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A B S T R A C T

In many environmental and public health domains, heuristic methods of risk and decision analysis must be relied
upon, either because problem structures are ambiguous, reliable data is lacking, or decisions are urgent. This
introduces an additional source of uncertainty beyond model and measurement error – uncertainty stemming
from relying on inexact inference rules. Here we identify and analyse heuristics used to prioritise risk objects, to
discriminate between signal and noise, to weight evidence, to construct models, to extrapolate beyond datasets,
and to make policy. Some of these heuristics are based on causal generalisations, yet can misfire when these
relationships are presumed rather than tested (e.g. surrogates in clinical trials). Others are conventions designed
to confer stability to decision analysis, yet which may introduce serious error when applied ritualistically (e.g.
significance testing). Some heuristics can be traced back to formal justifications, but only subject to strong
assumptions that are often violated in practical applications. Heuristic decision rules (e.g. feasibility rules) in
principle act as surrogates for utility maximisation or distributional concerns, yet in practice may neglect costs
and benefits, be based on arbitrary thresholds, and be prone to gaming. We highlight the problem of rule-
entrenchment, where analytical choices that are in principle contestable are arbitrarily fixed in practice, masking
uncertainty and potentially introducing bias. Strategies for making risk and decision analysis more rigorous
include: formalising the assumptions and scope conditions under which heuristics should be applied; testing
rather than presuming their underlying empirical or theoretical justifications; using sensitivity analysis,
simulations, multiple bias analysis, and deductive systems of inference (e.g. directed acyclic graphs) to
characterise rule uncertainty and refine heuristics; adopting “recovery schemes” to correct for known biases;
and basing decision rules on clearly articulated values and evidence, rather than convention.

1. Risk, decision, induction and uncertainty

Risk and decision analysis are central tools of contemporary
environmental and public health governance, in contexts ranging from
the appraisal of novel pharmaceuticals, to nuclear waste disposal, to
climate change adaptation and mitigation planning. They explore how
the future might unfold if a policy maker was to undertake a particular
course of action, often using utility functions to determine which
outcome is “best” (Kaplan and Garrick, 1981). These tools have their
roots in theories of probability and utility maximisation, and so are
often implicitly seen as deductive systems. In deductive systems, when
the underlying assumptions (premises) are valid, then the conclusion is
logically entailed (holds true). The validity of the inference rules
themselves (e.g. Bayes Theorem) is secure given that they are derived
from basic axioms (e.g. the product and sum rules of probability
theory). In this view, probability theory is an extension of formal logic

(Jaynes, 2003), and probability and utility theory are the intellectual
core of risk and decision analysis (Kaplan and Garrick, 1981; Savage,
1972). It is well known that probability and decision theory can never
solve problems of actual practice, but rather idealisations of them, and
are valuable to the extent that those idealisations are good ones
(Jaynes, 2003; Savage, 1972). And so unsurprisingly, methodologists,
practitioners and critics of risk and decision analysis have tended to
focus on whether those simplifying assumptions are reasonable (e.g. is
model structural error well characterised, are the parameter estimates
subject to large measurement errors; Smith and Stern, 2011;
Spiegelhalter and Riesch, 2011), rather than on the procedures of
inference themselves or their combination. This is entirely fine for
problems whose structure is sufficiently developed such that the full
decision-theoretic apparatus can be applied (Jaynes, 2003). However,
this is often not the case in practice in environmental and public health
applications. Consider the following scenarios:
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Scenario 1: An expert committee is tasked with estimating the likely
rise in global mean temperatures under various emission scenarios.
There are multiple models available, differing across various
dimensions (e.g. representation of physical processes, dataset cali-
brated on, etc.), and producing variable estimates of the parameter
of interest. How are these differing estimates to be reconciled or
combined, given that there is no clear measure of model quality?
Scenario 2: A team of analysts is tasked with evaluating the safety
case for a new-build nuclear plant. Whether the plant is sufficiently
robust to extreme events depends on the climate model downscaling
technique adopted, yet there is no clear basis for discriminating
between these. Which method should the analysts adopt, given that
neither data nor theory is determinative?
Scenario 3: Observational data shows an association between a
pharmaceutical and adverse outcomes in a population subgroup.
Pre-marketing clinical trials found no statistically significant ad-
verse effects. The observational study and the trial differ amongst
various dimensions, with neither clearly superior. A plausible
biological theory links the drug to the adverse effects, yet it is
unclear why harm should be restricted to the subgroup. What causal
claims can be made?
Scenario 4: An ecosystem is threatened by climate change. The
mechanisms that govern its functioning are poorly understood, but
analysts have identified warning signals that often presage tipping
points in similar systems. One of these warning signals (a reduced
rate of recovery from perturbations) has been reached for the system
of interest. How should the policy maker act in the face of this
surrogate data?

These diverse scenarios reflect fundamental tasks of inference and
choice: hypothesis testing; weighting evidence; model selection; extra-
polation; and selecting policies in the face of uncertainty. Moreover,
they relate to problems where a fully Bayesian or decision-theoretic
analysis is often implausible; either because the problem structure is
ambiguous, there is a lack of reliable data, or because decisions are
urgent. In such situations, inexact, heuristic methods of problem-
solving must be relied upon (Jaynes, 2003). That is, analysts and
decision makers rely on heuristics to prioritise potential threats, to
define what constitutes valid data, to discriminate between signal and
noise, to weight lines of evidence, to select and apply mathematical
models, and to make policy recommendations. Heuristics are not
problematic per se, but they can become so when treated as laws rather
than as contingent and provisional rules (Polya, 2004), and are
inescapably connected with systematic error. Whilst not drawing on
the notion of heuristics per se, recent years have seen a growing interest
in the problem of bias within regulatory science at the level of both
individual studies and evidence synthesis. In the former category,
concerns have been raised about data-dredging, selective reporting of
results, and unacknowledged researcher degrees of freedom (Ioannidis
et al., 2014; Gelman and Loken, 2014); the role of informal epidemio-
logical conventions in shaping research designs (Greenland, 2012a); the
“absurd precision” afforded to random error whilst systematic error is
treated in an ad hoc fashion (Greenland, 2005); the role of industry
funding in skewing study outcomes (Suter and Cormier, 2016); error
introduced by routine misinterpretations of significance testing; a lack
of attention to the compound effects of multiple uncertain inferences in
epidemiological analysis (Lash et al., 2016); and bias stemming from
the incomplete representation of physical processes in climate impact
modelling (Brysse et al., 2013). At the level of evidence synthesis,
common concerns include publication bias (Dwan et al., 2008); errors
stemming from the inflexible use of hierarchies of evidence and
questionable quality-scoring techniques in meta-analysis (Greenland
and O'Rourke, 2001); the exclusion of novel experimental protocols
from consideration in regulatory standard setting (Myers et al., 2009);
and potential bias stemming from the compound effect of “conserva-
tive” assumptions (Nichols and Zeckhauser, 1986; c.f. Finkel, 1997). We

draw upon, synthesize, and extend much of this work within the rubric
of heuristic inference.

We define heuristics as rules of thumb for inference and choices.
There are three elements to this definition: heuristics are rule-like, in
the sense that there is a presumption in favour of following them (i.e.
they structure or constrain judgment); they are rules of inference or
choice (e.g. if-then), rather than simply assumptions; and they are
simple, frugal approaches to problem solving that ignore relevant
information rather than seeking optimal solutions (Gigerenzer and
Gaissmaier, 2011; MacGillivray, 2014). We show that heuristics play
central roles in risk and decision analysis across an array of policy
domains; have sometimes been applied in ways that bias analysis
outcomes and lead to sub-optimal decisions; and suggest how these
heuristics might be evaluated and refined so that regulatory science
becomes rigorous.

2. Conceptual framework, aims and research approach

This paper builds on the idea that many aspects of regulatory risk
and decision analysis are in practice inductive. It follows that if we are
concerned with robust, evidence-based public policy, not only do we
need to focus on the assumptions behind decision analysis, but also on
the chains of reasoning that transform those assumptions into conclu-
sions. Inductive reasoning is distinct in form to deductive reasoning,
and requires different approaches to evaluate its form, quality, and
implications (Pearl, 2014). One key difference is that heuristic reason-
ing offers support for particular conclusions, but does not guarantee
them in the way that deductive systems do. Valid logical arguments are
“truth preserving,” and in a similar vein valid probabilistic arguments
are “probability preserving,” whilst inductive arguments may be at best
only plausible. Moreover, in inductive reasoning, it is not just the
structure of the argument that shapes validity (as in, e.g. classical urn
and ball representations), but also background knowledge and the
particulars of the case being examined (Pólya, 1990). In inductive
systems, model “debugging” is a different and more complex task than
in deductive systems, as when outputs do not match reality, we cannot
simply focus on (revising) model assumptions, but must also consider
rules of inference or their combination as potential sources of error or
uncertainty (Pearl, 2014).

