figs. 3(a) and 4(a). In Fig. 3(b), the
strongest deviation and exponentially growing errors are seen
for leaky modes already for small values of R. For WGMs the
errors can be small up to rather large R, showing an apparent
convergence, in agreement with the analytic treatment given

FIG. 4. As Fig. 3, but for a sphere with a fixed complex
dielectric constant ε = −43.5 + 3.33i, equal to that of gold at a light
wavelength of λ = 1 μm.

above, and the advantage of using Eq. (4) versus Eq. (3) is
clearly observed. Nevertheless, the error diverges also for
WGMs in the limit R → ∞, in agreement with the asymptotics
given by Eqs. (C15) and (C16). Moving to the metal sphere
we observe that the modes have typically a low Qn, such
that the exponential divergence of the error with R is more
pronounced. For some low-frequency modes (labeled 1–5) the
error initially decays exponentially up to a finite R where the
error is minimized. We note that this is observed both for
Eq. (4) and Eq. (3), indicating that the surface term is not
the relevant aspect here, and we find that it actually increases
the error at small R. These states are quasibound states in the
metal sphere which are evanescent close to the sphere due to
the angular momentum, similar to WGMs. At R � lc/|ωn|,
they become propagating, and the error recovers the expected
exponential divergence.

The correct normalization Eq. (8) can be analyzed in a
similar way. It consists of two terms, In(R) and Jn(R), where

Jn(R) = 1

2k2
n

∮
SR

dS

[
En · ∂

∂r
r
∂En

∂r
− r

(
∂En

∂r

)2
]

= 1

2k2
n

∫
d�

[
1

sin2 θ

(
∂Ylm

∂ϕ

)2

+
(

∂Ylm

∂ϕ

)2
]
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×A2
l R

2

[
Rl

∂

∂r
r
∂Rl

∂r
− r

(
∂Rl

∂r

)2
]

r=R

= R3

a3

zhl(z)h′
l(z) + z2hl(z)h′′

l (z) − z2h′
l
2(z)(

n2
r − 1

)
h2

l (kna)z2
(C17)

with z = knR. We thus obtain

In(R) + Jn(R) = 1 + R3

a3
(
n2

r − 1
) pl(z)

h2
l (kna)z2

, (C18)

where

pl(z) = zhl(z)h′
l(z) + z2hl(z)h′′

l (z) − z2h′
l

2(z)

+ z2h2
l (z) − z2hl−1(z)hl+1(z) = 0, (C19)

according to Bessel’s equation and recursive relations for
Hankel functions [26] following from it. This confirms that
Eq. (8) provides the exact normalization condition In(R) +
Jn(R) = 1, independent of R.

APPENDIX D: COMPARISON WITH SAUVAN ET AL.

In the normalization introduced by Sauvan et al. [8] the
electric field E of a RS (we drop here the index n) is normalized
in such a way that

I1 + I2 = 1, (D1)

where

2I1 =
∫
V1

dr E · ∂(ωε̂(ω))
∂ω

E −
∫
V1

dr H · ∂(ωμ̂(ω))
∂ω

H (D2)

is an integral over a volume V1 including the system inho-
mogeneity and I2 is an integral of the same function over
the region inside the PML surrounding V1, in which the field
decays due to the artificial absorbing medium of the PML.
Here H is the corresponding magnetic field of the RS. Note
that we have used an extra factor of 2 in Eq. (D2), as compared
to the equivalent equation in [8]. This is done in order to
compare this normalization, which adds up contributions of the
electric and magnetic field, with our normalization Eq. (B15),
using the electric field only. We compare our normalization
Eq. (B15) with Eq. (D1) by evaluating I1, for which numerical
values are provided in [8] for a TM mode of a gold sphere
with radius a = 0.1 μm having the wavelength λ = 2πc/ω =
(0.607 + 0.239i) μm. We use the dielectric constant of gold
in the Drude model with the same parameters as in [8,27]:
ε(ω) = 1 − λ2/[0.152(1 + 0.075iλ)] with λ measured in μm.

