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ABSTRACT: We experimentally determine the lasing mode(s) in optically pumped 

semiconductor nanowire lasers. The spatially resolved and angle-resolved far-field emission 

profiles of single InP nanowire lasers lying horizontally on a SiO2 substrate are characterized in a 

micro-photoluminescence (μ-PL) setup. The experimentally obtained polarization dependent far-

field profiles match very well with numerical simulations and enable unambiguous identification 

of the lasing mode(s). This technique can be applied to characterize lasing modes in other type of 

nanolasers that are integrated on a substrate, in either vertical or horizontal configurations. 

 

MAIN TEXT: Semiconductor nanowires enable the integration of efficient light emitters with a 

waveguide or a cavity, and so have been widely used for the development of novel coherent light 

sources at the nanoscale, such as single photon emitters1, 2 and nanolasers3-10, which are essential 
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components for future nanophotonic integrated systems. The large index contrast between the 

nanowire and its surrounding environment and the subwavelength size of their cross-section gives 

rise to unique optical properties, such as strong waveguiding11 and strong reflection/scattering at 

nanowire end facets12, which are advantageous for reducing the threshold requirement and for 

downscaling the physical volume of photonic lasers13. Several different nanowire lasers, in a wide 

range of material systems, that are integrated on a substrate, in either vertical or horizontal 

configurations, have been demonstrated. Majority of these demonstrations have used nanowires 

lying on low index substrates with their end facts exposed to air, to maximize the index contrast 

and thus realize low thresholds. In this configuration, emission from the nanowire laser can also 

be easily coupled to photonic14, 15 or plasmonic16 waveguides, which is an important consideration 

for integrating these devices in nanophotonic circuits. 

The far-field emission from nanowire lasers, and in general all nanoscale lasers, is not collimated 

due to their small dimensions and fully vectorial nature of the cavity modes13. The far-field 

emission pattern is further complicated by scattering of the propagating modes at the nanowire end 

facets. A theoretical study on free-standing nanowires showed that the directionality of the far-

field emission from the nanowire end-facet depends on the propagating mode and the nanowire 

diameter17. The polarization of the far-field emission also depends on the mode type. In order to 

integrate nanowire lasers with other optical components, such as waveguides, the polarization and 

directionality of the lasing mode needs to be understood theoretically and characterized 

experimentally. However for nanowire lasers that are lying on a substrate, the substrate imposes 

difficulties for both theoretical analysis and experimental characterization of the far-field emission. 

Most previous studies have avoided these complications, by suspending the nanowire in air, and 

performing ‘head-on’ measurements18, 19. While this method enables characterization of lasing 
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modes, it requires careful alignment of the nanowire with respect to the edge of the substrate and 

may not be suitable to characterize emission from lasing modes whose angular emission pattern 

lies outside the collection angle of the limited numerical aperture objective lens. Very recently, 

angle-resolved spectral mapping was used to characterize the axial order of cavity modes 

supported in nanowires lying on a substrate.20 However this technique only provides a 1D map of 

the far-field emission pattern, which may be insufficient to uniquely characterize the lasing mode. 

Here we present a simple imaging technique to characterize the lasing mode(s) in nanowire 

lasers that are lying horizontally on a substrate, which does not require them to be positioned in an 

idealized configuration, such as being suspended in air. Our approach is based on profiling the far-

field intensity pattern of nanowire lasers. The polarization and directionality of the emission is 

characterized by resolving the transverse component of the wave-vector on the Fourier plane. This 

technique has been used recently to study the polarization and directionality of spontaneous 

emission from vertically standing nanowires21-23 and characterize modes in photonic crystal 

microcavities24. In this study we deliberately design nanowire lasers to lase from different guided 

modes and then characterize their far-field profiles to validate the technique. The polarization and 

angular distribution of intensity of emission intensity in the far-field is distinct for each of the 

lasing modes characterized and match very well with numerical simulations. The mode profiling 

thus enables the lasing mode(s) in nanowire lasers to be unambiguously identified. 

