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Abstract We investigate the rate of convergence of general global random
search (GRS) algorithms. We show that if the dimension of the feasible domain
is large then it is impossible to give any guarantee that the global minimizer
is found by a general GRS algorithm with reasonable accuracy. We then study
precision of statistical estimates of the global minimum in the case of large
dimensions. We show that these estimates also suffer the curse of dimension-
ality. Finally, we demonstrate that the use of quasi-random points in place of
the random ones does not give any visible advantage in large dimensions.
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1 Introduction

Let us consider the problem of global minimization which we formulate as

f(x)→min
x∈X

. (1)

Here f(·) is the objective function and X ⊂ Rd is a feasible domain. The set
X is assumed to be closed, bounded and having non-empty interior and the
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objective function f(·) is assumed to satisfy some smoothness conditions which
will be discussed below.

Let f∗ = minx∈Xf(x) be the minimal value of f(·) and x∗ be a global min-
imizer; that is, x∗ is any point in X such that f(x∗) = f∗. Global optimization
problems are often stated so that the domain X has a relatively simple shape
by using, for example, penalty functions.

A convergent global minimization algorithm constructs a sequence of points
x1, x2, . . . in X such that the sequence of record values

y1,n = min
i=1,...,n

f(xi) (2)

tends to f∗ as n increases. In addition to finding the minimal value f∗, at
least one of the minimizers x∗ has usually to be determined. In practice, the
optimization iterative algorithms are always accompanied with stopping rules.

If the objective function is given as a ‘black box’ computer code and
Lipschitz-type information about this function is unavailable then good stochas-
tic approaches often perform better than deterministic algorithms, see [13,15,
16,18]. Moreover, stochastic algorithms are typically simpler than their deter-
ministic counterparts.

In the following sections, we consider performance of various methods of
global random search (GRS) in the case when the dimension d is large. As a
rough guide, we consider dimensions 1, 2 and 3 as small, dimensions 10, 20 as
moderate and dimensions 50 and above as large.

A generic GRS algorithm constructs a sequence of random points x1, x2, . . .
such that the point xj has some probability distribution Pj , j = 1, 2, . . .;
we write this as xj ∼ Pj . For each j > 2, the distribution Pj may depend
on the previous points x1, . . . , xj−1 and on f(x1), . . . , f(xj−1). The stopping
rule for GRS can be either deterministic or random and may depend on the
evaluations f(x1), f(x2), . . .. The distribution Pj should maintain the right
balance between globality and locality of search. This balance is one of the
main ingredients of algorithm’s efficiency. Achieving the right balance depends
on the complexity of computing derivatives of f(·) for performing fast local
descents and on the efficient use of all available information, which is a prior
information about f(·) and X and the information contained in the evaluations
f(x1), f(x2), . . .. Construction of a particular GRS algorithm involves setting
of a distribution Pj (based on all available information before time j) along
with a stopping rule.

In the present paper, we will mostly concentrate on the so-called pure
random search (PRS) algorithm, where the points x1, x2, . . . are independent
and have the same distribution P = Pj for all j. Simplicity of PRS allows
detailed investigation of this algorithm, see Sections 2 and 3.

The present paper is organized as follows. Convergence of GRS is reviewed
in Section 2. Statistical inference procedures in GRS are discussed in Section 3
and the use of the low-dispersion sequences for global search is considered in
Section 4.
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2 Convergence and the rate of convergence

In this section we illustrate the following two points:

(i) it is very easy to construct a GRS algorithm which has the theoretical
property of convergence;

(ii) on the other hand, even for moderate dimensions it is impossible to guar-
antee that the global minimum is found in the worst-case scenario with
reasonable accuracy.

2.1 Convergence

Consider a general GRS algorithm defined by a sequence of probability distri-
butions Pj , j = 1, 2, . . .. We say that this algorithm converges if for any δ>0,
the sequence of points xj arrives at the set W (δ)={x ∈ X : f(x)−f∗6δ} with
probability one. If the objective function is evaluated without error then this
obviously implies convergence (as n → ∞) of record values y1,n to f∗ with
probability 1.

