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SUMMARY

Metal molybdates of iron, cobalt and nickel, were found to be catalysts for the gas 

phase oxidative dehydrogenation of n-octane to octenes. Other products formed 

included; carbon oxides, aromatic species, cracked oxygenate species and cracked 

hydrocarbon products of the octane. 

Iron molybdate in the ferrous form was shown to exhibit much greater selectivity to 

octenes than when in the ferric form. Cobalt and nickel molybdates were also tested 

and found to be active catalysts, but exhibited greater selectivity to carbon oxide and 

aromatic products than iron, which produced the greatest selectivity to octenes. 

A variety of conditions were tested for the catalytic oxidative dehydrogenation of n-

octane, including; reactor bed temperature, contact time, carbon to oxygen ratio in 

the gas feed and concentration of n-octane. This was done to discover the optimal 

conditions for the catalytic production of octenes. A maximum selectivity of 85.4% to 

octenes with an n-octane conversion of 7.8% was found. 

Investigations were carried out to elucidate the mechanism and route of formation of 

the products found, including comparison with previous literature on the molybdenum 

based catalysts for the oxidative dehydrogenation of hydrocarbons. It was found that 

the ferrous iron molybdate phase, FeMoO4, was responsible for the production of 

octenes. Molybdenum oxides of the dioxide and trioxide form were associated with 

the production of aromatic species. While lattice oxygen was used in producing 

octenes via oxidative dehydrogenation, suggesting a Mars and van Krevelen style 

mechanism, carbon oxide production was found to be produced via oxygen from the 

gas feed.   

Analysis of the catalysts before and after the reaction was carried out with a variety of 

techniques including X-ray powder diffraction, Raman Spectroscopy and X-ray 

photoelectron spectroscopy. 
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ABSTRACT

This work studies the gas phase oxidative dehydrogenation (ODH) of n-octane to 

produce octenes, catalysed by metal molybdates of the formula AMoO4, where A 

equals iron, cobalt or nickel in the +2 oxidation state. An in-situ reduction study from 

previous work had shown that iron molybdate where iron is in the +2 oxidation state is 

a superior catalyst to an iron molybdate catalyst with iron in the +3 state. This was 

tested and found to be the case. Subsequently all iron molybdate catalyst testing was 

performed with iron molybdate where iron is in the +2 oxidation state. This was 

achieved through a pre-reduction step in catalyst preparation. 

The pre-reduced iron molybdate catalyst with a 2.7:1 molar excess of molybdenum to 

iron was found to be composed of the species FeMoO4 + Mo4O11. This catalyst 

exhibited high selectivity to octenes from an n-octane feedstock at 400 °C in a plug 

flow reactor. Changes in gas hourly velocity (GHSV) and temperature (ranging from 

350-550 °C) affected catalyst activity and selectivity, as did varying the ratio of carbon 

to oxygen in the gas feed. 

Optimum conditions for the production of octene were found to be; 400 °C reactor 

bed temperature, 4000 h-1 GHSV and an 8:1 carbon to oxygen ratio, no carbon oxides 

were observed at these conditions. Increasing temperature results in higher 

conversion of n-octane but lower selectivity to octenes. Aromatic species become the 

major products at higher temperatures. Carbon oxide selectivity also rises with 

temperature.

Increasing partial pressure of oxygen in the gas feed leads to higher conversion but the 

major products formed are carbon oxides. Lowering the level of oxygen from an 8:1 

carbon to oxygen ratio saw lower conversions with similar selectivity. This suggested 

oxidative dehydrogenation was occurring. 

Lowering the GHSV from 4000 h-1 to 1000 h-1 resulted in product selectivity to aromatic 

species, ethyl benzene, xylene and styrene. Higher conversion as a result of greater 

contact time between catalyst and product was observed. Styrene and xylene 

selectivity increased in line with temperature, while selectivity to ethyl benzene fell, 
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suggesting a competing pathway between aromatic formation, or that ethyl benzene 

underwent further dehydrogenation to styrene.

Increasing GHSV to 6000 h-1 resulted in an even greater selectivity to octenes than 

4000 h-1. However conversion was lower, likely due to contact time effects. These 

findings suggested that the product selectivity from n-octane over an iron molybdate 

catalyst has a strongly kinetic element. 

Increasing the concentration of n-octane in the gas feed showed a shift in the optimal 

conditions for the production of octene. A higher GHSV was required to yield octenes 

as the dominant product, this had the unfortunate effect of lowering conversion 

percentage. While this was off-set in some way by the increased concertation of n-

octane it does suggest future difficulties on scaling up the process. 

Time on line studies showed the catalyst was stable at temperatures of 550 °C for 20 

hours or more. 

In addition anaerobic studies were carried out on the catalyst were tested to elucidate 

the mechanism of the catalyst. The change in selectivity and activity showed the 

catalyst most likely operates by a Mars and van-Krevelen type system. After oxygen 

deprivation for 25 hours catalyst deactivation occurred. Analysis showed both carbon 

laydown and reduction of the molybdenum lattice from Mo4O11 had occurred. 

Product selectivity analysis indicated that lattice oxygen from the iron molybdate or 

the bulk Mo4O11 phase was responsible for the ODH of n-octane to octene. Carbon 

oxides were formed via oxygen in the gas feed. 

Stoichiometric nickel molybdates and cobalt molybdates were prepared and compared 

against nickel and cobalt molybdates with a molybdenum molar excess of 1.5:1 for the 

catalytic conversion of n-octane to octene. These catalysts were then compared 

against stoichiometric iron molybdate (FeMoO4) to compare catalytic effectiveness. 

Iron molybdate outperformed nickel molybdate and cobalt molybdate which have 

been more heralded ODH catalysts in the literature. Cobalt molybdate was found to 

exhibit high selectivity to aromatic species while nickel molybdate produced carbon 

oxides and cracked hydrocarbon products. Nickel molybdate and cobalt molybdate 
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with an excess of molybdenum performed better as catalysts than stoichiometric 

nickel and cobalt molybdates. 
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GLOSSARY OF TERMS

BE – Binding Energy

C:O ratio – Carbon to Oxygen ratio

EDX – Energy Dispersive X-rays

GC – Gas Chromatograph

GHSV – Gas Hourly Space Velocity

MP-AES – Multi Plasma Atomic Emission Spectroscopy 

MvK – Mars-Van Krevelen

ODH – Oxidative dehydrogenation

TGA – Thermogravimetric analysis

XPS – X-ray photoelectron spectroscopy

XRD – X-ray Diffraction

XRPD – X-ray Powder Diffraction
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1
CHAPTER 1 – LITERATURE REVIEW AND INTRODUCTION

1.1 OVERVIEW OF CATALYSIS

Catalysis is a term coined by Berzelius from the Greek “kata” which means down and 

“lysis” which translates as loosening.1,2 It can be defined as a substance or material 

which increases the rate at which a chemical reaction reaches equilibrium without 

being consumed or chemically altered. 

Berzelius defined a catalyst as “a material that enhances the rate and selectivity of a 

chemical reaction without itself being consumed in the reaction”.

For molecules to react, a minimum activation energy (Eact) must be reached. A catalyst 

allows the activation energy to be lowered by providing an alternative reaction 

pathway.3 As a result a greater number of molecules have a Gibbs free energy which is 

greater than that of the activation energy and thus more reactant molecules can come 

together and react. The Gibbs free energy (ΔG) is equal to the sum of enthalpy and the 

product of temperature and entropy within a system. This is shown as

ΔG = ΔH –TΔS

Where 

ΔH is the change in enthalpy 

T is temperature

ΔS is the change in entropy. 

Catalysts affect the rate of the reaction and not the thermodynamics, this was shown 

by Ostwald.3 This means they can be used to improve the rate of reactions that may 

otherwise take a long time or require high levels of pressure and heat. 
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Figure 1.1 – Basic illustration of the concept of catalysis and its effect on Eact.

When considering Figure 1.1 it can be seen there are reaction barriers. These are 

represented by the raised curves. The top of the curve can be referred to as ΔG‡ which 

is the Gibbs free energy of the transition state, between the reactant and product. This 

is linked to the ideas of Arrhenius who observed the rate of a reaction is dependent 

upon temperature. 

ΔG‡ = -RTlnK

Where 

R is the ideal gas constant

T is the absolute temperature

K is the equilibrium constant

The relationship between the activation energy and the rate constant (k) can be shown 

by Arrhenius equation.

k = Ae -ΔG‡/RT

Where A is the Arrhenius constant and k is the rate constant.

This leads to:

lnk = (-ΔG‡ / RT) + constant
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When ΔG‡ is at zero  the rate constant is given as k0. This is a diffusion limited constant 

and can be given as.

k = k0 e [-ΔG‡ / RT]

In summary a catalyst lowers the activation energy barrier of a reaction, this allows 

more molecules to reach a transition state, this then results in an increase of the rate 

at which chemical equilibrium is reached. 

Catalysis is divided into two main groups. Homogeneous and heterogeneous catalysis. 

Homogeneous catalysis is when the catalyst is in the same phase as the reactants and 

heterogenous catalysis is when the catalyst is in a different phase. Homogeneous 

catalysis is generally liquid-liquid processes.4 A common example would be acid/base 

catalysed hydrolysis of esters.5 Advantages of homogeneous catalysis is that product 

selectivity is high and low reaction temperatures (≤200 °C) are required. The challenges 

associated with homogeneous are separation of products and recycling of the 

catalyst.6

Heterogeneous catalysis generally occurs with a solid catalyst with gaseous and/or 

liquid reactants.7 This approach tends to give high activity but challenges arise with 

selectivity to the desired product. Higher reaction temperatures are used in 

heterogeneous catalysis (rising to 600 °C).8 Separation of the catalyst is relatively easy 

but the high temperatures mean the reactions can be very energy intensive. An 

example of heterogeneous catalysis all chemists will be familiar with is the Haber-

Bosch process for ammonia production.9

As this work focuses on the heterogeneous catalytic process of oxidative 

dehydrogenation of alkanes with molybdates, the next part of this chapter looks at 

heterogeneous catalysis in more detail.

1.2 HETEROGENEOUS CATALYSIS

It has been reported that a clear majority (80%) of all catalytic processes performed in 

industry are heterogeneous.10
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In addition to the aforementioned Haber-Bosch process, many other processes rely on 

heterogeneous catalysts. Methanol synthesis form syngas on a copper catalyst 

supported on zirconia,11 nitric acid synthesis using a platinum gauze, ethylene 

epoxidation12 are just three examples. 

As it relates to a similar field to the study of this work, it is worth mentioning the 

Fischer Tropsch (FT) process which converts syngas (CO and H2) to alkanes. Often 

cobalt based catalysts are used.13 The syngas is produced from coal and natural gas 

and is then converted into liquid alkane products. 

Although not exclusively true14, an overview of the literature shows that most 

heterogeneous catalysts are transition metal based. Precious metals such as Pt, Au and 

Ag on ceramic supports are widely used.15–17 Ceramic oxides include MgO, SiO2 and 

Al2O3 among others. The advantages of these ceramic supports are their high degree 

of thermal stability and lack of reactivity. It should be noted that here is an entire field 

of catalytic science that looks at catalyst support interactions. However recent 

research has shown that metal oxide supports can interact with the catalyst in ways 

previously unthought of18 so these ceramic and metal oxide supports should not be 

blithely dismissed as mere spectators in heterogeneous catalysis. 

Mixed metal oxides such as MMoO4 where M is a transition metal, or metal vanadate 

species19,20 are also widely used in alkane activation and partial oxidation. These 

catalysts exhibit versatility due to their redox properties, and the differing phases 

present. 

1.3 THE PETROCHEMICAL INDUSTRY AND THE 
ACTIVATION OF ALKANES

Alkanes come in a variety of masses, from so called “light” hydrocarbons such as ethane, 

to medium length liquid hydrocarbons such as octane, through to “heavier” species such 

as dodecane. Increasing the carbon number in this manner ends up yielding waxes. 