The heuristics that we are concerned with are different from the lay
rules of thumb of the heuristics and biases tradition, which are domain-
general, fuzzy, and subconscious (Kahneman et al., 1982). We follow
Polya (2004) in seeing heuristics as provisional methods and principles
of discovery that fall short of demonstration, yet that are indispensable
for domains that do not allow for formal logic or proofs. This
interpretation heavily influenced research in artificial intelligence and
expert systems (Simon and Newell, 1958) where heuristics are con-
ceived and modelled as one of the foundational elements of expert
knowledge. A key insight of this approach is that expertise is less about
general purpose inference, and more about acquiring and representing
domain-specific knowledge (Feigenbaum, 1977). This expert knowl-
edge has widely been represented as sets of if-then rules that guide and
structure inferences, decisions, and problem solving in systematic ways.
These rules are often expressed in formal language rather than verbally,
and work by exploiting empirical facts or causal relations that are more
or less accepted or understood. Although they do not guarantee correct
solutions or optimal outcomes, they may offer useful guidance through
drawing on (imperfect) knowledge and making problems tractable (e.g.
by ignoring information or options; Gigerenzer and Todd, 1999). This
interpretation of heuristics—with its focus on formalism, domain
specificity, and on the interaction of rules with environmental structur-
es—is particularly relevant for characterising expert (rather than lay)
risk and decision analysis.

This paper's analysis covers chemicals regulation, health technology
appraisal, pharmaceutical regulation and climate change governance,
necessarily in a somewhat schematic fashion. We focus on the following

B.H. MacGillivray Environment International 105 (2017) 20–33

21



regulatory agencies: the US Environmental Protection Agency (EPA)
(chemicals regulation), the US Food and Drug Administration (FDA)
(pharmaceuticals regulation), the UK's National Institute for Clinical
Excellence (NICE) (health technology appraisal), and the
Intergovernmental Panel on Climate Change (IPCC) (climate change
evidence synthesis). The logic of this focus is that these organisations
have pioneered the application of risk and decision analysis methods
within their domains (meaning that many regulatory bodies worldwide
adopt similar practices, and so the findings should have reasonable
generality), and moreover their practices are relatively transparent and
well documented.

The research aims are to:

1) Identify and taxonomise heuristics used within these domains of
regulatory science;

2) Characterise the biases that may stem from applying these heur-
istics, drawing on both formal arguments (e.g. results of simulations
or sensitivity analyses) and real-world empirical examples; and

3) Identify strategies for rigorizing heuristic approaches to risk and
decision analysis, with a view to making regulatory science more
robust and evidence-based.

The paper focuses on the actual practices of regulatory risk and
decision analysis, rather than on the mathematical frameworks of
probability theory and utility maximisation. Data was collected from
various sources describing, evaluating, and providing context or back-
ground on the conduct and interpretation of regulatory science within
these areas. These include: a) Statutes, guidelines, procedures and
outputs relating to policy analysis and policy-making; b) critiques and
evaluations of those practices from within the scientific and policy
communities; and c) primary research papers and reviews providing
detail and background on the relevant theories, methods, and assump-
tions adopted. Given the scope of the paper, the data collection process
was necessarily schematic rather than systematic or comprehensive in
nature. The analysis began by inspecting data sources that represented
official or quasi-official characterisations of state of the art methodo-
logical practices (e.g. US EPA and FDA methodological guidelines; IPCC
reports) to identify the heuristics applied within each domain. A subset
of those heuristics were selected for more in depth analysis (data
sources b) and c) above). This subset was selected based on the
following criteria: scope or extent of application (i.e. significance);
and the existence of data relating to the heuristic's underlying assump-
tions, potential biases, and alternative methods of inference. The subset
of heuristics were then grouped into categories according to the
functions they performed (e.g. weighting lines of evidence, decision
rules, etc.), which was used to structure the analysis and discussion
sections. A typology was then developed that classifies the heuristics
according to their structural features (Table 1). Table 2 syntheses the
overall results, cataloguing problems and biases associated with
different kinds of heuristics, and prospects for rigorization.

3. Rules of thumb in regulatory risk and decision analysis: results
and discussion

3.1. Screening heuristics

A basic problem in regulatory science is that not all objects of
potential interest can be evaluated intensively, and so some approach
has to be devised to search and prioritise the problem space. Screening
heuristics are widely used for this purpose in chemicals regulation
(MacGillivray, 2014), ranging from simple if-then rules to more
complex categorisation trees. In some cases they draw on proxies for
exposure (e.g. threshold values of production volume, persistence and
bioaccumulation) as triggers for the degree of scrutiny for a particular
chemical. In others they draw on mechanistic knowledge to guide the
particular form that scrutiny should take (e.g. decision trees that

categorise chemicals by structural properties, which are mapped to
specific test batteries). Screening rules depend on the idea of surrogates,
e.g. the idea that persistence and bioaccumulation (the surrogates) are
indicative of expected exposure levels (the target variable), or that
particular structural properties of compounds are predictive of meta-
bolic and toxicological behaviour. They are particularly useful when
collecting data on the target attribute may be impractical or costly.
Screening rules are analogous to the biomarker-based approaches used
in medicine to identify individuals at elevated risk of disease (e.g. occult
faecal blood as a surrogate for identifying patients potentially having
colon cancer), and to the use of surrogate endpoints in clinical trials.
They can be classed as heuristic syllogisms (Polya, 2004), with the
skeleton form:

Premise: If A then B
Premise: B true
Conclusion: A more credible
(Example: A: patient has colon cancer; B: patient has elevated levels

of occult faecal blood.)
Generally, the conclusion will be tied to an action, which may be to

better characterise the likelihood that A is true (e.g. performing more
intensive diagnostic tests), or which may be based on the presumption
that A is true (e.g. provide medication). There are two key issues in
evaluating this class of heuristic: is the link between the surrogate and
the object of interest well theorised; and how strong is the empirical
link (e.g. in terms of sensitivity and specificity)? For example, produc-
tion volume is one surrogate for exposure widely used to guide
chemical test requirements. However, the empirical relationship be-
tween production volume and exposure (the IPR) has recently been
shown to differ by up to five orders of magnitude (Nazaroff et al.,
2012), with structural class and intended chemical uses key moderators
of this relationship. This suggests that generic estimates of IPR for broad
classes of chemicals could be derived from sampling, perhaps allowing
it to replace production volume as a more robust screening heuristic
(ibid).

These concerns are magnified when surrogates migrate from being
the basis of screening rules to become the objects of regulation, as in the
growing reliance on surrogate endpoints as measures of effectiveness in
clinical trials (Atkinson et al., 2001; Fleming and DeMets, 1996;
Ioannidis et al., 2014; Kazi and Hlatky, 2012). Here, surrogate end-
points, such as tumour shrinkage or changes in cholesterol level,
substitute for clinically important endpoints such as morbidity or
mortality, with the aims of maximising statistical power and reducing
trial costs and duration. This approach is problematic when the
surrogate lacks a well-established link to the clinically important
outcomes (Ioannidis et al., 2014; Kazi and Hlatky, 2012). An example
is Flecainide, a drug for reducing the risk of cardiac death from
abnormal heart rhythms, which was brought to market on the basis
of its performance against a surrogate endpoint (the suppression of
arrhythmias). However, post-marketing trials found that it actually
increased mortality from heart attacks in certain patient populations
(Echt et al., 2001). The general point is that surrogates are not the same
thing as the objects that they purport to represent. A failure to act in a
way that recognises this – such as by neglecting to collect systematic
evidence evaluating the presumed underlying relationship – can lead to
inefficient and even harmful regulatory outcomes (Atkinson et al.,
2001).

3.2. Causal inference

Approaches to representing and analysing cause-effect relations
range from formal deductive frameworks (e.g. directed acyclic graphs
(DAGs); Pearl, 2000), to purely statistical methods (e.g. hypothesis
testing), to criteria-based approaches. Hill's (1965) criteria are a set of
inductive factors used to separate causal from non-causal explanations
in toxicology: strength; consistency; specificity; temporality; biological
gradient (monotonicity); plausibility; coherence; experimental evi-
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dence; and analogy. Save for temporality, each of these factors may be
absent in genuinely causal relationships (Rothman and Greenland,
2005). Analogy and plausibility are particularly subjective, being
dependent on the state of knowledge or imagination of a given
investigator in a given timeframe. A precursor to these criteria are
Koch's postulates, a set of principles that must be satisfied to establish a
causal relationship between a microbe and a disease (including that the
agent should be found in all cases of the disease). Doll (2002) recounts
that these postulates were initially mapped across to chemical toxicol-
ogy, and used to argue that smoking could not be a cause of lung cancer
(as there were examples of cases with the disease that did not smoke).
This illustrates the dangers of using rules outside of their domain of
justification. Koch's postulates rest on a notion of causation – which saw
it as deterministic and singular – that was useful for microbiology but
quite wrong for chemical toxicology, where causes of disease are
multiple and stochastic (ibid).