Conditions on the distributions Pj , j = 1, 2, . . . ensuring convergence of
the GRS algorithms are well understood; see, for example, [1,8,9]. The results
on convergence of GRS algorithms are usually formulated in the form of the
‘zero-one law’, which is classical in probability theory. The following theorem
provides an illustration of such results in a very general setup and is proved
in [13, Sect. 3.2] in a more general form.

Theorem 1 Consider a GRS algorithm with xj ∼ Pj for the minimization
problem (1), where X is a compact set and f(·) is a function on X satisfying
the Lipschitz condition. Let B(x, ε)={z∈X : ‖z−x‖ 6 ε} be a ball centered at
x. Define qj(ε) = inf Pj(B(x, ε)), where the infimum is taken over all x ∈ X,
all possible points x1, . . . , xj−1 all evaluations of the objective function at these
points. Assume that

∞∑
j=1

qj(ε) =∞ (3)

for any ε > 0. Then for any δ > 0, the sequence of points xj falls infinitely
often into the set W (δ), with probability one.

Note that Theorem 1 holds in the very general case where evaluations of
the objective function f(·) are noisy and the noise is not necessarily random.
If the function evaluations are noise-free, then the conditions of Theorem 1
ensure that the corresponding algorithm converges; that is, that the sequence
of records y1,j converges to f∗ with probability 1 and the corresponding sub-
sequence of points {xij} (where the new records are attained) of the sequence
{xj} converges (with probability 1) to the set X∗ = {x ∈ X : f(x) = f∗} of
global minimizers.
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If the objective function is evaluated with random error then the algorithm
of generation of points xj should be accompanied with an algorithm of esti-
mation of the objective function estimation, see [13, Sect. 4.1.3]. Then the
rate of convergence of the corresponding algorithm will also depend on the
smoothness of the objective function and the chosen approximation routine.

If we use PRS with the uniform distribution P = PU on X, we obtain
qj(ε) = const > 0 and therefore the condition (3) trivially holds. In practice,
a usual choice of the distribution Pj is

Pj = αjPU + (1− αj)Qj , (4)

where 0 6 αj 6 1 and Qj is a specific probability measure on X which usually
depends on evaluations of the objective function at the points x1, . . . , xj−1.
Sampling from the distribution (4) corresponds to taking a uniformly dis-
tributed random point in X with probability αj and sampling from Qj with
probability 1− αj .

Note that
∑∞
j=1 αj =∞ yields the fulfilment of (3) for distributions Pj in

the form (4) and therefore the GRS algorithm with such Pj is theoretically
converging. On the other hand, if

∑∞
j=1 αj <∞ then there is a non-zero prob-

ability that the neighbourhood of the global minimizer will never be reached.
Unless smoothness conditions about f(·) like the Lipschitz condition are

imposed, the statements like Theorem 1 are the only tools which are ensuring
convergence of the GRS algorithms. Note that one of the implications of these
arguments is that the PRS with P = PU is the GRS algorithm enjoying the
fastest convergence in the worst-case scenario.

2.2 Rate of convergence of PRS

Consider a PRS algorithm with xj ∼ P . Let ε, δ > 0 be fixed and W (δ) =
{x ∈ X : f(x) − f∗ 6 δ}. Define a set B as B = B(x∗, ε) if we are studying
convergence towards x∗, and as B = W (δ) if the purpose of study is the
convergence with respect to the function values to f∗. Assume that P is such
that P (B)>0; for example, P = PU is the uniform probability measure on X.