While alkanes are the most commonly occurring hydrocarbon species, alkenes and 

alkynes possess greater functionality and are thus more desirable from an industrial 

standpoint. 
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Light alkenes such ethane are often produced via steam cracking.21 Steam cracking is an 

non-catalytic process. The process works by a hydrocarbon feedstock such as naptha 

being vaporised with superheated steam. The naptha is then cracked to to small 

hydrocarbon moelcules via a free radical mechanism. Temperatures used can range 

from 750-1100 °C.22 The light alkene products are then manufactured into plastics, fibres 

and pharmaceuticals.23, 24 As would be expected this process is incredibly energy 

intensive. Naptha pyrolysis consumes an estimated 75% of the energy input.22 Following 

pyrolysis the hydrocarbons are passed along transfer line exchangers, which leads to 

heat dissipating. Aromatic and gasoline products are condensed and fractioned. 

Figure 1.2 Scheme of isopentene cracking on H-zeolites as outlined and from

Bortnovsky et al.24

As steam cracking is so energy intensive catalytic cracking offers a lower energy route to 

obtaining light alkenes. Zeolites are a common catalyst used to crack larger 

hydrocarbons into lighter fractions.25,26 A zeolite is a hydrated aluminosilicate which has 

a complex 3-D structure which can be used as a molecular sieve. They often have acidic 

properties. Fluidised catalytic cracking (FCC) is an acid cracking process catalysed by ZSM 

zeolites, which possess Bronsted acid sites.27,28 FCC is estimated to produce 30% of the 

world’s propene via naptha cracking. The operating conditions for FCC are at 600 °C or 

lower, which makes it a less energy consuming procedure than steam reforming 

processes.22
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The reason zeolites are used in FCC is that one of the challenges in maximising yield and 

conversion of short chain alkenes is prevention of branched alkanes (isomers of the 

original feedstock) forming. The structure of the zeolite can act as a shape selective 

molecular sieve which prevents branched isomers from forming. 

Catalytic dehydrogenation is a catalytic process that has huge industrial impact, as “it 

represents a route to obtain alkenes from low cost saturated hydrocarbons”.29,30 Early 

work in the area (ca.1970) looked at converting n-butane to butene and butadiene 

which are precursors to synthetic rubber.29 over time propene and isobutene became 

increasingly important products from this process, with propene being a prerequisite 

for polypropylene and isobutene having applications as a fuel additive. As a result of 

this, there is far more literature on the catalytic dehydrogenation of short chain 

alkanes than intermediate (C6 – C10) saturated hydrocarbons. 

The CATOFIN process is used industrially by Lummus to produced propene and 

isobutene. Selectivity to isobutene from isobutene exceeds 90 mol%, while selectivity to 

propene from propane exceeds 86 mol%. The catalyst is used CrOx/Al2O3 system31 first 

reported by Freye and Huppke in 1933.32 Operating temperatures are around 600-650

°C.

Another industrial process that involves dehydrogenation of alkanes is the Honeywell 

UOP Oleflex process.33 This is used for C3 and C4 hydrocarbons and boasts an alkene 

selectivity of ca.91%.  A Pt/Sn/Al2O3 catalyst is used.

Honeywell UOP also conducts the PACOL process34 “which can be applied to the 

dehydrogenation of heavy paraffins in the C6 - C2o range”.34 A platinum 

dehydrogenation deposited on alumina (which can be modified with rhenium) catalyst 

is used.35 Platinum has been shown to exhibit high catalytic activity for the conversion 

of alkanes to alkenes. This was originally found by Bloch, who found that Pt catalysts can 

be used to dehydrogenate medium-long chain alkanes to mono-alkenes. This was of 

importance as there are multiple sites on a longer alkane for dehydrogenation to 

occur.36
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The main drawback of dehydrogenation are the thermodynamic constraints. The 

reaction is strongly endothermic,37 this requires high temperatures to be maintained in 

the reactor to drive the reaction. Temperatures of over 550 °C are typically required. 

The high temperatures can lead to undesirable side reactions such as coke depositing 

which can lead to catalyst deactivation over time. As the catalysts for the Honeywell 

processes are made from expensive materials this is doubly unwanted. Le Chatelier’s 

principle limits alkane dehydrogenation and so higher conversion requires lower 

pressures or higher temperatures.38 As a result of these issues, oxidative 

dehydrogenation has emerged as a potential rival process.

1.4 OXIDATIVE DEHYDROGENATION

The oxidative dehydrogenation (ODH) of alkanes is another pathway for the formation 

of alkenes. It poses less thermodynamic constraints, as it is an exothermic reaction it can 

be operated under milder conditions, as a result it does not need the elevated reactor 

temperatures required for dehydrogenation. While catalytic dehydrogenation requires 

continuous catalyst regeneration,39 this is not required for alkane ODH. 

The idea behind ODH is that oxygen in the gas feed reacts with the hydrogen that is 

abstracted in the dehydrogenation step and forms water.40 It is this, the oxygen 

accepting the hydrogen and forming water that makes it an endothermic reaction.  The 

overall equation is shown here.

CnH2n+2 + 1/2O2 → CnH2n + H2O

The formation of water also removes hydrogen from the system, which shifts the 

equilibrium towards the formation of more dehydrogenated products due to le 

Chatelier’s principle. Coke deposits that occur on the catalyst surface in 

dehydrogenation are burnt off with the oxygen present in the system, this can extend 

catalyst lifetime. 
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However, catalytic ODH has several drawbacks. Firstly the levels of oxygen and alkane 

in the gas feed must be monitored to prevent the reaction mixture being within 

explosive limits. Secondly, the presence of oxygen can lead to side reactions or 

competing reactions (such as combustion) which lower selectivity and ultimately 

alkene yield. Stern and Grasselli41 proposed a reaction mechanism for the ODH of 

propane to propene, and attempted to answer why aldehyde and carboxylic acids 

were resulting products.  In Figure 1.3 shows the mechanism proposed by Stern and 

Grasselli. They state that oxidative dehydrogenation occurs in step 1 yielding 

“propylene as the exclusive primary product”. They propose that propylene then 

undergoes a secondary oxidation step to acrylaldehyde (also known as acrolein). 

They state that “the relative rate of acrolein formation from propylene is 3.5 times 

that of propylene formation from propane, the rate of COx formation from acrolein is 

13 times that of acrolein formation from propylene, and the rate of COx formation 

from acrolein is 46 times that of propylene formation from propane.” So from a kinetic 

perspective reaction pathway 1 in Figure 1.3 is the slowest and reaction pathway 3 is 

the fastest. 

Figure 1.3 Proposed mechanism for the ODH of propane by Stern and Grasselli.41

The selective oxidation of propane to propylene (pathway 1) and propylene to acrolein

(pathway 2) are both reported by Stern and Grasselli to be zero order with regards to 

oxygen and first order regarding hydrocarbon (propane and propylene, respectively).41

The oxidation reaction leading to the formation of CO and CO2 was found to be half 

order in oxygen, and with a Langmuir style dependence regarding propylene. Stern and 

Grasselli also found that propylene competed for the same metal oxide sites as 
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propane molecules, with the reported effectiveness being on the same order of 

magnitude.41

The concentration of oxygen in the gas feed relative to the alkane can affect the 

selectivity to products.42 An excess of oxygen results in higher conversion, but can lead 

to combustion and the formation of carbon oxides. ODH will be mostly selective to 

alkenes.43 Limiting the  steps 2 and 5 in Figure 1.3 is the strength of relative allylic 

bonds. The allylic bond of the alkane is notably weaker than that of its corresponding 

alkene.44,45

Recently the oxidative dehydrogenation of longer chain alkanes (C6 and larger) has 

been investigated.42 Friedrich et al have looked at the ODH of hexane46 over a nickel 

molybdate catalyst. Other work has examined the effect of a cobalt molybdate on n-

octane ODH.47 Hydrotalcite catalysts have also been investigated for n-oxctane ODH.48

Other work has examined the catalytic activity of vanadium based catalysts for n-

octane ODH.49

Both molybdenum50 and vanadium51,52 based ODH catalysts  tend to proceed via a 

catalytic mechanism known as the Mars van-Krevelen reaction.53,54 It is this which will 

be next examined.

1.5 THE MARS-VAN KREVELEN MECHANISM

Within heterogeneous catalysis, a molecule adsorbs onto the catalyst surface, reacts 

with another molecule and a molecular product desorbs. 

Thus it is of interest to elucidate the mechanism by which this happens. If the 

reactants adsorb from the gas phase and react together at the surface the reaction 

mechanism is labelled as a Langmuir-Hinshelwood mechanism.55 If only one of the 

reactant (species A) adsorbs to the catalyst surface and then reacts with the other 

reactant molecule (reactant B) this is labelled an Eley-Rideal style mechanism.56
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Figure 1.4 Schematic of a simplified Langmuir-Hinshelwood reaction mechanism.

Figure 1.5 Schematic of a simplified Eley-Rideal reaction mechanism.

This work however focuses on molybdenum based mixed metal oxide catalysts, which 

activate the C-H bond of an alkane molecule, and through oxygen insertion at the 

adsorbed alkyl species catalyse oxidative dehydrogenation. The mechanism by which 

this occurs is called the Mars-Van Krevelen mechanism. 

Lattice oxygen from the catalyst abstracts 2 hydrogen atoms from the alkane, forming 

water. The hydrocarbon molecule then desorbs from the catalyst surface as an alkene.
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Figure 1.6 Representation of the Mars-Van Krevelen mechanism.

As a catalyst should be definition not be consumed by the reaction, the gaseous 

oxygen in the reaction gas feed replenishes the catalyst. 

1.6 OBJECTIVES OF THIS RESEARCH.

This work examines the activity and selectivity of metal molybdate catalysts for the 

oxidative dehydrogenation of n-octane. The overall aim is to develop a catalyst capable 

of highly active and selective ODH of medium to long chain alkanes to mono-alkenes. 

This process may eventually improve on the existing Honeywell UOP PACOL process 

which as mentioned earlier, is very energy intensive and requires its Pt catalyst to 

undergo a regeneration step due to coke deposition. This thesis builds upon previous 

work done by research students in Cardiff Catalysis Institute.57,58
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1.7 LITERATURE REVIEW

1.7.1 VANADIUM CATALYSTS

Vanadium oxide based catalysts have been used for the selective oxidation of methane 

to formaldehyde59, the conversion of butene to 1,3-butadiene via oxidative 

dehydrogenation60, and the oxidative dehydrogenation of ethane.61

The production of maleic anhydride from n-butane using vanadium phosphate catalysts 

has been widely studied.62–64 This is shown in Figure 1.7.  Maleic anhydride is used for 

the synthesis of unsaturated polymer resins (UPR), which can then be used to produce 

fibreglass reinforced plastics. An estimated 700,000 tonnes of maleic anhydride is 

produced per annum.64

Figure 1.7 Reaction scheme of the conversion of n-butane to  maleic anhydride.62

The structure of vanadium phosphates influences its catalytic activity.65 The ratio of 

vanadium to phosphate, the precursor morphology and gas flow during calcination are 

all believed to have a factor in influencing catalytic activity and selectivity. It is 

believed66 that the terminal oxygen bonded to phosphorus acts as the active centre for 

initiating hydrogen abstraction. Note the terminal oxygen position, a similar 

mechanism is suggested for molybdenum oxide catalysts (shown below). Vanadium in 

the +5 oxidation state is believed to be key as it offers large reduction potential. Work 

done by Sananes-Schulz67 explored the ratio between V5+ and V4+ sites on VPO 

catalysts. Using 31P NMR characterisation they could differentiate V4+ sites. Catalytic 

testing suggested the best performance came from materials which exhibited both V4+

cationic species and V4+ - V5+ dimers. Sananes-Schulz67 proposed the pyrophosphate 

phase (VO)2P2O7 phase where vanadium is in the +4 phase is considered catalytically 

inactive and thus requires the presence of V5+ species. Abon and Volta propose 

however that the (VO)2P2O7 phase is necessary but with the presence of VOPO4 which 
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exhibits the V5+ oxidation state.68 The optimum ratio of V5+ to V4+ for the best catalytic 

activity, regarding the conversion of n-butane to maleic anhydride, has been a topic of 

some debate. However with related iron phosphate species it has been proposed that 

a ratio of  Fe3+/Fe2+ equal to two is the ratio exhibited in industrial iron phosphate 

catalysts.69 When butene is used as a substrate instead of butane however it has been 

shown that V4+ is the desired oxidation state in a vanadium phosphate catalyst.70 A 

recent review by Trifirò and Grasselli, when referencing the Monsanto patent on VPO 

catalysts, suggest that a ratio of 90% V4+ to 10% V5+ to be the optimal ratio to maximise 

maleic anhydride yield.71

Vanadium phosphate and vanadium oxide catalysts, although not used in this work, 

exhibit similar catalytic activity to molybdenum oxide catalysts.  They have been shown 

to selectively oxidise and oxidatively dehydrogenate alkane species. A terminal oxygen 

species on the catalyst inserts into the hydrocarbon and catalyses ODH. 

