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ABSTRACT: We present the design and room-temperature lasing characteristics of single 

nanowires containing coaxial GaAs/AlGaAs multi-quantum well (MQW) active regions. The 

TE01 mode, which has a doughnut shaped intensity profile and is polarized predominantly in-

plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for 

the cavity design. Through gain/loss calculations, we determine the nanowire dimensions required 

to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for 

minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the 

minimum and maximum number of QWs that are required for room-temperature lasing. Based on 

our design, we grew nanowires of a suitable diameter containing eight uniform coaxial 
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GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single 

nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs 

MQW nanowire lasers have a factor of 2 lower threshold fluence than previously demonstrated 

room-temperature GaAs nanowire lasers. 

 

MAIN TEXT: Mainstream semiconductor lasers use quantum confined active regions to obtain 

superior device performance in terms of threshold, differential gain, modulation bandwidth and 

temperature stability.1 These improvements result from the modification of the density of states in 

structures with reduced dimensionality. In recent years, semiconductor nanowires have emerged 

as promising structures for reducing the footprint of conventional lasers and for integrating lasers 

onto Si. Nanowires composed of direct bandgap semiconductors provide both a gain medium and 

a cavity for lasing and can be grown on Si substrates, despite differences in crystal lattice constants. 

Systematic improvements in growth of nanowires and cavity optimization have resulted in a 

myriad of semiconductor nanowire lasers composed of various bulk semiconductor gain 

mediums.2-13 In contrast, only a few semiconductor nanowire lasers with quantum confined active 

regions have been reported.14-17 While the incorporation of a quantum confined active region is 

promising for improving the laser performance, the performance of the reported nanowire lasers 

thus far has not surpassed that of nanowire lasers with bulk active regions. Possible explanations 

for this could be that the laser cavity was not properly designed for the complex heterostructure, 

or the placement of the quantum confined active regions in the cavity was not optimal. Mode 

confinement and mode reflectivity at nanowire end facets is dependent on the refractive index 

profile of the cavity, and will be different in a nanowire with complex heterostructure compared 
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to a nanowire with homogenous bulk gain medium. Furthermore, an active region with anisotropic 

gain will result in very different modal gain characteristics compared to an active region with 

isotropic gain. For the former, the modal gain will depend on both the polarization and spatial 

overlap of a mode with the active region.18 Thus, depending on the type of heterostructure (radial 

or axial), different modes will be expected to lase compared to nanowire lasers with bulk gain 

mediums and subsequently the cavity will need to be designed accordingly.  

In this article, we present the design of Fabry-Perot type nanowire cavities with radial 

GaAs/AlGaAs multi-quantum well (MQW) active regions. Our modelling uncovers important 

design criteria for achieving population inversion in the quantum confined gain regions. We show 

that for a given structure there is an optimal number of QWs to reduce the threshold pump fluence 

and an optimal QW thickness to minimize the threshold carrier density. We also show that the 

lasing mode is determined by the placement of the QWs in the nanowire, unlike bulk nanowire 

lasers, where the lasing mode is determined solely by the nanowire diameter. Furthermore, we 

experimentally validate our modelling and demonstrate the lowest-threshold room-temperature 

GaAs/AlGaAs QW nanowire lasers to date, which have much lower threshold fluence than their 

bulk counterparts. 

Firstly we study the cavity design for a nanowire laser with radial GaAs/AlGaAs MQWs. The 

heterostructure consists of a GaAs/AlGaAs core-shell, epitaxial GaAs/AlGaAs MQW shells, 

which serve as the gain medium, and a thin GaAs cap, which prevents oxidation of the Al 

containing barriers. For the modelling, we have assumed that the nanowire has a hexagonal cross-

section, the GaAs MQWs are of uniform thickness and that the AlGaAs barriers have uniform Al 

concentration of 42%. The nanowire laser is modelled in a horizontal configuration, lying on low 

