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Abstract—Device-to-device (D2D) communications are a
promising paradigm to improve spectral efficiency in cellular
wireless networks by enabling peer to peer communication.
In particular, short D2D links can be used to relay data to
reduce the burden on core infrastructure. However, this relies
on some mechanism to either enforce or incentivise nodes to
donate their resources in order to act as a relay without any
guarantee that this will be reciprocated in the future. Indirect
reciprocity has been well studied from the perspective of human
behaviour, proposing mechanisms and conditions under which
such behaviour naturally evolves. In this paper we consider
D2D networks that formulate the decision to share resources
as a donation game using a model of social comparison and
examine the conditions under which cooperation evolves without
the need for a central authority. Experimentation shows that the
emergence of cooperation is sensitive to network conditions, such
as node density and noise.

I. INTRODUCTION

This paper explores the potentiality of cooperative schemes
for wireless communication networks. Novel protocols can be
introduced to exploit the Device to Device (D2D) communica-
tion paradigm that is fully supported by the current implemen-
tation of these networks and will be included into the future 5G
standards [1], [2], [3]. This mode of transmission allows users
to form links without routing to base stations, thus improving
efficiency through spectrum reuse. Cooperative schemes for
D2D communication have been proposed for existing networks
including areas as nodes relay, energy efficiency and resources
and spectrum allocation [4], [5], [6], [7], [8].

In the following we focus our attention to a network
relay scenario in which nodes can gain benefit from the
forwarding of their data packages by neighbouring nodes
that cooperatively donate part of their resources, e.g. their
energy reserves [9]. Here nodes are paying some form of
costs in order to facilitate the overall diffusion of information
and a more balanced reuse of resources over the network.
When high levels of cooperation are produced the system
can benefit from significantly increased transmission rate and
overall performance, see [10].

The aim of this study is then to investigate D2D networks
in which decisions to share resources are formulated in terms
of economic games and examine the conditions under which
cooperation can evolve spontaneously. Specifically, we con-
sider a scenario of indirect reciprocity based on the donation
game [11], [12] using a reputation model based on social
comparison [13].

In these type of scenarios a node asks one of his neighbours
to donate part of its own resources, thus incurring in an
individual cost. Previous studies [14], [11] have shown that the
emergence of cooperative behaviours in a network is ruled by
the relation between costs and benefits during such cooperative
actions. It has been reported that even a relatively low cost to
benefit ratio - in the order of 0.5 - can trigger a degrade in
the cooperative performance of the systems. This will lead
to the majority of interactions resulting in rejections of the
cooperative requests, with no overall benefits produced for
the system. In these situations cooperation fails to emerge
spontaneously and requires specific form of interventions from
the network operator to be incentivised. These include forms
of rewards towards cooperative actions and control over the
resources of the individual devices, in order to produce overall
benefits for the whole network.

We here consider a mobile D2D network composed by ran-
domly distributed nodes, where nodes cooperative actions are
implemented by a numerical simulation within an evolutionary
framework. Nodes are interacting at each time step in triples
representing a source node that is in need of transmission, a
destination node and a relay node that can help forwarding
the data to destination. We model cost and benefit as various
functions of the distance between the source, relay and des-
tination, allowing us to investigate the relationship between
node density and the evolution of cooperation in abstract
terms, while retaining applicabilty to wireless resources such
as transmission power. This involves a donating cooperative
action from the relay to the benefit of the source node.
However, the latter is not required to commit any immediate
reciprocating action neither is necessarily expected to return
such donation in possible future encounters as these cannot be
guaranteed by the dynamic nature of the network, in which a
same pair of nodes may not have the chance of meeting again.
These types of scenario are typical of indirect reciprocity and
the emergence of cooperative behaviour in these cases has
been object of scientific studies for over two decades [15],
[16]. The evolution of cooperative behaviour in such situations
where players are no longer assumed to take rational decisions
and coordinate with each other cannot be achieved by simply
tracking the history of interaction between nodes, in our case
the mobile devices composing the wireless network. This
instead requires the implementation of reputation schemes and
- at higher levels - other incentives or punishment mechanisms



[17], [18], [19].