Define the Bernoulli trials where the success in the j-th trial means that
xj ∈ B. PRS generates a sequence of independent Bernoulli trials with the
same success probability Pr{xj ∈ B} = P (B). In view of the independence
of xj , we have Pr{x1 /∈ B, . . . , xn /∈ B} = (1− P (B))

n
and therefore the

probability

Pr{xj ∈ B for at least one j, 1 6 j 6 n} = 1− (1− P (B))
n

tends to one as n→∞. We also assume that P (B) is small.
Let nγ be the number of points which are required for PRS to reach the

set B with probability at least 1− γ, where γ ∈ (0, 1); that is,

nγ = min{n : 1− (1− P (B))
n > 1− γ} .
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Solving it we obtain

nγ = dln γ/ln (1− P (B))e ∼= (− ln γ)/P (B)

since P (B) is small and ln (1− P (B)) ∼= −P (B) for small P (B).
We can see that the numerator in the expression of nγ depends on γ but

it is not large; for example, − ln γ ' 2.996 for γ = 0.05. But the denominator,
which is approximately P (B), can be extremely small and hence nγ could be
astronomically large in most real-life optimization problems.

Consider an example with the set X = [0, 1]d, the uniform distribution
P = PU on X and the set B = B(x∗, ε). Then P (B) = vol(B) 6 εdVd, where

Vd = π
d
2 /Γ

(
d
2 + 1

)
is the volume of the unit ball in Rd, where Γ (t) is the

gamma function. In view of the upper bound of the form “const · εd”, the
probability P (B) can be extremely small even when ε is not very small (say,
ε = 0.1) and d > 10. The number nγ in this case is shown in Figure 1.

Fig. 1 The number nγ of points which are required for PRS to reach the set B = B(x∗, ε)
with probability at least 1 − γ = 0.95 for ε = 0.1 (solid) and ε = 0.2 (dashed) as the
dimension d varies in [5, 50].

2.3 Rate of convergence of a general GRS method

The easiest way to ensure convergence of a general GRS algorithm is to choose
the probabilities Pj in the form (4), where the coefficients αj satisfy the con-
dition (3), see Section 2.1.

Let us generalize the arguments given in Section 2.2 for the case of PRS to
the case of GRS. Instead of the equality Pr{xj ∈ B} = P (B) for all j > 1, we
now have the inequality Pr{xj ∈ B} > αjPU (B), where the equality holds in
the worst-case scenario. Further we define n(γ) as the smallest integer such that

the inequality
∑n(γ)
j=1 αj > −ln γ/PU (B) is satisfied. For the choice αj = 1/j,

which is a common recommendation, we can use the approximation
∑n
j=1 αj '

lnn. Therefore we obtain n(γ) ' exp{−ln γ/PU (B)}.
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For the case of X = [0, 1]d and B = B(x∗, ε), we obtain n(γ) ' exp{c·ε−d},
where c = (−ln γ)/Vd. Note also that if the distance between x∗ and the
boundary of X is smaller than ε, then the constant c and hence n(γ) are
even larger. For example, for γ = 0.1, d = 10 and ε = 0.1, n(γ) is larger
than 101000000000. Even for optimization problems in a small dimension d = 3,
and for γ = 0.1 and ε = 0.1, the number n(γ) of points required for the
GRS algorithm to hit the set B in the worst-case scenario is huge, namely,
n(γ) ' 10238. Figure 2 shows the behaviour of n(γ) as the dimension grows.

Fig. 2 The number n(γ) of points which are required for GRS to reach the set B = B(x∗, ε)
with probability at least 1−γ = 0.95 for ε = 0.1 (solid) and ε = 0.2 (dashed) as the dimension
d varies in [5, 50].

3 Statistical inference about f∗

Let X be a compact in Rd and x1, . . . , xn be points constructed by PRS with
xj ∼ P , where n is a large number and P is a probability measure on X
with some density p(x), which is a piece-wise continuous function on X and
p(x) > 0 for all x ∈ X. Using prior information about f(·) and considering
the values {f(xj)}j=1,...,n as a sample, we can make statistical inference of the
two types:

1. Building either a parametric or non-parametric estimator of f(·), e.g., a
kriging estimator or an estimator based on the Lipschitz condition.

