
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/100689/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Uebbing, B., Forootan, Ehsan , Braakmann-Folgmann, A. and Kusche, J. 2017. Inverting surface soil
moisture information from satellite altimetry over arid and semi-arid regions. Remote Sensing of

Environment 196 , pp. 205-223. 10.1016/j.rse.2017.05.004 

Publishers page: http://dx.doi.org/10.1016/j.rse.2017.05.004 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Inverting surface soil moisture information from satellite1

altimetry over arid and semi-arid regions2

B. Uebbinga, E. Forootana,b, A. Braakmann-Folgmanna, J. Kuschea3

aInstitute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany4

bSchool of Earth and Ocean Sciences, Cardiff University, Cardiff, UK5

Abstract6

Monitoring surface soil moisture (SSM) variability is essential for understanding hydro-7

logical processes, vegetation growth, and interactions between land and atmosphere. Due8

to sparse distribution of in-situ soil moisture networks, over the last two decades, several9

active and passive radar satellite missions have been launched to provide information that10

can be used to estimate surface conditions and subsequently soil moisture content of the11

upper few cm soil layers. Some recent studies reported the potential of satellite altimeter12

backscatter to estimate SSM, especially in arid and semi-arid regions. They also pointed13

out some difficulties of such technique including: (i) the noisy behavior of the backscatter14

estimations mainly caused by surface water in the radar foot-print, (ii) the assumptions15

for converting altimetry backscatter to SSM, and (iii) the need for interpolating between16

the tracks.17

In this study, we introduce a new inversion framework to retrieve soil moisture infor-18

mation from along-track altimetry measurements. First, 20Hz along-track nadir radar19

backscatter is estimated by post-processing waveforms from Jason-2 (Ku- and C-Band20

during 2008-2014) and Envisat (Ku- and S-Band during 2002-2008). This provides21

backscatter measurements every ∼300m along-track within every ∼10 days from Ja-22

son, and every ∼35 days from Envisat observations. Empirical orthogonal base-functions23

(EOFs) are then derived from soil moisture simulations of a hydrological model, and24

used as constraints within the inversion. Finally, along-track altimetry reconstructed25

surface soil moisture (ARSSM) storage is inverted by fitting these EOFs to the altimeter26

backscatter. The framework is tested in arid and semi-arid Western Australia, for which27

a high resolution hydrological model (the Australian Water Resource Assessment, AWRA28
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model) is available. Our ARSSM products are also validated against Soil Moisture and29

Ocean Salinity (SMOS) L3 products, for which maximum correlation coefficients of big-30

ger than 0.8 are found. Our results also indicate that ARSSM can validate the simulation31

of hydrological models at least at seasonal time scales.32

Keywords: Altimetry, Backscatter, Altimetry Reconstructed Soil Moisture, Australia,33

Inversion34

1. Introduction35

Soil moisture storage is the main driver of the outgoing hydrological fluxes, such as36

evapotranspiration and (sub-)surface runoff (Katul et al., 2012), two important compo-37

nents of the terrestrial water cycle. Therefore, quantifying spatio-temporal variability38

of soil moisture is essential for modeling and understanding the water cycle, including39

land-atmosphere interactions, as well as for simulating present day and future climate40

change, and for flood and drought prediction (see, e.g., Rötzer et al., 2014). Nowadays,41

soil moisture remote sensing has attracted growing interest to complement the sparse42

available in-situ networks. The contribution of remote sensing techniques is in particular43

in monitoring of the top soil layer (first few centimeters).44

Starting with the C-Band (5GHz) wind-scatterometers on-board of the European45

Remote Sensing satellites ERS-1 (launched 1991) and ERS-2 (launched 1995), it was46

demonstrated that the scatterometer data could be applied to estimate vegetation and47

soil characteristics over continental land surfaces (Mougin et al., 1995). In fact, the48

backscattered signal energy is linked to the soil water content via the dielectric con-49

stant (Ulaby et al., 1982). In 2002, the National Aeronautics and Space Administration50

(NASA) launched the Aqua satellite mission that carried the Advanced Microwave Scan-51

ning Radiometer (AMSR-E) to observe (passive-mode) brightness temperatures at six52

dual polarized frequencies (Njoku et al., 2003). Lower microwave frequencies (e.g. C- or53

X-Band) allow a better monitoring of the upper few centimeters of the Earth’s surface54

(Njoku et al., 2003) with reduced sensitivity to vegetation cover and surface roughness55

(Draper et al., 2009). To continue the coverage provided by the ERS missions, the56

Advanced Scatterometer (ASCAT) was launched in 2006 on-board a Meteorological Op-57
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erational (METOP) satellite (Bartalis et al., 2007).58

The Soil Moisture and Ocean Salinity (SMOS) satellite, a dedicated soil moisture59

monitoring mission, was launched in 2009 to provide brightness temperature and soil60

moisture products on a three-daily basis (Delwart et al., 2008; Montzka et al., 2013).61

Additionally, the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010),62

launched in early 2015, has been monitoring continental soil moisture changes with its63

passive radiometer and active L-Band scatterometer. However, the active instrument64

failed after six month of operation. Table 1 provides a short summary on the individual65

missions.66

Table 1: Summary of key features of individual soil moisture missions, as well as altimetry mission
utilized in this study. Note that the across-track (act) resolution refers to the maximum distance
between the tracks at the equator while the along-track (alt) refers to the distance between individual
20Hz measurements. For SMAP we only report the spatial resolution of the passive radiometer.
Mission Launch Sensor Temporal Resolution Spatial Resolution

ERS-1/-2 1991/07 Scatterometer C-Band 3-4 d 50-60 km
Aqua 2002/05 AMSR-E: C-Band 3 d 75x43 km
METOP 2006/10 ASCAT: C-Band 2 d 50 km
SMOS 2009/11 MIRAS: L-Band 3 d 35 km
SMAP 2015/01 L-Band 2-3 d 40 km
Envisat 2002/03 active Ku- and S-Band 35 d 300m alt, 80 km act
Jason-2 2008/07 active Ku- and C-Band 10 d 300m alt, 315 km act

Dedicated satellite altimetry missions (e.g., Envisat, Topex/Poseidon and its follow-67

on Jason 1, 2, and 3 ) have been originally designed to measure sea surface height68

over the oceans (Shum et al., 1995). Over land, the measured backscatter is closely69

related to soil characteristics at the satellite nadir (Papa et al., 2003; Blarel et al., 2015).70

Ridley et al. (1996) and Fatras et al. (2012) found high correlation between in-situ soil71

moisture measurements and altimetry backscatter from the Topex/Poseidon and Envisat72

missions. Fatras et al. (2015) extended these investigations to different land cover regions,73

such as desert, savanna and forests. They compared Jason-2 backscatter with side-74

looking scatterometers (QuickSCAT and ASCAT) over the arid regions of West Africa and75

found altimetry results to be more sensitive to soil moisture variations and considerably76

less to vegetation effects, due to the nadir-looking instrument on-board of the satellite.77

Ka-Band measurements of the Satellite with Argos and Altika (SARAL) mission were78

assessed by Frappart et al. (2015) to relate the backscatter estimates to spatio-temporal79
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changes in surface roughness, land cover, and soil moisture changes over West Africa.80

Their study indicates that Ka-Band measurements are able to penetrate underneath81

the canopy of tropical forests in non-inundated areas. In Table 2, relevant studies that82

utilize altimetry for soil moisture studies are summarized. We believe that altimetry83

missions (1) provide high resolution along-track measurements (∼300m) of backscatter84

with (2) low sensitivity to vegetation in combination with (3) more than two decades85

of continuous measurements which makes altimetry a valuable and independent tool for86

measuring surface soil moisture. However, due to the limited (across-track) spatial and87

temporal resolution (Table 1), the range of applications for altimetry based soil moisture88

monitoring might be limited and the data should be utilized in combination with the89

existing dedicated soil moisture missions.90

Estimating surface soil moisture (SSM) from brightness temperatures as measured by91

dedicated soil moisture missions, or from backscatter observations as measured by altime-92

try, is challenging. Several previous studies formulated this conversion based on a linear93

change detection approach (Wagner et al., 1999) and applied to SMOS observations. For94

example, Liu et al. (2011) combined active (ASCAT) and passive (AMSR-E) products95

and rescaled them against the simulation of the Global Land Data Assimilation System96

(GLDAS, Rodell et al., 2004). In Piles et al. (2011), SMOS products were combined and97

downscaled to 1 km using high resolution VIS/IR MODIS observations. Al-Yaari et al.98

(2015) applied a multiple-linear regression approach to minimize the differences between99

AMSR-E and SMOS soil moisture products. An artificial neural network was used to100

estimate soil moisture from simulated brightness temperatures as in Liou et al. (2001),101

Angiuli et al. (2008), and Chai et al. (2010). Recently, Rodŕıguez-Fernández et al. (2015)102

applied a neural network to identify the statistical relationship between a reference soil103

moisture data set and a variety of information from SMOS brightness temperatures, C-104

Band backscatter coefficients from ASCAT and MODIS derived Normalized Difference105

Vegetation Index (NDVI) data.106

Converting altimetry backscatter to soil moisture storage is accompanied with diffi-107

culties including (i) the noisy behavior of the backscatter estimates as a result of strong108

reflections from surface water in the radar footprint or variations of surface roughness, (ii)109
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the assumptions, such as homogeneous surface conditions in the radar footprint, and (iii)110

the need of interpolation between the altimetry tracks. In this study, we present a novel111

approach to retrieve soil moisture from satellite altimetry backscatter measurements.112

The main objectives are:113

1. to develop an inversion approach which utilizes spatial patterns of modeled soil114

moisture to constrain altimetry backscatter and estimate meaningful surface soil115

moisture (SSM) information along the altimeter track (Section 4.2);116

2. to validate the altimetry reconstructed SSM estimates by comparing them with117

model simulations and with satellite products (e.g. Section 5.2 and 5.3); and118

3. to explore the behavior of altimetry derived SSM within regions with varying land119

cover, soil moisture content and topography (e.g. Section 6.3).120

Table 2: Studies that utilize satellite altimetry backscatter in context of examining SSM.