II. AN EVOLUTIONARY FRAMEWORK FOR COOPERATION

We considered an approach based on game theory and
numerical simulations within an evolutionary framework to
model the problem as a donation game [14], [11], as adopted
in the vast majority of the studies on indirect reciprocity
[18]. A population of S individuals is initially generated
assigning at random one out of a possible set of strategies to
each individual. Subsequently, in each round two players are
randomly paired and assigned the role of donor and recipient
respectively, and an instance of the ‘donation game’ is played.
If donating decisions are made the donor will incur a cost c
while the recipient is receiving a benefit b with b > c. A
number K of games is played, then the next generation starts
with players reproducing themselves, in terms of the strategy
that characterises them, proportionally to their fitness. This is
set for each player i as the payoff accumulated within the
generation

∑
bi − ci. Mutation has also been introduced to

allow each strategy to re-appear at any point in the simulation
by changing, with a small probability µ, the strategy assigned
to a player with any other among those available. In the current
implementation we have considered 2000 generations G for a
population of 100 individuals, each playing an average of 20
games for generation - for a total of K = 2000 games per
generations - and a 1% mutation rate.

We implemented the reputation system originally introduced
by Nowak and Sigmund [11] in which each node maintains a
reputation as an ‘image’ value that is assumed known by the
system and made available to other players. At the beginning
of each generation all images are set to zero then can assume
integer values within the specific range considered, spanning
from a binary assessment to an unbounded integer range.
In line with previous experimentation we have considered a
finite integer range bounded between ±5 [11], [14]. Individual
fitness is also reset to zero at the start of a new generation.

A. Social Comparison Strategies

In the proposed strategies players’ actions are based on so-
cial comparison principles, in which players take the decisions
to donate by comparing the recipient’s reputation with their
own. This idea stems from the social comparison theory, see
[20] that can effectively represent human behaviours in real
world scenarios.

Social comparison is a known cognitive heuristic that ap-
plies judgements about one or more other individuals to set
a standard to which others can be compared. Nodes can then
identify others as either similar or dissimilar leading to fur-
ther adaptation mechanisms [21]. This allows to differentiate
among individuals, thus a player reputation can be seen as
good to some users and bad for others, depending on their
current reputation value.

Given a donor i and recipient j with reputations ri and rj re-
spectively, donor i assesses the reputation rj of j, against their
own reputation, ri, with three possible outcomes, establishing
either: approximate similarity (rj−∆ ≤ ri ≤ rj+∆), upward

self-comparison (rj > ri + ∆), or downward self-comparison
(rj < ri − ∆). The strategy for a node i is represented as
a triple of binary variables (si, ui, di) indicating whether or
not i donates when similarity (si), upward comparison (ui)
or downward comparison (di) is observed by i in respect of
j’s reputation. This leads to eight possible strategies. There
is flexibility in the definition of the similarity parameter ∆,
which is set to zero for all the current experiments.

B. Reputation Assessments

An important role for the effectiveness of cooperative repu-
tation schemes is played by the assessment of reputation after
a donating or defective action. A basic image scoring was
originally proposed in [11], [12], in which reputation is propor-
tional to the number of donations given. This implements the
social norm that ‘a player’s image is incremented by one unit
when a donation is made and decremented by one otherwise’.
However, this has been found not bearing the property of
stability and other assessments have been considered more
effective in subsequent studies. These include standing [22]
that implements the norm of ‘not decrementing the donor’s
image when defection occurs in light of a request from a ‘bad’
player of low reputation’.

Any of the possible assessments proposed in the literature
for indirect reciprocity can be implemented with the social
comparison strategies by adapting the corresponding social
norm to the actions of cooperating to individuals that have
respectively higher, lower, or similar reputation than the donor.
These also include the so-called ‘leading eights’ assessment
rules that have been proven to support evolutionary stability
when applied to binary image scenarios [23].

The current work applies a variation of the standing as-
sessment adapted to the proposed social comparison strategies
defined as in the following. Firstly, we have considered unary
increments or decrements of the reputation after a cooperative
or defective action, in line with the original formulation in
[11]. Subsequently the social standing norm has been defined
and implemented following the rule of ‘not decrementing the
donor’s image when defection occurs in light of a request
from a player with lower reputation’. This also allows the
application of the standing norm originally introduced in [22]
for binary reputation systems to larger variable ranges of the
reputation values - in theory any integer range.

III. WIRELESS NETWORK SETTING

We consider a D2D network represented by a population of
mobile nodes randomly distributed over a geographical area.
At each iteration, the simulation selects nodes representing
the source ns, destination nd, and potential relay nr of a
communication link. The relay node nr acts as the donor in
the evolutionary simulation while the source node ns takes
the role of the recipient of the donating action, as shown in
Figure 2.