We model the threshold gain for a horizontally lying nanowire laser, in order to design nanowire 

lasers that would lase from different waveguide modes. The threshold condition for laser 

oscillation is given by equating the round-trip modal gain with the round-trip losses25. For 

nanowire lasers behaving as Fabry-Perot type cavities, the predominant losses occur at the end 
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facets18 (mirror losses) and so the threshold gain can be modelled using Γ𝑔𝑡ℎ~ 1𝐿 ln (1𝑅), where Γ is 

the mode confinement factor, 𝑔𝑡ℎ is the threshold gain, 𝐿 is the cavity length and 𝑅 is the geometric 

mean of the mode reflectances at the end facets. We use this equation to model the threshold gain 

for an InP nanowire lying on a SiO2 substrate. Figure 1 shows the threshold gain as a function of 

the nanowire diameter, for the various guided modes supported in this diameter range. The 

nanowire is modelled as a regular hexagonal prism with 𝐿=5 µm, and the diameter here refers to 

the widest length of the nanowire cross-section, as shown in the inset of Figure 1. For these 

calculations, numerical methods were used to calculate Γ and 𝑅 as a function of the nanowire 

diameter for the different guided modes supported (see Supporting Information).  

In Figure 1, the diameter at which the threshold gain is minimized is different for each mode. 

For example, the HE11b, TE01 and TM01 modes have a minimum threshold gain of 1580, 610 

and 550 cm-1 for nanowire with a diameter of 270, 380 and 500 nm, respectively. Overall, for the 

range of diameters considered in the modelling, the threshold gain is lowest for the TM01 mode, 

for nanowire with a diameter of 500 nm. In general, the threshold gain reduces with increasing 

nanowire diameter, as a result of improved mode overlap with the gain medium and larger facet 

reflectivity (see Supporting Information). Since the mode with the lowest threshold gain is the 

most favored mode to lase26, the threshold gain modelling presented in Figure 1 enables us to 

design nanowire lasers that would lase from a particular guided mode. For example, for nanowires 

with diameters in the range 220-270 nm, the HE11b mode has the lowest threshold gain 

requirement and so is likely to lase, whereas for nanowire diameters in the ranges 270-450 nm and 

450-500 nm, the TE01 and TM01 modes have the lowest threshold gain requirement and are likely 

to lase, respectively. We use these calculations to design nanowire lasers that would lase from 

HE11b, TE01 and TM01 modes.  
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InP nanowires with three different diameters were grown using selective-area metal organic 

vapor phase epitaxy on patterned InP substrates (see Methods). The nanowire diameters were 

250±2 nm, 330±5 nm, and 480±20 nm for the three samples, as measured from scanning electron 

microscope (SEM) images (see Supporting Information). The diameter of the nanowires was 

controlled by varying the mask pattern (diameter of etched hole and pitch of the array) and both 

the diameter and length of the nanowires was controlled by varying the growth parameters. The 

growth parameters were adopted from Ref. 10, which enable the growth of stacking fault-free pure 

wurtzite phase InP nanowires, with high quantum efficiencies. The InP nanowires grown for this 

study are expected to be of similar quality. Furthermore, the nanowires are structurally uniform; 

they have a perfect crystallographic flat top end facet and smooth un-tapered side walls (see 

Supporting Information). The flat top end facet functions as a low-loss dielectric mirror for 

waveguide modes supported along the nanowire axis and the smooth un-tapered side walls ensure 

modes are uniformly guided, without change in confinement and without scattering losses, along 

the nanowire. Thus, the high material and structural quality of these nanowires makes them 

suitable as low-threshold lasers and their diameters are appropriate for characterizing lasing from 

different waveguide modes, namely HE11b, TE01 and TM01 modes. 

The as-grown nanowires were transferred onto SiO2 substrates for optical measurements. 

Individual InP nanowires were optically pumped at low-temperature (6 K) in a micro-

photoluminescence (μ-PL) setup (see Methods) and the PL spectrum was measured at various 

pump intensities. The integrated spectral emission, which is proportional to the output power from 

the nanowire, as a function of pump intensity was analyzed for three different nanowires, of 

dimensions: (I) d=250 nm, L=3.9 µm, (II) d=330 nm, L=2.8 µm and (III) d=460 nm, L=8.1 µm 