A form of causal inference central to many regulatory domains is the
discrimination between signal from a target and noise from a distracter.
For instance, does a spike in hospital mortality rates indicate an under-
performing institution (e.g. sub-standard surgical practices or condi-
tions), or is it random variation? Can a change in weather patterns (e.g.
altered frequency or strength of North Atlantic storms) be attributed to
anthropogenic causes, or is it within the bounds of natural system
behaviour? Simple rules of thumb, generally variants of significance
testing, are widely used to structure this class of inferences, particularly
where data is generated by randomised experiments (in theory ruling
out systematic error) and there is limited prior information. They are
particularly prominent in public health:

• The FDA requires two well-designed studies where treatment effects
pass the conventional threshold of significance before a pharma-
ceutical can be placed on the market (NRC, 2012);

• Clinical trials may be stopped early if there is substantial evidence of
a clearly superior treatment, with substantial evidence widely
defined in terms of p-values (e.g. the Haybittle-Peto boundary
requires p < 0.001 to stop a trial early for benefit). However,
these are typically interpreted as presumptive guidelines rather than

strict rules (FDA, 2006); and
• Simple decision trees are used in pharmacovigilance by the
European Medicines Agency (2016) to classify whether a drug-event
pair is reported disproportionately (relative to an independence
model). One example is: a) if the lower bound of the 95% confidence
interval > 1; and b) the number of individual cases ≥3 for active
substances contained in medicinal products included in the addi-
tional monitoring list (or≥5 for the other active substances); and c)
the event is classed as an “Important Medical Event”, then investi-
gate further for potential causal relationships.

Variants of the significance testing heuristic are applied in chemi-
cals regulation, e.g. to determine whether chance, rather than a
treatment-related effect, is a plausible explanation for an apparent
increase in tumour formation, and to differentiate between “true”
detections of a substance and those that cannot be reliably distin-
guished from instrument error or noise (MacGillivray, 2014). These
heuristics share the basic structure of using a statistical criterion to
identify a result or phenomenon that is sufficiently extreme that it
qualifies as signal rather than noise (i.e., sufficiently extreme to reject
the null hypothesis, or more sensibly, treat it as suspect pending further
investigation). A long established but sometimes overlooked principle is
that a failure to reject the null hypothesis does not logically entail
accepting it. A safeguard to this problem is found in chemical exposure
assessment. Here, where observed values (concentration levels) are
deemed to be too low to be reliably distinguished from instrument error
or noise, they are not treated as zero (which would bias risk assessments
downwards). Instead, proxy values are used. This parallels Pearl's
(1984) notion of “recovery schemes,” which are designed to guard
against biases that may stem from rule-based reasoning.

A variant of the above is outlier screening, where extreme results
are considered as noise rather than signal. The distinction is that outlier
screening involves treating the model or theory as (provisionally) true
and mistrusting the data, rather than assuming the data to be correct
and mistrusting the theory (Gigerenzer and Sturm, 2007). An example
is the use of significance tests to detect low outliers in flood frequency
analysis in the United States (GCER, 1999). A crucial point is that

Table 1
A typology of heuristics applied in regulatory risk and decision analysis. Existing classifications of heuristics are typically subject-specific so we have not built on them per se. However, we
drew on Wimsatt's (2006) class of model building heuristics, and Clancey's (1983) notion of “identification rules” has some parallels with categorisation rules. The idea of attribute
substitution is central to Kahneman and Frederick's (2002) understanding of representativeness, and has parallels with our notion of surrogates within screening rules. MacGillivray
(2014) classed a series of heuristics used in chemical risk assessment according to their functions, but without offering a taxonomy as such. We build on his classes of screening rules,
gatekeeping rules, evidence hierarchies, and interpolation and extrapolation rules.

Heuristic class Heuristic sub-class Description

Categorisation rules Screening risk objects Decision trees used to categorise risk objects to inform both priority setting and testing requirements, often based
on surrogates.

Causal inference Signal vs. noise Variants of significance testing used to discriminate between noise from a signal, and interference from a
distractor.

Domain-specific Domain-specific criteria used to discriminate between causal and non-causal associations.
Data exclusion Gatekeeping rules that exclude data generated from certain non-standard research designs from quantitative risk

or benefit assessments.
Evidence hierarchies Hierarchies of evidence used to rank (potentially conflicting) sources of evidence according to the quality or

rigor of their underlying research designs.
Model construction rules Methodological prescriptions Conventions prescribing default choices of model structure, functional form, and parameter values.

Methodological principles Principle-based inference rules that guide choices of model structure, functional form, and parameter values.
Adjustment rules Debiasing Rules that stipulate how model outputs should be adjusted to correct for perceived biases (e.g. safety factors).

Extrapolation/scaling Rules or principles that dictate how model outputs should be adjusted to extrapolate across categories (e.g. from
human to animal), scales (e.g. in climate impact modelling), places or contexts.

Combination rules Combining estimates Rules that assign weights to different estimates of the same phenomena to allow for their combination, e.g.
within meta analyses or multi-model ensembles.

Combining separate outcomes Rules that govern how different risks, impacts, or outcome types should be combined to generate aggregate
measures.

Decision rules Absolutes Rules which deem the presence of a property (e.g. carcinogenic) as sufficient grounds for regulating an object.
De minimis and de manifestis Quantitative thresholds, based on theory, empirical data or arbitrary conventions, used to distinguish between

negligible risks and those that require mitigation.
Feasibility rules Rules that mandate the particular technology to be used for environmental regulation, constrained in terms of

the best that is available or feasible.
Cost-effectiveness Thresholds used to determine whether a regulatory intervention is rational in the face of budget constraints.
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Table 2
Examples of regulatory heuristics, their associated problems, and prospects for rigorization.

Rule class Rule description Applications and problems Towards rigorization

Screening risk objects Decision trees used to categorise risk
objects to inform both priority setting and
testing requirements, often based on
surrogates.

Screening rules based on surrogates are widely used
to search the problem space in chemicals
regulation, e.g. production volume is used to guide
chemical test requirements, however its
relationship to exposure has been shown to differ by
up to five orders of magnitude (Nazaroff et al.,
2012).
Surrogates are increasingly used in the analysis of
clinical trials to increase statistical power and
reduce costs, but their clinical relevance is not
always clear. For example, suppression of
arrhythmias was used as a surrogate for mortality
from heart attacks in trials of Flecainide. The drug
was brought to market on the basis of those trials,
yet post-marketing trials found that the drug
increased mortality from heart attacks in certain
subgroups (Echt et al., 2001).

Relationships between surrogates and endpoints
should be empirically validated, rather than
presumed on basis of plausibility. The identification
of variables that significantly moderate the
relationship between surrogate and endpoint (e.g.
Nazaroff et al., 2012) can help to improve screening
rules.

Causal inference:
signal vs. noise

Variants of significance testing used to
discriminate between signal and noise.

Significance testing is used for causal inference in
numerous domains of environmental and public
health regulation. Well-rehearsed problems include
the arbitrary choice of thresholds, the neglect of
utilities, and the neglect of domain-specific
knowledge. Its application to observational data for
causal inference is particularly suspect, as the no
bias assumption is rarely justifiable. For example,
the FDA recommended the use of oestrogen to
reduce cardiovascular risk in post-menopausal
women on the basis of statistically significant
findings of protective effects in observational
studies. Subsequent RCTs found no benefit and
possible harm (Greenland, 2005).

Ritualistic use of significance testing is a problem not
restricted to regulatory science. In general terms,
significance tests should be used to characterise
random error, not for causal inference. They should
be supplemented with bias analysis – formal or
informal – where applied to observational data.
Standard inferential statistics is not the problem –
their misinterpretation and misapplication is.

Causal inference:
domain-specific

Domain-specific criteria used to evaluate
whether a causal relationship has been
demonstrated to hold.

Koch's postulates set out principles that must be
satisfied to establish a causal relationship between a
microbe and a disease. They were used to argue that
smoking was not a cause of lung cancer. The error
stems from the fact that Koch's postulates rest on a
notion of causation that was inapplicable to
chemical toxicology, where causes of disease are
multiple and stochastic (Doll, 2002).
Hill's (1965) criteria are inductive factors used to
separate causal from non-causal explanations in
toxicology: strength; consistency; specificity;
temporality; biological gradient (monotonicity);
plausibility; coherence; experimental evidence; and
analogy. Save for temporality, each of these factors
may be absent in genuinely causal relationships
(Rothman and Greenland, 2005). Analogy and
plausibility are particularly subjective, being
dependent on the state of knowledge or imagination
of a given investigator in a given timeframe. The
system as a whole does not explicitly deal with
confounding.

There are temptations and dangers in exporting
heuristics across domains – generalisation is in many
senses synonymous with scientific advance, but
successful generalisation requires a coherent
justification.
Weed (1986) and Maclure (1985) sought to transform
Hill's criteria into deductive tests of hypotheses
(Rothman and Greenland, 2005).
DAGs provide a deductive basis for estimating causal
relationships. However, full applications to public and
environmental health contexts have been limited by
the strong assumptions required (Greenland, 2012b).

Evidence hierarchies Hierarchies that categorise quality of
evidence according to study design
features (e.g. RCTs vs. cohort studies).