index SiO2 substrate with both nanowire end facets exposed to air. In this configuration the 
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nanowire behaves as a Fabry-Perot (FP) cavity for the guided modes supported along the nanowire 

axis. The threshold for laser oscillation occurs when the modal gain balances the modal loss in the 

cavity. We have used a two-step approach to design the GaAs MQW nanowire lasers. First we 

model loss for the various guided modes supported in the nanowire. This enables us to identify the 

mode with lowest loss and select the nanowire dimensions to minimize loss. Then for a nanowire 

of fixed dimensions, we maximize the modal gain for the mode with lowest loss. The thickness, 

number and placement of the MQWs in the nanowire are varied and the optimal parameters that 

reduce threshold carrier density are thereby determined. 

The round-trip loss for a mode in a FP type cavity is given by 𝛼𝑖 + 𝛼𝑚, where 𝛼𝑖 is the intrinsic 

loss and 𝛼𝑚 = 𝐿−1ln(1 𝑅⁄ ) is the mirror loss, where 𝐿 is the cavity length and 𝑅 is the geometric 

mean of mirror reflectances. In homogenous nanowire structures, where the entire nanowire serves 

as the gain medium, 𝛼𝑚 ≫ 𝛼𝑖 and so the round-trip loss is well estimated by 𝛼𝑚 alone.19 However, 

in our MQW nanowire heterostructure, 𝛼𝑖 can be large due to absorption of the GaAs QW emission 

in the bulk GaAs core and cap regions. The magnitude of 𝛼𝑖  will therefore depend on the 

dimensions of the core and cap and the mode overlap with these regions. To estimate the modal 

loss for a GaAs MQW nanowire, we have modelled the loss in GaAs/AlGaAs/GaAs core-shell-

cap nanowire, with an 80 nm-diameter core and 5 nm-thick cap. The mode profiles in this 

simplified 3-layer structure are similar to the mode profiles in the MQW heterostructure, since the 

thickness of the QWs is much smaller compared to the barriers. For the modelling, the dimensions 

of the core and cap were fixed while the AlGaAs shell thickness was varied to calculate loss as a 

function of the overall nanowire diameter (𝐷). Figure 1a shows the modal loss as a function of the 

nanowire diameter, with 𝐿 = 5 µm, which is the typical length of our nanowires. The mode 

wavelength was 800 nm for these calculations, which corresponds to the emission wavelength of 
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4 nm-thick GaAs QW.20 We have also calculated loss at other wavelengths corresponding to 2 and 

6 nm-thick GaAs QWs (see Supporting Information), however the estimates are quite similar for 

the low loss modes, which have a poor overlap with core and cap. 

As shown in Figure 1a, the TE01 mode has the lowest loss for all diameters above its cut-off 

diameter of 240 nm. This is quite different to the modal loss in a nanowire with homogenous bulk 

gain medium21 or a core-shell-cap nanowire with the core as the active region11, where modes 

other than TE01 mode can have the lowest loss, especially in large diameter nanowires. The 

difference between the current design and these other nanowire laser designs is due to the 

absorbing passive regions in our cavity (core and cap). The TE01 mode has the lowest intrinsic 

loss in our design, because its doughnut-shaped intensity profile has a very poor overlap with the 

core and cap. The intrinsic loss for all other modes is comparatively larger and consequently the 

net loss is also larger. The difference in loss between the TE01 mode and other modes is even 

greater in nanowires with a thicker cap (see Supporting Information), which is favorable for 

reducing mode competition and obtaining single transverse-mode operation.22 Thus our cavity 

design is best suited for obtaining lasing from the TE01 mode. For the current design, the nanowire 

diameter should be larger than 400 nm to minimize loss for the TE01 mode. 