(see Supporting Information). The variation of the output power with pump intensity for the three 
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different nanowires is shown in Figure 2. The log-log plot of these datasets show a nonlinear ‘S' 

like response, which is the typical threshold behavior of lasers26, 27. Overlaid on the datasets are 

curves calculated from an analytical model for the total output intensity of a laser27, with different 

values of the parameter 𝑥0. This parameter is a dimensionless measure of the spontaneous emission 

rate; it is proportional to the spontaneous emission factor 𝛽 and related to the value 1 𝑝⁄ , where 𝑝 

is the number of resonant cavity modes that can be coupled to within the emission linewidth26. The 

values 𝑥0 =: (I) 0.22, (II) 0.06, (III) 0.018, provide a good fit to the experimental data for the three 

different diameter nanowires, respectively. The ‘S’ like curves describe the transition from 

spontaneous emission (linear regime below threshold) to lasing (linear regime above threshold) 

via amplified spontaneous emission (ASE) (super-linear regime). The sharpness of this transition 

at threshold depends on the value of 𝑥0, or equivalently 1 𝑝⁄ , and becomes less distinct as 𝑥0 

increases, or as 𝑝 reduces. In Figure 1, the sharpness of the transition at threshold is observed to 

be strongly dependent on the nanowire diameter – the gradient at threshold becomes less sharp and 

distinct with reducing diameter. The larger value of 𝑥0, or 𝛽 factor, observed for smaller diameter 

nanowire lasers is a direct consequence of the reduction in 𝑝. 

The lasing spectra just above threshold (P = 1.2*Pth) from the three different diameter nanowire 

lasers are shown in the inset of Figure 2. A dominant lasing peak is observed at this pump intensity 

for each of the nanowire lasers. This lasing peak corresponds to a single axial mode of the Fabry-

Perot type cavity. The other peaks observed in the spectra are due to amplification of other axial 

or transverse modes supported in the cavity. The lasing peaks at 800 nm, 830 nm and 840 nm from 

nanowire lasers I-III have a full width at half maximum (FWHM) of 4.5, 3, 1.5 nm, respectively. 

The lasing peak at 800 nm is composed of two closely spaced peaks, at 799.5 nm and 802 nm (see 

Supporting Information). The spectral position of these two peaks corresponds to the respective 
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wavelength of HE11b and HE11a modes of axial order 24 in this nanowire (see Supporting 

Information). The intensity of the peak at 799.5 nm is about twice as large as the intensity of the 

peak at 802 nm, which suggests that the HE11b mode is the dominant lasing mode in this nanowire. 

This is also consistent with our threshold gain modelling predictions. We note here that other 

transverse modes, other than the mode with the lowest threshold gain, can lase if their threshold 

gain requirements are close to the lowest threshold gain value. In an ideal laser, operating under 

steady-state conditions, multiple transverse modes can lase if the difference in losses between the 

most preferred lasing mode and other modes is of the order 1 √𝑝⁄  or smaller26, where 𝑝 was 

defined previously. We have calculated the range of values above the minimum threshold gain 

value for which the difference in losses are less than 1 √𝑝⁄  (see Supporting Information), shown 

in the grey region in Figure 1. Modes that have threshold gain requirements in this region are likely 

to lase. The threshold gain requirement for the HE11a mode is within this grey region, which is 

possibly the reason we observe multimode behavior from nanowire laser I.  

The nanowire lasers I-III characterized in Figure 2, based on their dimensions, are expected to 

lase from different guided modes. To experimentally characterize the lasing mode, we profile the 

far-field emission from these nanowire lasers. We do this at a pump power just above threshold, 

where the emission spectrum is dominated by a single lasing peak, corresponding to the designed 

lasing mode. Operating close to the lasing threshold prevents the nanowires to lase from other 

possible axial and transverse modes. The possible drift in threshold due to heating is mitigated by 

performing these measurements at low temperature. In the next sections we discuss the mode 

profiling of the nanowire lasers I-III and characterization of the different lasing modes. 
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The spatial intensity profile of laser emission from the three different nanowire lasers was 

obtained using the same setup as to collect the spectra, by using the 0th order of the grating and the 

spectrometer CCD (see Methods). A linear polarizer in front of the spectrometer was used to 

resolve the emission pattern under two different orientations, parallel and perpendicular to the 

nanowire axis. Figure 3 shows the focal plane images of the three different nanowire lasers under 

the two different orientations of the analyzer, at pump power just above threshold. In these images 

the pump laser has been filtered out, and the color bar axes are on a log scale. Intense emission is 

observed from the nanowire end facets, which indicates that the nanowires behave as Fabry-Perot 

type cavities. The spatial pattern of the emission from the end facets is polarization dependent and 

is different for each of three nanowire lasers. Furthermore, the degree of linear polarization is 

different for each of the three nanowire lasers; the polarization ratio, 𝜌 = (𝐼∥ − 𝐼⊥) (𝐼∥ + 𝐼⊥)⁄ , 

measured for the emission above threshold from the three different nanowires is I) -0.06, II) -0.34 

and III) 0.33. This suggests that each of the three nanowire lasers lase from different transverse (or 

waveguide) modes. To investigate this, we performed FDTD simulations to determine the electric 

field intensity profiles in the near-field of the nanowire for different waveguide modes (see 