Figure 1.8 Suggested mechanism for adsorption of n-butane on vanadium phosphate 

catalyst surface. Taken from Cheng and Goddard.66

1.7.2 MOLYDENUM OXIDE CATALYSTS

Molydenum oxides or molybdates, have been well studied for the selective oxidation 

of hydrocarbons.72 Molybdenum oxides exist in several phases, the two most common 

are MoO3 where Mo is +6 oxidation state and MoO2 where Mo is in the +4 oxidation 
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state.  Various other lattice forms of molybdenum oxides exist, such as Mo4O11 and its 

homologue Mo9O25.73 In a molybdenum trioxide lattice, molybdenum atoms 

coordinate 6 oxygen atoms, forming MoO6 octahedra. These are then joined by sharing 

edges. Molybdenum is one of the most widely studied transition metals for the activity 

of oxygen transfer. Over 100 oxygen transfer reactions have been characterized for 

molybdenum compounds.74 These include but are not restricted to; epoxidation 

reactions of short-chain hydrocarbons75, ammoxidation of alkenes to nitrile 

compounds76 and as a partial oxidation catalyst.77,78 The oxidative dehydrogenation of 

propane has been widely studied. Figure 1.9 shows a proposed mechanism for this.

Vedrine and Fechete have suggested that the metal site (displayed as M in Figure 1.9) 

for molybdenum oxide catalysis is the most likely to be an unsaturated O=Mo=O group 

from the MoO3 species.77

Figure 1.9 A mechanistic representation of the oxidative dehydrogenation from Centi 

et al.62

In short, molybdenum oxides when the Mo is in the +6 oxidation state take the form of 

MoO3, which can be thought of as an oxidising species. When Mo is in the +4 oxidation 

state then molybdenum oxides take the form of MoO2, this can be thought of as a 

reductive species. Which crystal face of the MoO3 is most active is hotly debated, and 



25

it may be that it varies from reaction to reaction. Figure 1.10 below shows the bond 

ordering of a MoO3 molecule within a crystal lattice and an example of an 

orthorhombic crystal structure. 

Figure 1.10 – MoO3 distorted octahedral highlighting bond ordering (l) and the crystal 

structure of orthorhombic MoO3. From Scanlon et al79

MoO2 can be thought of as a reduced MoO3 with the terminal oxygen removed. MoO2

has not been as widely studied as its trioxide cousin as a catalyst, however it has been 

shown to be active for the partial oxidation of isooctane.80

“The structure of a Mo9O25 structure is built up of corner-sharing distorted MO6 

octahedra in slabs of an ReO3-type.”73 while Mo4O11 can be considered a MoO3 lattice 

with every 4th Mo atom losing its terminal oxygen. Mo4O11 and Mo9O25 are not widely 

reported on as catalysts in the available literature, although Delmon81 suggested that 

Mo4O11 was a species worthy of further investigation.  

The nature of the oxygen species involved in reactions at the catalyst surface is also 

important. There is general agreement in the literature for alkene oxidative 

dehydrogenation, that electrophilic oxygen species are associated with non-selective 

total oxidation, thus forming carbon oxides. While nucleophilic oxygen species are 

believed to undergo either selective insertion in partial oxidation reactions, or hydrogen 
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abstraction in oxidative dehydrogenation.82 Centi, Trifirò and Cavani have suggested 

that the different oxygen species can be thought of as; gaseous oxygen fed into a reactor 

exhibiting electrophilic character and structural oxygen from a metal oxide (such as 

MoO3) possessing nucleophilic character. The authors stress that this is a simplified 

framework which does not take into account issues such as kinetics, the oxygen 

replenishment of metal oxides and the uniqueness of certain catalytic systems. In 

particular they state that a model which suggests that only lattice oxygen undergoes 

selective oxidation/oxidative dehydrogenation is a generalisation which ignores the 

complex catalytic chemistry occurring at a metal oxide surface.82

Numerous mixed metal molybdates; magnesium,83,84 mnaganese,85,86 vanadium87 and 

bismuth88–90 have been tested, usually as selective oxidation or ODH catalysts. However 

this work will focus mainly on iron, nickel and cobalt molybdates

Bismuth molybdate in particular has been an extensively studied catalytic system. Early 

reporting goes back to the middle of the twentieth century, with reports in 1964 of 

bismuth molybdate being a catalyst for the selective oxidation of butene and propene.91

Bismuth molybdate has also shown to be an active catalyst in the partial oxidation of 

propane to acrolein.92 The reaction is thought to proceed via a hydrogen abstraction 

over via an allyl oxidation mechanism involving molybdenum trioxide, before acrolein 

desorbs from a weakened MoO2 site.

Bismuth molybdate can manifest in several different phases.93 α-Bi2Mo3O12 β-Bi2Mo2O9

and γ-Bi2MoO6 are all phases that can be present. It has been suggested93 that a 

synergistic relationship exists between the phases. There is some debate in the 

literature over which phase is most integral, however due to its superior lattice oxygen 

mobility (key in a Mars-Van Krevelen reaction) γ-Bi2MoO6 may be the most 

important.94
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Figure 1.11 Chart showing the catalytic activity (reaction rate) for the conversion of 

propane to acrolein at 425 °C using gamma and beta phase bismuth molybdates. 

From Thang et al93

1.7.3 NICKEL MOLYBDATE CATALYSTS

Nickel molybdate has been a widely studied catalyst for oxidative dehydrogenation of 

alkanes, chiefly propane.41,95 It exists in the form of NiMoO4 with Ni in a +2 oxidation 

state. There are two forms, a low temperature α phase and a high temperature, 

metastable β phase.96,97 The β phase only forms at temperatures above 600 °C.96

Kaddouri et al used a sol-gel type synthesis to stabilise the β-phase at room 

temperature. This is because the β-phase exhibits considerably greater selectivity to 

propene than the α NiMoO4 when used as a catalyst for propane ODH.98

Nickel molybdate is believed to convert propane to propene via a Mars-Van Krevelen 

type mechanism.97 This is because the reaction of propane with a supply of oxygen over 

a NiMoO4 catalyst is first order with respect to propane and zero order to oxygen.41,99

This is consistent with the Mars-Van Krevelen mechanism.53
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Work done by Madeira et al100 on the ODH of n-butane over stoichiometric nickel 

molybdate (so NiMoO4) showed stark differences in selectivity to butenes. α-NiMoO4

exhibited over a 50% selectivity to carbon oxides with a total selectivity to butene and 

butadiene of 41%. β-NiMoO4 however showed high selectivity (81%) to butene and 

butadienes from n-butane. 

The main difference between α and β phase nickel molybdate is the conformation of the 

coordination of the MoO6+ ions in the bulk lattice. In the α-phase they are octahedral. 

This then shifts to a tetrahedral coordination when a phase transition occurs and the β 

is adopted.101 In both isomorphs the Ni 2+ occupies an octahedral coordination.

Ozkan in his PhD thesis, showed that nickel molybdate catalysts with an excess of MoO3

showed much higher selectivity to maleic anhydride from n-butane than when 

stoichiometric NiMoO4 or pure MoO3 was used. This indicates that for certain ODH 

reactions a molybdenum excess in a nickel molybdate catalyst is desirable. 

NiMoO4 has also been recently shown to catalytically perform ODH on n-hexane.46 It 

was shown that the β was more active than the α phase. Interestingly a major product 

of this reaction was benzene. It was hypothesised that n-hexane underwent 1,6 ring 

closure to cyclohexane before aromatisation.

Figure 1.12 – Reaction scheme of the formation of benzene from n-hexane over a 

NiMoO4 catalyst46
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1.7.4 COBALT MOLYBDATE CATALYSTS

Cobalt molybdate catalysts possess the formula CoMoO4. It shares many similar 

properties with NiMoO4.102 It too possesses an α and a β phase.103 The α phase is present 

at room temperature and phase transitions to the meta-stable β phase at 550°C and 

above.

α-CoMoO4 possesses Co2+ ions and Mo6+ in the octahedral conformation, while the β 

phase sees the molybdena shift to the tetrahedral conformation.103 β-CoMoO4 has been 

reported as the more active phase for catalytic ODH. 

Figure 1.13 Illustration showing the conformation of α-CoMoO4 (l) and β-CoMoO4 (r). 

From Eda et al103

Cobalt nano-rods have been shown to be synthesised.104 However as of yet no reports 

in the literature have suggested that nano-rod CoMoO4 possesses significantly higher 

surface area or different catalytic activity. 

Cobalt molybdate has been shown to be an active catalyst for the ODH of short chain 

alkanes, mainly n-butane and propane.7,105,106 Cobalt molybdate has also been used as

a catalyst for the selective oxidation of isobutene to methacrolein.107 CoMoO4 is also 

believed to perform catalytic ODH via a Mars-Van Krevelen mechanism.99

Cobalt molybdate with a slight molybdenum excess has been shown to be a more active 

and selective catalyst to maleic anhydride from 1-butene than pure phase CoMoO4.102
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Stoichiometric cobalt molybdate has also been tested for the ODH of n-octane.47 The 

dominant products produced were C8 aromatics (ethylbenzene, xylene and styrene). 

Increasing oxygen partial pressure in the gas feed led to higher selectivity to carbon 

oxides. Higher temperatures also produced higher levels of carbon oxide and aromatic 

species. 

1.7.5 IRON MOLYBDATE CATALYSTS

Iron molybdate has been widely used as a catalyst.108–110 It has two forms, ferrous 

molybdate, Fe2(MoO4)3 which has been widely reported on as a catalyst for the selective 

oxidation of methanol to formaldehyde,111,112 ferric molybdate possesses iron in the +3 

oxidation state. The second form, ferrous molybdate, FeMoO4 shows iron in the +2 

oxidation state.113 Ferric molybdate by its formula has a 3:2 molybdenum to iron ratio, 

while ferrous molybdate is a 1:1 ratio.  Molybdenum is in the +6 oxidation state for both 

forms.

Iron molybdate was first reported by Adkins and Peterson in 1931.114 It has since become 

the industrial standard catalyst for the production of formaldehyde from methanol. 

Industrial catalysts have an excess of molybdenum to iron, greater than 1.5:1 

molybdenum to iron.112

There is some debate about whether ferric molybdate catalysts require an excess of 

molybdenum in the form of MoO3.115,116 Literature suggests there is a synergistic effect 

between MoO3 and Fe2(MoO4)3.115
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Figure 1.14 – Possible lattice structure and interstitial oxygen positions in an 

Fe2(Mo4)3 catalyst. From Soares et al.112

Ferric molybdate consists of Fe octahedra and Mo tetrahedral sites.117 This is very 

different to ferrous molybdate which possesses Fe in tetrahedral positions and Mo as 

octahedra.