We define the potential cost and benefit arising from this
cooperative interaction in terms of the amount of a given
resource required to support each link. For simplicity, we



assume that the resource R(u, v) needed to maintain a link
between u and v is a function of the Euclidean distance d(u, v)
between them, see Figure 1.

For a given triple (ns, nr, nd) the benefit accrued at the
source node ns is defined as the resource saved by switch-
ing from a single-hop transmission (ns → nd) to relayed
transmission (ns → nr → nd). That is, the benefit is given
by some function B(R(ns, nd)− R(ns, nr)). If the potential
relay accepts the request, the actual donation depends on the
resource required to form the link (nr → nd) and the related
cost can be defined by a given function C(R(nr, nd)).

In practice, the functions C and B may vary from node to
node, due, for example, to different properties of their mobile
device or the priorities of the use. For simplicity, in this paper
we consider identical functions for cost and benefit apply at
each node. We assume C(R) ≥ 0 for all R, and that B(R1) ≥
B(R2) and C(R1) ≥ C(R2) if R1 ≥ R2.
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Fig. 1: Single relay three nodes scenario.

A. Relay Selection

Fig. 2: Single relay three nodes scenario.

At each iteration of the simulation, representing one instance
of the donation game, a source node ns is selected uniformly
randomly from all nodes in the population. A destination node
nd is then selected uniformly randomly within wireless range
of ns from the set {n : n ∈ S − {ns} and d(n, ns) ≤ Rt},
see Figure 2. If there is no such node in the transmission
range, the current iteration is skipped with no further action.
This represents a direct communication between source and

destination with no contribution in terms of costs and benefits,
in absence of any cooperative action between the nodes

As shown in [13], the evolution of cooperation is linked to
low cost to benefit ratios. Selecting a relay at random could
lead to either negative benefit (see locations R3 and R4 in
Figure 3 for which the distance from source to relay is greater
than that to destination) or very high cost to benefit ratios
(C/B >> 1 as for the location R2 in the example, for which
the cost value is not balanced by a large enough benefit).

For this reason, and supported by preliminary experimen-
tation, we aim to select a relay that is close to the central
point of the direct link between ns and nr (point M in Figure
3). That is, a node nr that minimizes d(nr,M) and is also in
range of both ns and nd: d(ns, nr) < Rt and d(nr, nd) < Rt.

In order to prevent extremely high cost to benefit ratios, we
add a further constraint that d(nr, nd) < d(ns, nd), so that the
cost of the relayed transmission must be lower than that of the
direct transmission. While respecting this condition prevents
negative benefit values it is still possible that relay selection
could lead to cost to benefit values greater than one.

R4

S
D

R2

R3

M

R1

Fig. 3: Relay selection

Note that it is possible that the selected node is the destina-
tion node itself. This would represent a case where there is no
benefit from relaying (given the selection constraints) for any
relay within the transmission range. In these cases, the simu-
lation skips the current iteration of the evolutionary algorithm,
as no instance of the donation game can be performed.

In all other cases an instance of the donation game is
performed between the source and relay node, with the source
assuming the role of recipient and the relay that of the donor.
Note that the only contribution of the destination is within the
computation of the cost and benefit of the transaction. During
the instance of the donation game the source issues a donation
request to the relay, which will either perform a donation or
a rejection according to the strategy followed and the nodes’
relative reputation values.

The pseudocode of the entire procedure is given in Al-
gorithm 1. In the algorithm the sub-procedure playDona-
tionGame performs an instance of the donation game be-



tween donor and recipient while updateReputation assesses
the reputation value of the donor according to the social
standing norm, by comparing that of the recipient with its
own. Subsequently procedure createNewGeneration generates
the next population by asexual reproduction proportionally to
the individual fitness values of the nodes, set equal to the
cumulative payoff as described in Section II - see [13] for
more details.