Supporting Information). The measured dimensions of the nanowire lasers were used for the 

nanowire dimensions in these simulations, and the nanowires were modelled with perfect end 

facets, although one end facet of the nanowire is rough due to uneven breaking during the transfer 

process (see Supporting Information). The surface roughness of the end facet results in greater 

scattering and distorts the mode profile, which is evident in the images shown in Figure 3b-c (the 

rough end corresponds to the bottom end in these images).  

The polarization resolved electric field intensity profiles in the near-field of the nanowire for the 

different waveguide modes is shown in Supporting Information. Since the optical modes in the 
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nanowire are fully vectorial13, all three electric field components are non-zero. The polarization 

resolved near-field profiles parallel and perpendicular to the nanowire axis for the HE11b, TE01, 

TM01 modes (see Supporting Information) correlate qualitatively with the experimentally 

obtained far-field profiles shown in Figure 3a-c, respectively. The differences between the 

experimental and simulated profiles are because; in the experiment, the polarization analysis is 

performed on the far-fields, in the parallel light path behind the infinity corrected objective lens, 

and in simulations, we resolve fields in the near-field of the nanowire laser. Though the 

polarization resolved far-field mode profiles can be calculated from the simulation data by further 

analysis, the simulated near-field spatial profiles already provide a qualitative basis to distinguish 

different lasing modes and suggest that the nanowire lasers of diameters 250 nm, 330 nm, 460 nm, 

lase from HE11b, TE01, TM01 modes, respectively, which is also consistent with the threshold 

gain predictions from Figure 1.  

The polarization dependent focal plane images shown in Figure 3 demonstrate a simple method 

to profile different lasing modes in nanowire lasers. However, these intensity profiles do not 

provide information on the directionality of emission. Experimental characterization of the 

directionality of the laser emission is required for appropriate integration of these devices with 

other optical components. The directionality of the far-fields can be experimentally characterized 

by imaging the back focal plane (BFP), or Fourier plane, of the objective lens, since on this plane 

the far-fields are resolved in angular coordinates28. In our μ-PL setup, we placed an additional 

imaging lens (f=250 mm) and a CCD camera to image the BFP. The lens was placed at a distance 

2f from the BFP, and the CCD camera was placed at a distance 2f from the lens, in order to have 

1:1 correspondence between the image planes. A filter was also used to filter out the emission from 

the pump laser.  
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The BFP images of the three nanowire lasers of diameters 250 nm, 330 nm, 460 nm, at pump 

intensity just above threshold are shown in the left hand panel of Figures 4a-c, respectively. The 

angular coordinates are overlaid on these images, where 𝜃 corresponds to the solid angle of 

emission and 𝜙 corresponds to the azimuthal angle of emission. The nanowires are orientated 

horizontally (𝜙=0°, or 180°) in these images. Distinct interference fringes that are perpendicular 

to the nanowire axis are observed above threshold. These interference fringes are due to spatially 

coherent emission from the nanowire end facets, and are analogous to the interference fringes 

observed when two slits are illuminated by a spatially coherent source, as in Young’s double slit 

experiment29. The spacing of these fringes across the BFP depends upon the nanowire length (𝐿) 

and the emission wavelength (𝜆). The position offset of these fringes with respect to the center of 

the BFP depends on the phase difference between the emission from the nanowire ends20, 30, which 

in turn depends on the axial order, or parity, of the lasing mode(s)20, and the mode type (see 

Supporting Information). The visibility of the interference pattern depends on the degree of first 

order coherence of the emission and the spectral purity (strong and narrow emission at a single 

frequency). Well below threshold, due to spectrally broad and incoherent spontaneous emission, 

no interference fringes are observed across the BFP. The visibility of the interference fringes 

increases by either increasing the material gain, in order to amplify the spatially coherent emission 

above the strong spontaneous emission background, or by spectrally resolving the emission20. The 

line plots below the BFP images, in the left hand panel of Figures 4a-c, show the intensity along 

the line 𝜙=0° or 180° of the BFP, which corresponds to the plane aligned with the nanowire axis. 