2. Construction of an estimator and a confidence interval for f∗.

Inferences of Type 1 will not be considered in the present paper because it
requires much metaheuristic for explanation, see a comprehensive discussion in
[13]. Below we only consider inferences of Type 2 following an approach in [13,
Ch. 7], [16, Sect. 2.3–2.6] and [17]. Statistical inference about f∗, the minimal
value of the objective function f(·), can serve for the following purposes:

(i) devising specific GRS algorithms like the branch and probability bounds
methods, see [12,19] and [13, Sect. 4.3],

(ii) constructing stopping rules, see [14], and
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(iii) increasing efficiency of population-based GRS methods, see discussion in
[16, Sect. 2.6.1].

Another direction where the use of statistical inferences in GRS algorithms
can be very helpful is solving multi-objective optimization problems with non-
convex objectives, see [19].

3.1 Statistical inference in PRS: the main assumption

Since the points xj in PRS are independent identically distributed (i.i.d.) with
distribution P , the elements of the sample Y = {y1, . . . , yn} with yj = f(xj)
are i.i.d. with cumulative distribution function (c.d.f.)

F (t) = Pr{x ∈ X : f(x) 6 t} =

∫
f(x)6t

P (dx) = P (W (t− f∗)) , (5)

where t > f∗ and W (δ) = {x ∈ X : f(x) 6 f∗ + δ}, δ > 0. Note that the c.d.f.
F (t) is concentrated on the interval [f∗, f

∗], where f∗ = maxx∈X f(x), and
our main interest is the unknown value f∗, which is the lower bound of this
interval. Since the analytic form of F (t) is either unknown or incomprehensible
(unless f is very simple), for making statistical inferences about f∗ we need to
use asymptotic considerations based the record values of the sample Y . It is
well known, see e.g. [6], that the asymptotic distribution of the order statistics
is unambiguous and the conditions on F (t) and f(·), when this asymptotic
law works, are very mild and typically hold in real-life problems. Specifically,
for a very wide class of functions f(·) and distributions P , the c.d.f. F (t) can
be represented as

F (t) = c0(t− f∗)α + o((t− f∗)α), t ↓ f∗, (6)

where c0 and α are some positive constants. Moreover, for more general f(·)
and P , the coefficient c0 = c0(t) can be a slowly varying function for t ' f∗
and the results given below are also valid for this more general case. In our
constructions the value of c0 is not important but the value of α is absolutely
essential. The coefficient α is called ‘tail index’ and its value is often known,
as discussed in Section 3.2.

Denote by η a random variable which has c.d.f. (5) and by y1,n 6 . . . 6 yn,n
the order statistics corresponding to the sample Y . Note that f∗ is the lower
endpoint of the random variable η.

One of the fundamental results in the theory of extreme order statistics
states (see e.g. [6] and [16, Sect. 2.3]) that if (6) holds then the c.d.f. F (t)
belongs to the domain of attraction of the Weibull distribution with density
ψα(t) = α tα−1 exp {−tα} , t > 0 . This distribution has only one parameter,
the tail index α.
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3.2 Tail index

As stated in Section 3.1, the representation (6) holds in most real-life prob-
lems. The main issue is whether the value of the tail index α can be specified
or has to be estimated. The second option, that is estimation of α, is noto-
riously difficult; see [4] for a survey about comparison of different estimators
of α. The number n of points must be astronomically large (even for small
dimension d) if we want to accurately estimate f∗ after replacing α with any
(even best possible) estimator. Practically, n should be extremely large to see
any convergence of estimators, see discussion in [16, Sect. 2.5.1]. Asymptot-
ically, as n → ∞, if α is estimated then the asymptotic mean squared error
(MSE) of the maximum likelihood estimator (MLE) of f∗ is at least (α− 1)2

times larger than the MSE of the MLE of f∗ in the case when α is known. As
for large d estimation of f∗ is extremely hard even when α is known and α is
large when d is large (see below) we can conclude that estimation of f∗, when
d is large and α unknown, is virtually impossible.