Evidence hierarchies are widely used in public
health to resolve inconsistent findings. Empirical
evidence shows the dangers of applying them
inflexibly, e.g. Concato (2004) used meta-analyses
to explore their underlying assumptions, finding
that average results from well-designed
observational studies did not overestimate
exposure-outcome associations compared to those
reported in RCTs. More anecdotally, two small RCTs
found evidence of a protective effect of β-blockers
on cardiac postoperative events (Neuman et al.,
2014). Their perioperative use in patients with
coronary artery disease was promoted as “best
practice” on the basis of these trials. This was later
overturned, largely on the basis of a large scale
cohort study which associated the use of β-blockers
with substantially greater mortality in patient
subgroups.

Evidence hierarchies may be useful heuristic tools,
but they do not absolve researchers of the obligation
to evaluate the merits of the design, conduct, and
analysis of individual studies. Risk of bias tools can
structure this process (e.g. Higgins et al., 2011).
Recovery schemes setting out justifications for down-
grading or up-grading the quality ranking of specific
study categories are useful, e.g. those found in GRADE
(Guyatt et al., 2008).

Model construction
rules

Conventions constraining choices of
model structures, functional forms, etc.

Such conventions are widespread within integrated
assessments in climate science, health technology
appraisal, and chemical risk assessment. There is
wide variation in the extent to which these defaults

Rule-bound approaches to modelling are typically
difficult to justify in the social and environmental
sciences, where empirical regularities are few,
measurement difficult, and there is rarely a strong

(continued on next page)
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Table 2 (continued)

Rule class Rule description Applications and problems Towards rigorization

are well-founded, vs. the extent to which they seek
to confer standardisation for its own sake. The latter
kinds of rules may introduce bias and artificially
close down uncertainty, particularly when
collections of modelling rules are standardised.
Morgan (2014) describes a climate impact
modelling framework within which analysts were
allowed to alter discount rates, damage functions,
and objective functions (typically fixed by
convention). He found that the identification of the
optimal climate mitigation policy was highly
sensitive to alternative plausible model
specifications. If stability in outcomes is contingent
on standardising methodological choices that are in
principle contestable, then it is unclear whether the
outputs have a clear physical interpretation.

theoretical basis for constraining choices e.g. of
distributional and functional form.
Sensitivity analysis can explore the robustness of
results to alternative model construction rules.
Focussing on collections of rules is critical (e.g.
Morgan, 2014).
Deductive frameworks serve as a rigorous basis for
constructing causal models (subject to strong
assumptions) or as normative standards for evaluating
specific modelling conventions. They also inform
methods of multiple bias analysis applied in public
health (Greenland, 2005; Lash et al., 2016).

Extrapolation/scaling
rules

Adjustment rules used to extrapolate
model results across scale, place, species,
etc.

The extrapolation of model results to other
locations, scales, or circumstances is often a
judgment-laden, ad hoc process. For example,
global climate impact studies tend to be based on
data from wealthy nations, which is then
extrapolated across to LMICs with informal
adjustments to account for differences in
geography, adaptive capacities, etc. (Smith et al.,
2001).
Elsewhere, explicit extrapolation heuristics are
used, e.g. uncertainty factors to transport toxicology
estimates across species, and the use of elevation as
a surrogate for temperature gradients in down-
scaling climate models. The latter heuristic may be
biasing species distribution forecasts, as its relative
coarseness leads to the neglect of refugia which play
important roles in species' adaptation (Ashcroft
et al., 2009).

There is lack of general theory on the assumptions
required to extrapolate causal results across scale,
place and context. Consequently, there is no domain-
general normative standard for evaluating heuristic
extrapolations.
Theory-driven empirical studies (e.g. replications of
studies across locations or species, meta-regression,
and simulations) aimed at validating or refining
extrapolation heuristics can be useful on a case-by-
case basis.

Combining estimates Rules (e.g. equal weights) for combining
estimates of the same phenomena

The IPCC combines – without weighting – the
outputs of multiple models into simple averages,
standard deviations or ranges (Knutti, 2010). A
formal justification for equal-weighting is Laplace's
Principle of Insufficient Reason, which relies on the
strong assumption of pure uncertainty.
Even where the assumption holds, equal-weighting
leads to inconsistent results in cases where the
object being combined (e.g. parameter value) may
be represented in more than one mathematical
form, and those forms are non-linearly related
(Frigg et al., 2015b). An example is the
representation of uncertainty in the speed at which
ice falls from clouds in climate modelling (ibid.).

Simulation studies can characterise the sensitivity of
model results to alternative weighting schemes where
the pure uncertainty assumption does not hold (e.g.
Clemen and Winkler, 1999).
Bayesian approaches can be used to weight climate
models according to skill, although are constrained by
the fact that model performance is quite context-
specific.

Combining separate
outcomes

Rules (e.g. vector addition) for estimating
the joint effects of separate risks, impacts,
or outcome types.

Vector addition is standard in integrated impact
assessments of climate change, where impacts are
typically characterised on a sector-by-sector basis,
then combined to derive the aggregate economic
impact (Stern, 2007). Results (Harrison et al., 2016)
suggest that this presumption of additivity is
biasing impact evaluations (and by extension
adaptation decisions), e.g. through neglecting the
way that changes in water availability influence the
balance of irrigated and non-irrigated crops in a
given area, which in turn influence food
production.
In clinical trials multiple endpoints are often
aggregated into composite measures to reduce
sample size requirements and capture the full range
of impacts (Ferreira-González et al., 2007).
Standard practice is to weight each component
endpoint equally, however, this does not reflect
patient or trialist preferences (Stolker et al., 2014)
and may lead to biased estimates (Montori et al.,
2005).

Harrison et al. (2016) introduce a framework for
exploring how sensitive climate impact studies are to
the heuristic of vector addition.
Domain-general statistical approaches are available to
test for the presence of interactions/violations of
additivity.
Experimental approaches may be useful in some
contexts (e.g. risk characterisation of mixtures in
toxicology).
Expert and patient elicitation procedures can inform
the weighting of component endpoints where
aggregation is desired in clinical trials.

Decision rules Absolutes The general concern with heuristic decision rules is
that neglecting to weight the full costs and benefits
of regulatory options (and their distributional
features) can lead to decisions that are inefficient,
harmful, or that violate equity principles. De
minimis, de manifestis, and cost-effectiveness

Decision rules should be based on clearly articulated
values and a robust empirical or theoretical basis,
rather than conventions. Tipping points and planetary
boundaries offer promise for informing risk
thresholds. Cost-effectiveness thresholds should be
linked to budgetary constraints or valuations of

De minimis and de manifestis
Feasibility rules
Cost-effectiveness thresholds

(continued on next page)
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relying solely on statistical rules to remove outliers – as opposed to
identifying suspect data worthy of further investigation – is generally
viewed as bad practice. This is reflected in the (possibly apocryphal)
anecdote that the automated deletion of “rogue” zero ozone concentra-
tions over the Antarctic – presumed to stem from measurement error –
prevented early detection of depletion of the ozone layer (Benedick,
1991).

These variants of significance testing are subject to the standard
critiques of: using arbitrary thresholds to discriminate between signal
and noise1; neglecting or only indirectly considering statistical aspects
that are logically informative for causal inference (e.g. effect sizes in
clinical trials); and ignoring priors and utilities (when characterised as
choice rather than pure inference) (Spiegelhalter et al., 2004; Suter,
1996). Other criticisms focus on the convention that significance testing
is sufficient for formal uncertainty analysis (leaving systematic – rather
than random – sources of error to be handled informally) (Greenland,
2005). This is a powerful critique given that many regulatory agencies –
such as the FDA – that previously relied almost exclusively on data
generated from randomised trials are increasingly basing their decisions
on observational data (e.g. in health technology appraisal and post-
market surveillance activities; Lash et al., 2016). In such contexts,
causal inferences are far from secure, implying a need for formal
methods that estimate the direction, magnitude and uncertainty
associated with systematic rather than purely random errors (Lash
et al., 2016). As a cautionary example, the FDA previously recom-
mended the use of oestrogen to reduce cardiovascular risk in post-
menopausal women on the basis of statistically significant findings of
protective effects in observational studies. Subsequent randomised
controlled trials (RCTs) found no benefit and possible harm. Formal
bias analysis may have prevented this (Greenland, 2005).

Proponents of significance testing rules tend to justify them not on
the grounds of their particular form, but rather by defending them as
rules. That is, they are promoted as ways of limiting analyst bias and
personal discretion, of ensuring consistency in inference in a policy
arena that may otherwise become chaotic in the absence of firm
standards (e.g. Mayo and Cox, 2010). However, the definition of the
null hypothesis can leave significant degrees of freedom, particularly in
dynamic systems – such as climate – that are characterised by multiple
processes and feedback mechanisms operating at different scales (Frigg
et al., 2015a; Cohn and Lins, 2005). This raises questions about the
reliance on significance testing in climate attribution and detection
studies (Frigg et al., 2015a).

3.3. Weighting rules

How to weight and perhaps combine diverse and often conflicting
kinds of data is a core dilemma in regulation. We classify three basic
approaches.