The electric field of a TM mode has the form [13]

E(r) = ATM
l (k)

ε(r)kr

⎛⎜⎜⎜⎜⎜⎝
l(l + 1)Rl(r,k)Ylm(�)

∂

∂r
rRl(r,k)

∂

∂θ
Ylm(�)

∂

∂r

rRl(r,k)

sin θ

∂

∂ϕ
Ylm(�)

⎞⎟⎟⎟⎟⎟⎠ (D3)

in which k = ω/c is a solution of the secular equation for TM
modes

1

nr

jl+1(nrka)

jl(nrka)
= hl+1(ka)

hl(ka)
− l + 1

ka

(
1 − 1

n2
r

)
; (D4)

Rl(r,k) is given by Eq. (C7) and ε(r) by Eq. (C5) with n2
r =

ε(ω), taking any of the two roots for nr . The normalization

constant ATM
l (k) calculated using the correct normalization

Eq. (B15) has the form

nrAl

ATM
l (k)

=
√[

jl−1(nrka)

jl(nrka)
− l

nrka

]2

+ l(l+1)

k2a2
+ηCl(k), (D5)

where Al is given by Eq. (C8), and the last term under the
square root takes into account the effect of the dispersion, with

η = 1

ε(ω)

∂(ω2ε(ω))
∂(ω2)

− 1 (D6)

and(
n2

r − 1
)
Cl(k) = 2(l + 1)

k2a2
+ n2

r

[
j 2
l+1(nrka)

j 2
l (nrka)

− jl+2(nrka)

jl(nrka)

]
.

(D7)

Note that the normalization constant ATM
l (k) of a TM mode,

defined by Eq. (D5), generalizes the one used for a dielectric
sphere, which is given by Eq. (29) of [13], as it takes into
account the dispersion of the metal via the term ηCl(k).

The corresponding magnetic field of the same RS has the
form

iH(r) = ATM
l (k)Rl(r,k)

⎛⎜⎜⎜⎜⎝
0

1

sin θ

∂

∂ϕ
Ylm(�)

− ∂

∂θ
Ylm(�)

⎞⎟⎟⎟⎟⎠. (D8)

The integral I1 = (I1E + I1H )/2 over a sphere of radius R � a

is then evaluated in the following way:

I1E =
∫
VR

dr E · ∂(ωε̂(ω))
∂ω

E

=
[
ATM

l (k)
]2

k2

{
[l(l + 1)]2

∫ R

0
dr

R2
l (r,k)β(r)

ε2(r)

×
∫

d�Y 2
lm(�) +

∫ R

0
dr

β(r)

ε2(r)
[∂rrRl(r,k)]2

×
∫

d�

[
(∂θYlm)2 + (∂ϕYlm)2

sin2 θ

]}

=
[
ATM

l (k)
]2

k2
l(l + 1)

∫ R

0
dr

β(r)

ε2(r)

× [
l(l + 1)R2

l + (∂rrRl)
2
]
, (D9)

where

β(r) =
⎧⎨⎩

∂(ωε(ω))
∂ω

for r � a,

1 for r > a,
(D10)

and

I1H = −
∫
VR

dr H · ∂(ωμ̂(ω))
∂ω

H

= [
ATM

l (k)
]2
∫ R

0
r2R2

l dr

∫
d�

[
(∂θYlm)2 + (∂ϕYlm)2

sin2 θ

]
= [

ATM
l (k)

]2
l(l + 1)

∫ R

0
r2R2

l dr, (D11)
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TABLE I. The values of the integral Eq. (D2) calculated in the
present work (I1) and the relative difference between I1 and the value
I S

1 calculated by Sauvan et al. [8], for three integration radii R, for
the mode with the wavelength 2πc/ω = (0.607 + 0.239i) μm in a
gold nanosphere of radius a = 0.1 μm.

R (μm) I1 I S
1 /I1 − 1 |I S

1 /I1 − 1|
0.15 0.61936187690 (5.66 − 1.29 i) 5.80 × 10−9

–0.44899671324i ×10−9

1.0 6.56641919859 (0.057 + 2.095 i) 2.095 × 10−8

+0.49127433385 i ×10−8

2.0 1052.29778832465 (0.100 + 4.468 i) 4.469 × 10−8

–1235.22683098918 i ×10−8

using μ̂ = 1̂ everywhere. The integral in Eq. (D9) is calculated
analytically using the Bessel equation and integration by parts:∫

dr
[
l(l + 1)R2

l + (∂rrRl)
2]

= rR2
l + r2Rl∂rRl + εk2

∫
r2R2

l dr, (D12)

where ε is constant in each area of space. The integral in the
last term of Eqs. (D11) and (D12) is a known analytic integral:∫

x2f 2
l (αx)dx = x3

2

[
f 2

l (αx) − fl−1(αx)fl+1(αx)
]
, (D13)

in which fl(z) is any solution of the spherical Bessel equation,
such as jl(z) or hl(z), and α is a complex constant. We therefore
find

I1E =
[
ATM

l (k)
]2

k2
l(l + 1)

(
1

ε(ω)

∂(ωε(ω))
∂ω

Ia
1E + IR

1E

)
,

I1H =
[
ATM

l (k)
]2

k2
l(l + 1)