In PRS, however, we can usually have enough knowledge about f(·) to get
the exact value of the tail index α. In particular, the following result holds: if
the global minimizer x∗ of f(·) is unique and f(·) is locally quadratic around
x∗ then the representation (6) holds with α = d/2. Moreover, if the global
minimizer x∗ of f(·) is attained at the boundary of f(·) and the gradient of f(·)
is has all non-zero components at x∗, then the representation (6) holds with
α = d. This result, as well as some of its generalizations, has been established
in [3] and [10] independently; see also [11,13] for a detailed exposition of the
related theory.

The fact that α has the same order as d when d is large implies the phe-
nomena called ‘the curse of dimensionality’. We theoretically study this in the
following sections but in this section we illustrate this curse of dimensionality
on a simple numerical example.

Consider the minimization problem with the objective function f(x) =
eT1 x, where e1 = (1, 0, . . . , 0)T , and the set X is the unit ball: X = {x ∈ Rd :
||x|| ≤ 1}. It is easy to see that the minimal value is f∗ = −1 and the global
minimizer z∗ = (−1, 0, . . . , 0)T is located at the boundary of X. Consider the
PRS algorithm with points xj generated from the uniform distribution PU
on X. In Figure 3 we depict projections of points x1, . . . , xn on a fixed two-
dimensional plane for n = 103 and n = 105 and the dimension d = 20. We
can see that even if the number of simulated points is large, there is a thick
ring inside the unit circle with no projections of points although the points
are uniformly distributed in the unit hyperball.

Define rj = ||xj ||. It is well known that Pr(rj < t) = td. Thus, the distri-
bution of rj satisfies the representation (6) with α = d. We are interested in
the record values for the sample with yj = eT1 xj , j = 1, . . . , n.

Let us give some numerical values. In a simulation with n = 103 and
d = 20, we have received y1,n = −0.64352, y2,n = −0.61074, y3,n = −0.60479
and y4,n = −0.60208. In a simulation with n = 105 and d = 20, we have
obtained y1,n = −0.74366, y2,n = −0.73894, y3,n = −0.73228 and y4,n =
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Fig. 3 Projections of points x1, . . . , xn with uniform distribution in the unit hyperball on
a plane for n = 103 (left) and n = 105 (right) and the dimension d = 20.

−0.72603. In Figure 4 we depict the differences yk,n − f∗ for k = 1, 4, 10 and
n = 103, . . . , 1013, where the horizontal axis has logarithmic scale. We can
clearly see that the difference yk,n − y1,n is much smaller than the difference
y1,n − f∗; that shows that the problem of estimating the minimal value of f∗
is very difficult.

Fig. 4 Differences y1,n−f∗ (solid), y4,n−f∗ (dashed) and y10,n−f∗ (dotted), where yk,n,

k = 1, 4, 10, are records of evaluations of the function f(x) = eT1 x at points x1, . . . , xn with
uniform distribution in the unit hyperball in the dimension d = 20 (left) and d = 50 (right).

In Figure 5 we show that the difference y1,n−f∗ increases as the dimension
d grows, for fixed n. Thus, the minimization problem becomes harder in larger
dimensions. Also, Figure 5 shows that difference y10,n − y1,n is much smaller
than the difference y1,n − f∗.

3.3 Estimation of the minimal value of f

In this section, we review the asymptotic properties of two estimators of the
minimal value f∗, the MLE and the best linear estimator. We also discuss
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Fig. 5 The difference y1,n − f∗ (left) and y10,n − y1,n (right) for n = 106 (solid) and
n = 1010 (dashed), where yj,n is the j-th record of evaluations of the function f(x) = eT1 x
at points x1, . . . , xn with uniform distribution in the unit hyperball in the dimension d; d
varies in [5, 200].

properties of these estimators in the case of large dimension d (and hence
large α).