Study Data used Location Key results

Ridley et al. (1996) Topex Ku- and C-Band, mod-

eled backscatter from surface

roughness, soil moisture, vege-

tation, and topography

Simpson Desert, Australia 1. Soil moisture is found to be the dominant compo-

nent

2. No significant temporal variation is found due to

changes in topography and vegetation cover

3. Effects from precipitation on soil moisture decay

after about 2 days

Papa et al. (2003) Topex Ku- and C-Band and C-

minus Ku-Band

global 1. Backscatter is related to soil characteristics

2. Altimetry has the potential to monitor land sur-

faces at global and regional scales

Fatras et al. (2012) Envisat Ku- and S-Band, in-

situ soil moisture station, AS-

CAT data

Sahel region, Mali 1. Linear relationship is considered between

backscatter and SSM

2. Vegetation influence on SSM from altimetry is

small

3. Quality of SSM from altimetry using a change de-

tection approach depends on distance to the in-situ

station, presence of open water surfaces, topography,

and chosen retracking algorithm.

Fatras et al. (2015) Jason-2 Ku- and C-Band, En-

visat Ku-Band, QuikSCAT and

ASCAT scatterometry data

West Africa 1. Nadir-looking altimeters are found to be more sen-

sitive to SSM than side-looking scatterometers

2. Impact of vegetation on altimetry backscatter is

low

3. Magnitudes of band-dependent backscatter change

over different surface types

Frappart et al. (2015) Jason-2 Ku- and C-Band,

Envisat Ku- and S-Band,

Saral/Altika Ka-Band

West Africa 1. Altimeter radar echos at nadir incidence are well

correlated to soil moisture in semi-arid areas

2. Altimeters are able to detect the presence of water

even under dense canopies at all frequencies

3. Only Ka-Band is found capable of penetrating un-

derneath the canopy of non-inundated tropical forest
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This study Jason-2 Ku- and C-Band, En-

visat Ku-Band, SMOS derived

SSM, AWRA and GLDAS top

level soil moisture model data,

and ERA-Interim precipitation

Western Australia, Aus-

tralia

1. Spatial patterns extracted from model data are

used to constrain measured backscatter and to con-

vert to SSM

2. Inversion approach

3. Validation against model data and SMOS derived

SSM indicates good agreements within (semi-)arid re-

gions with varying land cover, surface roughness, veg-

etation coverage and human influence

2. Study Area121

We select a large part of the semi-arid and arid Western Australia as our study area,122

which covers about one third of the continent i.e. an area of approximately 2.53 million123

square kilometers. In contrast to earlier studies (Piles et al., 2011; van der Schalie et al.,124

2015), no in-situ networks of terrestrial soil moisture stations are available here. In125

the northwest and central parts, the predominant climate is semi-arid to arid, and in the126

southwest, a more temperate semi-arid to Mediterranean climate can be found. Top level127

soil moisture in Western Australia is primarily driven by precipitation suggesting a strong128

land-atmosphere coupling (Bartalis et al., 2007; Draper et al., 2009). This will provide129

an opportunity to compare estimated altimetry derived soil moisture patterns with those130

from a global and a continental land surface model. The central part of Western Australia131

is relatively dry with sparse vegetation coverage (Donohue et al., 2008; Glenn et al., 2011,132

Fig. 1 and 2), thus, it makes a good study area to test the proposed framework, although,133

we do not expect a significant contribution of vegetation cover in the altimetry backscatter134

(Frappart et al., 2015). Two sub-regions are considered in this study. Region A (area135

of about 1.47 million square kilometers), is defined by longitudes from 113◦E to 126◦E136

and latitudes between 30◦S and 18◦S in Fig. 1 (left), including the (semi-)arid northern137

and central part of Western Australia. Region B (area of about 0.37 million square138

kilometers) is defined within the longitude bounds 114◦E to 122◦E and latitude bounds139

35◦S to 30◦S in Fig. 1 (right), and covers the southwest of the continent. General land140

cover classes within both regions derived from MODIS are shown in Fig. 1. Classification141

is implemented according to the International Geosphere Biosphere Programme (IGBP)142

scheme by the ‘AusCover’ facility available from the Terrestrial Ecosystem Research143

Network (TERN, http://www.auscover.org.au/).144
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In region A, the surface is mostly covered by shrublands mixed with grassland and145

savanna, especially in the western central part, while in the north and northeast of region146

A, the coverage is denser. In region B, pronounced variation in land cover can be found,147

ranging from dryer shrubland and savanna regions in the northeast and east to the wetter148

southwest area. Agricultural land use can be seen in the central and western parts, as149

well as some forest areas in the southwest.150

Figure 1: Study areas A and B, where soil moisture information is extracted from satellite altimetry
within Western Australia. Land cover classes for the year 2008 are shown. (A) The case study in
the northern part of Western Australia used for estimating ARSSM from Jason-2 observations, and (B)
includes the southern part of Western Australia utilized for estimating ARSN from Envisat observations.
The black lines denote the Jason-2 and Envisat nominal repeat tracks. The corresponding pass numbers
are shown close to the tracks. The blue diamonds indicate the locations of surface waters along track
075 (Sec. 4.1, Fig. 2) and the lakes which are explicitly mentioned in the following text.

3. Data151

3.1. Satellite Radar Altimetry Observations152

Observed waveforms from the Sensor Geophysical Data Records (SGDR) of the Jason-153

2 (2008-2014) and European Environmental Satellite (Envisat, 2002-2010) missions are154
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used to derive backscatter (σ0) information. For both missions the diameter of the pulse155

limited footprint is between 2-10 km depending on topography over land surfaces (Chelton156

et al., 2001).157

Jason-2: The Ocean Surface Topography Mission (OSTM) / Jason-2 mission was158

launched in June, 2008 as a follow-on mission to Jason-1. The satellite orbits the Earth159

in a near circular ∼10-day repeat orbit at an altitude of approximately 1336 km with an160

inclination of 66 deg and a groundtrack separation of about 315 km at the equator. The in-161

struments on board of the satellite include the altimeter, a radiometer for deriving wet tro-162

posphere corrections, as well as GPS and DORIS systems for precise orbit determination163

(Desjonquères et al., 2010). The Poseidon-3 altimeter on board Jason-2 emits radar pulses164

at Ku-Band (13.575GHz/2.21 cm) and C-Band (5.3GHz/5.08 cm) to derive ionospheric165

electron content influencing the radar signal (Desjonquères et al., 2010; AVISO, 2015).166

Jason-2 SGDR data include the 20Hz positions, Ku- and C-Band waveforms, correspond-167

ing scaling factors, and automatic gain control (AGC) information, as well as 1Hz atmo-168

spheric backscatter attenuation corrections and quality flags. However, the flags may not169

be fully reliable over land influenced regions (Birkett & Beckley, 2010). The Jason-2 data170

have been acquired from the CNES Archiving, Validation and Interpretation of Satel-171

lite Oceanographic (AVISO) team (ftp://avisoftp.cnes.fr/AVISO/pub/jason-2/).172

Backscatter information within region A is estimated by reprocessing Jason-2 waveforms173

between mid of 2008 and end of 2014 according to section 4.1. The nine Jason-2 tracks174

with their identification numbers are displayed in Fig. 1 (A).175

Envisat: The Envisat satellite was launched in March, 2002 as a follow-on mission176

to ESA’s ERS-1 and ERS-2 missions. The satellite flies on a ∼35-day sun-synchronous177

repeat orbit with an altitude of 800 km and inclination of 98.55 deg. This results in178

a groundtrack separation of approximately 80 km at the equator. Among the 10 in-179

struments on the satellite, a microwave radiometer that allows estimating the liquid180

water content of the atmosphere, and the DORIS positioning system and retro reflec-181

tors for ground bases satellite laser ranging (SLR) enable precise orbit determination182