Sinusoidal variation in the intensity as a function of angle is evident in all line plots. The irregular 

peak at 𝜃=8° and 𝜃=0° in the line plots of Figures 4a and b, respectively, are due to the strong back 

reflection of the pump laser from the substrate, which was not adequately filtered out by the filters. 
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These irregular peaks suggest that the sample in Figure 4a was slightly inclined (at an angle 8°) 

with respect to the optical axis of the objective lens during measurements, whereas the sample in 

Figure 4b was perpendicular to the optical axis of the objective lens.  

The intensity fringes observed in BFP enable the length of the nanowire to be easily determined. 

Overlaid on the line plots of the data in Figures 4a-c are fits obtained from a simple model for the 

nanowire laser far-field emission pattern (see Supporting Information). In this model the nanowire 

ends are modelled as two point sources that are a distance 𝐿 apart, where 𝐿 is the nanowire length. 

The wavelength of the emission is taken from the spectral measurements of the nanowire lasers 

(inset of Figure 2) and the phase difference is chosen to fit the data (see Supporting Information 

for parameter values). The fits to the data shown in the line plots in Figures 4a-c, give estimates 

of 𝐿 of 3.5, 2.81, 8.14 μm, respectively, which are consistent with the measured length of the 

nanowires from SEM images. 

The fits obtained from our simple analytical model explain the spacing of the interference 

fringes. In the left hand panel of Figures 4a-c, we observe that the intensity of the interference 

fringes is modulated across the BFP and the intensity variation is different for each of the nanowire 

lasers characterized. This is because the angle-resolved far-field emission patterns of the nanowire 

lasers are a product of the interference pattern resulting from the spatially coherent emission from 

nanowire ends and the far-field emission pattern of the different lasing modes. To verify this, we 

placed a linear polarizer in front of the CCD camera to resolve the emission patterns under two 

orthogonal directions, parallel and perpendicular to the nanowire. The experimentally obtained 

BFP images for the three different nanowire lasers under different orientations of the polarizer are 

shown in right hand panels of Figures 4a-c. The direction of the polarization axis is indicated by 

the white arrow on the top right hand corner of these images. Interference fringes are observed in 



 

 

12 

all these polarization resolved images, but they are clearly modulated in intensity across the BFP. 

The polarization resolved far-field intensity patterns are distinct and unique for all the three 

different samples studied, and indicate that it may be possible to unambiguously identify the lasing 

modes based on these distinct far-field patterns. 

We have performed FDTD simulations to calculate the angle-resolved far-field pattern for 

different guided modes, in a nanowire laser that is lying horizontally on a substrate (see Supporting 

Information). The measured dimensions of the nanowire lasers from SEM images were used for 

the nanowire dimensions in these simulations, and the mode wavelength was taken from spectral 

measurements (inset of Figure 2). The far-field is calculated for the emission into air, in the upper 

hemisphere perpendicular to the substrate, for solid angles less than 44.4°, which corresponds to a 

numerical aperture (NA) of 0.7 used in experiments. The simulated far-field patterns for HE11(a,b), 

TE01 and TM01 modes are shown in Figures 4d-f, respectively, where the total electric field 

intensity is shown on the left hand panel and the polarization resolved field intensity patterns, 

parallel and perpendicular to the nanowire axis, are shown on the right hand panel. The polarization 

resolved intensity patterns shown here have been corrected for the phase shift due to transmission 

through the sapphire window, which was used in the cryostat in our low-temperature μ-PL 

measurements (see Supporting Information). The phase shift due to the birefringence of the 

sapphire window results in significant modification of the polarization of the far-fields and is the 

main reason for the low polarization anisotropy of the lasing emission observed in our experiments. 

The polarization ratio, 𝜌, calculated by integrating the simulated far-fields across the BFP, in 

Figures 4d-f, is -0.09, -0.37 and 0.41, respectively. These values are consistent with the 

polarization ratios calculated for the three different nanowire lasers from experiments. The un-
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corrected polarization resolved mode far-field intensity patterns and their polarization ratios are 

provided in the Supporting Information.  