If the representation (6) holds, α ≥ 2 is fixed, k → ∞, k/n → 0 as n →
∞, then the MLE f̂mle of f∗ is asymptotically normal and asymptotically
efficient in the class of asymptotically normal estimators, and the MSE has
the asymptotic form

E(f̂mle − f∗)2 ≈
{

(1− 2
α )(κn − f∗)2 k−1+2/α, α > 2,

(κn − f∗)2/ ln k, α = 2 ,
(7)

where κn is the (1/n)-quantile of the c.d.f. F (·). In view of (6) we have

κn−f∗=(c0n)−1/α (1 + o(1)) as n→∞. (8)

Linear estimators of f∗ are simpler than the MLE. Nevertheless, the best
linear estimators have the same asymptotic properties. To define a linear es-
timator, we introduce the vectors a = (a1, . . . , ak)T ∈ Rk, 1 = (1, 1, . . . , 1)T ∈
Rk, b = (b1, . . . , bk)T ∈ Rk, where bi = Γ (i + 1/α) /Γ (i), and the matrix
Λ = ‖λij‖ki,j=1, where λji = λij = uivj , i > j, and

ui =
Γ (i+2/α)

Γ (i+1/α)
, vj =

Γ (j+1/α)

Γ (j)
.

The matrix Λ in such form can be inverted analytically, see [5, Lemma A.1].
A general linear estimator of f∗ can be written as

f̂n,k(a) =

k∑
i=1

aiyi,n , (9)

where a = (a1, . . . , ak)T is the vector of coefficients. Then using explicit ex-

pressions for moments of order statistics, for any linear estimator f̂n,k(a) of
the form (9) we obtain

Ef̂n,k(a)=

k∑
i=1

aiEyi,n=f∗

k∑
i=1

ai+(κn−f∗)aT b+o(κn−f∗), n→∞. (10)
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Since κn − f∗ → 0 as n → ∞ and the variances of all yi,n are finite, the

estimator f̂n,k(a) is a consistent estimator of f∗ iff aT1 =
∑k
i=1 ai = 1. Using

explicit expressions for the moments of order statistics and the expression (8),

we obtain the following expression for the MSE of the estimator f̂n,k(a):

E(f̂n,k(a)− f∗)2 = (c0n)−2/α aTΛa (1 + o(1)) , n→∞ . (11)

The asymptotic mean squared error (11) is a natural optimality criterion
for choosing the vector of coefficients a, whose minimum is attained at

a∗ = arg min
a:aT 1=1

aTΛa =
Λ−11

1TΛ−11
, (12)

and

min
a:aT 1=1

aTΛa = (a∗)TΛa∗ = 1/1TΛ−11 .

The estimator f̂n,k(a∗) is called the optimal linear estimator; it has been
proposed in [2], where the form (12) was obtained.

As shown in [13, Th. 7.3.2] and could also be derived from a general Lemma
A.1 from [5], the components of the vector a∗ = (a∗1, . . . , a

∗
k)T can be evaluated

explicitly as follows: a∗i = vi/1
TΛ−11 for i = 1, . . . , k, where

v1 = (α+ 1) /Γ (1 + 2/α),
vi = (α− 1)Γ (i)/Γ (i+ 2/α), i = 2, . . . , k − 1,
vk =−(αk−α+1)Γ (k) /Γ (k + 2/α).

and

1TΛ−11 =

{
1

α−2

(
αΓ (k+1)
Γ (k+2/α) −

2
Γ (1+2/α)

)
, α 6= 2,∑k

i=1 1/i, α = 2 .
(13)

Note that the expression (13) is valid for all α > 0 and k = 1, 2, . . .. Using the
Taylor series

Γ (k + 2/α) = Γ (k) +
2

α
Γ ′(k) +O(1/α2)

for large values of α, we obtain

min
a:aT 1=1

aTΛa =
1

1TΛ−11
' 1

k
+

2(ψ(k)− 1 + 1/k)

αk
, (14)

for large α, where ψ(·) = Γ ′(·)/Γ (·) is the psi-function. In view of (11), the
coefficient (a∗)TΛa∗ in the expression for the MSE of the optimal linear esti-

mator f̂n,k(a∗) is nearly constant for large dimensions and has little effect on

the rate of convergence of the MSE of f̂n,k(a∗). The quality of approximation
(14) is illustrated in Figures 6 and 7.