(Zelli, 1999). The Radar Altimeter 2 (RA2) altimetry instrument operates in Ku-Band183

(13.575GHz/2.2 cm) and S-Band (3.2GHz/9.37 cm) (ESA, 2007). However, on January184
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18, 2008 the S-Band transmission power dropped significantly, rendering all S-Band obser-185

vation from this date onward unfeasible. Envisat observations (2002-2010) are examined186

over the region B in Fig. 1 (B). The distances between Envisat repeat tracks are smaller187

then those of Jason-2. The Envisat RA2 data was provided to this study by the European188

Space Agency (ESA, https://earth.esa.int/).189

3.2. Land Surface Model Data190

A-priori soil moisture data is required to derive EOFs within the proposed inversion191

(see section 4.2). In this study, we use top layer soil moisture from the Global Land192

Data Assimilation System (GLDAS) (Rodell et al., 2004) and from the Australian Water193

Resources Assessment (AWRA) system (Vaze et al., 2013).194

GLDAS: We use 3-hourly GLDAS-2.1 land surface model data produced by NOAH195

and available through the Goddard Earth Sciences Data and Information Services Center196

(http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas) with a resolution of 1197

degree. The soil moisture is provided in 4 layers (0-10 cm, 10-40 cm, 40-100 cm and 100-198

200 cm) in units of kg/m2. In this study, we utilize the water storage of the first layer199

since the altimeter backscatter derived from Ku- and C-Band (or S-Band) frequencies is200

only sensitive to the first few centimeters of the soil water content.201

AWRA: The AWRA Landscape model (AWRA-L) simulates evapotranspiration,202

runoff, and soil moisture for the Australian continent on a 0.05 deg (∼5.5 km) grid.203

AWRA employs two hydrological response units (HRU) corresponding to different veg-204

etation root depths. Before combining the two flux and storage outputs, the HRUs are205

modeled separately, e.g., considering varying access to individual soil layers. The soil206

moisture information is subdivided into upper (0-10 cm), lower (10-100 cm) and deep207

(100-600 cm) layers. For this study, we used daily top-layer soil moisture provided by208

the Commonwealth Scientific and Industrial Research Organization (CISRO). The soil209

moisture values are scaled between 0 and 1 in units of m3/m3, with a maximum capacity210

value for top-layer water storage of 3 cm, which means that the model values are capped211

at 0.3m3/m3.212
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3.3. ERA-Interim Precipitation Reanalysis213

ERA-Interim precipitation reanalysis data (Dee et al., 2011) is available from the214

European Centre for Medium-Range Weather Forecasts (ECMWF). The data product is215

available from http://www.ecmwf.int/. In this study, we utilize global grids with 0.75◦216

resolution of total precipitation in meters from 2002 to 2014 which are available every217

twelve hours at 12 p.m. and 12 a.m., respectively. The data have been accumulated218

for the last 3-days before the altimeter crossing the study area in order to validate the219

altimeters’ ability to detect past rainfall events of several days before (Ridley et al., 1996).220

3.4. Soil Moisture and Ocean Salinity (SMOS) Products221

Daily level-3 products from the ESA-satellite SMOS are available from http://222

cp34-bec.cmima.csic.es/land-datasets/, based on the level-2 soil moisture User223

Data Product (UDP) (SMOS-BEC, 2015). The SMOS satellite covers the total sur-224

face of the Earth every three days. The daily grids with a resolution over Australia of225

about 0.25◦ include only the last overflight within each three days and the data product226

is divided into ascending and descending tracks, with the ascending data referring to227

approximately 6 a.m. and the descending data referring to approximately 6 p.m. local228

time. The soil moisture information is provided in terms of percentage, between 0 and229

1 (ESA, 2014). Soil moisture values derived from SMOS L3 (‘SMOS’ from now on) over230

Western Australia are found mostly in the range of 0 to 0.5, where 0.5 corresponds to231

0.5m3 of water per 1m3 of soil.232

4. Methods233

Backscatter nadir measurements at a rate of 20Hz (every ∼300m along-track) of234

Jason-2 (Ku- and C-Band) and Envisat (Ku- and S-Band) altimetry missions, that pro-235

vide new measurements every ∼10 days (Jason-2, 2008 - 2014) or ∼35 days (Envisat,236

2002 - 2010), are examined over the arid and semi-arid Western Australia.237

The proposed inversion approach consists of four steps: (i) along-track backscatter238

are estimated by post-processing the altimetry waveforms as described in section 4.1. (ii)239
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Principal Component Analysis (PCA, Preisendorfer, 1988) is applied to extract the dom-240

inant orthogonal modes of top level soil moisture storage simulated by either a global or241

regional hydrological model along the altimetry tracks in (i). (iii) We employ all available242

spatial empirical orthogonal functions (EOFs) of (ii), and use them in an inversion pro-243

cedure as a-priori information (base-functions) for fitting to the backscatter observations244

of (i). (iv) The results of step (iii) are the altimetry derived temporal variability that245

are used to derive altimeter reconstructed surface soil moisture (ARSSM) products that246

represent the top soil level storage changes (see section 4.2 for details).247

Our results suggest that the proposed method works well in different regions. Here,248

we validate the results in a (semi-)arid region because this allows us to neglect influences249

on the backscatter measurement, e.g. seasonal variations in snow cover, which otherwise250

would have to be removed from observations. For validation, we compare our recon-251

structed SSM to reanalysis precipitation data from ERA-Interim (Dee et al., 2011). Our252

assumption is that rainfall is the main driver of soil moisture in the semi-arid regions, as253

well as to top level soil moisture extracted from global and regional models. Furthermore,254

we assess the differences with respect to SMOS L3 soil moisture (SMOS-BEC, 2015).255

4.1. Processing Altimeter Waveforms256

Backscatter (σ0) can be estimated by post-processing altimetry waveforms as (ESA,257

2007)258

σ0 = s+ q +∆atm, (1)

with259

q = 10 log10(Pu), (2)

where q is the term derived from retracking the altimeter return waveform and converting260

the estimated amplitude Pu to decibel using equation (2). In equation (1), ∆atm is the261

atmospheric attenuation of the backscatter, provided in the SGDR data, and s is the262

scaling factor that is derived from the radar equation applied to satellite altimetry (Roca263

et al., 2002). The scaling factor is computed by the Envisat and Jason-2 processing264

centers and provided in the SGDR data.265

11



The shape of the altimeter return waveform over land surfaces usually does not cor-266

respond well to known model shapes from open water surfaces, such as the Brown model267

(Brown, 1977). Off-nadir surface waters, such as lakes or rivers, introduce peaks into the268

waveform, which will significantly influence the geophysical parameters, especially the269

amplitude Pu that is computed following Deng et al. (2002)270

Pu =

√

∑

N

i=1 P
4
i
(t)

∑

N

i=1 P
2
i
(t)

, (3)

with the number of range gates N , and Pi being the return power at the i’th range gate.271

Combining equations (1), (2) and (3) will result in backscatter estimates very similar272

to the Off Center Of Gravity (OCOG) or threshold methods, such as ICE-1 which is273

included in the GDR data. To suppress the energy from individual off-nadir peaks,274

related to surface waters inside the altimeter footprint, we convert the total waveform to275

decibel using equation (4)276

P̃i = 10 log10(Pi). (4)

We replace Pi in equation (3) with estimated P̃i from equation (4) to compute modified277

amplitudes P̃ u whose unit is decibel and can replace q in equation (1) to estimate modified278

backscatter. The original backscatter (from equations (1), (2), and (3)) shows relatively279

larger along-track variations compared to our modified approach, which is considerably280

less affected by small peaks on the waveform’s trailing edge which we ascribe to small281

off-nadir surface waters. In Fig. 2, we correlate the original and modified along-track282

backscatter values from Jason-2 with the top level soil moisture information from the283

AWRA model. The results indicate higher correlation between the smoother backscatter284

estimations σ̃0 from the modified approach with AWRA compared to the backscatter285

results (σ0) from the original approach. Large peaks appear in Fig. 2 (gray regions),286

which are related to the strong reflection from surface water. These include Lakes Barlee,287

Noondie, Way, Teague, and Dora, as well as the Rundall River, which are also marked288

in Fig. 1.289

The magnitude of the backscatter value is mainly defined by the scaling factor and the290

12



corresponding automatic gain control (AGC) value, while the 2nd term in equation (1)291

only slightly changes the final results. As a result, the backscatter value (σ0 derived from292

equation (1)) still peaks when the altimeter nadir is close to surface waters. In order293

to reduce the influence from surface waters, we compute the difference of along-track294

backscatter measurements from consecutive altimetry cycles. This reduces the influence295

of slowly varying surface features such as surface roughness, and to some extent, dynamic296

changes, e.g., vegetation growth. Therefore, backscatter anomalies (instead of absolute297

backscatter) are used to compute soil moisture anomalies.298

Figure 2: Correlation coefficients between Ku-Band backscatter (σ0) with AWRA model data along
the pass 075 of Jason-2. Two correlation coefficient curves are shown, for σ0 processed by the original
method (black curve, derived from equations (1), (2) and (3)), and the orange curve represents the
modified approach. We found similar correlation results from the C-Band backscatter estimations.