(
I a

1H + IR
1H

)
, (D14)

where

I a
1E = a(l + 1) − nrka2

2
(2l + 3)

jl+1(nrka)

jl(nrka)

+ n2
r k

2a3

2

(
1 + j 2

l+1(nrka)

j 2
l (nrka)

)
,

IR
1E = 1

2h2
l (ka)

{−kr2(2l + 3)hl+1(kr)hl(kr)

+ 2r(l + 1)h2
l (kr) + k2r3

[
h2

l (kr) + h2
l+1(kr)

]}R

a
,

I a
1H =

[
k2r3

2j 2
l (nrka)

[
j 2
l (nrkr)−jl−1(nrkr)jl+1(nrkr)

]]a

0

,

IR
1H =

[
k2r3

2h2
l (ka)

[
h2

l (kr) − hl−1(kr)hl+1(kr)
]]R

a

. (D15)

The values of I1 = (I1E + I1H )/2 calculated using
Eqs. (D14) and (D15) are shown in Table I and compared
with the values I S

1 provided by Sauvan et al. [8] for the same
radii R of the sphere of integration. One can see an excellent
agreement between the two approaches, with a relative error
in the 10−7 to 10−8 range. We note however that this result

was obtained for a spherically symmetric system which is
effectively 1D, and the actual calculation in [8] was done
analytically [27], providing the excellent agreement with the
strict result. In a full 3D calculation the use of a PML may lead
to more significant errors. For instance, using the approach
of [8], a deviation of about 2% of the PF from the direct
numerical evaluation of the GF was found [8,18] for an optical
mode in a gold rod with cylindrical symmetry. It is also
important to note that the derivation of the normalization in [8]
uses a frequency-independent (nondispersive) PML, while in
finite-difference time domain methods typically a dispersive
PML is used to reduce numerical complexity. A more detailed
comparison of this normalization method with Eq. (8) would
be interesting.

APPENDIX E: DETAILS OF THE PURCELL FACTOR
CALCULATION

In this section we provide some details of our calculation of
the PF for a dielectric spherical resonator in vacuum, of radius
a and refractive index nr ; numerical results are presented here
and in the main text. The PF is expressed in terms of the
mode volumes via Eq. (9), and the mode volume of a RS is
given by Eq. (2) of the main text, in terms of its normalized
electric field. The latter has an explicit analytic form for a
spherical resonator, which is given by Eq. (C6) for TE and by
Eq. (D3) for TM polarization. The normalization constants are
given by Eqs. (C8) and (D5), respectively. Static modes do not
contribute to the PF as noted in Appendix A and thus are not
considered here.

Owing to the spherical symmetry of the resonator, RS
eigenfrequencies are 2l + 1 degenerate with respect to the
azimuthal quantum number m (here l is the orbital quantum
number). Therefore, for each set of degenerate RSs, we
introduce a collective mode volume Vl defined as

μ2

Vl

=
l∑

m=−l

[μ · Elm(r)]2, (E1)

where the quantum numbers l and m are shown explicitly
but the RS index n is dropped for brevity of notation. Then,
using the vector components of the dipole moment in spherical
coordinates,

μ = μrer + μθeθ + μϕeϕ, (E2)

and the sum rules for spherical harmonics,

l∑
m=−l

(
1

sin θ

∂Ylm

∂ϕ

)2

=
l∑

m=−l

(
∂Ylm

∂θ

)2

= l(l + 1)
2l + 1

8π

and
l∑

m=−l

Y 2
lm = 2l + 1

4π
,

we obtain

μ2

V TE
l

=
[
ETE

l (r)
]2

l(l + 1)

l∑
m=−l

[
μ2

θ

(
1

sin θ

∂Ylm

∂ϕ

)2

+ μ2
ϕ

(
∂Ylm

∂θ

)2
]

= [
ETE

l (r)
]2 2l + 1

8π
(μ2

θ + μ2
ϕ) (E3)
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for TE modes, and

μ2

V TM
l

= [
ETM1

l (r)
]2

l(l + 1)
l∑

m=−l

μ2
r Y

2
lm +

[
ETM2

l (r)
]2

l(l + 1)

×
l∑

m=−l

[
μ2

θ

(
∂Ylm

∂θ

)2

+ μ2
ϕ

(
1

sin θ

∂Ylm

∂ϕ

)2
]

= [
ETM1

l (r)
]2

l(l + 1)
2l + 1

4π
μ2

r

+ [
ETM2

l (r)
]2 2l + 1

8π

(
μ2

θ + μ2
ϕ

)
(E4)

for TM modes, where

ETE
l (r) =

√
2(

n2
r − 1

)
a3

Rl(r),

ETM1
l (r) =

√
2(

n2
r − 1

)
a3Dl

1

nrkr
Rl(r), (E5)