The asymptotic properties (when both n and k are large) of the optimal
linear estimators coincide with the properties of the MLE and hold under
the same regularity conditions, as proved in [13, Sect. 7.3.3]. In particular,
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Fig. 6 The exact expression of 1/1TΛ−11 (solid) and the approximation (14) (dashed) for
k = 3 (left) and k = 8 (right); α varies in [5, 50].

Fig. 7 The exact expression of 1/1TΛ−11 (solid) and the approximation (14) (dashed) for
α = 5 (left) and α = 8 (right); as k varies in [2, 20].

the optimal linear estimator f̂n,k(a∗) is asymptotically normal (as n → ∞,

k →∞, k/n→ 0) and the mean square error E(f̂n,k(a∗)−f∗)2 asymptotically
behaves like (7).

Note that the efficiency of the estimators f̂mle and f̂n,k(a∗) can be low if an
incorrect value of α is used for computing this estimator, see [16, Sect. 2.5.2].

In practice of global optimization, the standard estimator of f∗ is the cur-
rent record y1,n computed by (2). This estimator can be written as y1,n =

f̂n,k(e1) where e1 = (1, 0, 0, . . . , 0)T . By (11), the MSE of y1,n is

E(f̂n,k(e1)− f∗)2 = Γ (1 + 2/α)(c0n)−2/α (1 + o(1)) , n→∞ .

Asymptotic efficiency of y1,n is therefore

eff(y1,n) =
[
Γ (1 + 2/α) · 1TΛ−11

]−1
. (15)

In view of (14), this efficiency tends to 1/k if k is fixed and α → ∞. The
asymptotic behaviour of the efficiency (15) is illustrated in Figure 8.

4 Comparison of random and quasi-random sequences

GRS algorithms compared with deterministic optimisation procedures have a
very attractive feature: in GRS algorithms we can use statistical procedures
for increasing efficiency of the algorithms and devising stopping rules. But do
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Fig. 8 Asymptotic efficiency (15) of y1,n. Left: k = 2 (solid) and k = 10 (dashed); as α
varies in [5, 50]. Right: α = 10 (solid) and α = 20 (dashed); as k varies in [2, 20].

we gain much by choosing the points at random and can we improve the ef-
ficiency of GRS algorithms if we sacrifice some randomness? The answer to
this question is similar to what we know from other areas of applied mathe-
matics like estimation of integrals using Monte-Carlo methods and cubature
formulas: randomness provides simplicity of methods and possibility to make
statistical inferences but for small dimensions we can significantly improve ef-
ficiency by reducing randomness and making the best possible deterministic
decisions; however, this is not so for large dimensions.

One possible recommendation for combining random search and determin-
istic procedures can be formulated as follows. First of all, if a global optimiza-
tion method requires local descents then for doing this we must use standard
deterministic routines like the conjugate gradient method (since local random
search algorithms would never be able to compete with such methods). In
the stage, where a GRS algorithm explores the whole X or some prospec-
tive subsets of X, purely deterministic or quasi-random sequences of points
may do this exploration more efficiently than random sequences, especially in
small dimensions. If PRS will use any of the quasi-random sequence instead
of random points, then this will improve the rate of convergence of PRS in
low dimensions only, avoid very long waiting times with infinite expectation
for getting new records (in the purely random version of PRS) and gain the
reproducibility of results.

If we use appropriate semi-random sequences like a stratified sample in
place of an i.i.d. sample in the PRS, then we still be able to use some of the
statistical procedures. More precisely, consider a version of the PRS where the
sample {x1, . . . , xn} is stratified rather than independent. Assume that the
distribution P = PU is uniform on X and the set X is split into m subsets
of equal volume. Assume also that in each subset we generate l independent
uniformly distributed points. The sample size is then n = ml. In particular,
under the assumption l > k and exactly the same assumptions about f(·), the
estimators (9) can again be used. The accuracy of these estimator is better than
the accuracy of the same estimators for the i.i.d. sample, see [13, Sect. 3.2].