The industrial process of selective oxidation of methanol to formaldehyde has been 

widely reported on. Air or an oxygen rich gas flow is flowed over a ferric molybdate 

catalyst. Temperatures do not exceed 400 °C this is to stop side reactions, industrial 

catalysts can achieve ca.100% and ca. 96% selectivity to formaldehyde.112 The 

reactions that iron molybdate catalyses are shown below:

H3C-OH + ½ O2 → H2CO + H2O ΔH = - 159 kJmol-1 (1)

H3C-OH + ½ O2 → CO2 + 2H2O ΔH = - 674 kJmol-1 (2)

Bowker et al 118–120 have conducted novel work using mixed iron and molybdenum 

oxides instead of iron molybdates. This was of interest to observe synergistic effects 

between iron and molybdenum. Molybdenum trioxide in synergy with hematite 

produced a very active and selective catalyst for the conversion of methanol to 

formaldehyde. Iron molybdates and the above system were found to exhibit greater 

catalytic activity than molybdenum oxides. However hematite or another iron oxide on 

its own is considered a poor catalyst as it combusts methanol to formaldehyde. 

Bowker’s work found that it is stoichiometric iron molybdate that is the active phase. 
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MoO3 however is believed to be needed to be in excess to prevent the formation of 

isolated iron clusters at the surface preventing combustion.112,115,121

Methanol oxidation over the iron molybdate catalyst is believed to occur via a Mars-

Van Krevelen type mechanism using oxygen insertion. There is a redox reaction that 

has been reported to occur with the ferric molybdate phase to ferrous molybdate.112

CH3OH + Fe2(MoO4)3 → H2CO + H2O + (β-FeMoO4) + MoO3 Reduction

2(β-FeMoO4) + MoO3 + ½ O2 → Fe2(MoO4)3 Oxidation

Ferrous molybdate has been shown to possess profoundly different catalytic selectivity 

to  the ferric form for the ODH of n-decane in work done by Hutchings et al.57

Figure 1.15 Reaction scheme of n-decane over an iron molybdate catalyst and its 

relation to temperature  from Pradhan et al57
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The group found that ferric molybdate inserts oxygen into n-decane at lower 

temperatures, creating aromatic oxygenate species as products. However at higher 

temperatures the catalyst system shifts to a ferrous molybdate species which produces 

linear alkenes. This is of interest and helped build the foundation this thesis is built on. 

1.8 CONCLUSIONS

The literature shows that molybdates have been used extensively for the oxidative 

dehydrogenation of alkanes. Dehydrogenation of alkane to alkenes possesses several 

drawbacks and the favourable thermodynamics of ODH catalysts suggests they may one 

day supplant platinum catalysts used for industrial processes such as the PACOL process. 

Iron molybdate was one of the first molybdates investigated for selective oxidation 

reactions, specifically methanol to formaldehyde. Various other molybdate species such 

as cobalt, nickel and bismuth have been shown to selectively oxidise hydrocarbons. They 

also perform ODH on short chain alkanes via a Mars-Van Krevelen mechanism. It is 

perhaps fitting perhaps, that recent work by this group57 has demonstrated iron 

molybdate, could now be used for ODH of medium chain alkanes, once again being at 

the forefront of the molybdate family. 

1.9 THESIS OVERVIEW

This work examines the oxidative dehydrogenation of n-octane to octenes and steps to 

maximise octene production. In addition the effect on catalytic activity and product 

selectivity of altering the reaction conditions, temperature, carbon to oxygen ratio, gas 

hourly space velocity are all examined. 

Chapter one is an introduction of the area and also has a literature review of the class 

of catalysts used in this work. In particular oxidative dehydrogenation (ODH) and 

molybdates are examined. 

Chapter two contains experimental details, including catalyst synthesis and preparation, 

analytical techniques used and reactor details. Each analytical technique is discussed in 

some detail and reactor schematics are included for ease of replication of work. 
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Chapter three examines the difference in catalytic activity and selectivity between 

ferrous and ferric molybdate for the oxidative dehydrogenation of n-octane to octenes. 

Variables such as gas hourly velocity, temperature and carbon to oxygen are examined 

here. In addition scaling up the process from 1% n-octane in the gas feed to 10% is 

tested. Also investigated is the  effect of pure phase molybdenum oxides and 

stoichiometric iron molybdate have as catalysts. This was done to indicate the role of 

each species. Finally the effect of undergoing reaction is investigated in relation to the 

catalyst structure.

Chapter four looks at the effect of time on line studies to demonstrate catalyst stability 

over a range of varying temperatures over time. Oct-1-ene is then placed as a feedstock 

in place of n-octane to elucidate the mechanism by which aromatic species are formed 

as products, The chapter then moves onto the effect of oxygen deprivation on the 

catalyst, followed by reoxidation studies to observe the effect on the catalyst of in-situ 

reduction. This also gives a valuable insight into the mechanism by which the catalyst 

proceeds. 

Chapter 5 is concerned with the comparison of nickel molybdate and cobalt molybdate 

with iron molybdate. Cobalt and nickel molybdates have been extensively reported in 

the literature as ODH catalysts for short chain alkanes. Thus it was of interest to observe 

their activity and selectivity as catalysts for n-octane ODH.  

Chapter 6 is a conclusions chapter which briefly looks at findings and gives some ideas 

and thoughts on future work. 
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2
CHAPTER 2 – CATALYST PREPARATION, EXPERIMENTAL 
METHODS AND THEORY

2.1 INTRODUCTION

Catalyst preparation and synthesis, catalytic testing and characterisation techniques 

used will be discussed in this chapter. The analytical techniques of X-ray diffraction 

(XRD), Raman spectroscopy, thermogravimetric analysis (TGA), multi plasma atomic 

emission spectroscopy (MP-AES), X-ray photoelectron spectroscopy (XPS), surface area 

analysis and energy dispersive x-ray spectroscopy (EDX) are examined. 

2.2 CATALYST PREPARATION

Pre-reduced iron molybdate catalyst

Iron chloride hexahydrate (2.70 g, FeCl3٠6H2O, 98% purity sigma-aldrich) was dissolved 

in 100 cm3 of water under stirring. In a separate vessel ammonium heptamolybdate 

(3.53 g, H24Mo7N6O24, >99%purity sigma-aldrich) was dissolved in 100 cm3 of water 

under stirring. The pH of the ammonium heptamolybdate solution was lowered to 2.25 

through the drop-wise addition of conc. hydrochloric acid. The solution was then 

added dropwise to the iron hexahydrate solution. This resulted in a solution with a 

2.7:1 molybdenum to iron ratio. After allowing the resulting precipitate to settle, the 

mixture was filtered washed and dried overnight at 110 °C. The solid precipitate (1.7g)

was then calcined in flowing air (5mL/min) at 260 °C for 4 hours using a heating ramp 

rate of 5 °C a minute. A final reduction step was then performed by placing the 

catalyst in a calcination furnace under a 10% hydrogen in argon atmosphere (5mL/min) 

at 460 °C using a heating ramp rate of 5 °C for 2 hours.
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Pure phase FeMoO4 catalyst

FeMoO4 (99% purity) was purchased from Sigma Aldrich and used as catalyst. XRPD 

confirmed its structure. 

Pure phase MoO3 catalyst

MoO3 (>99.5% purity) was purchased from Sigma Aldrich and used as catalyst. XRPD 

confirmed its structure. 

Pure phase MoO2 catalyst

MoO2 (99% purity) was purchased from Sigma Aldrich and used as catalyst. XRPD 

confirmed its structure. 

Cobalt molybdate catalyst

Ammonium heptamolybdate (3.53 g, H24Mo7N6O24, >99%purity sigma-aldrich) was 

dissolved in 50 cm3 of water under stirring. Ammonia was added drop wise until the 

solution reached pH 6. Cobalt chloride (4.74 g, CoCl2, 97% purity) was dissolved in 50 

cm3 of water before being added drop wise to the solution of ammonium 

heptamolybdate with stirring so that an equimolar solution of cobalt and molybdenum 

were formed. The solution was heated to 90 °C and aged for 2 hours to allow the 

precipitation of cobalt molybdate. The solution was filtered and the solid collected and 

dried overnight at 110 °C. The solid precipitate (1.5g) was then calcined in flowing air

(5mL/min) at 500 °C for 5 hours at a heating ramp rate of 5 °C a minute.

Cobalt molybdate with a molybdenum excess catalyst

Ammonium heptamolybdate (4.74 g, H24Mo7N6O24, >99% purity sigma-aldrich) was 

dissolved in 50 cm3 of water under stirring. Ammonia was added drop wise until the 

solution reached pH 6. Cobalt chloride (4.74 g, CoCl2, 97% purity) was dissolved in 50 

cm3 of water before being added drop wise to the solution of ammonium 

heptamolybdate with stirring so that a solution with a molar excess of 1.5:1

molybdenum to cobalt was formed. The solution was heated to 90 °C and aged for 2 

hours to allow the precipitation of cobalt molybdate. The solution was filtered and the 
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solid collected and dried overnight at 110 °C. The solid precipitate (1.5g) was then 

calcined in flowing air (5mL/min) at 500 °C for 5 hours at a heating ramp rate of 5 °C

per minute.

Nickel molybdate catalyst

Ammonium heptamolybdate (3.53 g, H24Mo7N6O24, >99% purity sigma-aldrich) was 

dissolved in 100 cm3 of water under stirring. Ammonia was added drop wise until the 

solution reached pH 5.6. Nickel chloride hexahydrate (4.75 g, NiCl2٠6H2O, >97% purity 

sigma-aldrich) was dissolved in 100 cm3 of water before being added drop wise to the 

solution of ammonium heptamolybdate with stirring giving an equimolar solution of 

nickel and molybdenum. The solution was heated to 85 °C and aged for 4 hours. The 

pH of the solution was maintained by further addition of ammonia if necessary. The 

solution was filtered and the solid collected and dried overnight at 110 °C. The solid 

precipitate (1.5g) was calcined in flowing air (5mL/min) at 500 °C for 5 hours at a 

heating ramp rate of 5 °C per minute .

Nickel molybdate with a molybdenum excess catalyst

Ammonium heptamolybdate (4.74 g, H24Mo7N6O24, >99% purity sigma-aldrich) was 

dissolved in 100 cm3 of water under stirring. Ammonia was added drop wise until the 

solution reached pH 5.6. Nickel chloride hexahydrate(4.75 g, NiCl2٠6H2O, >97% purity 

sigma-aldrich) was dissolved in 100 cm3 of water before being added drop wise to the 

solution of ammonium heptamolybdate with stirring, so that a solution with a molar 

excess of 1.5:1 molybdenum to cobalt was formed. The solution was heated to 85 °C

and aged for 4 hours. The pH of the solution was maintained by further addition of 

ammonia if necessary. The solution was filtered and the solid collected and dried 

overnight at 110 °C. The solid precipitate (1.5g) was calcined in flowing air (5ml/min) at 

500 °C for 5 hours at a heating ramp rate of 5 °C per minute.

Final catalyst preparation

All catalysts were pelleted at 10 tonnes of pressure for 1 minute and then sieved to 

0.4-0.8mm. 0.2 cm3 of the pelleted catalysts were then packed between quartz wool 

plugs in the central isothermal zone of the stainless steel reactor tube. The mass which 
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related to a volume of 0.2cm3 varied for catalysts. It corresponded to 0.23g of iron 

molybdate catalyst and 0.27g of cobalt and nickel molybdate catalyst. These masses 

were kept constant throughout this work. A K-type thermocouple was inserted 

marginally below the catalyst bed to monitor catalyst bed temperature. The stainless 

steel reactor tube was then placed and secured in a Carbolite furnace (220-240 V, 382 

W). Blanks of n-octane and oxygen concentrations were recorded prior to reaction 

conditions so as to calculate the carbon balance and carbon to oxygen ratios.