The system corrected far-field patterns of different guided modes in Figures 4d-f correlate well 

with our experimental results and enable us to unambiguously identify the lasing modes in 

nanowire lasers I-III. In Figure 4d, the simulated far-field patterns shown are a superposition of 

the far-field patterns of both HE11a and HE11b modes. The mode wavelength was 800 nm in these 

simulations, corresponding to the dominant peak observed at 𝜆800 nm in the spectra for nanowire 

laser I (see inset of Figure 2). There other peaks in the spectra corresponding to different axial 

modes and the tilt of the sample with respect to the optical axis were not modelled in the 

simulations. We find that the simulated far-field patterns only match our experimental data when 

we superimpose far-field patterns for both HE11a and HE11b modes, with the intensity ratio of 1:3, 

respectively. Any other combinations of the relative intensity of the modes do not match with our 

experimental data. This suggests that both HE11 modes are observed in the emission from 

nanowire laser I, but the emission is dominated by HE11b mode, since it has a lower threshold gain 

requirement (see Figure 1). For nanowire lasers II and III, the system corrected far-field patterns 

for TE01 and TM01 modes in Figures 4e-f correlate well with the experimental data shown in 

Figures 4b-c, respectively. Thus nanowire lasers II and III lase from TE01 and TM01 modes, 

respectively.  

In this study we have used the Fourier plane imaging technique to characterize the lasing modes 

in semiconductor nanowire lasers. This characterization technique is straightforward to implement 

in standard μ-PL system and does not require nanowire lasers to be free-standing or suspended off 

from the substrate. Since this technique is applicable to nanowire lasers that are lying on a 

substrate, it can be used for characterizing nanowire lasers and LEDs that have been integrated 
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with other optical components, such as waveguides and gratings14, 31-33. Moreover, it enables the 

directionality and polarization of the far-fields to be measured experimentally, which will aid the 

design of integrated components for better out-coupling of light and/or collimating light from 

nanowire lasers. In general, our approach can be applied to characterize ASE/lasing modes in other 

types of nanolasers34-36, which are also integrated on a substrate in either horizontal or vertical 

configurations. For nanolasers that behave as Fabry-Perot like cavities, this characterization 

technique enables an alternative way to determine the cavity length, without relying on SEM 

characterization methods, which can have degrading effects on the performance of the device due 

to electron beam damage. 

Methods 

Nanowire growth. InP nanowires were grown on patterned (111)A InP substrates using 

selective-area metal organic vapor phase epitaxy (SA-MOVPE). For patterning the substrates, 30 

nm SiO2 mask layer was first deposited on the substrates and then electron beam lithography (EBL) 

was used to write a pattern consisting of hexagonal arrays of circles. The pattern was then 

transferred to the SiO2 mask by etching using buffered hydrogen fluoride (BHF) solution. A trim 

etching step using phosphoric acid solution was used to remove a thin layer of the exposed InP 

within the holes. The patterned substrates were then loaded into a horizontal flow low pressure 

(100 mbar) MOCVD system (Aixtron 200/4) and annealed at 750 °C for 10 min under a phosphine 

(PH3) protective flow. The nanowires were grown at 730 °C for 20 min with trimethylindium 

(TMIn) and PH3 at a flow rate of 6.1×10-6 and 4.9×10-4 mol/min, respectively. The total hydrogen 

(H2) flow into the reactor was 15 L/min. 
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Optical characterization. A frequency-doubled solid-state laser (femtoTRAIN IC-Yb-2000) 

was used to pump individual nanowires (λpump = 522 nm, repetition rate 20.8 MHz, pulse length 

300 fs) with a spot-size of 8.5 μm. Individual nanowires were excited through an aberration 

corrected 60x/0.70 numerical aperture, long working distance objective lens (Nikon CFI Plan 

Fluor) and the resulting emission was collected through the same objective. The collected light 

was spectrally filtered to remove the pump laser wavelength. Spectral measurements were made 

using a grating spectrometer (Acton, SpectraPro 2750) and a charge-coupled device (CCD) 

(Princeton Instruments, PIXIS). The focal plane of the lasing nanowires was imaged using the 0th 

order of the grating and the spectrometer CCD. The back focal plane of the objective lens was 

imaged using a thin lens (f = 250 mm) and a separate CCD (Nikon DS-5Mc). For polarization 

analysis, a linear polarizer was inserted in the parallel beam path in the optical system, and the 

polarization axis of the polarizer was rotated to match the orientation of the nanowire. The low 

temperature experiments used He-cooled cryostat (Janis research) with a 0.019 inch thick 

chemically polished 0 sapphire window, through which the samples were optically excited and 

emission collected. 
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FIGURES  