Algorithm 1
1: procedure D2D − Evolution
2: input: Set of Nodes - S
3: Geographical Area Lx ∗ Ly
4: Number of Generations G
5: Number of Iterations K
6: Locate nodes on the geographical area Lx ∗ Ly
7: by randomly assigning x(ni) and y(ni)
8: for g in G do
9: Set ∀i repi ← 0 , fitnessi ← 0 , payoff i ← 0

10: for for k in K do
11: if k % N = 0 then
12: x(ni) y(ni) ← Random(x(ni),x(ni))
13: Select source (donor) randomly
14: {ns : ns ∈ S}
15: Select destination {nd : nd ∈ S \ {ns}
16: and d(nd, ns) ≤ Rt}
17: Select relay (recipient) nr as:
18: nr ← min(d(nr,M) and d(ns, nr) < Rt
19: and d(nr, nd) < d(ns, nd)
20: Calculate C ← Cost and B ← Benefit
21: donation ←
22: playDonationGame(nr,ns,repnr ,repns ,C,B)
23: repnr repns ←
24: updateReputation(nr,ns,donation)
25: if donation is True then
26: payoffnr

← payoffnr
− C

27: payoffns ← payoffns +B

28: Fitness(population) ← Payoff(population)
29: createNewGeneration(population)

IV. EXPERIMENTAL RESULTS

The success of the evolutionary simulation is highly depen-
dant on the ratio between costs and benefits of the relaying ac-
tion as high values do not allow the emergence of cooperative
behaviour in the network, see [13]. The following experiments
explore the relation between the C/B ratio and operation level
for different network conditions such as nodes density, level
of noise, relation between resources needed and length of the
wireless links, and relation between individual perception of
the costs and benefits with the resources used.

We consider a network of 100 nodes, and vary its density
by distributing them randomly in a range of square areas
with sides Lx = Ly between 50m and 400m, resulting
in a range of densities in the interval (0.04, 0.0006). To

simulate devices’ mobility we have in first approximation
syncronised the changes of location of the nodes with the
number of games played during the simulation. In particular,
we randomly reshuffle the nodes locations x(ni), y(ni) after
they have played an average of one instance of the donation
game. This results in a number of iterations equal to the size
of the population.

The cost and benefit is expressed in terms of the re-
sources needed to support links between the source, relay
and destination. By defining this resource in terms of the link
distance, we examine the relationship between node density
and cooperation in abstract terms, also taking into account
the potential for outage on the links. Scenarios are evaluated
in terms of average cooperation, defined as the number of
donations made as a proportion of the total number of games
played at the end of the simulation, after G generations.

A. Experiment 1: Effect of noise and density

We first consider the resources required for a link between
nodes u and v to be given by the function:

R(u, v) = d(u, v)α +N

This model of resource can represent, for instance, the re-
quired power transmission, as the Euclidean distance with the
addition of a constant factor N to represent noise. We also
assume that the cost and benefit of a donation are defined in
first approximation as the resource function itself:

C(R) = R

B(R) = R

We then define N as:

N = β ∗ Co

where Co is the average cost in absence of noise at each step
of the simulation and β a scaling factor in the interval (0, 1).

Hence, given a source node ns and destination nd with a
potential donor nr:

C(R(nr, nd)) = d(nr, nd)
α +N

and

B(R(ns, nd)−R(ns, nr)) = d(ns, nd)
α − d(ns, nr)

α

resulting in a cost to benefit ratio of:

C

B
=

d(nr, nd)
α +N

d(ns, nd)α − d(ns, nr)α
(1)

The aim of the experiment is to examine the cooperative
behaviour of the network in response to variations of the
parameter α and the density of the nodes over the network.
This also depends on the noise N that has the effect of an extra
cost added to the relay link to better represent the additional
resources needed for the specific network environment.

Figures 4 and 6 show the relation between the network
density, the scaling factor parameter β, and the average co-
operation achieved in the network for values of α equal to 2



and 4. Figures 5 and 7 show the same effect applied to the
median value of the cost to benefit ratio. All plots show an
average out of five randomly seeded runs. We can observe
that the value of the median increases with a decrease of the
density and an increase in the noise ratio.

The decrease in cooperation with the lowest densities is
related to the fact that in sparse networks there is a higher
probability that a suitable relay cannot be found within the
transmission range, resulting in the direct transmission as
the only available option. This effect can be aggravated by
the node mobility that in our simulation is implemented by
randomly refreshing the locations of each node after each of
them have participated, on average, to a single round of inter-
action, corresponding to one instance of the donation game.
This result can be seen as counterintuitive as relaying over
longer transmission distances is generally expected to produce
higher benefits. However, this negative effect is mitigated when
we relax the definition of the benefit B(R) as a non-linear
function of the resources.