We claim, however, that if the dimension d is large then the use of quasi-
random points instead of purely random does not bring any advantage. Let us
try to illustrate this using simulation experiments.
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y1,n

y4,n

y10,n − y4,n

Fig. 9 Boxplot of records y1,n (top) and y4,n (middle) and the difference y10,n − y4,n
(bottom) for 500 runs of the PRS algorithm with points generated from the Sobol low-
dispersion sequence (left) and the uniform distribution (right), d = 20.

Assume X = [0, 1]d and consider an algorithm of global search, in which
points are create a low-dispersion sequence relative to the L∞-metric in the
multi-dimensional case. As shown in [7, Th. 6.8 and 6.9], for every dimension
d and any n-point sequence Xn = {x1, . . . , xn}, the dispersion (with respect
to L∞-metric ρ∞)

d′(Xn) = max
x∈X

min
i=1,...,n

ρ∞(x, xi)

satisfies the inequality d′(Xn) ≥ 0.5n−1/d and there exists a sequence X∗n such
that

lim
n→∞

n1/dd′(X∗n) = 1/(2 ln 2).

This means that the rate of covering of the set X by points from the best
low-dispersion sequence has the order O(n−1/d), which coincides with the rate
achieved by PRS with uniform distribution PU .

Using simulation we now compare the performance of the PRS algorithm
with P = PU and quasi-random points generated from the Sobol low-dispersion
sequence. We consider the minimization problem with the objective function
f(x) =

∑d
s=1(xs−| cos(s)|)2 and the set X = [0, 1]d in the dimension d = 20. It

is easy to see that the global minimum f∗ = 0 is attained at the internal point
x∗ = (| cos(1)|, . . . , | cos(d)|). For each run of the PRS algorithm, we obtain n
points and compute the records y1,n and yj,n (j > 1), for n = 103, 104, 105, 106.
We repeat this procedure 500 times and depict the obtained records as box-
plots in Figure 9.
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Fig. 10 Scatterplots of records y1,n, y4,n and y10,n with n = 106 for 500 runs of the
PRS algorithm with points generated from the Sobol low-dispersion sequence (left) and the
uniform distribution (right), d = 20.

We can see that the performance of the PRS algorithm with points gener-
ated from the Sobol low-dispersion sequence and the uniform distribution is
very similar. We also note that the variability of y1,n is larger than variability
of y4,n and variability of the difference y10,n−y4,n is small. Figure 9 shows ad-
ditionally that the convergence of the record y1,n to the minimal value f∗ = 0
is very slow, with the rate O(1/n2/d), as n increases.

In Figures 10 and 11 we show the joint empirical distribution of the records
yk,n with n = 106 and Figure 12 shows the averaged values of these records. We
can see that the records y1,n and y10,n are almost independent and records y4,n
and y10,n are higly correlated. We also note that the record y4,n is close to y1,n
in few simulation trials and the record y2,n is close to y1,n in many simulation
trials. These figures also show that the global minimum f∗ = 0 is very far
from the cloud of points corresponding to the joint empirical distribution of
records.
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Fig. 11 Scatterplots of records y1,n, y2,n with n = 106 for 500 runs of the PRS algo-
rithm with points generated from the Sobol low-dispersion sequence (left) and the uniform
distribution (right), d = 20.

Fig. 12 Averaged records y1,n (solid), y4,n (dashed) and y10,n (dotted), where averaging
is taken over 500 runs of the PRS algorithm with points generated from either the Sobol
low-dispersion sequence or the uniform distribution, in the dimension d = 2 (left), d = 5
(middle) and d = 20 (right).

5 Conclusions

We have investigated the rate of convergence of a general global random search
algorithm. We have shown that if the dimension of the feasible domain is large
then it is virtually impossible to guarantee that the global minimizer is reached
by a general global random search algorithm. We have studied precision of
statistical estimates of the global minimum in the case of large dimensions.
We have shown that these estimates suffer the curse of dimensionality. Finally,
using extensive computer study we have demonstrated that the use of quasi-
random points in place of the random ones does not give any visible advantage
in large dimensions.
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