ETM2
l (r) =

√
2(

n2
r − 1

)
a3Dl

1

nrkr

∂

∂r
rRl(r),

Rl(r) = jl(nrkr)/jl(nrka), r is the position of the dipole
(inside the dielectric sphere), and

Dl =
[
jl−1(nrka)

jl(nrka)
− l

nrka

]2

+ l(l + 1)

k2a2
. (E6)

Note that the spherical harmonics Ylm used throughout this
paper are taken in the form of real functions defined as [13]

Ylm(θ,ϕ) =
√

2l + 1

2

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ )χm(ϕ), (E7)

where P m
l (x) are Legendre polynomials and

χm(ϕ) =
⎧⎨⎩

π−1/2 sin(mϕ) for m < 0,

(2π )−1/2 for m = 0,

π−1/2 cos(mϕ) for m > 0,

(E8)

respecting the orthonormality∫ 2π

0
χm(ϕ)χm′(ϕ) dϕ = δmm′ , (E9)

required by Eqs. (8) and (B28).
Equations (E7) and (E8) make Ylm(θ,ϕ) different from their

usual form adopted in the literature, in which exponentials
eimϕ are used in the functions χm(ϕ). This exponential form
suits the typical normalization in Hermitian systems, which
uses a scalar product in a Hilbert space, with a complex
conjugation of one field (EE∗). For open systems, which
are non-Hermitian, the proper normalization of RSs is given
by Eq. (8). Using the exponential form, both integrals in
Eq. (8) are vanishing, meaning that this form does not allow
the RSs to be normalized. To understand this somewhat
disconcerting finding, we consider a general combination of
the degenerate pair of basis functions Eq. (E8) with m = ±|m|
(m �= 0):

χ̃m(ϕ) = amχm(ϕ) + bmχ−m(ϕ), (E10)

where am and bm are constant coefficients. We require that
the functions χ̃m(ϕ) satisfy the same orthonormality condition
Eq. (E9), from where we find that a2

m + b2
m = 1 and amb−m +

a−mbm = 0. From these properties, simple algebra also yields
the identities a2

m + b2
−m = 1 and ambm + a−mb−m = 0. Insert-

ing the resulting two degenerate RSs into Eq. (9), we find that,
in accordance with Eqs. (E3) and (E4), their contribution to
the Purcell factor, for the dipole component μϕ in the TE and
μr and μθ in the TM polarization, is proportional to

χ̃2
m(ϕ) + χ̃2

−m(ϕ) = (
a2

m + b2
−m

)
χ2

m(ϕ) + (
b2

m + a2
−m

)
χ2

−m(ϕ)

+ 2(ambm + a−mb−m)χm(ϕ)χ−m(ϕ)

= χ2
m(ϕ) + χ2

−m(ϕ) = 1

π
, (E11)

which is independent of the angle ϕ and the choice of am and
bm. Similarly, for the dipole component μθ in the TE and μϕ

in the TM polarization, the Purcell factor is proportional to[
dχ̃m

dϕ

]2

+
[
dχ̃−m

dϕ

]2

= m2

π
, (E12)

using the fact that χ ′
m(ϕ) = mχ−m(ϕ). We can clearly see that

the orthonormality conditions make the PF independent of
the basis choice, as must be expected for a physically relevant
quantity.

To investigate further, we consider a transition to the
exponential form along a parameter α choosing a±|m| =
±βi sin(α) and b±|m| = β cos(α). The orthogonality requires
β2 = 1/ cos(2α). The exponential form e±i|m|ϕ corresponds
to α = π/4, and we see that for this value of α, the
factor β is diverging. The exponential form thus results in
diverging amplitudes of the normalized RSs. This divergence
is, however, exactly compensated by the above mentioned
vanishing normalization integral for the modes taken in this
form. The physical observable, the PF, is independent of basis
choice, as shown by Eqs. (E11) and (E12), and remains valid
also in the limit α → π/4, owing to the cancellation of the
divergence in Eq. (9).