In addition, we observe that the highest cooperation levels
are not necessarily produced by the highest densities and low-
est C/B. For example, Figure 6 shows a peak in cooperation
for intermediate values of density and noise. This can be
linked to the fact that very low levels of C/B can facilitate
the appearance of higher frequencies of fully cooperative
strategies but this also leaves the population more vulnerable
to attacks from defectors, as shown in more details in the next
experiments.

Fig. 4: Effect of network density and noise factor on the average
cooperation for α = 2.

B. Experiment 2: non-linear cost and benefit functions

This experiment investigates the effect of cost and benefit
calculations as non-linear functions of the resource. We con-
sider functions:

C = Rγ1 andB = Rγ2

for a range of γ1 and γ2 values. The results are shown in
Figures 9 and 10 obtained setting the noise level to zero

Fig. 5: Effect of network density and noise factor on the median
value of the C/B ratio for α = 2.

Fig. 6: Effect of network density and noise factor on the average
cooperation for α = 4.

Fig. 7: Effect of network density and noise factor on the median
value of the C/B ratio for α = 4.



(a) R = dα

(b) C,B = Rγ

Fig. 8: Examples of functions C(R) and B(R)

(β = 0) and α = 2. We can observe that increasing the
coefficient of the cost factor γ1 from linear to more than linear
produces a sudden drop in the cooperation level, as well as
raising the cost to benefit ratio (in Figure 10 the row γ1 = 2
and γ2 = 1 is omitted as presenting very high ratio values in
the order of hundreds). On the contrary, defining the benefit as
a quadratic function γ2 = 2 has the opposite effect of raising
the cooperation levels and decreasing the cost to benefit ratio.
Note that, as mentioned earlier, in these cases the negative
effect of low densities is also considerably reduced and sparse
networks appear able to maintain some degree of cooperation.

Fig. 9: Effect of the cost and benefit functions on the average
cooperation in absence of noise and for for α = 2.

However, the cooperation achieved for near zero values
of the cost to benefit ratio appears lower that for slightly
higher levels. This can be explained by the fact that when the
cost of a donation is almost zero, then the dominant strategy

Fig. 10: Effect of the cost and benefit functions on the median value
of the C/B ratio in absence of noise and for for α = 2.

becomes unconditional cooperation - (1,1,1) with the notation
in Section II-A. This strategy is, however, known to be more
vulnerable to the invasion of defectors, such as the strategy
(0,0,0). This can also be seen in Figure 11, that shows an
example of the frequency of occurrences of the different social
comparison strategies at the end of the simulation. Here the
sizes of the bubbles represent the frequency of a given strategy,
the y-axes the first ‘gene’ si of the triple representing the strat-
egy (si, ui, di) corresponding to donations (1) or defections
(0) to opponents with similar reputation, while the x-axes the
behaviours in the two remaining situations of opponents with
higher or lower reputation (genes ui and di), thus exhausting
the whole range of eight possible behaviours. This result can
be interpreted in a more general sense by observing that the
use of functions that increase the benefit value (e.g from linear
γ2 = 1 to quadratic γ2 = 2) does not produce any notable
increase in the overall levels of cooperation.

(a) γ1 = 2 γ2 = 1 (b) γ1 = 1 γ2 = 1

(c) γ1 = 1 γ2 = 2 (d) γ1 = 2 γ2 = 2

Fig. 11: Effect of the functions C(R) and B(R) on the frequency of
the social comparison strategies at the end of the simulation.

C. Experiment 3: performance in presence of system error

The experiments presented so far implicitly assume that all
communications within the relay scheme actually took place.
In practice, links are subject to fading and other dynamic
propagation effects that may hamper their operation. To take



Fading Outage
margin β o

0 0.5
0.2 0.25249
0.4 0.09121
0.6 0.02275
0.8 0.00383
1.0 0.00043
1.2 3.1e-05
1.4 1.5e-06

TABLE I: Relation between outage probability o and fading
margin β.

into account a certain volatility in the successful formation of
these links we add a probability of outage to the network
model. This affects the emergence of cooperation, as we
assume the source node cannot distinguish between cases
where the relay cooperated but the link to the destination
failed, or where the relay chose to defect.

Here the outage event is specified in terms of bit errors
occurring during the relay transmission, causing the corre-
sponding link to fail. We make the assumption that the received
signal has an amplitude that varies with a statistical distribution
- e.g Gaussian as a first approximation [24], [25]. Then outage
is implemented by considering a fading margin element to the
noise factor in the communication channel and so the resources
needed for the transmitted signal according to the same given
distribution.