 

Figure 1. Threshold gain for single InP nanowire lying on a SiO2 substrate. The threshold gain 

for different guided modes is modelled as a function of the nanowire diameter. The nanowire has 

a hexagonal cross-section and the diameter is defined as the widest length of the cross-section, as 

shown in the inset. The threshold gain is calculated using 𝛤𝑔𝑡ℎ~𝐿−1 ln(1/𝑅), where 𝑅 is the mode 

reflectance at the nanowire/air interface, 𝛤 is the mode confinement factor and 𝐿 is the cavity 

length. The mode reflectance and confinement factor for different modes was numerically 

evaluated using FDTD simulations (see Supporting Information) and 𝐿= 5 μm was used for these 

calculations. The region shaded in grey defines the values for which the difference in losses 

between the lowest-𝑔𝑡ℎ modes is less than 1 √𝑝⁄ , where 𝑝 is the number of cavity modes that can 

be coupled to within the emission spectrum. Modes with threshold gain values in this region are 

likely to lase. 
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Figure 2. Lasing characteristics of three different optically pumped single InP nanowires. 

Lasing characteristics at low temperature (6 K) from three different InP nanowires of dimensions: 

(I) d=250 nm, L=3.9 μm, (II) d= 330 nm, L=2.8 μm, (III) d=460 nm, L=8.1 μm. The normalized 

output power versus pump intensity shows ‘S’ like behavior, which characterizes the transition 

from spontaneous emission to lasing via amplified spontaneous emission. The lines are calculated 

using Equation 23 in Ref 27, with values of the parameter 𝑥0 = (I) 0.22, (II) 0.06, (III) 0.018, which 

provide a good fit to the experimental data. The ‘S’ like curve evolves from a sharp transition for 

large diameter nanowires to a soft transition for small diameter nanowires. The lasing spectra from 

these three nanowires, at pump intensity just above threshold (P = 1.2*Pth), is shown in the inset. 
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Figure 3. Polarization resolved focal plane images of three different InP nanowire lasers. The 

optically pumped InP nanowires were imaged above threshold, at pump intensity P = 1.2*Pth, with 

the pump laser filtered out. An analyzer was placed in front of the camera to resolve the 

polarization of the laser emission, both parallel and perpendicular to the nanowire axis. The white 

arrow at the top right hand corner of each image indicates the direction of the polarization axis of 

the analyzer. The lasing emission pattern from three nanowires, of diameters 250, 330 and 460 

nm, is shown in a-c, respectively. The outline of the nanowire in each pattern is also shown. The 

polarization resolved images show distinct spatial patterns at positions corresponding to the 

nanowire end facets. The emission patterns are different for each of the three samples studied, and 

correspond well to far-field profiles of HE11b, TE01 and TM01 modes, respectively (see 

Supporting Information). The color bar axes are on a log scale and the same color scale is used for 

each of the two different polarization images in a-c. The emission is predominantly polarized 

perpendicular to the nanowire in b and parallel to the nanowire in c. 
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Figure 4. Mode characterization based on Fourier space imaging and numerical modelling 

of the far-field profiles. The experimentally obtained angle-resolved far-field emission patterns 
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from three InP nanowire lasers are shown in a-c and the simulated angle-resolved far-field patterns 

of HE11(a,b), TE01 and TM01 waveguide modes are shown in d-f, respectively. The top left hand 

image in each panel in a-f is the far-field intensity pattern and the right hand images in each panel 

are the polarization resolved far-field intensity patterns. The nanowire is orientated in the 

horizontal direction in each image, and the polarization is resolved parallel and perpendicular to 

the nanowire axis. The line plots in the bottom left of each panel shows the intensity modulation 

of the far-field pattern at 𝜙=0 or 180. In a-c the line plot of the experimental data is shown in 

grey and the intensity pattern calculated from an analytical model (see Supporting Information) is 

shown in red. In e-f, the line plot of the lasing mode far-field pattern obtained from FDTD 

simulations is shown. For the analytical calculations and FDTD simulations, the measured 

dimensions of the nanowire lasers I-III and their lasing wavelength were used (see Supporting 

Information). 
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