The TE01 mode, because of its intensity profile and polarization, is also the most suitable mode 

for obtaining large modal gain from the GaAs MQWs embedded in the shell of the nanowire. The 

inset of Figure 1b shows the electric field profile (magnitude and direction) of the TE01 mode in 

the cross-section of the nanowire containing a single coaxial QW. The nanowire has an 80 nm 

diameter core, 5 nm thick cap and an overall diameter of 420 nm. The maximum intensity of the 

TE01 mode is approximately a distance 𝐷/4 from the centre of the nanowire and coincides with 

the position of the coaxial QW. Moreover, the electric field is azimuthally polarized and is 
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approximately parallel to the coaxial QW. The material gain (𝑔) in QWs is polarisation dependent 

and is larger for electric field polarised parallel to the QW plane than perpendicular to the QW 

plane in GaAs QWs (𝑔∥ > 𝑔⊥).1 Thus, modal gain for the TE01 mode is expected to be large in 

our design. To verify this, we calculated the modal gain for all guided modes supported in the 

nanowire. We defined separate confinement factors, Γ∥ and Γ⊥, for polarization in-plane and out-

of-plane to the QWs, and calculated modal gain using Γ∥𝑔∥ + Γ⊥𝑔⊥ (see Supporting Information). 

Our calculations show that the TE01 mode has the largest modal gain in our cavity design, 

provided that the QWs are suitably placed in the nanowire. 

To maximize the modal gain for the TE01 mode, the QWs need to be ideally placed at the maxima 

of the mode intensity profile. However, due to the much smaller volume of the QW in comparison 

to the mode, a single QW placed at the optimal position has a very small confinement factor 

(Γ0.05; Γ = Γ∥ for TE01 mode). To increase the modal gain, multiple QWs can be used, provided 

that the barriers are sufficiently thick to avoid coupling.23 We have calculated the mode 

confinement factor with 3, 5 and 8 uniformly spaced MQWs in the nanowire (see Supporting 

Information Table 1). Γ can be increased to 0.3 using 8 MQWs, albeit the increase is not linear 

with the number of QWs (𝑛𝑤) because the electric field intensity of the TE01 mode is not constant 

across the active region. While increasing 𝑛𝑤 increases Γ, there is a practical limit to how large 𝑛𝑤 (and thus Γ) can be due to the finite diameter of the nanowire and the mode intensity profile. 

More importantly, for a given nanowire diameter and length (or given threshold modal gain 

requirement), there is an optimum 𝑛𝑤 for minimising the threshold pump fluence (or current 

density for electrical injection)24, 25. For a 420 nm diameter nanowire, we estimate that 8 is the 

maximum number of uncoupled coaxial QWs that can be accommodated and also the optimum 𝑛𝑤 for minimising the threshold pump fluence at room temperature (see Supporting Information). 
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Figure 1b shows the TE01 modal gain in a 420 nm diameter nanowire with 2, 4 or 6 nm thick 

GaAs QWs and 𝑛𝑤 = 1, 3, 5 or 8 as a function of sheet carrier density. The loss for the TE01 mode 

in a 420 nm diameter, 5 µm long nanowire at mode wavelengths of 730, 800 and 830 nm, 

corresponding to QWs of thickness 2, 4 and 6 nm respectively, is represented by the grey lines. 

The loss is larger at shorter mode wavelengths as a result of larger absorption coefficient in GaAs 

core and cap. The intersection of the gain and loss curves defines the threshold sheet carrier 

density. Clearly, the threshold cannot be attained with a single QW. At least 3 MQWs are required 

to achieve lasing for 6 nm-wide QWs and 5 MQWs are required for 2 nm- and 4 nm-wide QWs. 

The larger gain for 6 nm-wide QWs at sheet carrier densities above 2.5×1013 cm-2 is due to higher 

subband transitions, which are not supported in thinner QWs (at room temperature). The threshold 

sheet carrier density can be reduced using 8 MQWs, which is the maximum number of uncoupled 

QWs that can be accommodated in this diameter nanowire. The lowest sheet carrier density of 

8.2×1012 cm-2 is achieved with 4 nm-wide 8 MQWs. The threshold sheet carrier density is larger 

for 2 nm-wide 8 MQWs because of the larger modal loss and for 6 nm-wide 8 MQWs because of 

the lower material gain. Thus, 4 nm is the optimal width and 8 is the optimal number of MQWs 

for our nanowire laser design. 