3.3.1. Gatekeeping rules
Gatekeeping rules discriminate between valid and unsound data,

studies, or models by assigning some a weight of zero (e.g. excluding
models from ensemble predictions based on a threshold measure of
“skill”). Although gatekeeping clearly occurs in regulatory science, it
tends not to be based on explicit rules, instead relying on a mixture of
factors-based judgments, expert knowledge, and peer review.
Exceptions exist. For example, we find regulatory rules designed to
constrain analyses undertaken by private parties for reasons of ethics or
methodological assurance. For instance, the FDA advises manufacturers
to exclude data derived from phase one pharmacokinetic and pharma-
codynamic studies from premarketing risk assessments. The grounds
are that such studies are usually short term and conducted either on
healthy or fairly ill subjects with refractory or terminal conditions, and
so are likely to introduce bias (FDA, 2005). Similarly, the EPA may not
rely on third party research on human subjects involving pesticides that
violate certain clearly defined ethical principles (e.g. research involving
intentional exposure of pregnant women). Finally, the EPA and FDA
require that industry funded (toxicology) studies adhere to “Good
Laboratory Practices” (GLP) – a mixture of technical prescriptions and
generic quality management practices – before they can be used as a
basis for quantitative risk assessment (Alcock et al., 2011). The logic
here is to ensure a basic level of methodological quality and control for
any incentives that manufacturers might have to downplay their
products' risks, perhaps at the cost of neglecting data produced using
novel experimental protocols (Myers et al., 2009). More widespread
and analytically interesting than gatekeepers are weighting rules,
discussed below.

3.3.2. Weighting hierarchies
These heuristics rank sources of potentially conflicting data accord-

ing to the strength of their study designs. Their role is most prominent
in healthcare, where insufficient attention to the quality of evidence
can have serious implications. Recall that regulatory authorities
previously recommended – on the basis of observational studies – that
doctors encourage postmenopausal women to use hormone replace-
ment therapy to reduce cardiovascular risk (Guyatt et al., 2008), a
recommendation later overturned on the basis of RCT results. The
problem here was that the strength of their initial recommendation
didn't reflect the quality of the evidence. To guard against this, explicit
hierarchies of evidence have been adopted in different jurisdictions to
bring logic and consistency to the provision of medical guidance (ibid.).
These hierarchies are used to inform the development of clinical
guidelines (which set out, e.g., preferred treatments for different
conditions) and public health interventions (broadly conceived), rather
than in health technology appraisal.2 A widely used hierarchy is
(Petticrew and Roberts, 2003):

1. Systematic reviews and meta-analyses
2. Randomised controlled trials with definitive results

Table 2 (continued)

Rule class Rule description Applications and problems Towards rigorization

thresholds often lack clear theoretical or empirical
justifications. It is unclear why the feasibility
criterion should trump concerns about health and
welfare. Moreover, informal arguments suggest that
feasibility rules may be prone to gaming and
inadvertently lead to the entrenchment of
technologies for risk reduction.

statistical lives.
Exploiting interpretive latitude allows decision-
makers to safeguard against the perverse implications
of verbal rules.

1 Gigerenzer and Marewski (2015) report that the convention of using 5% (and less
often 1%) as a threshold of significance appears to stem from the fact that Ronald Fisher's
nemesis, Karl Pearson, refused to give him tables for any other values.

2 Health technology appraisal typically relies on the formal analysis of clinical and
economic data to determine the relative cost-effectiveness of interventions. Here, a
categorical ranking of evidence isn't much use, as different sources of data need to be
combined into a common numerical summary.
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3. Randomised controlled trials with non-definitive results
4. Cohort studies
5. Case-control studies
6. Cross sectional surveys
7. Case reports

One critique levelled against such hierarchies is that the ordering of
study designs is excessively rigid and lacking in caveats (Petticrew,
2010; Rothman, 2014). The idea is that whilst, all else being equal,
randomised controlled trials are preferable to cohort studies, case-
controls, and so on, things are never quite equal. An RCT with low
compliance rates and substantial missing data due to high patient
dropout rates is probably less likely to lead to reliable causal inference
than a well conducted observational study where the relevant covari-
ates are known and recorded (Rubin, 2008). For example, where an
RCT found that those urged to cease smoking developed more lung
cancer than controls, the discrepancy between these results and the
many observational studies linking smoking to lung cancer was
ascribed to problems with the trial (Rothman, 2014), rather than the
reverse as a rigid interpretation of hierarchies would suggest. Similarly,
in a meta-analysis, Concato (2004) identified specific exposure–out-
come associations that had been studied with both RCTs and observa-
tional studies, and found that average results from well-designed
observational studies did not overestimate exposure-outcome associa-
tions compared to those reported in RCTs. Put more broadly, rigid
hierarchies neglect the question of how well designed and conducted
the particular study was (rather than the properties of the ideal study in
that class; Harbour and Miller, 2001), its statistical properties (e.g.
variance), as well as questions of how well suited it was to answering
the specific question of interest (e.g. determining effect size vs.
identifying causal mechanisms). Anecdotal data suggests that the rigid
application of hierarchies may lead to actual harm. Two small RCTs
found evidence of a protective effect of β-blockers on cardiac post-
operative events (Neuman et al., 2014). Their perioperative use in
patients with coronary artery disease was promoted as “best practice”
on the basis of these trials. This was later overturned, largely on the
basis of a large scale retrospective cohort study which associated the
use of β-blockers with substantially greater mortality in patient
subgroups (ibid).

Recent years have seen several public health agencies adopt a
hierarchy (GRADE) that acknowledges these caveats, for instance in
specifying the criteria that may be used to justify down-grading or up-
grading the quality ranking of specific study categories (Guyatt et al.,
2008). This kind of “recovery scheme” is not particularly well devel-
oped in chemical risk assessment, where hierarchies are also prevalent
and sometimes interpreted inconsistently or in an overly mechanical
fashion (MacGillivray, 2014). For example, one weighting hierarchy,
used by the US Occupational Health and Safety Administration (OSHA),
is that positive test results (whether human or animal) should supersede
negative epidemiological studies (Jasanoff, 1982). The logic is that
epidemiological studies typically have low power and thus are prone to
false negatives. The OSHA later introduced criteria allowing negative
epidemiological results to trump positive animal studies: if subjects
should have been exposed for a minimum of 20 years; and observed for
the following 30 years; and groups were large enough to detect an
increase in cancer incidence of 50% above unexposed populations
(Jasanoff, 1982). However, these criteria are so restrictive that it is
implausible that they could ever be satisfied (ibid.).

3.3.3. Combination rules
Here, we are concerned with rules for combining expert judgments

(e.g. probability distributions, or beliefs about causation), statistical
summaries (e.g. of multiple clinical trials), model predictions, and so
forth. Approaches to combination are often classified into mathematical
(e.g. Cooke's “Classical Model,” long used for volcano management in
Montserrat) and behavioural (e.g. Delphi workshops) camps (Clemen

and Winkler, 1999). Combination can be problematic where disagree-
ment stems from different theoretical or methodological approaches
(Knutti et al., 2010), but we set aside this concern to focus on the
methods applied. One common heuristic is equal-weighting:

W = 1 Ni

(where Wi is the weight assigned to the individual model, estimate,
expert, etc.; N is total number of models etc. being combined).

Here, different estimates, beliefs, or predictions are aggregated with
the un-weighted mean treated as the true-value. In what has been called
“model democracy,” the IPCC combines – without weighting – the
outputs of multiple models into simple averages, standard deviations or
ranges (Knutti, 2010). More formal approaches are under development,
for example the most recent IPCC report discussed Bayesian techniques
for model-weighting (Flato et al., 2013), yet a problem is that the
quality or performance of climate models is often quite context-specific,
e.g. with some having good representations of the Indian monsoon, and
others providing better estimates of precipitation in the Pacific North
West. Elsewhere, regulatory agencies such as the USEPA often resort to
equal weighting when faced with expert disagreement. For instance,
when members of expert advisory boards have conflicting views about
matters of fact (e.g. beliefs about causation, or whether a fish species is
endangered, etc.), agencies routinely simply adopt the majority view,
rather than sift through the arguments advanced, or weighting votes
according to expertise (Vermeule, 2008). There is a formal justification
for equal-weighting in situations of pure uncertainty. This is Laplace's
principle of insufficient reason or indifference, which holds that
equivalent knowledges be assigned equivalent degrees of belief (ibid.).
In short, when the combiner of information is unable to determine
which of several experts (or models) is more likely to be correct – based
on (lack of) knowledge of their expertise or beliefs about their relative
credibility – then it makes sense to weight them equally. Yet whilst
equal-weighting may appear axiomatic in these restrictive circum-
stances, it suffers from problems that are well known in the philoso-
phical literature, and that may carry practical implications.