4.2. An Inversion Framework for Converting Backscatter to Soil Moisture Storage299

Spatio-temporal variability of altimetry backscatter (denoted by the subscript B) and300

of soil moisture storage (denoted by the subscript S) can be arranged in a data matrix301

XB/S(t, j), with t representing the time of observations and j standing for their positions.302

We assume that the time series are already centered, i.e. their temporal mean has already303

been reduced. The data matrix can be decomposed by Singular Value Decomposition304

(SVD, Preisendorfer, 1988) as305

XB/S(t, j) = P̄B/S(t) ΛB/S ĒT

B/S(j), (5)
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Figure 3: Normalized first principal component (PC) derived by applying equation (5) to along-track
altimetry backscatter (σ0 data from Ku- (35.1%) and C-Band (40.3%)), as well as top level soil moisture
simulations of GLDAS (65.6%) and AWRA (44.5%). The PCs are computed along the track 075 of
Jason-2 in the northern study area (Fig. 1, region A). All principal components are normalized by their
standard deviation. The percentage values in parenthesis provide the amount of total variance explained
by the corresponding first PCs.

where P̄B/S(t) contains normalized temporal principal components (PCs), ΛB/S is a di-306

agonal matrix that holds the singular values λ ordered according to their magnitude,307

and ĒB/S(j) contains the spatial empirical orthogonal functions (EOFs). PCA allows308

to extract a large amount of variance (of XB/S) in relatively few orthogonal modes.309

PCs (P̄B/S(t)) and EOFs (ĒB/S(j)) in equation (5) are unit-less and orthogonal, i.e.310

P̄T

B/S(t)P̄B/S(t) = I and ĒT

B/S(j)ĒB/S(j) = I with I being the identity matrix. We use311

them as base-functions for comparing altimetry backscatter estimations and model de-312

rived soil moisture storage or combining them. The standard deviation of variability in313

the data matrix XB/S and the measurement unit is reflected in ΛB/S, which can be used314

to relate anomalies of altimetry backscatter to SSM changes.315

To investigate whether there is a connection between backscatter and soil moisture, we316

apply equation (5) to the altimetry derived backscatter σ̃0 from along-track Jason-2, Ku-317

and C-Band (Fig. 3), as well as the top level soil moisture from the GLDAS and AWRA318

models along the same track. Here, only the temporal evolution of the first dominant319

PC is shown, for which we find a correlation coefficient of about 0.8 between altimetry320

backscatter and AWRA/GLDAS derived soil moisture simulations. This provides us321

with confidence that altimetry backscatter mainly reflect soil moisture variations. The322

resulting EOFs from GLDAS and AWRA generally agree with the EOFs from GLDAS323
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but show a smoother profile along the track due to the lower spatial resolution of the324

GLDAS model data.325

Considering equation (5), if the altimetry backscatter estimations were linearly related326

to the soil storage changes, one could conclude that P̄B and ĒB are also linearly related327

to P̄S and ĒS, respectively. This is however not true considering the relationship in328

equations (1) to (4), and due to the differences between noise distribution of backscatter329

and soil moisture storage simulations. Therefore, we propose an inversion method to330

convert backscatter to soil moisture storage estimations. This can be realized by fitting331

the EOFs of the model derived soil storage (ĒS) to the altimetry backscatter estimations332

(XB) as333

ˆ̄P(t) = Λ−1B [ĒT

S (j) ĒS(j)]
−1 ĒT

S (j) XB(t, j). (6)

In this estimation, we rely on the spatial distribution of soil moisture storage from a334

model. Therefore, ĒS are chosen as base-functions that remain invariant within the335

inversion. The term Λ−1B makes the backscatter estimations unit-less. After solving336

equation (6), updated temporal patterns ( ˆ̄P) are estimated that indicate the contribu-337

tion of soil moisture storage changes in the backscatter estimations. Finally, altimetry338

backscatter are converted to soil moisture storage variability by a PCA reconstruction as339

X̂S(t, j) =
ˆ̄P(t) ΛS ĒT

S (j). (7)

X̂sm(t, s) =
ˆ̄P(t) Λsm ĒT

sm(s) (8)

ˆ̄P(t) = Λ−1
σ0

[ĒT

sm(s) Ēsm(s)]
−1 ĒT

sm(s) σ0(t, s) (9)

X(t, s) = P̄(t) Λ ĒT (s) (10)
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5. Results340

In the following, the results of estimated altimetry reconstructed surface soil mois-341

ture (ARSSM, equation (7)) are presented and compared to model simulations and to342

independent SSM measurements from SMOS. The model simulations and gridded SMOS343

data are spatially interpolated to the position of the altimetry tracks. Temporally, we344

also interpolated the data according to the times when the altimeter crosses the study345

sites. We then compute differences between backscatter from successive altimetry cycles346

in order to reduce the signal from constant and slowly changing influences, such as sur-347

face roughness or vegetation. For consistency, the same differences are applied to the348

interpolated model and SMOS data, i.e. we estimate anomalies for each data set along349

the altimetry tracks. To implement the proposed inversion, we apply PCA to GLDAS350

and AWRA data, resulting in 34 and 117 EOFs, respectively. For both models, we keep351

the EOFs that correspond to at least 99% of the variance, i.e. 20 EOFs for GLDAS and352

25 for AWRA.353

First, the consistency of our ARSSM is examined by computing annual amplitudes354

and phases and comparing to amplitudes and phases derived from GLDAS and AWRA.355

Afterwards, along-track comparisons are presented before the investigation is extended to356

all Jason-2 groundtracks located inside the study region A, and all Envisat groundtracks357

within the study region B (Fig. 1). Finally, we will examine the differences between358

soil moisture model simulations and ARSSM estimates. To better visualize the surface359

topography impact on the estimated ARSSM (e.g., Fig. 4), we use elevation informa-360

tion derived from the SRTM30plus V11 data set (http://topex.ucsd.edu/WWW_html/361

srtm30_plus.html). Spatial anomalies of topography changes, derived from subtracting362

the topography smoothed by a 100km Gaussian filter, are also shown as gray shaded363

background that likely represent the geometrical roughness. In our study sites, land364

elevation and spatial anomaly rarely exceed 1000m and 100m, respectively.365

5.1. Assessing the Level of Agreement between the ARSSM and Model Simulation/ SMOS366

To assess the consistency of the ARSSM, we have computed the annual amplitudes367

and phases from our inversion results, as well as from the GLDAS and AWRA model data368
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(Fig. 4). Generally we find relatively small amplitudes in the range of ∼0 to 0.01m3/m3
369

which vary along the individual tracks with higher amplitudes closer to the coast in the370

North, as well as over the agricultural areas in the South-West. For the phase component371

we find similar transition of about 300 days in the South-West to about 60 days in the372

North-East for ARSSM and the two model data sets. Over the Gibson Desert (Fig. 1,373

(A)), zero amplitudes from ARSSM (Fig. 4, (A)) and the AWRA model (Fig. 4, (E))374

are detected, while significant signal is found from the GLDAS model (Fig. 4, (C)).375

In the central and southern central parts of our study region, the magnitude of the376

amplitudes from ARSSM (Fig. 4, (A)) tend to agree better with the ones from GLDAS377

(Fig. 4, (C)) compared to the amplitudes from AWRA (Fig. 4, (E)). We do not find any378

patterns coinciding with dominant topographic features shown in the background of the379

sub-figures. The GLDAS phases (Fig. 4, (D)) show less spatial variation compared to380

the AWRA and ARSSM phases.381

In Fig. 5 (A) and (B), we directly compare ARSSM anomalies, derived using EOFs382

from AWRA, with surface soil moisture anomalies from AWRA (A) and SMOS (B) during383

one arbitrarily chosen date, January 31, 2010, when the Jason-2 satellite was crossing the384

study site A. The track is outlined by a black polygon and the colors inside represent the385

ARSSM anomalies. The spatial features of AWRA and SMOS generally agree as both,386

provide negative anomalies in the north and strong positive anomalies in the central387

parts. However, although we utilized EOFs from AWRA to derive the ARSSM, Fig. 5388

(A) shows only weak agreement between AWRA model data and ARSSM on the chosen389

date. In contrast, ARSSM generally agrees well with the SMOS product in the southern390

and central parts of the track. In the north, we detect weaker anomalies compared to391

SMOS (Fig. 5, (B)).392

5.2. Along-Track Behavior of the ARSSM393

The results of this section refer to the pass 075 of Jason-2 (within region A of Fig.394