We aimed to grow GaAs MQW nanowires according to the optimized design. GaAs/AlGaAs core-

shell nanowires with eight coaxial GaAs/AlGaAs QWs and a thin GaAs cap were grown in a metal 

organic chemical vapor deposition (MOCVD) system (see methods). Since the shell growth rate 

has a non-linear dependence with nanowire diameter, the growth time for each QW/barrier layer 

had to be carefully varied, in order to obtain uniformly separated MQWs of uniform thickness. 

The nanowires were imaged after growth in a scanning electron microscope (SEM). Figure 2a 

shows the 45° tilt view SEM image of a nanowire standing on the growth substrate. The nanowire 
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has a 1 µm-thick broad tapered base, a 1.5 µm-long short tapered segment, and a 3.3 µm-long 

untapered segment. The top end of the nanowire has multiple smooth inclined crystallographic 

facets, terminating at the 80 nm Au nanoparticle. All the nanowires grown had similar 

morphological characteristics, except the shape of the top end varied across the sample. The 

nanowires provided suitable laser cavities once transferred onto glass substrates for optical 

characterization. The SEM images of transferred nanowires (see Supporting Information) shows 

that all nanowires break away from above the tapered base. In some nanowires the top end of the 

nanowire is also broken off, leaving behind an untapered segment, which serves as an ideal 

nanowire cavity. The transferred nanowires had an average diameter of 500 nm and average length 

of 4.7 µm. These dimensions are suitable for obtaining low loss (or low threshold modal gain) for 

the TE01 mode according to our design. 

To reveal the details of the MQW heterostructure, we performed transmission electron microscopy 

(TEM) studies on cross-sectional samples prepared using ultramicrotomy (see methods). Figure 

2b shows the high-angle annular dark field scanning transmission electron microscopy (HAADF-

STEM) image of a typical cross-sectional sample, with a schematic illustration of the cross-section 

superimposed on the right side. In this 𝑍-contrast image, where 𝑍 is the atomic number, the brighter 

regions correspond to GaAs and the darker regions correspond to AlxGa1-xAs (x>0). The 

GaAs/AlGaAs layers in the core-shell heterostructure are identified in the schematic. The GaAs 

core has a hexagonal shape and is encapsulated by a thick AlGaAs shell, 8x GaAs/AlGaAs MQWs 

and a thin GaAs cap. The diameter of the GaAs core is 80 nm, the first AlGaAs shell is 44 nm 

thick and the GaAs cap is 3 nm thick, as measured along the <110> direction from the STEM 

image. The first AlGaAs shell is thick enough to prevent carriers tunneling from the MQWs into 

the GaAs core. We performed EDX analysis to quantify the Al concentration in the AlxGa1-xAs 
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shells. The regions near the Al-rich radial bands were not sampled to avoid skewing the estimate. 

By benchmarking against the As concentration measured in the GaAs core, we measured an 

average Al concentration of 0.42 ± 0.01 in the AlGaAs shells. 

Figure 2c shows the HAADF-STEM image of the cross-section sample at higher magnification, 

in which the eight GaAs MQWs and the thin GaAs cap are clearly resolved. The thickness of 

individual QWs and barriers is non-uniform, due to differing growth rates across different 

crystallographic directions.26 To quantify the QW/barrier thickness, we measured thickness at 

several different positions on the STEM images using line scans along <110> direction (see 

Supporting Information). The average thickness of the MQWs is 3.5 ± 1.5 nm. The average 

thickness of the AlGaAs barriers ranges from 9-20 nm. In particular, the first four MQWs are 

separated by thicker barriers (average thickness 14 nm) than the last four MQWs (average 

thickness 9 nm). The placement of the inner six MQWs overlaps well with the field profile of the 

TE01 mode in this diameter nanowire (see Supporting Information). Several nanowire cross-

sections were analyzed and all of them had similar structural characteristics. From statistical 

analysis of our measurements, we find that the mean and standard deviation of thicknesses for each 

coaxial QW is approximately the same. Homogeneity between MQWs is necessary for realizing 

large modal gain and reducing the threshold power required to achieve lasing. Based on the 

placement of the MQWs in the nanowire and reasonable homogeneity between MQWs, we expect 

these GaAs MQW nanowires to lase at room temperature. 