One such problem is that it leads to paradoxical outcomes in the
case where the objects being combined or weighted (e.g. the model
prediction, or parameter value, etc.) may be legitimately represented in
more than one mathematical form, and those forms are non-linearly
related (Frigg et al., 2015b). An example of this is the speed at which
ice falls out of clouds, an important parameter in climate modelling.
This parameter can be represented in two ways – ice fall rate or the
residence time of ice in clouds – and these two values are inversely
related (Frigg et al., 2015b). The true value of these parameters is
unknown, and when conducting sensitivity analysis within HadCM3,
the UK's Met Office uses ice fall rate and implicitly assigns equal
weights to the probability that it will take a given value within a
plausible range (i.e. the pdf of its value is flat within a middle range;
Sexton et al., 2012). Full elaboration of the paradox that this leads to
would be rather technically involved (see Frigg et al., 2015b), yet
suffice it to say that equal-weighting in this kind of case generates
different outcomes depending on the (arbitrary) choice of which
representation of the parameter to select.

This is perhaps a rather esoteric case. A larger problem is how
robust the equal-weights heuristic is to violations of the pure uncer-
tainty assumption. In simulation studies where data on the relative
credibility of experts is available it tends to be slightly outperformed by
mathematical approaches that do include weighting, whilst typically
performing better than behavioural approaches to combination
(Clemen and Winkler, 1999). Crucially, the performance of equal-
weighting hinges on the size and diversity of the expert sample. In
inadequately diverse samples, the rule understates uncertainty and may
also create a biased estimate. Moreover, institutional context shapes the
performance of the rule. Bearing this out, courts and legal scholars have
taken a mixed view on “nose-counting” in regulatory policy, critiquing
its application in situations where the size or composition of the expert
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group can be gamed, and where decision making processes encourage
groupthink (e.g. sequential rather than simultaneous voting by panel
members; Vermeule, 2008).

In health technology appraisal equal-weighting is broadly seen as
naïve, and different combination rules are deployed (Petitti, 1999).
Consider meta-analysis, where the outputs of several randomised trials
are combined to form a common numerical summary (e.g. effect size).
This often involves studies of vastly ranging population samples (which
by extension vary widely in informativeness), a fact which any reason-
able weighting scheme has to take account of. There are two major
approaches to weighting here, which differ in terms of whether the
underlying studies are considered homogenous (Greenland, 1994; Doi
et al., 2011). In fixed effects analysis, where the studies are considered
homogenous, individual studies are typically weighted according to the
inverse of their variance.

W =1 sei i
2

(where sei is standard error).
There is a formal proof that this minimises the overall variance of

the combined estimate, and as there is a presumed absence of bias (the
homogeneity assumption), this minimises the mean squared error of the
combined estimate. However, homogeneity is a strong assumption, and
where the rule is used outside of this scope constraint – as is not
uncommon in medical research and environmental risk assessment
(Riley et al., 2011) – it can introduce bias to the overall estimate,
essentially acting as a heuristic. In random effects meta-analysis,
homogeneity is not assumed, meaning that the studies may either
incorporate bias or are measuring true differences in effect sizes. The
standard approach here is to weight according to the within and
between study variance. However, this weighting scheme has been
critiqued for lacking a clear underlying rationale (Greenland, 1994).
Moreover, as it is based on statistical measures of study outputs, it
doesn't explicitly take into account the quality of the design and
conduct of the studies, nor the completeness of the data reporting.
Incorporating these factors within meta-analysis weighting schemes
faces serious technical and conceptual difficulties (Greenland and
O'Rourke, 2001). Pearl and colleagues have recently developed a
deductive framework for combining datasets collected from different
populations and experimental designs (e.g. observational vs. RCTs),
however, implementing this approach requires a clear understanding of
the underlying data generating processes (Bareinboim and Pearl, 2016).
Perhaps a less demanding approach is to use sensitivity analysis to
explore the robustness of meta-analysis outputs to different study
characteristics (dimensions of quality) (Juni et al., 2001).

A related task is the combination of different risks or impact types to
generate aggregate measures. One commonly adopted combination rule
is vector addition, which is premised on an absence of interactions
between risks or impact categories (i.e. no synergistic effects). It is
standard within integrated impact assessment (of climate change),
where impacts are typically characterised on a sector-by-sector basis
(e.g. impacts on water resources, vs. impacts on the agricultural sector),
then simply added together to derive the aggregate economic impact
(Stern, 2007). Recent work suggests that this presumption of additivity
may be skewing the outcomes of impact evaluations (and by extension,
adaptation decision-making), e.g. through neglecting the way that
changes in water availability influence the balance of irrigated and
non-irrigated crops in a given area, which in turn influence food
production (Harrison et al., 2016). Similar concerns about (neglecting)
synergistic effects have a long-standing history in the risk assessment of
chemical mixtures. Analogously, in the analysis of clinical trial out-
comes multiple endpoints are often aggregated into composite mea-
sures to reduce sample size requirements and capture the full range of
impacts of interventions, especially within cardiology (Ferreira-
González et al., 2007). Standard practice is to weight each component
equally, however, this does not appear to reflect patient or trialist
preferences (Stolker et al., 2014), and may lead to biased estimates if

the number of events in the more significant components are small and
the magnitude of effect varies significantly across components (Montori
et al., 2005).

3.4. Interpolation and extrapolation: model choice and implementation

We turn to heuristics for interpolating datasets and for extrapolating
from existing data, touching upon dose-response modelling in toxicol-
ogy, the analysis of clinical trials, and climate modelling. In these
domains, model selection and implementation is typically not deter-
mined by the raw data, meaning that there are multiple plausible
approaches and choices that can be made. These include:

• selecting between competing model structures (e.g. linear quadratic
vs. threshold models in radiation risk assessment);

• the selection of variables (e.g. in regression analyses of epidemiolo-
gical data, which variables need to be adjusted for to avoid
confounding; e.g. Greenland et al., 1999);

• choosing whether particular value judgments should be explicitly
incorporated within a model (e.g. should distributional (equity)
weights be applied within health technology appraisal);

• adjusting for known biases or errors in the data (e.g. various
adjustments account for differences in size and lifespan across
species in chemical dose-response modelling);

• selecting the values for model parameters that cannot be derived
from the dataset (e.g. discount rates, the selection of priors, etc.); and

• choosing the technique for implementing the model (e.g. parameter
estimation technique).

There are many forms of reasoning that can guide these inferences.
For instance, there are deductive principles for confounder adjustment
(subject to strong causal assumptions); model selection could be based
on ad hoc factors that are application specific (e.g. the format of the
output data); and deciding upon value judgments might be a delib-
erative process. But we find heuristics governing interpolation and
extrapolation in several domains. There are two kinds of these
heuristics: defaults; and inference rules. The former prescribe the
outcome of the inference, e.g. the USEPA's requirement to use linear
non-threshold models for carcinogen risk assessment (NRC, 2009). The
latter prescribe the processes by which inferences are reached, e.g. when
faced with several plausible candidate models for dose-response
analysis, select that with the lowest Akaike information criterion (an
approach that balances complexity and fit) (EPA, 2012). Below we give
a schematic overview of the reliance on interpolation and extrapolation
heuristics in chemicals regulation, before offering comparisons with
other regulatory domains. Our concern is less with the individual
details of the rules (for this, see Greenland et al., 1999; Greenland,
2012a; Jurek et al., 2008; and MacGillivray, 2014), than with the
phenomenon of rule-bound modelling.

In chemicals regulation, the determination of a (potential) causal
link between a chemical and harm is the precursor to building formal
dose-response models. Here, interpolation involves structuring and
regimenting the raw test data into a dose-response curve (typically
covering moderate-high dose levels), with the purpose of deriving a
“point of departure” (POD) from which extrapolation to the low-dose
range can then be made. Key inferences include: which species and
endpoint should be used? Should a biological or empirical model be
used? And which parameter estimation technique should be used to
apply it? What constitutes adequate fit for a statistical model? Or
should the dose-response data simply be plotted by hand (e.g. where the
“no observed adverse effect level” is taken as the POD)? Rather than
leave these decisions entirely to the discretion of risk assessors,
regulatory agencies have adopted a series of inference rules and default
heuristics to structure the process, most famously at the USEPA (NRC,
1983, 1994, 2009). These include rules governing the preferred end-
point and species to be used (the most sensitive), and for adjusting the
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raw data prior to model application (e.g. animal doses are scaled by ¾
power of body weight to derive toxicologically equivalent dose for
humans) (MacGillivray, 2014). There are also rules for selecting
amongst competing model structures for both interpolation (e.g. AIC
is used to select amongst candidate models in benchmark dose-response
modelling) and extrapolation (e.g. linear vs. non-linear extrapolation
are adopted for carcinogens and non-carcinogens respectively, with the
latter involving back-of-the-envelope uncertainty factors). Uncertainty
stemming from the interactions of these kinds of conventions has
received remarkably little systematic attention in both risk assessment
and the epidemiological literature (Greenland, 2005). Advances in
multiple bias analysis are making this task more tractable (Lash et al.,
2016; Greenland, 2005), drawing in part on deductive theories of
causal inference (e.g. Pearl, 2000) which can clarify errors stemming
from informal epidemiological heuristics.