1). Between the latitude of 30◦S to 24◦S, the land cover is mainly shrublands, while in395

the north (between 24◦S and 18◦S), it changes to a mix of shrublands, grasslands and396

savanna. Four sets of ARSSM products are estimated from either Ku- and C-Band while397
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using the EOFs of GLDAS or AWRA in the inversion (equation (6)). A strong agreement398

is found between GLDAS and AWRA simulations along the pass 075 of Jason-2, whereas399

both products are highly correlated (correlation coefficients of 0.6 to 0.8) as shown in400

Fig. 6. For brevity, we show the ARSSM results based on AWRA EOFs in Fig. 6.401

Correlation between ARSSM (from Ku- and C-Band) with AWRA is slightly lower402

than between GLDAS and AWRA, but the ARSSM results suggest a similar quality403

compared to the SMOS product in the southern part of the track, while ARSSM provides404

higher correlation coefficients than SMOS in the north. Unlike the correlation coefficients405

between altimetry backscatter and AWRA (Fig. 2), the ARSSM results do not exhibit406

large peaks close to the larger surface waters. Our results indicate that soil moisture407

retrieved from the ascending orbit of SMOS (dashed cyan line) is better correlated with408

AWRA simulations compared to those derived from the descending orbit (solid cyan409

line). Additionally, Fig. 6 shows the correlation with respect to the difference of ARSSM410

estimated from C- minus Ku-Band observations (blue line), which suggest considerably411

less similarity with model simulations. Therefore, they will no longer be discussed in this412

paper.413

Considering the magnitude of correlation coefficients along the altimeter track in Fig.414

6, in the south (up to a latitude of ∼ 24◦S), one can see smaller values (around 0.4)415

between ARSSM, as well as SMOS soil moisture and AWRA simulations. To the north,416

correlation coefficients between ARSSM and AWRA rise to around 0.6 with some points417

being bigger than 0.7, while those of SMOS do not increase significantly. This behavior418

coincides roughly with the change of land cover classes from shrublands only in the south419

to a mixture of shrublands, grasslands and savanna in the north part of Fig. 1 (A).420

Additionally, the topography in the north is less mountainous, which results in more421

reliable backscatter measurements and consequently ARSSM estimation.422

To understand the short-term impact of precipitation on the surface soil moisture vari-423

ability in this region, we compare model simulations, SMOS, and our ARSSM with 3-day424

accumulated precipitation anomalies derived from the ERA-Interim reanalysis product425

(Fig. 7). Generally, the correlation coefficients between ARSSM (from both Ku- and426

C-Band observations) and precipitation are larger compared to those between precipita-427

18



tion and the GLDAS or AWRA model simulations. The top level soil moisture from the428

GLDAS model shows a rather stable correlation coefficients of about 0.4 in the South,429

which raises to 0.6-0.7 in the northern part of pass 075 (Fig 7). Top level soil moisture430

from the AWRA model shows weak correlations (< 0.2) in the south and stronger cor-431

relation coefficients (0.5 - 0.6) in the northern part of the pass. The correlations with432

SMOS products for the time period considered here, show a less reliable behavior with433

rapidly varying correlation coefficients along the track and become negative in the North.434

5.3. Surface Soil Moisture Anomalies within Western Australia435

We examine the quality of ARSSM estimations over the entire study regions A and436

B (Fig. 1). Since the ARSSM results from the C- and Ku-Band of Jason-2 are found to437

be very similar (compare Fig. 6 and 7), we limit the results to the C-Band covering the438

period 2008-2014. Generally, C-Band is considered to be more sensitive to surface soil439

moisture due to the longer wavelength which enables better penetration of the surface.440

The Ku-Band results are summarized in Table 3 and 4. For Envisat, we limit the dis-441

cussion to the Ku-Band data (2002-2010) since the time series of the S-Band backscatter442

data is much shorter due to an instrument failure. Consequently, they are not included443

in Tables 5 and 6, either.444

5.3.1. Soil Moisture within Northwestern Australia (Study Region A)445

In Fig. 8 (A) and (B), correlation coefficients between the C-Band backscatter and446

GLDAS as well as AWRA simulations are shown. The magnitude of the correlation447

coefficients is found to be small < 0.2 at some locations along the track. Generally448

smaller correlations are found between altimetry backscatter and AWRA simulations449

(Fig. 8, (B)) compared to those of GLDAS (Fig. 8, (B)). Similar to the results in450

Fig. 2, these sudden drops in correlation are mainly detected over regions, where the451

altimetry footprint contains surface water, e.g., passing over lakes and rivers. This can452

for example be observed at the crossing point of Jason-2 tracks 151 and 216 (see Fig. 1453

(A) approximately at 123.25◦E and 26.70◦S) over Lake Wells (Fig. 1, (A)), where the454

return signal includes almost no information related to land surface features.455
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EOFs are computed from AWRA simulations and used in equation 6 to invert AR-456

SSM. These estimations are then correlated with GLDAS and AWRA model simulations457

(see Fig. 8 (C) and (D)). Another set of ARSSM is also estimated using GLDAS EOFs,458

and the correlation with model simulations is shown in Fig. 8 (E) and (F). The ARSSM459

results indicate higher correlation with model simulations (compare Fig. 8 (A) and (B)460

to the rest).461

Correlation between ARSSM and model simulations is found to be stronger close to462

the coast in the west and southwest of the study region A. In the central and southern463

central parts, ARSSM indicates weak to medium correlation with AWRA, and signifi-464

cantly stronger correspondence with GLDAS. In the northwest (along the pass 177 in465

Fig. 1 (A)) very low correlation coefficients are found in Fig. 8 (C) and (D). We ascribe466

this to significant topography changes along the altimetry ground track. In the eastern467

part of region A, along the pass 151 of Jason-2 and from the crossing point with the pass468

38 and north of it, a rather large area with very low correlations can be observed. Surface469

soil moisture simulations from AWRA do not show any variations over the Gibson Desert470

(Fig 1) during 2008-2011. As a result, low correlations are derived in this region when471

either EOFs from AWRA are employed (Fig. 8, (C)) or correlations with respect to the472

AWRA model data are estimated (Fig. 8 (D) and (F)). In contrast, ARSSM based on473

GLDAS EOFs is close to GLDAS SSM (Fig. 8, (E)) over the Gibson Desert. This effect474

is well reflected in Table 3 while comparing the minimum correlations with the GLDAS475

and AWRA model data.476

In Fig. 9, correlation between soil moisture products and precipitation (from ERA-477

Interim) is shown, where the spatial variability of GLDAS (in A) seems to be smoother478

compared to AWRA (in B). Figure 9 (B) indicates low correlation regions along the479

Jason-2 pass of 064, 075, and 151 (Fig. 1 (A)) while these do not appear in the GLDAS480

results (Fig. 9 (A)).481

Both ARSSM sets (based on EOFs of GLDAS and AWRA) follow closely precipitation482

(see Fig. 9 (C) and (D)). The magnitude of the correlations is found to be relatively higher483

than for of models (compare Fig. 9 (A) and (B) to (C) and (D), see also the values in484

Table 3).485
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The variability of soil moisture within the region A is examined by estimating standard486

deviations at along-track altimetry positions (see also Table 4). Standard deviations487

between 0.04m3/m3 and 0.06m3/m3 are found from the GLDAS simulations (Fig. 10488

(A)), while the magnitude of AWRA simulations (Fig. 10 (B)) is larger than GLDAS489

in the southwest. A region of very low standard deviations is found in the eastern part490

along the tracks 038 and 151 (Fig. 1 (A)) that is located within the Gibson Desert491

region (Fig. 10 (A)). In the northern and central parts of the study area A, we find492

medium temporal variations which are slightly larger than those of GLDAS. The overall493

variability of ARSSM sets depends on the models employed for estimating EOFs used in494

the inversion (Fig. 10 (A) and (C), and Fig. 10 (B) and (D)). Considering the along-track495

variabilities, it is clear that ARSSM sets represent higher spatial resolution than models496

(compare along-track patterns of Fig. 10 (C) with (A), and Fig. 10 (D) with (B)).497

In Fig. 11 (A), the magnitude of soil moisture from SMOS is shown which is generally498

stronger compared to models and ARSSM (in Fig. 10). The SMOS results can indepen-499

dently assess other soil moisture products. For instance, correlation coefficients between500

ARSSM, employing the EOFs of AWRA, and SMOS are found to be relatively larger501

(0.6 - 0.8) in many areas. With respect to the eastern part of the study region, along502

the pass 151 we find low correlations over the Gibson Desert region due to the AWRA503

base functions used here. Correlations between SMOS and ARSSM based on EOFs from504

GLDAS in this region agree much better (not shown here). Lower correlation coefficients505

in the northwestern part are related to the rapid changes in topography within this region506

(Fig. 11 (B)).507

5.3.2. Soil Moisture within Southwestern Australia (Study Region B)508

ARSSM estimations (2002-2010), derived from the Ku-Band of Envisat within the509

study region B (Fig. 1), are examined in this section. The groundtracks of Envisat are510

denser than those of Jason-2 and they provide the chance to assess the quality of ARSSM511

over different vegetation classes. In the light of previous results, since selecting EOFs512

from AWRA or GLDAS does not significantly alter ARSSM estimations, we limit our513

results to the ARSSM inverted by fitting the EOFs of the AWRA model.514
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Table 3: An overview over the median, minimum, and maximum correlation between Jason-2 ARSSM
and model data from GLDAS, AWRA and ERA-Interim precipitation, as well as SMOS ascending and
descending orbits is provided for study area A (Fig. 1, (A)). The individual rows are associated to
ARSSM from using Ku- and C-Band, as well as EOFs from either GLDAS or AWRA model data. The
number of points used for computation was 29271.