Nanowires were transferred onto ITO coated glass substrates and individual nanowires were 

optically pumped at room temperature in a micro-photoluminescence (µ-PL) system (see 

methods). The emission spectrum from a single nanowire at three different pump fluences is 

presented in Figure 3a and the normalized spectral map is presented in the top left inset. At very 
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low pump fluence (<5 μJ/cm2/pulse), the spectrum has a broad single peak (FWHM = 50 nm) 

centered at 800 nm, corresponding to the ground state emission from the MQWs. The broad 

linewidth is mainly due to variation in the QW thicknesses across the nanowire facets (see 

Supporting Information). At a pump fluence of 20 μJ/cm2/pulse, several low-amplitude peaks 

appear in the broad PL spectrum. These peaks become more pronounced with increasing pump 

fluence, and thus correspond to amplified cavity modes in the nanowire. At a pump fluence of 

110 μJ/cm2/pulse, the peaks at 791 nm and 819 nm rapidly increases in intensity, above the 

background emission level. The linewidth of these lasing peaks measured at pump fluence of 154 

μJ/cm2/pulse is 1 nm. At higher pump fluence, several narrow lasing peaks appear in the spectra 

and the intensity of the dominant lasing peaks is orders of magnitude larger than the background 

spontaneous emission. The multiple peaks in the lasing spectra correspond to different axial and 

transverse modes in the cavity. The optical image of the nanowire above threshold (bottom inset 

in Figure 3a) shows intense emission from the nanowire ends and a distinct interference pattern, 

which confirms that the nanowire behaves as a FP cavity and that lasing is from guided modes 

supported along the nanowire axis.27 The peaks at 777, 791, 805 and 819 nm are regularly spaced 

and correspond to the same transverse mode with different axial order.28 A group index (𝑛𝑔) of 4.7 

is calculated from the separation of these peaks, which is identical to the 𝑛𝑔 calculated for the 

TE01 mode in this diameter nanowire (see Supporting Information). The subsidiary peaks at 

shorter wavelengths have a larger 𝑛𝑔 and may correspond to the higher order HE modes that could 

potentially lase in this diameter nanowire. 

To verify the lasing modes in the nanowire we analyzed the polarization of emission, by placing a 

linear polarizer before the entrance slit of the spectrometer (see methods). The integrated spectral 

emission from the dominant lasing peaks at a pump fluence of 205 μJ/cm2/pulse is shown as 
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function of polarization in the top right inset of Figure 3a. The nanowire is orientated horizontally 

in the polar plot. The emission is polarized perpendicular to the nanowire and has a polarization 

ratio, 𝜌 = (𝐼∥ − 𝐼⊥) (𝐼∥ + 𝐼⊥)⁄ , of -0.4. The polarisation dependence above threshold is quite 

different to the polarisation dependence below threshold, which is also shown on the polar plot. 

The emission below threshold has a very low |𝜌|, which could be due to multiple factors. Firstly, 

the nanowire characterised has a large diameter and large diameter nanowires exhibit lower 

polarisation anisotropy.29 Secondly, the emission from the radial GaAs MQWs could be coupled 

to several different modes in the large diameter nanowire and the net emission may not have a 

dominant linear polarization. The distinct change in the polarization of emission from below 

threshold to above threshold indicates the strong amplification of a particular transverse mode in 

the cavity. To identify the lasing mode, we simulated the far-field emission profile of all the various 

guided modes supported in the nanowire and analyzed their polarization dependence (see 

Supporting Information). Of all the modes simulated, the polarization dependence of the TE01 

mode matched best with the experimental data, and is shown in the polar plot. The slight 

differences between the experimental and simulated data could be due to the imperfect end facets 

of the nanowire laser (see Supporting Information) which were not modelled in the simulation. 