There are structural parallels between dose-response modelling in
chemicals regulation, radiation protection, and health technology
appraisal. And whilst we find similar heuristics for extrapolation and
interpolation across these domains, there are differences in the degree
to which different jurisdictions and policy domains are bound by rules
and also in the particular rules that are selected. For example, there is
limited published guidance on the risk-benefit methodology used to
determine whether pharmaceuticals should be allowed on the market,
both within the EU and the US (NRC, 2013; Hughes et al., 2007). And
the actual process in the US is more reliant on the deliberative
evaluation of clinical and economic data by experts, rather than formal
modelling (Garrison et al., 2007). In contrast, the appraisal of health
technologies – used to determine whether treatments should be publicly
funded or simply to establish preference orderings – is heavily bound by
default rules in many jurisdictions, including the UK. Here we find rules
dictating the preferred method for valuing changes in health status (EQ-
5D), the source of preference data for valuing changes in health related
quality of life (the public, rather than patients), the discount rates to be
used (3.5% for costs and benefits), and whether equity should be
incorporated within the formal analysis (in this case, no) (NICE, 2008).
Rule-bound approaches to regulatory science are a fairly recent
phenomenon, replacing an earlier emphasis on sound methodological
choices on the part of analysts. How might we account for such
variations – across time, jurisdictions, and policy domains – in the
extent to which regulatory risk and decision analysis is rule-bound?

The simplest explanation would be that interpolation and extra-
polation will be heavily rule-bound in areas where there is a broad
consensus on the most empirically or theoretically justified inferences.
There is something to this account, as, for example, the EPA's default
heuristic that linear-at-low-dose models be used for carcinogens has a
long-standing theoretical basis (NRC, 2009). But other extrapolation
rules are more back of the envelope, such as the uncertainty factors
used for non-carcinogens. And other heuristics, if not quite arbitrary,
are not rigorously supported, and indeed vary across domains and
jurisdictions (e.g. default discount rates, and rules for deriving them;
favoured methods for deriving preferences, etc.). And so we gain in
explanatory power when we consider that rule-bound analysis reflects a
desire for standardisation, rather than simply a consensus on the best
methods. The logic of standardisation is that any difference between
analysis outcomes should reflect true differences in likely risks and
consequences, rather than variation in methodological choices
(Schlander, 2009). Yet if stability in outcomes is contingent on
standardising methodological choices that are in principle contestable,
then it is unclear whether the outputs have a clear physical interpreta-
tion. On this reading, the substantial use of defaults in regulatory
science may create consistency in analysis outcomes at the expense of
robustness and generalisability (c.f. Richter et al., 2009). To develop
this idea, we turn to climate science.

Climate model choices are similarly not determined by prior theory
or observational evidence, leaving substantial discretion e.g. in the
selection of emissions scenarios; in choices of method for downscaling

GCM outputs into a form that is useful for adaptation planning; how to
correct for biases introduced by idealisations (e.g. the exclusion of
changes in dynamical ice sheet processes within models of sea level rise;
Brysse et al., 2013); how to extrapolate the results of impact analyses
across nations with different geographic, social and political contexts;
and how to combine different kinds of climate impacts in integrated
assessments. Sensitivity analysis or robustness checks can clarify these
uncertainties and potentially inform these choices. For example, Coley
et al. (2012) explore the robustness of adaptation strategies in the built
environment to alternative rules for selecting emissions scenarios (e.g.
worst-case vs. expected), whilst Hawkins et al. (2013) compare alter-
native methods for bias correction in crop forecasting models, finding
“change factor” approaches more robust than “nudging.” However, the
second-order problem is evaluating chains of heuristic inferences in
model-construction, particularly where a series of choices are arbitra-
rily constrained.

For example, Morgan (2014) and Stanton et al. (2009) have
critiqued the adoption of fixed model structures and fixed functional
forms across integrated assessment models in climate science. They
argue that these choices are typically fixed within a given model, and
that these choices are fixed across models (e.g. most integrated
assessment models share the assumption of a quadratic form of the
damage function, with little explanation or justification; Stanton et al.,
2009). The result is to artificially close down uncertainty. Supporting
this claim, Morgan (2014) describes the introduction of an impact
modelling framework within which analysts were allowed to alter these
underlying model structures (e.g. discount rates, damage functions, and
agents' objective functions). He found that the identification of the
optimal climate mitigation policy was highly sensitive to alternative
plausible model specifications. Perhaps the core issue here is that rule-
bound approaches to modelling have limited justification in the social
and environmental sciences, compared to the physical sciences. In the
former domains, the state of theoretical knowledge and the often
imprecise nature of observational data typically provide limited
grounds for constraining parameter values, model structures, and
choices of functional form. A further implication is that rules can
become entrenched in ways that make it difficult to displace or
circumvent them in practice, even in the absence of a formal
standard-setting body.

3.5. Decision rules

3.5.1. Absolutes
Absolutes are categorical rules which deem the presence of a

property as sufficient grounds for regulating an object. The skeleton
form is:

• IF object has property X, INFER it poses an unacceptable risk, THEN
regulate.

They are distinct from de manifestis rules – discussed later – in that
they regulate on the basis of categorical properties (e.g. carcinogenic or
not) rather than quantitative thresholds. The most (in) famous example
is probably the US' Delaney Clause:

• “No additive shall be deemed to be safe if it is found to induce
cancer when ingested by man or animal, or if it is found, after tests
which are appropriate for the evaluation of the safety of food
additives, to induce cancer in man or animals”.

The rule became untenable as advances in toxicological testing and
analytical chemistry revealed that there were many more carcinogens
present in foodstuffs than initially expected and that there were marked
differences in their potencies (Majone, 2010). Absolutist rules are now
largely anachronistic in environmental and public health protection,
replaced by a broad acceptance that decision rules should track the level
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of the harms and benefits associated with chemicals, drugs, health
interventions, as well as their alternatives (Graham and Wiener, 1998).
Although still on the books, the influence of the Delaney Clause has
been diluted by statutory changes and rule-avoidance strategies on the
part of the FDA.

To elaborate, the rule contains latitude in determining what an
appropriate test is, what it means to induce cancer, how test results
should be interpreted, and even in what constitutes a food additive
(Majone, 2010). The FDA has exploited this to avoid restrictions that it
perceived as inefficient or unwise (e.g. arguing that secondary carcino-
gens – those that lead to tumour formation either through reacting with
other chemicals or through disrupting a bodily function – do not fall
under the scope of the rule as they do not directly induce cancer
(Kessler, 1977)). This highlights an important feature of rules that take
the form of verbal rather than mathematical statements, namely that
they cannot entirely determine their own application, as there is always
ambiguity surrounding their proper interpretation and scope. Vague
terms in such rules are analogous to adjustable parameters (Daniel
Steel, pers. comm) that can be tinkered with to incorporate domain
specific knowledge and respond to circumstances not foreseen at the
time of rule formulation.

3.5.2. De minimis and de manifestis
De minimis decision rules, based on the notion that “the law does

not concern itself with trifles,” set out thresholds of risk that are
negligible (Peterson, 2002). De manifestis rules are thresholds of risk
deemed unacceptably high. The two are often blurred in practice,3 and
we use risk thresholds as an umbrella term. We structure the discussion
according to their underlying justifications: analytical capabilities (i.e.
detection limits), arbitrary numerical limits, and threshold models of
risk.

One historic practice was to tie de manifestis thresholds to
analytical capabilities, e.g. early 20th century exposure standards for
X-ray technicians were based on the level at which fogging on a
photographic plate occurred, and similar approaches were widespread
in US chemicals regulation until the 1970s (Rodricks, 1994; Rodricks
et al., 1987). In practice this is similar to absolute decision rules (and
carries the same problems), so is largely obsolete. However, an
interesting variant is FDA's sensitivity of method approach, introduced
as another workaround to the Delaney Clause (NRC, 1983). Under this
approach, carcinogenic compounds can be used as animal-feed addi-
tives and veterinary drugs provided that “no residue” is found in the
edible portion of the animal. Crucially, the FDA are authorized to
specify which analytical method is to be adopted for particular
substances, and they have used this flexibility to select methods whose
detection limits roughly correspond with an upper-bound lifetime
incremental cancer risk of 10−6.

Although the FDA did not provide a formal justification for selecting
10−6 as a risk threshold, it has nevertheless spread to many US policy
domains, albeit with some variations in interpretation (Rodricks et al.,
1987).4 When interpreted as a de minimis clause, the 10−6 rule plays a
reasonable enough desk-clearing function. But when applied as a de
manifestis decision rule, it can lead to strikingly inefficient regulation
due to the fact that it neglects the size of the population exposed and by
extension the benefits of risk reduction measures. This is particularly
true for contexts where exposure to risk is geographically concentrated
rather than diffusely spread (e.g. where the EPA uses individual risk

thresholds to determine whether remediation is required of hazardous
waste sites). Neglecting population size has been defended on equity
grounds, the idea being that members of small populations have the
same rights to protection as those concentrated in cities. However,
minority groups tend to be clustered near hazardous waste sites,
implying that ignoring population size may prove discriminatory,
which hardly advances equity (Viscusi, 2000).