The collective mode volumes of several RSs with l = 7,
calculated using Eqs. (E3)–(E5), are shown in Fig. 1(a) of the
main text for TE polarization and in Figs. 5(a) and 6(a) for
TM polarization and two different directions of the dipole.
We note that the fundamental n = 1 WGMs in TE and TM
polarizations, which have quite similar Q factors of the order
of 100, have very different mode volumes for a given direction
of the dipole. Indeed, for an azimuthal dipole direction
e = (0,0,1) the effective volume of the TE mode is much
smaller than the one of the TM mode. This is because the
electric field in TM polarization is mostly in radial direction,
with only a small azimuthal component. For a radial direction
of the dipole e = (1,0,0) instead, the TM mode has a much
smaller mode volume, comparable to that of the TE mode for
e = (0,0,1), as seen by comparing Figs. 1(a) and 6(a). The
partial PFs due to all l = 7 modes within the spectral range up
to ωna/c ∼ 40 are shown separately, in Fig. 1(b) for TE and in
Figs. 5(b) and 6(b) for TM polarization. These figures show the
strong dependence of the PF on the dipole orientation, as dis-
cussed above. Summing over all different l components and av-
eraging over all possible directions of the dipole, we obtain the
full PF for this system which is shown in Fig. 2 of the main text.
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FIG. 5. (a) As Fig. 1(a) but for TM polarization. (b) Partial Purcell
factor as a function of the dipole frequency ω, calculated for the
geometry of (a).

APPENDIX F: VERIFICATION OF THE EXACT FORMULA
FOR THE PURCELL FACTOR

To verify the exact formula Eq. (9) for the PF we compare
both the partial PF Fl(ω) for a given l, and the full PF F (ω)
(i.e., the sum over all l) with those obtained via Eq. (5) using a
direct evaluation of the analytic dyadic GF, resulting in F a

l (ω)
and F a(ω), respectively. The analytic form of the dyadic GF for
a dielectric sphere in vacuum is known in the literature [28]
and can be represented in terms of the linearly independent
solutions of the second-order differential equation, given by
spherical Bessel and Hankel functions. We use this analytic
form both in TE and TM polarizations, for the same dielectric
sphere and the same position of the dipole as considered in
Figs. 1 and 5. We find excellent agreement, limited only by the
finite number of RSs taken into account in the sums. As an ex-
ample, we compare F a

7 (ω) with F7(ω) in Fig. 7(a) and 7(b). The
error F a

7 (ω) − F7(ω) given in Fig. 7(c) shows that the analytic
result is about 10−4 higher. This deviation is due to the limited
number of RSs used to calculate F7 via Eq. (9); we took into
account all RSs with |ωn| < ωmax = 40c/a, as in the main text.
The missing contributions of the higher frequency RSs yield an
underestimation of the PF, which is increasing with frequency
as one approaches the frequencies of the missing RSs.

FIG. 6. As Fig. 5 but for an orthogonal direction of the dipole:
e = (1,0,0).

Summing over all partial PFs with l < ωmaxa/c, we obtain
the full PF, both in TE and TM polarizations for the same
dipole; see Figs. 8(a) and 8(b). Its error F a(ω) − F (ω) shown
in Fig. 8(c) is again positive and slightly increasing with
frequency. It is larger than the partial error shown in Fig. 8(c)
due to the accumulated errors from different l. These errors are
oscillating and decaying in magnitude with increasing cutoff
frequency ωmax, as shown in the inset of Fig. 8(c). A
convergence faster than ω−1

max is observed, as indicated by the
dotted lines.

APPENDIX G: APPLICATION OF EXACT
NORMALIZATION TO MODES CALCULATED

WITH NUMERICAL SOLVERS

We have shown in Figs. 3 and 4 the LK normalization for
a finite radius R, having sizable errors close to the system (of
around 10% for the examples shown), and diverging errors
in the limit of infinite R. We can see that, when excluding
the leaky modes which have Qn < 3, the divergence for large
radii only becomes apparent for R/a > 10, a regime that in a
numerical simulation would not likely be explored due to the
large required computational domain. The errors at small radii
are therefore typically the more significant limitation of the
LK normalization for simulations of high-Q modes.
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FIG. 7. (a) Partial Purcell factor of a dielectric sphere in vacuum,
with permittivity ε = 4 and radius a, for a point dipole placed at
|rd | = 0.9a with direction e = (0,0,1), calculated for TE polarization
and l = 7 via the RSs summation Eq. (9) [F7(ω), solid line] and by
using the analytic form of the dyadic GF [F a

7 (ω), dotted line]. (b) As
(a) but for TM polarization. (c) Errors F a

7 (ω) − F7(ω) for TE and TM
polarization using a summation cutoff ωmax = 40.