Thus, the TE01 mode is confirmed to be the dominant lasing mode in our MQW nanowire laser, 

as designed. 

The integrated spectral emission from the nanowire as a function of pump fluence (L-L curve) is 

shown in Figure 3b. The ‘S’ shaped non-linear response of the laser on the log-log scale and the 

‘knee’ like behavior on the linear scale (inset of Figure 3b) are clearly observed. The region 

highlighted in grey is the threshold region. The threshold fluence is estimated to be 110 

μJ/cm2/pulse, which is lower than the threshold fluence of previously demonstrated room-
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temperature bulk III-V semiconductor nanowire lasers that were characterized in the same µ-PL 

system.11, 12, 30 By comparing the device parameters, we find that the reduction in threshold fluence 

is mainly due to reduction in the active region volume (see Supporting Information). To assess the 

performance of the MQW nanowire laser, we used multimode rate-equations to fit the 

experimental L-L data (see Supporting Information). The analytical fit to the data is shown in 

Figure 3b. A very good fit was obtained with a threshold gain (𝑔𝑡ℎ) of 5200 cm-1 and a spontaneous 

emission factor (𝛽) of 0.03. The average carrier density in the active region at threshold is 

estimated to be 3.51019 cm-3, which corresponds to a threshold sheet carrier density of 17.51012 

cm-2 assuming a QW thickness of 5 nm. While 𝛽 is similar to other nanowire lasers of similar 

dimensions, 𝑔𝑡ℎ is larger in comparison to bulk nanowire lasers as result of the much lower Γ. 

Assuming Γ of 0.25 for the TE01 mode in our nanowire, the threshold modal gain (Γ𝑔𝑡ℎ), or net 

loss, is estimated to be 1300 cm-1. The loss is slightly larger than the estimated loss of 1000 cm-1 

in this diameter nanowire, mainly as a result of its imperfect end facets. We note that above 

threshold, the slope of the L-L curve deviates from a linear regime at high pump fluence. This is 

due to Auger recombination, which becomes significant at carrier densities larger than 2.51019 

cm-3 in GaAs31. To improve the performance of the MQW laser, the threshold carrier density must 

be reduced further, which could be obtained by making the end facets flatter post-growth. 

Additionally, the nanowire shell growth could be further improved to maximize the overlap of the 

MQWs with the TE01 mode and minimize the structural variation between MQWs, in order to 

obtain larger modal gain. Despite the potential for further improvements, the MQW nanowire 

lasers have lower threshold fluence/carrier density than previously reported III-V semiconductor 

nanowire lasers with quantum confined active regions16, 17 (see Supporting Information). 
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In summary, we have presented the design of a GaAs/AlGaAs MQW nanowire laser and 

demonstrated low-threshold room-temperature lasing from nanowires containing 8 GaAs/AlGaAs 

coaxial MQWs. The TE01 mode, due to its intensity profile and polarization, is shown to be the 

ideal mode for obtaining the lowest threshold gain in these nanowire heterostructures. We have 

therefore optimized the design of the MQW nanowire lasers to obtain low-threshold lasing from 

TE01 mode, and verified lasing from this mode in our experiments. Our demonstration paves way 

for the development of high performance nanowire lasers with tunable emission wavelengths, 

which are required for future nanophotonic integrated circuits. While we have focused on 

GaAs/AlGaAs material system here, our systematic approach to the design can be adapted to 

realize high performance room-temperature MQW nanowire lasers in other material systems, 

and/or in other cavity configurations, such as vertically orientated nanowires on Si/SiO2 substrates. 