2.3 N-OCTANE REACTOR SET-UP 

Figure 2.1 Schematic of the reactor used for catalytic testing for the oxidative 

dehydrogenation of n-octane.1

Catalytic testing for the oxidative dehydrogenation of n-octane was carried out using a 

multi-bed plug flow reactor shown in Figure 2.1. Reactors used were stainless steel 

tubes (10mm diameter).  The gases of helium and oxygen (source BOC Ltd, purity 

≥99.5%) were connected to the reactor via Bronckhorst mass flow controllers. Helium 

and oxygen lines were joined and connected to a pressure controller. The gases were 

passed through a saturator containing n-octane held in a water bath at ca.10 °C to give 

a concentration of 1% n-octane in helium and oxygen. When catalytic testing required 

a concentration of 10% n-octane in helium and oxygen then a high performance liquid 

chromatography pump was used in place of a saturator to give the required 
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concentration of n-octane. After the addition of n-octane to the gas feed all inlet and 

outlet lines were maintained at 130 °C to prevent condensation in the lines (boiling 

point of n-octane is 125.6 °C). Reaction studies were done at concentrations of 1% n-

octane and 10% n-octane which were outside the lower and higher explosive limits 

respectively. The lower explosion of n-octane is 1.1% and the upper explosion limit is 

7.0%.  The stainless steel tubes were connected to an 8-port valco valve, allowing 

multiple reactions to be analysed using a Varian CP-3800 gas chromatograph.

2.4 ONLINE PRODUCT ANALYSIS FOR THE N-OCTANE 
REACTOR

A Varian CP-3800 gas chromatograph was fitted with an Agilent non-polar HP-5 column 

(30 m, 0.53 mm, 0.5 μm film of phenyl-methylpolysiloxane), a Hayesep Q column and a 

Molsieve 13X column. The HP-5 column was used to separate hydrocarbon products 

and led to a flame ionisation detector (FID). The Molsieve column was used to separate 

O2 and CO and the Hayesep Q column to detect CO2, these columns led to a thermal 

conductivity detector (TCD) or gas analysis. However CO2 would adsorb irreversibly 

onto the Molsieve 13X column resulting in column deactivation. To prevent this the 

Molsieve 13X column was by-passed during the elution of CO2. Between 4.75 and 8.00 

minutes, the valve labelled as V2 switched from “series” to “bypass” positions. To 

explain this further; the Molsieve column was sealed from the rest of the system while 

the gas flow went via a by-pass route. This was because between 4.75 and 8.00 

minutes CO2 was eluted, which if it had come into contact with the Molsieve column 

would bind irreversibly and deactivate it. Figure 2.4 shows the valve configuration for 

this in greater detail.

The retention times and calibration of products was determined by using a syringe (5 

cm3) and a syringe pump (0.254 cm3/h). The sample injection was controlled through a 

6-port valve, the gas sampling valve (V3) allowed the gas flow through the HP-5 

column and to the FID. A second valve, 10 port (V1) controlled gas flow through the 

Hayesep Q and 13X Molsieve columns and to the TCD. This valve is shown in Figure 2.3. 

A final valve (V2) controlled the position of the Molsieve 13X from series to by-pass. 
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Catalyst performance was quantified in  molar conversion and selectivity and carbon 

balance.  The valve labelled as V2 is shown in Figure 2.5.

Figure 2.2 Schematic of column set-up in Varian CP-3800 gas chromatograph

Figures 2.3 to 2.5 illustrate the valve configuration and internal injection sequence of 

the Varian CP-3800 gas chromatograph.

Figure 2.3 Schematic of the 10-port gas sampling valve (V1) to the Hayesep Q and 

Molsieve 13X columns on both the fill and backflush and inject positions.
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Figure 2.4 Schematic of the 6-port gas sampling valve (V2) for the Molsieve 13X 

column for bypass and series positions.

Figure 2.5 Schematic of the 6-port gas sampling valve (V3) in the fill and backflush 

positions.1

Table 2.1 shows the valve switching process for the injection for gas chromatograph 

runs and the time programme used.

Time  (min) Valve position

Initial V1 Fill and backflush V2 Series V3 Fill and backflush

0.01 V1 Inject V2 Series V3 Inject

4.75 V1 Inject V2 Bypass V3 Inject

8.00 V1 Inject V2 Series V3 Inject

60.00 V1 Fill and backflush V2 Series V3 Fill and backflush

Table 2.1 Valve switching program for gas chromatograph runs

Once V1 goes to the inject position at 0.01 min the gas sample goes through the 

Hayesep Q column and then to the Molsieve 13X column via V2 which is connected in 
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series. At 4.75 min V2 switches from the series position to bypass until 8.00 min. This is 

because the time taken for CO2 to elute from the Hayesep Q column is between 6.00 -

7.50 min. During this time the Molsieve 13X is in bypass and is thus protected from 

deactivation. At 0.01 min V3 switches to the inject position. At 60.00 min both V1 and 

V3 revert to the fill and backflush position in readiness for another injection. 

The temperature program used for a gas chromatograph oven is also important as the 

rate of heating will affect the separation of products. In Table 2.2 the temperature 

program used for a gas chromatograph run for the determination of products from the 

reaction of n-octane is shown.

Temperature (°C) Ramp rate  

(°C/min)

Hold time (min) Total time (min)

50 n/a 3.00 3.00

100 8 20.00 29.25

270 8 10.00 60.50

Table 2.2 Temperature program used for gas chromatograph runs

These conditions were chosen to give the best peak separation. The initial temperature 

was 50 °C which is the temperature the oven holding the columns was kept at when no 

run was occurring. 

2.5 PROPANE REACTOR SET-UP

0.3mL of the catalyst was packed into a stainless steel tube (diameter 5 mm) which 

was fitted to the reactor. A mixture of propane/helium gas (BOC Ltd) containing 5002

ppm propane was flowed through the reactor at a flow rate of 19 cm3 min-1. Oxygen 

was flowed through the reactor at a rate of 1 cm3 min-1. The gas flows were controlled 

using mass flow controllers. The Gas Hourly Space Velocity (GHSV) was calculated to be 

4000 h-1.

The temperature of the reaction was monitored using a K-type thermocouple which 

was placed just below the catalyst bed and was controlled manually using a Carbolite
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furnace (220-240 V, 382 W) fitted around the reactor which was set to the required 

temperature. 

The reactions were monitored using an on-line P23 Varian GC which had a molecular 

sieve and an Agilent HayeSep Q column. Organic products – such as propane and 

propene – were detected using a FID. Gases were detected using a TCD. 

Blank readings were taken at 100 °C determining the levels of propane and oxygen 

present in the product feed before the reaction had taken place. The reaction was 

monitored from 350 – 600 °C in 50 °C increments.

2.6 CALCULATIONS FOR CONVERSION, SELECTIVITY AND 
YIELD.

Conversion, selectivity and yield are discussed in the ensuing chapters. The data used 

for these came from the measurements taken from the gas chromatograph. 

Conversion:

Blank measurements of oxygen and n-octane were taken prior to heating the reactor. 

These gave average area counts measured in μV. To calculate conversion as a 

percentage.

((average counts of blank reactant- counts from experiment)/average blank counts)) x100

This gave a percentage value for n-octane and oxygen conversion which could then be plotted.

Selectivity:

The area count of a product was calculated from the gas chromatograph.  This value was then 

divided by the relative response factor (RRF) a ratio between the signal produced by an analyte 

and the corresponding quantity of analyte which produced the signal. The RRF of an analyte 

will vary. For hydrocarbons this value was then multiplied by the carbon number of the 

analyte. Finally that value is divided by the sum of all products and multiplied by 100 to give a 

percentage value. The calculation is shown below.

Area count of analyte/RRF =X

X * carbon number = Y
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(Y/Sum of all products from reaction)*100 = percentage selectivity.

Yield:

This was calculated by isolating the selectivity percentage of a species (usually octene as the 

desired end product) and multiplying this by the overall conversion of n-octane to product.

Percentage selectivity x conversion percentage of n-octane = yield

2.7 CATALYST CHARACTERISATION TECHNIQUES

2.7.1 X-RAY POWDER DIFFRACTION

X-ray powder diffraction (XRPD) is an analytical technique that can be used to classify, 

identify and analyse materials. X-rays are electromagnetic radiation that occur in the 

region between ultraviolet and gamma rays.  X-rays wavelength is in the around 10-10

m or 1Å, comparable to the size of an atom.

X-ray diffraction (XRD) is a bulk technique, it is not a surface sensitive analytical tool. 

For XRD to work the sample being analysed must be crystalline, without crystallinity no 

diffraction is possible. Unit cell dimensions, crystal structure and crystallite size are all 

information that can be yielded from XRD. This thesis used XRPD to simply identify 

catalyst structure and the phases present.

The technique was invented by W.H. Bragg.2 Diffraction patterns are produced to 

identify the crystalline phases present in a material. A crystalline material can is a solid 

with a highly regular arrangement of atoms or molecules. This arrangement should be 

repeating, which is referred to as being periodic. By definition a crystalline solid should 

be a material in which periodicity is exhibited in all three dimensions.3 A stationary X-

ray source, in this case a Cu Kα source, produces monochromatic X-rays which interact 

with the lattice spacing in a crystalline material to produce an X-ray diffraction pattern. 

X-rays scattered by atoms in an ordered lattice interfere constructively in directions 

given by Bragg’s law.4
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Figure 2.6 Reflection of X-rays in a crystalline solid as defined by Bragg’s law.

For constructive interference to occur the additional distance travelled after diffraction 

from d must be an integer of the wavelength. The path-length travelled by the X-rays is 

affected by, the lattice spacing which is represented by d and the angle of incidence of 

the X-ray beam which is given by θ. This leads to the aforementioned Bragg equation 

which is given as.

n  = 2dsin(θ)

Where 

n    - is an integer, the order of the reflection

 - is the X-ray wavelength

d    - is the distance between two lattice planes

 - is the angle of incidence

X-ray powder diffraction analysis for the work detailed in this thesis was performed by 

a PANanalytical X’pert Pro diffractometer equipped with a Cu Kα X-ray source. All 

experiments were done with an applied accelerator voltage of 40kV and a current of 

40mA. Each experiment was performed between 10°-80°. Patterns produced were 
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referenced and identified against reference patterns compiled in the international

centre for diffraction data (ICDD).

2.7.2 RAMAN SPECTROSCOPY

Raman spectroscopy concerns the frequencies of light. This technique determines the 

vibrational, rotational modes in a system. When a molecule is exposed to 

monochromatic light (also referred to as incident light) at a frequency not 

corresponding to adsorption a small amount is scattered (referred to as). This can 

cause a Raman shift (Δν).5,6

Where

Δν = change in frequency

ν0 = frequency of incident light

νr = frequency of scattered light

The scattering of the light can either be elastic or inelastic. Rayleigh scattering is the 

term used for elastic scattering, which occurs when the frequency of the scattered 

light is the same as the frequency of the incident light. If the molecule which has been 

hit by incident light gains energy this leads to Stokes radiation. If the molecule loses 

energy this leads to anti-Stokes radiation. Both of these are inelastic scattering.
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Figure 2.7 Transitions leading to Stokes radiation and Rayleigh scattering. From 

Hammond.7

The incident monochromatic light source is provided by a laser, usually in the visible, 

infra-red or near ultra-violet spectrum. The light interacts with the bonding electrons 

of the molecule causing vibrations and rotations.8

For a molecular vibration to be Raman active it must occur alongside a change in the 

polarizability of the molecule.9 This result in a shape change, see Figure 2.8 for a visual 

depiction of this effect.  The molecule must not possess a symmetry element to be 

Raman active. 