It is worthwhile at this point to give an intuitive picture of
the difference between the LK and the exact normalization,
which we mentioned in the main text. If we consider a
plane wave propagating with wave vector k in vacuum, we
can write its phase as k · r = r(ω/c) cos α, where r is the
magnitude of r and α is the angle between the propagation
direction and the direction of r. Evaluating the surface term
of the normalization on a small part of a spherical surface,
we obtain that the surface term in Eq. (8) is a factor cos α

smaller than in Eq. (4). This gives us a physical picture
of the difference between the two normalizations. The LK
normalization assumes a propagation normal to the surface of
integration, while the exact normalization takes into account
the actual propagation direction. To determine the actual
propagation direction, spatial derivatives of the fields are
required, and are therefore present in Eq. (8).

We now can also understand why the LK normalization
would be valid for s waves and a spherical surface around the
center; in this case the propagation direction would be radial.
However, pure s waves (such as l = 0 modes of a sphere)
do not exist in electrodynamics of finite systems, as already
mentioned in Appendix C. We note that Kristensen et al. have
recently published an article [29] in which they show in Figs. 2
and 3 the LK normalization for a geometry with an effectively
s-wave mode, using a two-dimensional problem with trans-

FIG. 8. (a) Full Purcell factor of a dielectric sphere in vacuum,
with permittivity ε = 4 and radius a, for a point dipole placed at |rd | =
0.9a with direction e = (0,0,1), calculated for TE polarization via the
RSs summation Eq. (9) [F (ω), solid line] and by using the analytic
form of the dyadic GF [F a(ω), dotted line]. (b) As (a) but for TM
polarization. (c) Errors F a(ω) − F (ω) for TE and TM polarization
using a summation cutoff ωmax = 40c/a. The inset shows the errors
at ω = 5c/a as function of ωmax, with the convergence illustrated by
the dotted lines showing ±0.4c/(ωmaxa).

lation invariance along z and electric field along z. This is a
well chosen example to show that the LK normalization can
have small errors. The second example shown is an axially
symmetric geometry of a gold nanorod dimer, and a dipolar
mode is shown having the emitted field dominantly polarized
along the axial direction and thus again a dominant s character,
leading to reduced errors of the LK normalization.

Using this insight we can understand the resulting errors
of the LK normalization. At small distances from the system,
the propagation direction will significantly differ from being
radial, simply due to the geometrical factor. This is the reason
for the significant errors at small distances seen in Figs. 3
and 4. Going to large distances, the angle 2α, at which the
system is seen from the distance, will scale as 1/R, so that the
error, 1 − cos α, scales as 1/R2. Note that this is consistent
with the analytical result for the Mie modes in Eq. (C15) and
also in Eq. (26) of [29]. For resonant states with finite loss, this
leads to the divergence at large distances ∝ exp(2iωnR/c)/R2,
where the exponential increase of the field dominates the R−2

decay in the LK normalization error.
Importantly, this discussion shows that even if we can

neglect the error due to the exponential divergence, for
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example by considering high-Q modes, the error of the surface
term in Eq. (4) is still approximately L2/(2R)2, where L is
the system size. In order to provide an error of 1%, which
could be considered sufficient, one still needs a simulation
domain which is about five times the system size. Simulating
such large areas is computationally costly, specifically in three
dimensions, where a simulation volume of about 100 times the
system volume would be required. It is also important to note
that the LK normalization requires a spherical normalization
volume with the system in the center in order to provide
the R−2 scaling of the propagation direction error. For other
volume shapes it is not converging to the correct normalization
even for modes of infinite Qn.

The exact normalization instead can be used for any volume
enclosing the system, with arbitrary volume shapes. Therefore
the exact normalization is also advantageous for numerical
evaluation, as it does not require an extended or specifically
shaped simulation domain.

In order to exemplify this discussion and explicitly show the
applicability of the exact normalization to modes determined
with numerical solvers, we have calculated modes of a
dielectric cylinder using the FEM solver COMSOL. The
cylinder has a height h equal to its diameter 2a, and a refractive
index of 3. We used the axisymmetric eigenmode solver of
COMSOL, and an angular quantum number of m = 1. The
cylinder is embedded in vacuum, and the simulation area is
enclosed by a spherical PML at a radius of 5λ + 2

√
2a, where

λ is the target vacuum mode wavelength λ = 2a. The PML
thickness is λ. The mesh was determined by a single mesh
parameter �m, from which the mesh was created using a free
triangular mesh with a minimum size of �m/3 in the cylinder,
�m in vacuum and the PML, and a maximum size twice the
minimum size in all regions. It is important to note that, in order
to show the R dependence of the normalization, we used a large
simulation domain, which leads to large numerical complexity.
Furthermore, spurious surface (whispering gallery) modes,
forming at the vacuum to PML interface due to the nonideality
of the PML, constitute most of the modes found by the
eigenmode solver of COMSOL, when using such a large
simulation domain, which makes it cumbersome to find the
nonspurious modes of the system.