GLDAS AWRA ERA-I SMOSasc SMOSdesc

ARSSMKu

GLDAS
0.60 0.49 0.55 0.68 0.63

[min max] [0.19 0.83] [-0.08 0.81] [0.19 0.88] [0.02 0.91] [-0.23 0.92]
ARSSMC

GLDAS
0.60 0.48 0.55 0.70 0.65

[min max] [0.17 0.84] [-0.16 0.79] [0.25 0.84] [-0.05 0.93] [-0.16 0.92]
ARSSMKu

AWRA
0.58 0.48 0.55 0.67 0.61

[min max] [-0.13 0.83] [-0.21 0.77] [-0.20 0.88] [-0.32 0.90] [-0.31 0.93]
ARSSMC

AWRA
0.57 0.46 0.52 0.68 0.63

[min max] [-0.12 0.85] [-0.32 0.80] [-0.23 0.84] [-0.27 0.93] [-0.29 0.94]

Table 4: Overview over the median, minimum, and maximum standard deviations (SD) of SSM from
ARSSM using Ku- and C-Band, as well as EOFs from AWRA and GLDAS for study area A (Fig. 1,
(A)); furthermore, standard deviations from the GLDAS and AWRA model, as well as SMOS ascending
and descending orbits are included. Standard deviations are provided in [m3/m3]. The number of points
used for computation was 29271.

SDmedian SDmin SDmax

ARSSMKu

GLDAS
0.045 0.021 0.068

ARSSMC

GLDAS
0.046 0.025 0.061

ARSSMKu

AWRA
0.059 0 0.096

ARSSMC

AWRA
0.061 0 0.089

GLDAS 0.044 0.033 0.056
AWRA 0.058 0 0.098
SMOSasc 0.061 0.027 0.136
SMOSdesc 0.051 0.022 0.010

Standard deviations of soil moisture products are shown in Fig. 12 (A), (B), and (C),515

which indicate stronger variability compared to the region A. Similar signal strength is516

found between ARSSM and AWRA simulations (∼0.08 and 0.12m3/m3 in Fig. 12 (A)517

and (B)) and relatively larger than that of GLDAS (∼0.04 and 0.06m3/m3 in Fig. 12518

(C)). This agrees with the results from before (Fig. 10). Considering the ARSSM results519

in Fig. 12 (A), two small areas with relatively low standard deviations are identified: in520

the north, where the pass 0950 and 0307 meet (see Fig. 1 (B)) the first area corresponds521

to the altimeter crossing the Lakes Deborah and Seabrook and the second area in the522
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Table 5: Overview over the median, minimum, and maximum standard deviations (SD) of SSM from
ARSSM using Ku-Band and EOFs from AWRA for study area B (Fig. 1, (B)); furthermore, standard
deviations from the GLDAS and AWRA model are included. Standard deviations are provided in
[m3/m3]. The number of points used for computation was 16350.

SDmedian SDmin SDmax

ARSSMKu

GLDAS
0.089 0.024 0.163

GLDAS 0.050 0.037 0.070
AWRA 0.089 0.058 0.106

east, along the pass 0778 (see Fig. 1 (B)), is associated with the altimeter crossing Lake523

Cowan. The return signal from these large surface waters completely dominates the524

backscatter at these locations, which results in less meaningful ARSSM estimations.525

Correlation between ARSSM and AWRA and GLDAS is shown in Fig. 12 (D) and526

(E), where we find values of more than 0.5 over the central and eastern parts of the region527

B with land cover classes ranging from dry savanna and shrublands in the eastern parts528

to large agricultural areas in the center. In the west and southwest, close to the coast, the529

correlation coefficients are relatively low < 0.2, where the land is covered by dense forest.530

Additionally, close to Perth located at the west coast (Fig. 1 (B)), we find significantly531

lower correlations. It is interesting to note that the correlation coefficients of ARSSM532

with both AWRA and GLDAS are significantly higher in the descending altimetry tracks533

(even pass numbers in Fig. 1 (B)) than for the ascending tracks (odd pass numbers in534

Fig. 1 (B)).535

ARSSM and 3-day accumulated precipitation data from ERA-Interim (Fig. 12 (F))536

are found to be virtually unrelated in the central and western, as well as in the south-537

eastern parts of the study region. Moderate correlation coefficients are found in the538

east and northeast parts of the region B. A similar pattern is observed when correlating539

soil moisture from AWRA simulated model data with 3-day accumulated ERA-Interim540

precipitation information (not shown here).541
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Table 6: An overview over the median, minimum, and maximum correlation between Envisat ARSSM
and model data from GLDAS, AWRA and ERA-Interim precipitation is provided for study area B (Fig.
1, (B)). The number of points used for computation was 16350.

GLDAS AWRA ERA-I
ARSSMKu

AWRA
0.61 0.55 0.23

[min max] [-0.09 0.83] [-0.12 0.89] [-0.22 0.67]

6. Discussion542

6.1. Assessing the Level of Agreement between the ARSSM and Model Simulation/ SMOS543

In this study, we first confirmed that there is a good correspondence between altimetry544

backscatter and available model derived soil moisture simulations within the (semi-)arid545

region of Western Australia (see Fig. 3). This relationship has already been investigated546

for other regions (Ridley et al., 1996; Papa et al., 2003; Fatras et al., 2012, 2015). We547

proceeded to apply altimetry backscatter for estimating surface soil moisture (SSM) in-548

formation using a novel approach. Before, Fatras et al. (2012) assumed a direct linear549

relationship between backscatter and SSM. A similar approach was proposed by Wagner550

et al. (1999) for scatterometer data. In contrast, our approach relies on spatial infor-551

mation based on model data to constrain the altimetry derived backscatter and convert552

them to the SSM values.553

The altimetry backscatter used in this study is a (slightly) modified version of the554

backscatter from the ICE-1 retracker (Martin et al., 1983), which allows us to suppress555

the effects of peaks, located on the trailing edge of the waveform, on the backscatter es-556

timations. These peaks are often caused by open water located in the off-nadir direction.557

After applying the modification in equation (4), smoother backscatter values are derived558

compared to those from the ICE-1 method (see Fig. 2) especially close to surface waters.559

Fatras et al. (2012) investigated backscatter from different available retracking methods560

(while considering Envisat data over Sahel) and concluded that ICE-1 was best suited561

for deriving SSM. Generally we believe that developing a more specialized retracking562

method for retrieving land surface backscatter would improve the results.563

We interpolated all available data sets spatially and temporally to the altimeter564
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ground track and times of crossing the study areas, respectively. This is an impor-565

tant step since, e.g., simply using model data with a higher temporal resolution to derive566

the EOFs would introduce artificial features, which may not be resolved by altimetry.567

The spatial interpolation allows us to handle each altimeter track individually. Fatras568

et al. (2015) averaged all altimetry data within a defined region in order to compare them569

with other data with a different spatial resolution. However, we believe that the high570

along-track resolution of altimetry is one of its greatest benefits and should be kept.571

In the next step, the differences between successive cycles are computed to reduce572

influences from surface features, such as topography, surface roughness and to some ex-573

tent vegetation, which can be assumed either constant or varying slowly compared to the574

repeat periods. As a result, we reconstruct anomalies of surface soil moisture rather than575

absolute values. Other studies (Fatras et al., 2012, 2015) identified significant seasonal576

cycles in the backscatter values over lands. For Western Australia, we found only a very577

small annual amplitude in the ARSSM and simulated anomalies. The proposed approach578

can also be applied to the absolute backscatter observations, without subtracting succes-579

sive cycles. In this case, one has to remove the seasonal cycles before computing quality580

measures such as correlation.581

Direct comparisons between ARSSM, AWRA model data and SMOS (e.g. Fig. 5)582

reveal that ARSSM corresponds well to SMOS derived SSM while not necessarily agreeing583

with the model data although the same models data was used for implementing the584

inversion. This indicates that our ARSSM is only constrained by the spatial information585

extracted from the model data but the temporal evolutions carry the characteristics of586

the backscatter measured by altimetry. The differences between model simulations and587