The addition of noise has the effect to balance the proba-
bility of communication to fail under the threshold required to
guarantee transmission, as it was assumed earlier on that the
link was always valid once the relay had accepted to cooperate.
We then assume a probability to fail that is associated to
different values of the β scaling factor of the noise N ,
representing an additional margin added to the relay link, as
shown in Table I. With the same probability we consider errors
in the reputation model in terms of execution error in the
implementation of the actual actions performed by the nodes.
In other words the noise values shown in Figures 4 to 7 are
now related to errors in the system in the execution of the
cooperative actions, with the lower noise levels corresponding
to the higher error rates and vice versa - for example zero
noise is equivalent to the highest rate of error of 50%, see
Table I.

Results in Figures 13 and 12 show now a decrease in
cooperation for the lowest fade margins corresponding to high
error rates, as for the highest noise levels this error is minimal
or near zero according to the values in Table I. Although
allowing a higher outage probability results in lower cost to the
relay, thus encouraging cooperative behaviours, this is offset
by the increase in error which means the relays reputation is
decreased.

Note that there are no changes from Figures 5 and 7 in
terms of cost to benefit ratio as in our implementation errors
in execution only affect the computation of reputation and the
consequent donating decisions. This has the consequence of

losing the correlation between cooperative levels and cost to
benefit ratios, as low C/B values can now correspond to poor
cooperative performance due to the high error rates, whereas
we have already observed a performance degrade due to high
levels of noise-fade margin corresponding to high C/B ratios,
see Section IV-A.

Note that a 50% error rate corresponds to the same percent-
age in cooperation probability, as we can expect a fifty-fifty
split in requests ending with a donation. This virtually removes
the correlation between high cooperation and high reputation
values as the underlying assumption of the evolutionary model.
As a consequence, we can observe in this case a 50% probabil-
ity of cooperation as independent from different node densities
and values of the C/B ratio.

Fig. 12: Effect of network density and outage probability on the
average cooperation for α = 2.

Fig. 13: Effect of network density and outage probability on the
average cooperation for α = 4.

V. CONCLUSION

This paper investigates the cooperative behaviour of Device-
to-Device wireless communication networks through the ap-



plication of an indirect reciprocity model based on social
comparison. In particular we have here considered examples
of D2D networks where decisions to share resources are
formulated as a donation game using the reputation model
proposed in [13]. This was applied to an evolutionary simula-
tion that locates the mobile nodes of a wireless network over
a geographical area with a basic relay scheme.

Our approach differs in principle from other studies that
focus on ‘the implications on the global network performance
based on different models of cooperation’ [10] while the
primary contribution of this work is on the complementary
study of ‘the impact of different wireless properties and
resources on the actual emergence of cooperative behaviour’.

The performance of the network in terms of cooperation
levels depends on the value of the ratio between costs and
benefits of the donating action. However, differently from
the implementation in [13] that considered a fixed range of
C/B values, these costs and benefits are now determined
by the specific selection and relative location of the nodes
involved in the cooperative action: the source node in need of
transmission, the end-point of the transmission, and the relay
node that performs a donating action by forwarding the data
package on behalf of the source.

Results from a set of numerical simulations show that the
cooperation achieved depends on the density of the nodes over
the network area, with the assumption that the amount of
resources needed for a donation increases with the power of
the euclidean distance between the nodes, and the noise factor
applied to the computation of the cost value. Sparse networks
are producing the lowest cooperative levels but not necessarily
the highest values are produced by the highest densities.

Our experimentation shows that, similarly to the theoretical
case presented in [13], cooperation evolves even considering
a more realistic model and high levels of it can be still
maintained, although not in such a clean and well behaved
fashion.

Furthermore, the individual’s perception of the costs and
benefits they receive from the cooperative action as a function
of the resources donated has also a significant impact on the
network performance. Relations that enhance the perceived
benefit adopting a more than linear function of the resources
do not seem to add any significant effect to the average
cooperative levels achieved in the network, while mitigating
the negative effect of low densities.

Finally, the presence of system errors in terms of probability
of outage has the effect of removing the correlation between
the cost and benefit ratio and cooperation achieved, as the
lowest C/B produced by the lowest ‘noise’ values N are no
longer producing significant cooperation levels due to the high
probability of errors in the reputation model.
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