52

Figure 2.8 – Representation of change in polarizability of a CO2 molecule.

Raman spectroscopy analysis for the work detailed in this thesis was performed using a 

Renishaw Ramascope using a Spectra physics green argon laser (λ = 514 nm) at a 

power of 20mW. 

Ultra violet Raman spectroscopy shown in Chapter 5 was done using a Class 4 CW inVia 

Raman system. A Spectra physics UV laser (λ = 266 nm) was used. 

2.7.3 THERMOGRAVIMETRIC ANALYSIS

Thermogravimetric analysis measures the change mass of a sample as a function of 

increasing temperature. The weight of the sample is measure in relation to time and 

temperature. Volatile products may break down and lose mass, if sample oxidation or 

an adsorption process occurs then mass gain may be observed.10

A thermogravimetric analysis profile can yield information on whether decomposition 

of the sample or a chemical transformation occurs at the temperatures tested.   

2.7.4 MICROWAVE-PLASMA ATOMIC EMISSION 
SPECTROSCOPY (MP-AES)

Microwave-plasma atomic emission spectroscopy (MP-AES) can be used to quantify 

the ratios of elements present in a catalyst. A microwave magnetic field (2.45 GHz) 
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excitation generates nitrogen plasma from nitrogen gas.  This is stable at atmospheric 

pressure and held within the torch of the MP-AES. The sample being tested is 

aerosolized and passed through the torch. The sample is vaporised as it passes through 

the torch. This leads to excitation of atoms in the sample which emit photons as they 

relax back to ground state.11 The sources for atomic emission can be a microwave 

plasma, used here, or an inductively coupled argon plasma. The plasma can be 

generated via an electrical or magnetic field, in this instance an electrical field was 

used. The photons are funnelled towards a monochromator prior to detection via a 

charge coupled device measuring the conversion of photons into electrical charge. The 

wavelengths of light emitted are characteristic of the element that generated it and 

the intensity levels can be quantified which can then be used to elucidate the ratio of 

elements in a sample. 

In this work, MP-AES was used to calculate the ratio of metal elements present in 

catalyst samples. 

2.7.5 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

X-ray photoelectron spectroscopy (XPS) is a widely used surface technique which gives 

information about the oxidation state of species present at a catalyst surface. Kai 

Siegbahn won the Nobel prize in physics for his work in using photoemission as an 

analytical tool.

The theory behind XPS lies with the Einstein relationship, which states that:

EK = hν - EB

Where

EK is the binding energy of the ejected photoelectron.

hν is the characteristic energy of the X-ray photon.

EB is the binding energy of the atomic orbital from which the electron originates.12 See 

Figure 2.9 for an illustration of this.
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Figure 2.9 – Illustrating the Einstein relationship.

Consider Figure 2.9, the binding energy (BE) is the amount of energy required to 

promote an electron from the core level to its vacuum level. However the kinetic 

energy of the photoelectron is shown by KE which is the difference between the 

energy put in and the binding energy.13

Atoms absorb photons of a certain energy and wavelength from an X-ray source. This 

then leads to the emission of photelectrons from the sample surface. For this to occur 

the excitation energy required must be higher than the difference between a vacuum 

and the fermi energy level. The fermi energy level is the energy of an electron in the

highest occupied molecular orbital at absolute zero. Electron orbitals deeper than the 

valence band can be considered “core-like” and give up photoelectrons with binding 

energies that are generally within 3 eV of their elemental values.
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Figure 2.10 – Illustration of photoelectron emission for XPS. From Morgan.14

XPS analysis for this work was obtained using a ESCALAB 220 spectrometer equipped 

with a aluminium Kα source. Analyser pass energy of 100eV. Pressure of the chamber 

was maintained at 3.9 x 10-8 N/m2. Energy resolution of spectrometer was determined 

from the full width half maximum of metallic gold at an energy of 20eV.

2.7.6 THE BRUNAUER-EMMET-TELLER SURFACE AREA 
MEASUREMENT

Surface area measurement processes involve adsorption.15 Typically physisorption of 

nitrogen or argon is used, close to the condensation temperature of the adsorbed gas 

chosen. At 77K nitrogen  can be adsorbed onto a surface and the Brunauer-Emmet-

Teller (BET) model can be used to interpret the data and yield a surface area 

measurement.16

This is done by the BET equation (named after the scientists who developed it), which 

is an extension of the Langmuir equation. As the Langmuir equation only accounts for 

monolayer coverage, modification was required to represent multilayer adsorption. 

The BET equation is given as:

Where
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V is the volume of gas adsorbed.

P0 is the saturation pressure

Vm is the volume of gas adsorbed at (STP) per unit mass of adsorbent, when the          

surface is covered by a unimolecular layer of adsorbate.

C is a constant.

There is an assumption that the first layer is adsorbed with the heat of adsorption (H1) 

while subsequent layers are adsorbed with a heat of adsorption equal to the heat of 

evaporation (HL). This gives the final part of the BET equation, the constant C.17

C=exp(H1-HL) /RT

This results in a plot of data, giving the monolayer coverage.18 A nitrogen molecule 

occupies 16Å.

BET analysis for the work detailed in this thesis were performed on a Micromeretics 

Gemini 2360 surface analyser.  All samples were degassed for 2 hours.  

2.7.7 ENERGY DISPERSIVE X-RAY (EDX) SPECTROSCOPY 

Energy dispersive X-ray (EDX) analysis is used often in conjunction with scanning 

electron microscopy (SEM). This work only used EDX analysis. 

EDX occurs from secondary electron emission of core shell electrons.1,19 Elements 

present in the catalyst sample are analysed by determination of X-ray wavelengths 

emitted when an atom is bombarded by high energy electrons. This gives a localised 

chemical analysis. In theory elements from beryllium to uranium can be detected. 

However not all instruments are equipped for detection of lighter elements (lower 

proton number than sodium). Qualitative analysis simply requires identification of lines

in the X-ray spectrum. Quantitative analysis requires a comparison of the intensities of 

identified elements within a sample and cross-referencing these values with 

calibration standard of known composition. Accuracy of modern EDX analysis is 
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considered to be within 2%. The lower end of detection limits with regular techniques 

is 1000ppm. 

When an atom is irradiated by an electron beam, a core electron is emitted from the 

atom. An electron in a higher energy orbital than the ejected electron relaxes into the 

now vacant lower energy orbital.  The resulting loss of kinetic energy from this 

transition results in X-ray generation.  Each element possesses a unique wavelength x-

ray, as each element has a unique difference between the energies of core and higher 

energy electrons. X-ray lines are identified by a capital Roman letter indicating the 

shell containing the inner vacancy (K, L or M). When electrons are emitted from the L 

energy level then the spectra is more complex than when electrons are emitted from 

the K energy level. This is due to the L level into three sub-levels. Energy levels are 

measure in electron volts (eV). 1 eV is equal to 1.602-19 J. When discussing EDX X-rays 

are thought of as a photons possessing a specific energy (see Figure 2.11).20,21

Figure 2.11 Figure illustrating the generation of X-rays for EDX spectroscopy. 

X-rays once emitted are detected by a solid state detector in which a semi-conductor 

material usually silicon is used as a medium to detect x-rays.22 This is shown in Figure 

2.12. 
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Figure 2.12 Simplified schematic of the internal working of an EDX spectrometer.

EDX analysis for this work was performed using an Oxford EDX analyser in tandem with 

Carl Zeiss EVO 40 SEM. Working distance used was 9mm, extra high tension was set to 

25 keV, I-probe to 25 nA.
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3
CHAPTER 3- THE OXIDATIVE DEHYDROGENATION OF N-
OCTANE

3.1 INTRODUCTION

The reaction of n-octane over a variety of iron molybdate catalysts is investigated in 

this chapter. Previous work carried out by this university and research group,1,2 has 

looked at the reaction of medium to long chain alkanes over iron molybdate based 

catalysts. Recently the production of octenes from a ca.1% octane feed, over a variety 

of carbon to oxygen ratios, has been shown.2 The conclusion was that catalytic 

oxidative dehydrogenation (ODH) was occurring. The ODH of short-chain alkanes has 

been well-reported.3,4 The previous work was done with a catalyst provided by 

Johnston Matthey. 

The first aim of this chapter was to produce a catalyst which could reproduce those 

results. The second aim was to optimise the catalyst. To this effect the reaction 

parameters were manipulated to give an optimal performance and maximise 

production of high value chemicals. Finally the catalyst was characterised pre and post 

reaction to indicate the active species and elucidate some information about a possible 

mechanism.

3.2 REACTION PARAMETERS INVESTIGATED

3.2.1 TEMPERATURE

Catalytic reactions were performed between 350-550oC unless stated otherwise. The 

standard temperature increase was in 50oC increments at a ramp rate of 15oC a 

minute. The reactor was purged and allowed to stabilise under reaction conditions for 

1h before each temperature ramp occurred and following the subsequent injection 

from the gas chromatograph’s sample loop. The temperature was monitored via a K-
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type thermocouple placed below the catalyst bed, using the PicoLog Tc-08 software by 

Pico Technology.

3.2.2 GAS HOURLY SPACE VELOCITY (GHSV)

The effect of gas hourly space velocity (GHSV) on the reaction of n-octane over an iron 

molybdate catalyst was investigated. Throughout all investigations 0.2 mL of pelletized 

catalyst (10 tons, 800-1000 μm) was used for all the reactions studied as outlined in 

Chapter 2. The GHSV was altered by adjusting the flow rates controlled by the 

Bronckhorst mass flow controllers (MFCs). GHSV flows in this thesis were between 

1000h-1 and 18,000h-1.

3.2.3 PARTIAL PRESSURES AND CARBON TO OXYGEN 
RATIO

The carbon to oxygen (C:O) ratio used in this investigation are mainly 8:1 carbon to 

oxygen. Some tests were performed at 2:1 and 12:1, so in the gas feed there are 2 

carbon atoms to every oxygen atom, or 12 carbon atoms to every oxygen atom. The 

large majority of investigations are performed at 8:1 as this was found to be the 

optimal C:O ratio.2 The following chapter investigates anaerobic conditions, where no 

oxygen is used. The ratios were calculated using the percentage volume (v/v%) of 

octane in the feed which was either ca.1% ,  ca.10% with the oxygen concentration 

altered to give the desired ratio.

3.3 CATALYST

The catalysts used in this chapter are a pre-reduced iron molybdate catalyst or an 

unreduced iron molybdate catalyst  prepared by coprecipitation detailed in Chapter 2.  

The iron molybdates tested, either pre-reduced or unreduced, have a molybdenum to 

iron molar ratio of 2.7:1. This means free molybdenum oxides are also present. In 

addition pure phases such as FeMoO4, MoO3 and MoO2 sourced from Sigma Aldrich 

are tested for their catalytic ability. 
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3.4 CALIBRATION OF N-OCTANE

Calibration of n-octane was completed with a syringe pump and the desired 

concentration created by adjusting the carrier gas (helium) flow. Oxygen was also 

calibrated by adjusting the flow rates of oxygen and helium MFCs to produce the 

desired concentrations.

Figure 3.1 – A calibration plot showing the relationship between increasing n-octane 

concentration and area counts.

Figure 3.2 – A calibration plot showing the relationship between increasing oxygen

concentration and area counts.
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3.5 RESULTS AND DISCUSSION

3.5.1 CATALYTIC ACTIVITY OF A FERRIC MOLYBDATE 
CATALYST 

An iron molybdate catalyst Fe2(MoO4)3 with a Fe:Mo molar ratio of 1:2.7 was tested 

with n-octane (1% octane, 0.2mL catalyst C:O 8:1) and the temperature increased from 

350oC to 550oC in 50oC increments as can be seen on the x-axis of Figure 3.3.