Methods  

Nanowire growth. GaAs/AlGaAs MQW nanowire heterostructures were grown in a horizontal 

flow low pressure (100 mbar) metal organic chemical vapor deposition (MOCVD) system 

(Aixtron 200/4). Trimethylgallium, trimethylaluminium, and arsine were used as the source of Ga, 

Al, and As, respectively. Firstly, untapered vertical GaAs nanowires were grown on a (111)B 

GaAs substrates using 80 nm Au nanoparticle catalysts via a two-temperature growth process32. 

An epitaxial AlGaAs shell followed by 8x GaAs/AlGaAs QW/barrier layers and a thin GaAs cap 

were then grown in situ around the GaAs (core) nanowires at high temperature (750 C). The total 

group III molar fraction used for the GaAs core growth was 1.73×10-5 and for the GaAs/AlGaAs 

multi-shell growth was 1.1×10-5 and 2.2×10-5, respectively. The Al concentration was 50% of the 

total group III in vapor. The group V molar fraction used for the core and shell growth was 8×10-
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4 and 2.27×10-3, respectively. The growth time for the multi-shell growth is provided in Supporting 

Information Table 2. 

Electron microscopy and microtomy. Nanowires were first embedded in resin and baked at 

70 °C for over 24 hours to allow complete solidification of the resin. The substrate was then 

removed by dipping the epoxy block into liquid nitrogen for a few seconds. The face of the epoxy 

block with the embedded nanowires was trimmed to a small isosceles trapezium and then cut into 

30 nm thick slides using ultramicrotome (Leica EM UC7) and a diamond knife (DiATOME ultra 

45). The slices from the bottom 1.5 μm were abandoned since the base of the nanowires is tapered 

and only slices from the untapered segment (2-2.5 μm) were transferred onto copper grids for TEM 

analysis. The cross-sectional samples were characterized at an acceleration voltage of 200 kV 

using JEOL 2100F equipped with an energy-dispersive X-ray (EDX) detector. 

Optical characterization. Nanowires were dispersed in IPA solution using ultrasonication and 

then transferred via solution onto an indium tin oxide (ITO) coated glass substrate. Individual 

nanowires were pumped using a frequency-doubled solid-state laser (femtoTRAIN IC-Yb-2000, 

λ = 522 nm, repetition rate 20.8 MHz, pulse length 400 fs) through a 100x/0.90 numerical aperture 

objective lens (Nikon LU Plan). In order to pump the nanowires uniformly, the excitation beam 

spot-size was enlarged to 5 μm by placing a spherical lens (f = 500 mm) in the incoming beam 

pathway. The emission from the nanowire was collected through the same objective lens and was 

spectrally filtered to remove the pump laser wavelength. Spectral measurements were made using 

a grating spectrometer (Acton, SpectraPro 2750) equipped with 150 lines/mm grating and a 

charged coupled device (Princeton Instruments, PIXIS). For polarization analysis, the sample was 

mounted on a rotating stage and the nanowire was orientated 45° with respect to the plane of 

polarization of the pump laser. A linear polarizer was inserted in the collection path in the optical 
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system, and the polarization axis of the polarizer was rotated to match the orientation of the 

nanowire. 
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FIGURES 

 

Figure 1. Design for GaAs multi-QW nanowire laser. a. Modal loss in a core-shell-cap 

GaAs/AlGaAs/GaAs nanowire with 80 nm diameter core and 5 nm-thick cap. The AlGaAs shell 

thickness is varied to calculate loss as a function of the nanowire diameter. The nanowire has a 

hexagonal cross-section and is lying on a SiO2 substrate, as shown in the inset. The mirror loss is 

calculated using 𝛼𝑚 = 𝐿−1ln(1 𝑅⁄ ), where 𝑅 is the mode reflectance at the nanowire/air end facet 

and 𝐿 is the nanowire length. 𝑅 was calculated using FDTD simulations (see Supporting 