Another approach is to base risk thresholds on mechanistic thresh-
olds below which no harm occurs (often with a safety margin). This is
widespread in chemicals regulation for non-cancer endpoints. The
theoretical basis is that below a certain dose, clearance pathways,
cellular defences, and repair processes minimize damage and make the
risk of harm negligible (NRC, 2009). A variant on this approach is the
toxicological threshold of concern. This involves mapping across
toxicity data (e.g. NOAEL thresholds) from structurally similar chemi-
cals to identify de minimis exposures for untested chemicals within the
same category. This has been used in both standard setting and
screening in various jurisdictions. Although there is a clear logic for
basing de minimis rules on mechanistic thresholds (if the risk is
practically zero then it can be considered trivial), the same is not true
for de manifestis rules (the presence of a risk is not necessarily
unacceptable). However, the two notions are often blurred in practice,
e.g. a hazard index of unity (1) is widely used to differentiate between
acceptable and unacceptable risk of chemicals within the European
Union and in the US under various statutes (e.g. Superfund, the Clean
Air Act, etc.). This involves the neglect of dimensions including costs,
feasibility, and equity, although there is a widespread belief that these
factors are often considered behind closed doors, and justified officially
by creative interpretive strategies (e.g. where the EPA held that
transient and reversible health effects stemming from exposure to
ozone should not be considered adverse under the Clean Air Act
(Coglianese and Marchant, 2004)).

A recent variant of the threshold model approach are de manifestis
rules based on transitions in system behaviour that would entail
substantial adaptation costs – “planetary boundaries” and “tipping
points.” The former are thresholds in control variables within ecological
processes beyond which there is the risk of irreversible and abrupt
environmental change (Rockström et al., 2009). Deriving these thresh-
olds is non-trivial. For example, whilst the historic EU policy target of
maintaining warming within 2 degrees centigrade was sometimes
proposed to reflect a planetary boundary, it had not been clearly linked
with an actual threshold in system behaviour (e.g. melting of West
Antarctic Ice Sheet; Randalls, 2010). Tipping points, by contrast, are
not based on mechanistic considerations, but rather on generic
statistical cues that precede shifts in system states (e.g. a reduced rate
of recovery from perturbations; Scheffer et al., 2012). They could
potentially be translated into decision rules for governing complex
systems where causal relations are not understood in mechanistic
terms.

3.5.3. Feasibility rules
Feasibility rules mandate the particular technology to be used for

environmental protection, constrained in terms of the best that is
available or feasible. Sometimes used in concert with de minimis or de
manifestis thresholds, their general structure is:

IF a technology can be implemented to reduce the level of risk, AND
it is economically feasible to do so, THEN require implementation of the
(best) technology by regulated industry, ELSE consider risk acceptable.

Economic feasibility is broadly understood to mean an absence of
significant harm for the regulated industry, although interpretations
vary (e.g. OSHA interprets it as either a 1% decline in revenue or a 10%
profit decline, whereas the EPA interprets it as relating to job losses,
plant closures, and bankruptcy (Masur and Posner, 2010)). Proponents
of feasibility rules point to their frugality and speed as virtues, with
some further arguing (more speculatively) that such heuristics may
roughly mimic utility maximisation, on the presumption that technol-

3 For example, where the threshold discriminates between acceptable and unaccep-
table risk (i.e. it is both de minimis and de manifestis).

4 The 10−6 threshold is used to determine whether remediation is required of
hazardous waste sites, is applied within the Clean Air Act, and is also adopted in
industrial chemicals regulation. At times it has been interpreted as relating to the
maximally exposed individual, at other times understood as an average. In some cases it
has been interpreted as a de manifestis clause rather than a de minimis threshold. And in
some cases regulators treat the threshold as merely one consideration amongst many.
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ogy development is attuned to the point at which the cost per pound of
pollution reductions begins to rise sharply (Kysar, 2010). Critics have
questioned why feasibility should trump concerns about health and
wellbeing (e.g. where OSHA discarded a welfare-enhancing exposure
limit for chromium on the grounds that it threatened the survival of at
least one industry (Masur and Posner, 2010)), and argued that
feasibility rules may lead to the entrenchment of existing technologies
(Sunstein, 1990; Majone, 1984) and may be gamed by industry in ways
that minimise the regulatory burden (e.g. where a larger number of
smaller plants are maintained to make the EPA's plant shutdown clause
more likely to be invoked (Masur and Posner, 2010)). Feasibility rules
may also introduce a “market distortion” that protects small firms and
low-profit industries (ibid.). A recurring theme of the above arguments
is that the outcomes of decision rules are a function of the interaction
between their structural form and the features of the environment in
which they are applied (c.f. Gigerenzer and Todd, 1999).

3.5.4. Cost-effectiveness rules
These rules are closest to mimicking a full decision-theoretic

approach as they require the explicit calculation of costs and a
quantitative measure of effectiveness (Weinstein et al., 1996), although
the latter need not be monetised.5 They are often based on the
Incremental Cost Effectiveness Ratio (ICER), a method used in com-
parative health technology appraisal in Canada, Australia, and the UK
(Gafni and Birch, 2008):

ICER = (C2–C1) (E2–E1)

(where C2 and E2 are the cost and effectiveness of the new technology,
and C1 and E1 are the equivalent for the comparator. Effectiveness is
widely measured in quality adjusted life years (QALY))

The following presumptive rules are followed in the UK (NICE,
2004):

• IF ICER < £20,000/QALY; THEN recommended;
• IF ICER £20,000/QALY – £30,000/QALY; THEN require considera-
tion of other factors (e.g. degree of uncertainty, innovative features
of technology, wider societal costs and benefits, etc.);

• IF ICER > £30,000/QALY, only recommend adoption if case for
supporting the technology on these other factors is “increasingly
strong.”

No specific justification for these thresholds was given at their
introduction, beyond that they were roughly consistent with past
decisions taken by the agency. Indeed, they have been criticised for
lacking a reasoned basis, not being clearly linked to budgetary
constraints, and being inconsistent with thresholds used in other areas
of health delivery (House of Commons, 2008). Post-implementation,
statistical analyses (Martin et al., 2007) revealed that the lower end of
the current thresholds is higher than the marginal costs of improving
health in cancer and circulatory disease, implying that inefficient
technologies may be approved at the expense of more efficient ones
(NICE, 2007). The thresholds have also been critiqued for neglecting
the distribution of health states and (particular) conceptions of fairness
(Schlander, 2010). However, the thresholds are presumptive, leaving
space for these factors to be considered. Moreover, NICE has introduced
escape valves in the form of end-of-life QALYs and relating to ultra-
orphan treatments, to guard against the controversial outcomes that
efficiency-based rules can lead to.

4. Conclusions

Environmental and public health policy problems are often ambig-
uous, lack reliable data, and require urgent decisions. In such situa-
tions, full decision-theoretic analysis may be infeasible, and inexact,
heuristic methods of analysis must be relied upon (Table 1). Heuristics
are not problematic per se – induction necessarily depends on judgments
that cannot be fully justified in a formal sense (Greenland, 2012a). But
problems arise when we conflate heuristics for theorems, and apply
them in ways that are insensitive to their assumptions, limitations and
biases (summarised in Table 2). For example, some of the heuristics we
discussed have been provided with formal justifications, however, these
justifications require strong assumptions. These assumptions are often
violated in practical applications, leading to skewed results and
inefficient decisions. Other heuristics appeal to theoretical or empirical
support, sometimes presumed, sometimes robustly tested. These heur-
istics can be seen as empirical or causal generalisations, and distin-
guished from canonical laws in terms of the range and frequency with
which they hold true. In effect these heuristics contain implicit ceteris
paribus clauses, the neglect of which may lead to serious error. Other
heuristics are more like conventions and lack a clear underlying logic,
but are relied upon to confer a sense of stability or consistency to an
analytical process which may otherwise seem chaotic. Yet this con-
sistency – particularly when applied to chains of inferences – may come
at the cost of masking uncertainty and introduce bias. Rules of choice,
in contrast, serve as surrogates for values such as utility maximisation
or advancing equity. But the extent to which these decision heuristics
actually track those underlying values is an empirical question, as many
of these rules are based on arbitrary thresholds, neglect costs and
benefits, and may be prone to gaming.

Rigorization can guard against such problems (Kitcher, 1981)
through filling or closing the inferential gaps in a heuristic argument
(Table 2). Basic principles include formalising the assumptions and
scope conditions under which heuristics should be applied; testing
rather than presuming their underlying empirical or theoretical justi-
fications (e.g. relations between surrogates and objects of interest in
screening rules); using sensitivity analysis, simulations, multiple bias
analysis, and deductive systems of inference (e.g. DAGs) to characterise
rule uncertainty (including that stemming from rule-interactions) and
refine heuristics; establishing recovery schemes in situations where the
direction of bias can be predicted or to introduce flexibility to rules that
may be rigidly interpreted (e.g. evidence hierarchies); and basing
decision rules on clearly articulated values and a robust empirical
basis, rather than on arbitrary conventions.
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