ARSSM/SMOS might also be related to the temporal sampling. For example, AWRA588

produces daily averages of top level soil moisture, which are not identical with altimety589

samples that are collected in a few minutes from Western Australia.590

6.2. Along-Track Behavior of the ARSSM591

Along-track correlations between AWRA model data with GLDAS model data, Ku-592

and C-Band ARSSM, as well as SMOS data (from ascending and descending passes) are593
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investigated (Fig. 6). The results from Ku- and C-Band are closely related although594

C-Band would theoretically be better suited to derive soil moisture information due to595

its longer wavelength that allows better penetrating the canopy layers (Fatras et al.,596

2015). Previous studies have also found little influence from vegetation on the mea-597

sured nadir backscatter from altimetry (Fatras et al., 2012, 2015), within (semi-)arid598

regions, which explains the similar performance of the Ku- and C-Band within Western599

Australia. Higher correlations are found between the ascending SMOS data and AR-600

SSM/model compared to descending orbits. This is likely related to the sampling time601

i.e ∼6h local time at the equator for the ascending and ∼18h local time at the equator602

for the descending orbits (Kerr et al., 2012). For Envisat Ku- and S-Band, Fatras et al.603

(2012) suggested that computing differences between the two bands likely represent infor-604

mation on soil moisture storage of different depth. However, we find a weak correlation605

coefficients with AWRA, especially in the South (less than ∼0.3 between 24◦S and 18◦S),606

and therefore we exclude its discussion in the rest of the study.607

Since soil moisture in Australia is primarily driven by precipitation (Bartalis et al.,608

2007; Draper et al., 2009), we also correlated soil moisture products to 3-day accumulated609

precipitation anomalies derived from the ERA-Interim reanalysis product (see Fig. 7).610

The 3-day period is selected following Ridley et al. (1996)’s recommendation that stated611

in the Australian Simpson Desert the influence from precipitation on measured SSM612

rapidly starts to fade after about two days. Larger correlation coefficients are found613

between precipitation and ARSSM compared to model simulations. This indicates that614

altimetry measurements are more sensitive to wet surface conditions, especially in the615

first few centimeters of soil. For AWRA, we found weak correlations with precipitation616

in the South in contrast to relatively higher and stable correlations between GLDAS617

and precipitation. Weaker correlations of AWRA in the southern part of pass 075 seem618

to be justified since precipitation is not the sole driver of soil moisture changes in that619

region. We also find that the surface soil moisture barely increases in the Australian620

desert regions even after heavy rainfall events, which is related to high evaporation rates621

in this region (see also Ridley et al., 1996). This is also confirmed by expanding the622

examination with respect to ARSSM and model data from GLDAS and AWRA to all623
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altimetry tracks in our study region A (Fig. 9).624

Correlation coefficients between SMOS products and precipitation are found to be625

similar to those of ARSSM and precipitation in the south (up tp 25◦S) indicating that626

SMOS is also sensitive to wet surfaces. In the north, however, unlike all other products,627

SMOS indicates smaller correlations with precipitation. More research is required to628

address this inconsistency between SMOS and other soil moisture products.629

6.3. Surface Soil Moisture Anomalies within Western Australia630

ARSSM based on EOFs from, GLDAS and AWRAmodel data show better correlation631

coefficients with GLDAS for all Jason-2 tracks inside study region A (Fig. 1, (A)). This is632

likely related to the higher temporal resolution of GLDAS, which provides soil moisture633

values every 3 hours (Rodell et al., 2004). Similarly, higher correlations are found between634

SMOS and GLDAS compared to SMOS and AWRA.635

Strong similarities between Fig. 8 (C) and (E), as well as between Fig. 8 (D) and636

(F) indicate that introducing EOFs in the inversion acts as a constraint to reduce the637

noisy behavior of backscatter, and the final ARSSM results do not significantly depend638

on the chosen model base functions (from AWRA or GLDAS). However, since the spatial639

resolution of GLDAS is low, one must carefully select the study regions sufficiently large640

enough to have meaningful EOFs.641

Over the Gibson Desert (Fig. 1, (A)), low correlations are found between ARSSM642

and simulated soil moisture model data (Fig. 8), precipitation (Fig. 9), as well as SMOS643

observations (Fig. 11, (B)). Low standard deviations are also detected in this region (Fig.644

10). Soil moisture simulations from AWRA are not able to reflect the small changes and645

thus the outputs include only zero values over this region during 2008-2011. As a result,646

the EOFs derived from AWRA over this region are also zero, which consequently, limits647

the estimation of ARSSM within this region.648

Analyzing the standard deviations indicates that the amplitude of ARSSM (Fig. 10)649

strongly depends on the standard deviations of a-priori models. For example lower stan-650

dard deviations are expected from GLDAS since its spatial resolution is lower than651

AWRA. Comparisons with SMOS (Fig. 11, (A)) indicate closer correspondence with652
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ARSSM inverted based on the AWRA’s EOFs. These findings are also supported by653

comparing the standard deviations in the study area B (Fig. 1, (B)) for ARSSM based654

on Envisat backscatter and the two model data sets (Fig. 12, (A)-(C)).655

The good correlation between ARSSM and SMOS, as an independent measurement656

of SSM, indicates that the proposed approach to reconstruct SSM from altimetry works657

well. Small discrepancies are found over regions in the North, which are co-located with658

significant elevation anomalies. Rapid elevation changes will affect the retrieved signal on659

the altimetry satellite since the range window on-board of the satellite is not able to adapt660

to rapid changes in topography. This effect will be filtered in future implementations of661

the algorithm.662

In the study area B (Fig. 1, (B)), the Envisat Ku-Band data in combination with663

EOFs derived from AWRA model data are used to derive ARSSM. The results are then664

correlated with the simulations of AWRA and GLDAS (Fig. 11, (D) and (E)). The665

ARSSM results are found to be sensitive to the land cover, whereas higher correlations666

are found over shrublands, savanna and agricultural land compared to dense forests or667

cities. In such regions, the altimetry signal cannot penetrate well through the trees or668

buildings and, thus, contains little information about SSM. A similar observation can669

be made for the correlations with precipitation over agricultural surfaces compared to670

shrublands or savanna (Fig. 12, (F)). Over agricultural surfaces, the correlation is found671

to be significantly smaller which is likely related to irrigation during periods of low672

precipitation.673

Higher correlations are found between ARSSM computed from ascending tracks and674

models compared to the descending tracks. A possible explanation for this effect is the675

time difference between altimetry measurements. Envisat flies on an almost perfect 35-676

day repeat orbit. As a result, over region B, all ascending track measurements refer to677

times between 2pm and 3pm UTC, while all descending measurements are between 1am678

and 2am UTC. This means that the surface conditions observed by the altimeter are679

quite different between the night- and day-time, and therefore this difference should be680

considered for future applications and when comparing to different data sets. Another681

aspect could be the influence of dew during night-time that has been suggested by Ridley682
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et al. (1996). This effect is reflected in the ARSSM but is not included in the soil moisture683

model data simulations.684

6.4. Residuals of ARSSM and Model Simulations685

In Fig. 13, principal component analysis (PCA, equation (5)) is applied to the dif-686

ferences of ARSSM and model simulations, from which only the first dominant mode is687

shown. To compute the residuals with respect to the AWRA simulations (Fig. 13 (A)688

and (B)), ARSSM are inverted using the EOFs of AWRA. Similarly, ARSSM in Fig.689

13 (C) and (D) are inverted using the EOFs of GLDAS before computing the residuals690

with GLDAS simulations. Therefore, the residuals are estimated in a consistent manner691

and indicate the contribution of the new products in improving the estimation of spatio-692

temporal variability of soil moisture within West Australia. The dominant temporal693

patterns (Fig. 13 (B) and (D)) do not indicate seasonal differences between ARSSM and694

model simulations but rather noise-like or related to individual events. The strong peaks695

in the early 2009 and 2011 coincide with fairly strong precipitation events (precipitation696

results are not shown). Strong differences with AWRA are found in the northeast of697

region A, where AWRA is also not consistent with SMOS and GLDAS products. The698

differences between ARSSM and GLDAS are distributed over the entire region A with699

stronger anomalies over the southern parts. In the same region, we identify smaller700

residuals between ARSSM and GLDAS model data. The reason for these differences701

with GLDAS simulations is mainly related to the coarse resolution of its simulation com-702

pared to the sampling of altimetry observations. Residuals between ARSSM and model703

simulations have also been derived over the region B, but are not discussed here.704

7. Conclusion705

A novel approach is presented to invert satellite radar altimetry backscatter to surface706

soil moisture. The conversion is performed via an inversion in which spatial empirical707

orthogonal functions (EOFs) from model simulations are fitted to backscatter observa-708

tions, and used to produce altimetry reconstructed surface soil moisture (ARSSM). These709
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new data have high along-track measurement rate, but the separation between individual710

groundtracks is relatively large leading to a limited spatial coverage.711

We have been able to confirm the correspondence between altimetry measured backscat-712

ter and land surface features, such as surface roughness, topography, vegetation and,713

especially, soil moisture. Validations of ARSSM against GLDAS and AWRA simulations714

indicate higher correlation coefficients compared to directly using the backscatter obser-715

vations. Along-track investigations also showed ARSSM to compare well to the SMOS716