Information) and 𝐿 = 5 μm was used for these calculations. The intrinsic loss as a result of 

absorption in GaAs core and cap was calculated using Mode Solutions at mode wavelength of 800 

nm.  b. Modal gain for TE01 mode as a function of sheet carrier density for different number of 
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QWs (𝑛𝑤= 1, 3, 5 and 8) and for QW thickness of 2, 4 and 6 nm. The material gain is calculated 

at 300 K. The mode confinement factor is calculated at wavelength of 730, 800 and 830 nm for 

QWs of 2, 4 and 6 nm thickness, respectively. The horizontal lines in grey are the modal loss for 

TE01 mode in 420 nm diameter nanowire at wavelengths corresponding to 2, 4 and 6 nm thick 

QWs. The inset shows the electric field profile (magnitude and direction) of the TE01 mode in the 

cross-section of a nanowire with a single coaxial QW, with the QW placed equidistant from the 

core and cap. 
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Figure 2. Structural characterization of GaAs multi-QW nanowires. a. Scanning electron 

microscope image at 45 tilt angle of a nanowire standing on the growth substrate. The nanowire 

has a 1 μm-thick broad base, a slightly tapered segment 1.5 μm long and an untapered segment 3.3 

μm long. All the nanowires grown had similar morphological characteristics (see Supporting 

Information). b. HAADF-STEM image of a 30 nm-thick cross-section taken from the untapered 

segment of a nanowire. A schematic illustration of the cross-section has been superimposed on the 

right half of the STEM image. The heterostructure contains an 80 nm-GaAs core, an AlGaAs shell, 

8x GaAs/AlGaAs co-axial MQWs and a thin GaAs cap. c. HAADF-STEM image of the cross-

section in b at higher magnification, showing the MQWs of approximate thickness 5 nm and the 

3 nm-thick GaAs cap. 
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Figure 3. Room-temperature lasing characteristics. a. Spectra at three different pump 

intensities, corresponding to below threshold (green: 77 μJ/cm2/pulse), just above threshold 

(orange: 128 μJ/cm2/pulse) and far above threshold (purple: 180 μJ/cm2/pulse). The top left inset 

shows the normalized spectral map as a function of the optical pump fluence. A sudden narrowing 

of spectral emission is observed at threshold fluence of 110 μJ/cm2/pulse. The bottom left inset 

shows the optical microscope image of the nanowire laser above threshold (with the pump laser 

filtered out). The outline of the nanowire is indicated by the dashed lines. The top right inset shows 

the total emission intensity from the nanowire, below and above threshold, as a function of 

polarization angle. The nanowire is orientated horizontally in the image, so that angle of 0 or 180 

corresponds to polarization parallel to the axis of the nanowire. The polarization dependence of 

the TE01 mode is also shown for comparison.  b. Non-linear response of laser output intensity 

versus pump fluence on log-log scale, and on a linear scale (inset). The ‘S’ like curve characteristic 

of lasing is clearly observed. The grey region highlights the region of amplified spontaneous 

emission. The dots represent the experimental data and the line is fit to the experimental data using 

multi-mode rate-equations with 𝑔𝑡ℎ = 5200 cm-1 and 𝛽 = 0.03 (see Supporting Information). 
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Supporting Information. Additional information on the design of GaAs MQW nanowire lasers, 

loss/modal gain calculations for other guided modes, axial and transverse mode confinement 

factors, optimum placement and number of MQWs, structural characterization of nanowires, 

measurements of QW and barrier thicknesses, measurement of nanowire laser dimensions, 

characterization of lasing mode based on group index calculations, polarization dependence of 

various photonic modes, rate equation analysis and comparison between bulk and MQW GaAs 

nanowire lasers. This material is available free of charge via the Internet at http://pubs.acs.org. 
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Cross-sectional image of GaAs/AlGaAs multi-quantum well (MQW) nanowire heterostructure 

(left) and room-temperature lasing spectrum from a GaAs/AlGaAs MQW nanowire (right). 

 

 

 