Figure 3.3 – Reaction of 1% n-octane (GHSV 1000h-1, C:O 8:1) over a iron molybdate 

catalyst. Temperature range from 350-550oC

As can be seen the octane is converted to a variety of products. The main product is 

carbon oxides, with aromatics as the secondary product. The octane conversion 

increases with rising temperature despite dipping slightly after 450oC. The rise in 

octane conversion could be attributed to total oxygen consumption from the gas 

phase at 500oC and above. The literature5–7 suggests the mechanism used by this  

molybdenum based catalyst is an oxidative dehydrogenation, Mars-Van Krevelen 

(ODH-MvK) pathway. This mechanism sees the catalytic surface oxygen atoms interact 

with the substrate before being  abstracted to form water The lattice oxygen atoms in 
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the bulk of the catalyst are then reordered to replace vacancies at the surface. 

Gaseous oxygen (supplied by the gas feed) then replenishes the bulk lattice oxygen.

Once the oxygen is removed from the gas feed the catalyst loses its oxygen atoms and 

becomes deactivated.5 As such the drop in conversion at 500oC and above could be 

attributed to not enough oxygen present in the gas feed to replenish lattice oxygen. 

It is thought that the alkane, in this case n-octane oxidatively dehydrogenates, to form 

the corresponding alkene, in the above experiment this is octene, predominantly 

trans-2-octene and trans-3-octene are observed. It may be that alkenes that are less 

stable, depending on the position of the double bond, cyclise and dehydrogenate 

further to form the aromatic species, chiefly, ethylbenzene, xylene and styrene.1,8,9

Figure 3.4 – Diagram of n-octane converted to octenes
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Figure 3.5 – Proposed further dehydrogenation and cyclisation mechanisms to form 

the aromatics observed

These findings are comparable to what previous work in this group has found1,2. It has 

been suggested the increase in conversion and selectivity to aromatics was caused by 

the (Fe2MoO4)3 + MoO3 catalyst undergoing a phase change and reduction (forming 

FeMoO4).2 The rapid increase in conversion at 450oC could be attributed to the phase 

change (see section 3.5.2) from Fe2(MoO4)3-MoO3 to FeMoO4-Mo4O11-MoO2 causing 

oxygen to be released

An in-situ x-ray powder diffraction (XRPD) study was carried out to investigate the 

phase transitions at different temperatures on an iron molybdate catalyst comprising 

of the species Fe2(MoO4)3 + MoO3. This is shown in Figure 3.6. The experiment started 

with the sample held at 50 °C. The temperature was then raised to 350 °C. Three scans 

were taken and then the temperature was raised another 50 °C to 400 °C. Three scans 

were taken and the sample was then raised to 450 °C. At this temperature and at 500 

°C and 550 °C the temperature was held constant for 45 minutes before the heating 
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increase to the next increment occurred. After being held for 45 minutes at 550 °C the 

temperature was allowed to cool back to 50 °C.

Scans taken lasted 8 minutes 42 seconds. The heating ramp rate between increments 

was 5 °C a minute.  

3.5.2 IN-SITU XRPD STUDY OF THE REDUCTION OF 
FERROUS MOLYBDATE TO FERRIC MOLYBDATE.

Figure 3.6: In situ XRPD of an iron molybdate catalyst (Mo to Fe excess of 2.7:1) with

n-octane under aerobic conditions (C:O 8:1) to 550°C. Phases present: MoO3 (o), 

Fe2(MoO3)4 (■), β-FeMoO4 (□), Mo4O11(▲), and MoO2 (●).  

A fast phase reduction at 460 °C (within 40 min) is observed with conversion of α-

Fe2(MoO4)3 to β-FeMoO4, MoO2 and Mo4O11.2 In Figure 3.6, fresh iron molybdate is 

shown by the black line, held at 50oC. MoO3 (o) and Fe2(MoO3)4 (■) species are both 

present.
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Species Peak (2 theta degrees) Lattice Plane d-spacing (Å) 
MoO3 12.8 200 4.52

33.8 111 1.38
Fe2(MoO3)4 20.5 120 4.10

21.8 214 3.95
23.0 220 2.02
31.4 032 1.43

Mo4O11 20.9 011 4.24
22.2 211 4.00
23.7 311 3.75
25.5 601 3.48

MoO2 31.6 101 3.12
37.1 -211 2.42

Β-FeMoO4 19.0 -201 4.66
26.2 220 3.40
27.0 -112 3.30
27.3 -202 3.26
33.5 -312 2.67
36.3 400 2.47

Table 3.1 – XRPD Peak list for Figure 3.6 with associated d-spacing and lattice 

planes.10,11

Acknowledgments for the XRPD study go to previous work done in the research 

group.1,2

What this study shows is that the iron molybdate undergoes a reductive phase change 

a ca.450o. This has also been shown in work by other groups.12 Catalytic testing with an 

iron molybdate catalyst (Fe2(MoO4)3 + MoO3) with a molybdenum excess of 2.7:1 

produced octenes but the highest selectivity was to carbon oxides and aromatics. 

However there was an increase in conversion seen at 450oC and after this point 

selectivity towards aromatics rose and carbon oxide production fell. This finding 

indicated that the reduced form of iron molybdate would be a more promising catalyst 

for the selective oxidation on n-octane to octenes. The reduced iron molybdate is in 

the form of β-FeMoO4 where the Mo is in the +6 oxidation state and Fe is in the +2 

oxidation state. 
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Upon cooling to 50 °C there is slight but perceptible shift with the peak at 25.5o

corresponding to the (601) lattice plane of Mo4O11 decreasing when the temperature is 

lowered from 550 °C to 50 °C. This corresponds with a sharp rise with the reflections at 

37.1o and 37.6o which correspond to the lattice planes of (-211) and (-202) of MoO2. 

Potentially while cooling the molybdenum oxide lattice undergoes a rearrangement. 

Molybdenum oxide lattice mobility at temperatures above 450 °C is well 

documented,13 suggesting a lattice reordering would be feasible.  In addition the peak 

at 26.2o corresponding to the (220) lattice planes of β-FeMoO4 undergoes peak 

broadening upon cooling to 50 °C. This may be down to a second order phase 

transition with a fraction of the (220) lattice plane undergoing a rearrangement to 

(202), with the majority remaining as (220). This would result in two discrete peaks but 

due to the subtle nature of the transformation the data may have led to peak merging 

resulting in the asymmetric broader peak around 26.2o which is observed at 50 °C.    

As such the preparation method of forming iron molybdate was modified and a pre-

reduction step using a furnace at 460oC in a reductive atmosphere was added, to see if 

there was an improvement on catalytic performance. This is shown in the 

experimental chapter. To avoid confusion it is referred to as the “pre-reduced iron 

molybdate catalyst”. The majority of catalytic data shown in this chapter comes from 

this catalyst and if other species (such as the pure phase components of the catalyst) 

are used this is made clear.
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3.5.3 STRUCTURE OF A PRE-REDUCED IRON MOLYBDATE 
CATALYST

Figure 3.7- XRPD of a pre-reduced iron molybdate catalyst. Phases present: MoO3 (o), 

Fe2(MoO3)4 (■), β-FeMoO4 (□) and Mo4O11(▲)

Species Peak (2 theta degrees) Lattice Plane d-spacing (Å) 
MoO3 23.0 011 3.86

27.4 111 3.37
Fe2(MoO3)4 15.8 110 4.50

20.5 120 4.10
23.0 220 2.02

Mo4O11 20.9 011 4.24
23.7 311 3.75
33.6 810 2.66

β-FeMoO4 12.9 110 6.81
26.2 220 3.40
27.3 -202 3.26

Table 3.2 – XRPD Peak list for Figure 3.7 with associated d-spacing and lattice planes.

As Figure 3.7 shows, β-FeMoO4 and Mo4O11 are both present after a reduction step in 

catalyst preparation. However Fe2(MoO4)3 and MoO3 are still present. This was despite 
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reducing in 10% hydrogen in argon for 2 hours at 460oC. This can be attributed to 

hydrogen and octane exhibiting a different ability to reduce the catalyst.

The peak at 23.0o is indicative of Fe2(MoO4)3 showing the (220) lattice plane with a 

spacing of 202 Å. This peak is 100% intensity. When compared with the peak at 26.2o

which is indicative of β-FeMoO4 (220) (340 Å) which is also 100% intensity we see that 

the ratio of β-FeMoO4 to Fe2(MoO4)3 is approximately 2:1.

Relative intensity ratios suggest a molybdenum excess to iron of approximately 3:1.

Figure 3.8- Raman spectra of iron molybdate catalyst before reduction step in 
catalyst preparation

Figure 3.9- Raman spectra of iron molybdate after reduction in catalyst preparation
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The Raman spectra in Figure 3.8 shows a reduction has occurred when compared to 

Figure 3.9 which shows an as prepared iron molybdate catalyst. Peaks at 995cm-1 are 

indicative of the terminal molybdenum oxygen bond in MoO3. Peaks at 819cm-1 are 

indicative of antisymmetric Mo-O-Mo stretching vibrations in MoO3. The peaks at 

784cm-1and 967cm-1 are molybdenum – oxygen vibrations in iron molybdate.14 The 

difference in spectra and lower intensity of the peaks at 995 and 821cm-1 indicate the 

reductive phase transition from MoO3 to Mo4O11 in the bulk molybdenum of the 

catalyst.

3.5.4 CATALYTIC ACTIVITY OF A PRE-REDUCED IRON 
MOLYBDATE

A pre-reduced iron molybdate catalyst was tested (1% n-octane, 0.2mL catalyst, C:O 

8:1). The reductive step is outlined in the experimental chapter. For clarity it is also 

presented here. Calcined in flowing air (5mL/min) at 260 °C for 4 hours using a heating 

ramp rate of 5 °C a minute. A final reduction step was then performed by placing the 

catalyst in a calcination furnace under a 10% hydrogen in argon atmosphere (5mL/min) 

at 460 °C using a heating ramp rate of 5 °C for 2 hours.

Figure 3.10 – Reaction of 1% n-octane (GHSV 1000h-1, C:O 8:1) over a pre-reduced 

iron molybdate catalyst. Temperature range from 350-550oC
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Using a pre-reduced iron molybdate catalyst clearly affects selectivity and activity. 

Although the activity was considerably lower than the highest seen with a Fe2(MoO4)3

catalyst (see Figure 3.3) with an octane conversion of ca.19% compared to ca.52%, 

there are considerably less carbon oxides present. Selectivity to octenes is also higher, 

which given that one of the aims of this chapter was to maximise octene selectivity, 

showed that a pre-reduced iron molybdate was a superior catalyst. This again is similar 

to previous findings in the group.2 In Figure 3.7 oxygen consumption rises with 

temperature and conversion. This provides evidence of oxidative dehydrogenation 

(ODH) occurring. 

Reductive pre-treatment of the catalyst results in reductive phase change of the iron 

molybdate present in the catalyst. As the catalyst has a molybdenum excess, 

molybdenum oxides are present, once the reductive pre-treatment occurs, the 

molybdenum forms Mo4O11 in the place of MoO3. 

This difference in composition of the catalyst leads to very different results. With a 

pre-reduced catalyst higher selectivity to octenes (the desired products) are observed, 

and lower selectivity to carbon oxides is found. Overall activity appears to be lower in 

the pre-reduced catalyst, possibly as a result of the lower levels of burning seen, as a 

high proportion of activity in the unreduced catalyst can be attributed to the formation 

of carbon oxides. It would appear the pre-reduced catalyst, (FeMoO4 + Mo4O11) is a 

better catalytic system for the oxidative dehydrogenation of n-octane to octenes than 

the unreduced catalyst (Fe2(MoO4)3 + MoO3). 