L3 products (maximum correlations of more than 0.8). Generally, the ARSSM are found717

to be in better agreement with the GLDAS model data, independent of the model data718

employed in the inversion. Stronger correlation coefficients are found between ARSSM719

and precipitation data compared to those between model simulations and precipitation720

indicating a higher sensitivity of ARSSM and SMOS to precipitation events. For future721

work, it makes sense to compare the results to regional high resolution precipitation722

products, such as those in Jeffrey et al. (2001) or Jones et al. (2009).723

In the southern study region, generally, a strong agreement is found between ARSSM724

and model simulations, where the value of correlation coefficients depends mostly on the725

land cover below the altimetry track, i.e. showing smaller values over dense forest areas or726

cities while stronger values are found over shrublands, savanna or agricultural land. Some727

connections are also found with respect to the time of day, when the altimeter measures728

backscatter signal. Envisat measurements along the ascending tracks are collected during729

the night, while all the descending tracks refer to the measurements about 12 hours later730

during the day. Weaker correlation coefficients are found between the latter and the daily731

mean soil moisture simulated by the models.732

We are confident that backscatter from altimetry can provide an independent addi-733

tional data set of surface soil moisture to extend and support the information available734

from existing soil moisture missions, such as SMOS or ASCAT. Starting in 1993, altime-735

ters may be able to provide at least two decades of continuous time series of backscatter736

measurements along the altimetry tracks. Combining altimetry with spatial information737

derived from high resolution model data for a specific region allows to measure soil mois-738

ture changes with high spatial resolution along the altimetry track. The Surface Water739
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and Ocean Topography (SWOT) mission will allow to not only cover the nadir regions,740

but also two swaths of about 120km to each side of the ground track, which also shows741

some potential for measuring soil moisture.742

In this study, additional influences on the altimetry backscatter signal by vegeta-743

tion have not been considered. Although, we expect these influences to be small after744

computing temporal differences, and due to the nadir looking sensors of the altimeter745

compared to the side looking radar systems, they might still be significant over strongly746

vegetated regions, e.g., over the agricultural regions in southwestern Australia. Involving747

these impacts within the proposed inversion will be considered in the future to further748

improve the reconstruction. Furthermore, assimilating ARSSM into land surface models749

should be studied in future research.750

Acknowledgments751

The authors are grateful to Dr. Luigi Renzullo (CSIRO) and Albert I.J.M van Dijk752

(ANU) for providing the AWRA simulations and to ESA and AVISO for providing the753

altimetry data. We are also grateful to NASA and NOAH for providing the GLDAS754

model simulations. The L3 SMOS data were produced by the Barcelona Expert Centre,755

a joint initiative of the Spanish Research Council (CSIC) and Technical University of756

Catalonia (UPC). We would also like to thank 3 anonymous reviewers and the associate757

editor Tim McVicar for their detailed reviews, which greatly improved the quality of the758

manuscript.759

31



References760

Al-Yaari, A., Wigneron, J., Ducharne, A., Kerr, Y., de Jeu, R., Schalie, R., Rodriguez-761

Fernandez, N., Drusch, M., Dolman, H., & Mecklenburg, S. (2015). Testing simple762

regression equations to derive long-term global soil moisture datasets from satellite-763

based brightness temperature observations. In 2. SMOS Science Conference, Madrid,764

ESP (2015-05-25 - 2015-05-29). URL: http://prodinra.inra.fr/record/305851.765

Angiuli, E., del Frate, F., & Monerris, A. (2008). Application of neural networks to766

soil moisture retrievals from l-band radiometric data. In IGARSS 2008 - 2008 IEEE767

International Geoscience and Remote Sensing Symposium. volume 2. doi:10.1109/768

IGARSS.2008.4778927.769

AVISO (2015). OSTM / Jason-2 Products Handbook . CNES / NASA http://www.770

aviso.altimetry.fr. SALP-MU-M-OP-15815-CN, Issue 1.9.771

Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa,772

J., & Anderson, C. (2007). Initial soil moisture rretrieval from the metop-a advanced773

scatterometer (ascat). Geophysical Research Letters , 34 . doi:10.1029/2007GL031088.774

L20401.775

Birkett, C. M., & Beckley, B. (2010). Investigating the performance of the Jason-2/OSTM776

radar altimeter over lakes and reservoirs. Marine Geodesy , 33 , 204–238.777

Blarel, F., Frappart, F., Legrésy, B., Blumstein, D., & Rémy, F. (2015). Altimetry778

backscattering signatures at Ku and S bands over land ice and ice sheets. In Proc.779

SPIE 9637, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, 963727780

(October 14, 2015). doi:10.1117/12.2194498.781

Brown, G. S. (1977). The average impulse response of a rough surface and its applications.782

IEEE Transactions on Antennas and Propagation, AP-25 , 67–74.783

Chai, S.-S., Walker, J. P., Makarynskyy, O., Kuhn, M., Veenendaal, B., & West, G.784

(2010). Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil785

Moisture. Remote Sens., 2 , 166–190. doi:doi:10.3390/rs2010166.786

32



Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L.-L., & Callahan, P. S. (2001). Satellite787

altimetry and earth sciences: A handbook of techniques and applications. chapter 1.788

(pp. 1–132).789

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,790

Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.791

C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes,792

M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen,793
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Figure 4: Comparison of annual amplitude and phase from Jason-2 C-Band ARSSM (A) and (B), using
spatial base functions derived from the ARWA model, the GLDAS model (C) and (D), as well as the
AWRA model (E) and (F).
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Figure 5: Comparison of soil moisture anomalies from Jason-2, pass 075, cycle 58 (January 31, 2010)
with anomalies from (A) AWRA simulation and (B) SMOS products. Colors inside the black polygons
represent ARSSM derived from Jason-2 C-Band.

Figure 6: Correlation coefficients between the top level soil moisture anomalies derived from AWRA
simulations and those of GLDAS, ARSSM, and SMOS measurements. The results are computed along
the pass 075 of Jason-2 for the time period 2008-2011, where AWRA data was available. To estimate
ARSSM, the EOFs of AWRA are used in the inversion to convert Ku- and C-Band backscatter mea-
surements to soil moisture anomalies. For SMOS, the solid line refers to the correlation coefficients
between descending orbit products and AWRA, while the dashed line corresponds to the ascending orbit
products.
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Figure 7: Correlation coefficients (2008-2010) between 3-day accumulated precipitation anomalies from
ERA-Interim with ARSSM derived from the Ku- and C-Band of Jason-2 observations, as well as between
precipitation anomalies and top level soil moisture information extracted from the GLDAS and AWRA
model, and soil moisture derived from SMOS products. For the SMOS data, the solid line refers to the
descending orbit, while the dashed line corresponds to the ascending orbit.
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Figure 8: Comparisons between altimetry and model simulations. The first row shows correlations
between C-Band backscatter with (A) GLDAS and (B) AWRA model simulations. In the second row,
correlations between ARSSM from Jason-2 C-Band using EOFs based on AWRA model data and model
data from (C) GLDAS and (D) AWRA are presented. The bottom row, shows correlations between
ARSSM derived utilizing GLDAS EOFs and soil moisture model data from (E) GLDAS and (F) AWRA.
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Figure 9: Correlations of ERA-Interim precipitation data with top level soil moisture model data from
(A) GLDAS and (B) AWRA. Additionally, correlations between precipitation and ARSSM estimated
based on spatial patterns from (C) GLDAS and (D) AWRA are shown.
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Figure 10: Standard deviations of (A) GLDAS model, (B) AWRA model data, (C) ARSSM based on
GLDAS spatial patterns and (D) ARSSM estimated using spatial patterns derived from AWRA.
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Figure 11: (A) Standard deviations of soil moisture anomalies based on SMOS product. (B) Correlation
coefficients between SMOS soil moisture anomalies and ARSSM sets based on the C-Band observations
and EOFs of AWRA.

45



Figure 12: Soil moisture structure during 2002-2010. The first column shows the standard deviations of
(A) ARSSM from the Ku-Band of Envisat, (B) AWRA simulations, and (C) GLDAS simulations. The
second column includes the correlation coefficients between ARSSM in (A) with (D) AWRA simulations,
(E) GLDAS simulations, and finally (E) ERA-Interim precipitation time series.
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Figure 13: (A) First empirical orthogonal function (EOF) and (B) first principal component (PC) derived
by applying SVD on the residuals of ARSSM and GLDAS (explaining 25.0% of the total variance of
residuals). (C) First EOF and (D) first PC of the residuals of ARSSM and AWRA (explaining 20.1% of
the total variance of residuals).
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