To evaluate the normalization integrals, we exported the
mode field into a square grid of �g pitch. We calculated the first
and second derivatives using a three-point differential scheme
with an error scaling as O(�2

g). The surface integrals were
evaluated by dividing the half circle in cylindrical coordinates
representing the surface by 1025 linear segments [20].

We show here the results for a mode with a frequency
of ωna/c = 2.943508477 − 0.1724037812i having a Qn of
about 8.5. For illustration, the electric field distribution in
the cylindrical coordinate plane (ρ,z) is shown in Fig. 9(c).
The far-field emission pattern has three nodes showing its
non-s-wave character. The effect of the exponential divergence
of the mode towards larger radius is evident, as the R−1 decay
due to the three-dimensional emission is superseded by the
exponential growth of | exp(iωnR/c)|.

To determine the normalization we evaluate Eq. (8) as
function of R. We find numerical noise which increases with
increasing R, proportional to the surface term. We therefore
choose as mode normalization Vn the value for which the

FIG. 9. Normalization of a RS of angular quantum number m = 1
of a cylinder of radius a and height 2a, calculated using COMSOL,
using �m = λ/15, and an export mesh �g = λ/50. (a) Relative error
of the approximate mode volume |V ap

n /Vn − 1| as function of the
radius R of the sphere of integration. V ap

n is calculated without surface
term Eq. (3), or the LK surface term Eq. (4). Additionally the results of
the correct surface term using first and second derivatives Eq. (8) and
only first derivatives Eq. (B27). The dashed line indicates a term ∝
| exp(2iωnR/c)/R2|. (b) Relative complex approximate mode volume
V ap

n /Vn for R/a varying from 1.5 to 12.3. Three different zooms are
shown. Calculated points are connected by straight lines. For the
highest zoom the results of Eq. (8) are shown only for R/a < 5.
(c) Mode field amplitude |En(r)| in cylindrical coordinates (ρ,z).

surface integral is small, at about R/a = 2. The resulting
R-dependent normalization errors are given in Fig. 9(a). Let
us first discuss the result of Eq. (8). We can see a value which
is randomly fluctuating around zero [see also the complex
normalized mode volume in Fig. 9(b)], showing that the
deviation is due to numerical errors. Comparing this error
with the error of the volume-only normalization Eq. (3), we
see that it is about 1–2 orders of magnitude smaller, indicating
that the relative error of the surface integral evaluation is about
1%–10% in this case. Interestingly, using the first-derivative
expression for the exact normalization, Eq. (B27), this random
error is converted into a systematic error of similar magnitude,
but spiraling in the complex plane. We have found that
choosing different �g changes these numerical errors, and
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FIG. 10. As Fig. 9, but using a mesh of λ/6, and an export mesh
λ/20.

we have chosen the ratio between �g and �m to provide
the smallest errors within a factor of two for both exact
normalization formulations. We found that for Eq. (B27) the
optimum �g was about three times smaller than for Eq. (8).

The error of the correct surface integral is dominated by the
error in determining the local propagation direction, i.e., by
the spatial derivatives of the fields. To minimize the resulting
error of the normalization, it is therefore best to evaluate the
normalization using a volume with a small surface term, as
we have done. Too close to the system, strong field gradients
and spatial variations of the mesh can give rise to additional
numerical errors, as visible in Fig. 9(a) for R < 2a.

We find the error of Eq. (4) to be significant for small R,
similar to what is observed for the Mie modes in Fig. 3 and
explained as the failure of the radial propagation assumption
of Eq. (4). With increasing R the value oscillates, due to
a rotation of the error in the complex plane as shown in
Fig. 9(b), according to the scaling exp(2iωnR/c)/R2 shown
by the dashed line in Fig. 9(a). Additional to the oscillation,
we also observe a slow drift of the center position, which we
discuss later on.

We now compare these result with the ones for a 2.5
times coarser mesh (�m = λ/6 and �g = λ/20) shown in
Fig. 10, which leads to a very small relative change of ωn

of −1.2 × 10−6 for the real part and −7.8 × 10−5 for the

FIG. 11. As Fig. 9, but using a PML thickness of 3λ/4.

imaginary part. This mesh size is advised in typical COMSOL
examples. We find that the results are generally similar, but
show higher random numerical errors. Notably, we find that
the first-derivative formulation Eq. (B27) shows now an error
about five times lower than the one of the second-derivative
formulation Eq. (8), and having a magnitude similar to that for
the finer mesh shown before. This illustrates an advantage of
the first-derivative normalization for coarser grid calculations
having larger numerical errors.

We now look at the effects of the nonideality of the
PML, producing reflected waves. Such waves are incoming,
and thus have the opposite propagation direction to the one
assumed in Eq. (4). We used the fine mesh of Fig. 9, but
a PML thickness reduced from λ to 3λ/4. This leads to a
relative change of ωn of −3.5 × 10−3 for the real part and
−8.2 × 10−3 for the imaginary part. While the presence of
the reflected wave is hardly visible in the mode amplitude
shown in Fig. 11(c), the error of Eq. (3) in Fig. 11(a) is clearly
showing oscillations due to the interference of outgoing and
incoming waves. Their contrast is increasing with decreasing
R due to the exponential growth of the reflected incoming
field with decreasing R, similar to the growth with increasing
R of the outgoing field. Evaluating the total field growth
due to Im(ωn) during the propagation to the PML and back
to the center we find a factor of about 15 for the present
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FIG. 12. As Fig. 9, but using a PML thickness of 2λ.

case. Using large simulation volumes as done here results in
such large factors, which give rise to artifacts even for a low
reflectivity of the PML. Again for the present case, we see a
contrast of about 20% close to the center, corresponding to
the incoming field amplitude of about 10% of the outgoing
one, and thus to a PML amplitude reflectivity of about
0.7%, or intensity reflectivity of about 5 × 10−5. Very small
residual reflectivities of the PML can thus lead to large
contributions of incoming waves, specifically for modes of
low Qn.

Looking at the error of the LK normalization in Fig. 11(a),
we see the significant impact of the incoming waves. The
behavior in the complex plane in Fig. 11(b) is instructive; in
addition to the spiraling, the normalization is drifting in phase
approximately linearly with R by up to 0.2 radians.

The drift of the LK normalization seen in Fig. 9 is therefore
attributed to a small reflection of the PML, which can be also
seen as weak oscillation of the volume normalization. Increas-
ing the thickness of the PML to 2λ, shown in Fig. 12, this drift
is reduced, and the center of rotation of the LK normalization

is found closer to the exact normalization. The relative change
of ωn due to this increased PML thickness is 2.1 × 10−4 for
the real part and 6 × 10−4 for the imaginary part.

Interestingly, the exact normalization is hardly influenced
by such reflections, which is understandable since it takes
into account the propagation direction. To compare the
normalization of the modes for the different simulations, we
use the volume integral Eq. (3) evaluated for the smallest
possible radius of the sphere fully including the cylinder,
R = √

2a. This integral is proportional to the electric field
squared and consequently to the inverse mode volume. For
the exact normalization of the mode, we find the value of
the volume integral to be 1.05735 − 0.00126i for Fig. 9,
1.06158 − 0.00108i for Fig. 10, 1.06469 − 0.01038i for
Fig. 11, and 1.05704 − 0.00202i for Fig. 12. This shows that
the exact normalization is stable to 0.7% for all these cases.
At the same time the LK normalization has minimum errors
above 4% in the case of Fig. 11.

To summarize, we have presented an example of the appli-
cability of the exact normalization to numerically determined
modes, which indicates the following. First, as the exact
normalization can be evaluated over any volume containing
the system, this volume can be chosen close to the system to
have a small surface term and therefore smaller errors, and not
requiring an extension of the simulation domain. Second, the
fact that the exact normalization takes proper account of the
propagation direction makes it less susceptible to incoming
waves, such as those propagating from nonideal PMLs, so
that the exact normalization is robust against such errors in
numerical simulations.

Considering the LK normalization instead, we emphasize
that it assumes that the field at the surface is propagating
normal to the surface of the normalization volume. It therefore
does not determine the propagation direction from the field
gradients, and is consequently having smaller numerical
errors. However, this assumption creates systematic errors
which depend on the specific mode analyzed and the surface
geometry used. For the widely used spherical volume, the
resulting error scales ∝ exp(2iωnR/c)/R2, where the 1/R2

factor simply comes from the angular size of the system
seen from the surface of integration. If the mode frequency
ωn is real, the error is converging to zero at R → ∞. For
any lossy mode, the finite imaginary part of ωn leads to
a divergence of the error at R → ∞. For modes with a
sufficiently large Q factor, this divergence however is seen
only for R larger than any numerically treatable domains.
Even in this case, a significant reduction of the errors due to
non-normal propagation requires large values of R, as shown
in Figs. 3 and 9–12. Therefore in practical terms, the most
problematic feature of the LK normalization for high-Q modes
is not the divergence at R → ∞, but the requirement to use
simulation sizes much larger than the system size, in order to
approximately achieve the normal incidence condition.
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