3.6 EFFECT OF ALTERING THE GHSV ON THE REACTION

Altering the gas hourly space velocity (GHSV) and contact time can alter catalytic 

activity and selectivity.15 To see the if octene production could be optimised, the GHSV 

of the reaction was varied from 1000h-1 to 4000h-1. The pre-reduced iron molybdate 

catalyst was tested (1% n-octane, 0.2mL catalyst, C:O 8:1).
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Figure 3.11 – Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a pre-reduced

molybdate catalyst. Temperature range from 350-550oC

As can be seen, increasing the GHSV and lowering the contact time of the n-octane 

over the catalyst alters the catalytic selectivity. Octenes are the major product 

between 350-450oC. Most strikingly carbon oxides (COx) are not produced at lower 

temperatures. At temperatures of 450oC and above, catalytic selectivity to COx 

remains below 20%. At higher temperatures, as with 1000h-1 GHSV, aromatics become 

the main product. 

The result suggests that 4000h-1 is a more suitable GHSV than 1000h-1 for optimising 

octene production. 400oC appears to be the optimal temperature for giving a good 

balance between activity and selectivity to octenes

Aromatic selectivity also varies considerably when the contact time is varied. The 

aromatic selectivity data was examined to observe the effect of altering the GHSV.
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Figure 3.12 – Aromatic selectivity distribution during the reaction of 1% n-octane 

(GHSV 1000h-1, C:O 8:1) over a pre-reduced iron molybdate catalyst. Temperature 

range from 350-550oC

At 1000 h-1 benzene, toluene, ethylbenzene with a trace amount of styrene are 

present at all temperatures tested. As the temperature increases xylene is produced 

with selectivity to styrene increasing. This is similar to the findings of Friedrich et al8

where 4% n-octane was passed over a magnesium vanadate catalyst. That work 

showed styrene as the main product as temperature increased. At lower temperature 

six and seven carbon (C6-C7) aromatics were found to be the main products, whereas 

eight carbon (C8) aromatics were the main products as the temperature was raised to 

>450 oC. Ethylbenzene, a C8 aromatic that is present in significant concentrations at 

lower temperatures, decreases sharply as the temperature increases past 450oC.
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Figure 3.13 – Aromatic selectivity distribution during the reaction of 1% n-octane 

(GHSV 4000h-1, C:O 8:1) over a pre-reduced iron molybdate catalyst. Temperature 

range from 350-550oC

At 4000h-1 a similar broad trend to figure 1000h-1 is observed. At lower temperatures 

the aromatics present are benzene and toluene, and at higher temperatures greater 

selectivity towards C8 aromatic species. At lower temperatures (350-400oC) lower 

overall selectivity to aromatics is observed with higher GHSV. Ethylbenzene and 

styrene are also not present at 4000h-1 when the temperature <450oC. Xylene is the 

major C8 aromatic product seen with lower contact time.

Clearly altering the GHSV alters catalytic selectivity, higher GHSV (lower contact time) 

leads to more octenes being produced. Lower GHSV (higher contact time) sees greater 

selectivity to aromatics and COx species. The product distribution of the aromatics also 

changes with GHSV. Higher GHSV sees only toluene and benzene present at 400oC and 

below, while at the same temperature range with lower GHSV, ethylbenzene and 

styrene are both produced. Higher GHSV also results in xylene as the major aromatic 

product at higher temperatures, while lower GHSV results in the production of styrene 

as the main product. Different contact times therefore may favour different ring 

closing positions at high temperatures. Aromatic formation at lower temperatures sees 
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benzene and toluene formed which suggests the remaining carbon fraction is what 

leads to the cracked products seen, or forms carbon laydown at the surface. 

3.6.1 INCREASING THE GHSV OF THE REACTION TO 
6000H-1 

As 4000h-1 GHSV was shown to give a higher yield of octenes than 1000h-1 GHSV, 

6000h-1 GHSV was tested (1% n-octane, 0.2mL catalyst, C:O 8:1).

Figure 3.14 –Reaction of 1% n-octane (GHSV 6000h-1, C:O 8:1) over a pre-reduced iron 

molybdate catalyst. Temperature range from 350-550oC

The selectivity to octenes is at ca.91% at 400oC when the GHSV is raised to 6000h-1. 

Octenes remain the dominant product throughout, 400oC offers the highest selectivity 

with an octane conversion of ca.6.5%. This octane conversion is lower than at 

experiments done at 400oC with lower GHSVs. This is not unexpected as a lower 

contact time over the catalyst could result in less reactant being converted to 

products.16 At 350oC cracked oxygenates, chiefly propanoic acid and pentanol. are 

present at higher concentrations than seen in any of the temperature ranges at lower 
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GHSVs.  At higher temperatures selectivity to carbon oxides and aromatics rises. The 

aromatic species formed are examined below in Figure 3.15. 

Figure 3.15 – Aromatic selectivity distribution during the reaction of 1% n-octane 

(GHSV 6000h-1, C:O 8:1) over a pre-reduced iron molybdate catalyst. Temperature 

range from 350-550oC

As can be seen in Figure 3.15 between 350-450oC no 8 carbon aromatics are seen, only 

benzene at lower temperatures before toluene is observed at 450oC. This is in marked 

contrast to the aromatic species produced at the 350-450oC temperature range with a 

GHSV of 1000h-1 (see Figure 3.12) where C8 aromatics such as ethylbenzene and 

styrene are present at 350oC. The only C8 aromatic seen in any notable levels is xylene 

at 550oC.

The aromatic data seen at 1% n-octane, 8:1 carbon to oxygen ratio, over the pre-

reduced iron molybdate catalyst, gives the following trends: Firstly at lower 

temperatures, benzene and toluene are the main aromatic products, this is notable 

because a C8 feedstock in octane is being fed into the reactor, this suggest would 

suggest some level of cracking then aromatisation. Secondly, at 1000h-1 GHSV some C8 

aromatics are observed from 350oC and above, this is not seen at higher GHSVs. 

Thirdly, at higher temperatures we see C8 aromatics, at 1000h-1 GHSV the highest 
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selectivities at 500-550oC are to both xylene and styrene (see Figure 3.10), at higher 

GHSVs (figures 3.9 and 3.11) it is to xylene. Finally, if styrene is produced, COx is also 

being produced, if the corresponding main product selectivity chart is checked.

3.6.2 COMPARISON OF VARIOUS GHSVS AT 1% N-
OCTANE

As shown previously, altering the GHSV affects the catalytic activity and selectivity. 

Below are two charts showing the catalytic data at two set temperatures; 400oC and 

550oC, with the GHSV being only parameter altered.

Figure 3.16 – Catalytic activity and selectivity during the reaction of 1% n-octane

(Temperature held at 400oC, C:O 8:1) over a pre-reduced iron molybdate catalyst. 

Gas hourly space velocity range from 1000-6000h-1 

As Figure 3.16 shows higher GHSV increases selectivity to octenes. Lower GHSV leads 

to higher aromatic formation, presumably at the expense of octenes.  The notable 

difference between 1000h-1 GHSV at 400oC and 4000h-1 GHSV is the formation of 

carbon oxides. No carbon oxides are produced at 4000 and 6000h-1 GHSV when at 

400oC. Lower GHSV also leads to greater oxygen consumption (see the blue dotted 
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line) and conversion (black solid line). Octane conversion falls from a high of ca.10.3% 

at 1000h-1 to ca.6.2% at 6000h-1.

Figure 3.17 – Catalytic activity and selectivity during the reaction of 1% n-octane 

(Temperature held at 550oC, C:O 8:1) over a pre-reduced iron molybdate catalyst. 

Gas hourly space velocity range from 1000-6000h-1 

Altering the GHSV at 550oC shows similar trends. Lower GHSV leads to higher octane 

conversion, presumably from greater contact time at the catalyst surface. As can be seen 

on Figure 3.17, conversion goes from ca.19.5% at 1000h-1 GHSV down to ca.15.7% at 

6000h-1 GHSV. Higher gas hourly space velocity also shows the same trend to greater 

octene selectivity, as in Figure 3.18. At this higher temperature, a lower GHSV also shows 

greater levels of cracked products. No oxygen was observed at 550oC which suggested 

that oxygen consumption was at 100%.

Higher GHSV (lower contact time) leads to lower octane conversion, as expected. 

However selectivity to octenes increases with higher GHSV, while levels of aromatics 

produced falls. Once 4000h-1 GHSV at 400oC is reached no carbon oxide is detected and 

a corresponding fall in oxygen consumption is observed.
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3.6.3 ALTERING THE CARBON TO OXYGEN (C:O) RATIO AT 
1% N-OCTANE

Another parameter that can be altered in addition to temperature and GHSV is the 

carbon to oxygen (C:O) ratio. In all of the results shown in this chapter so far, the C:O 

ration has been 8:1. That is, 8 carbon atoms to one oxygen in the gas feed of octane, 

oxygen and helium (as a carrier gas) being fed into the catalytic reactor bed. Other C:O 

ratios were tested and the results are shown in this section. Firstly a “lean” gas mixture 

was tested with a C:O ratio of 2:1. Then a gas “rich” mixture with a C:O ratio of 12:1 

was tested. Temperatures of 400oC and 550oC were tested, as 400oC has been shown 

to be the optimal temperature for octene production, while 550oC produces aromatics 

as the major products. Anaerobic testing, that is, a C:O ratio of 8:0 is explored in depth 

in the next chapter so is not discussed here.

Figure 3.18 – Catalytic activity and selectivity during the reaction of 1% n-octane 

(Temperature held at 400oC, C:O 2:1) over a pre-reduced iron molybdate catalyst. 

Gas hourly space velocity range from 1000-6000h-1 
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As expected, raising the level of oxygen in the gas feed increased the production of 

carbon oxides compared to a C:O ratio of 8:1. Octane conversion is also higher at 

ca.13.8% at 1000h-1 GHSV, than the 10.3% seen in Figure 3.14. This trend in higher 

conversion is also seen at higher GHSV. Octene production increased as GHSV 

increased from ca.11.7% at 1000h-1 to ca.20.1% at 6000h-1. Clearly from the 

perspective of optimising octenes production a C:O ratio of 2:1 is inferior to 8:1.

Figure 3.19 – Catalytic activity and selectivity during the reaction of 1% n-octane 

(Temperature held at 550oC, C:O 2:1) over a pre-reduced iron molybdate catalyst. 

Gas hourly space velocity range from 1000-6000h-1 

As Figure 3.19 shows there is a high octane conversion when the C:O ratio is 2:1 and the 

temperature is held at 550oC. The highest conversion once again, is found with the 

highest contact time at ca.23.9% . However the main selectivity is to carbon oxides.



82

Figure 3.20 – Catalytic activity and selectivity during the reaction of 1% n-octane 

(Temperature held at 400oC, C:O 12:1) over a pre-reduced iron molybdate catalyst. 

Gas hourly space velocity range from 1000-6000h-1 

Compared to a carbon to oxygen ratio of 8:1  lower octane conversion is observed (see 

Table 3.3). Higher GHSV sees an increase in selectivity to octenes and no carbon oxides 

produced above 4000h-1. Aromatic species are the secondary product formed. In 

comparison to the 8:1 C:O experiment at 400oC (see Figure 3.14) higher concentrations 

of aromatic species are seen at 12:1 C:O ratios. This means that an 8:1 C:O ratio is 

superior for octene production than 12:1, as both selectivity to octenes and octane 

conversion are higher. 

Gas hourly space velocity (h-1) Octane conversion (%) 

at 8:1 C:O ratio

Octane conversion (%) 

at 12:1 C:O ratio

1000 10.3 8.2

4000 8.7 6.4

6000 6.2 5.1

Table 3.3 – Comparison of octane conversion over varying GHSV between differing 

carbon to oxygen ratios at 400oC
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Figure 3.21 – Catalytic activity and selectivity during the reaction of 1% n-octane 

(Temperature held at 400oC, C:O 12:1) over a pre-reduced iron molybdate catalyst. 

Gas hourly space velocity range from 1000-6000h-1 

Again the higher carbon to oxygen ratio results in lower octane conversion. Selectivity 

is similar to 8:1 C:O.  The main difference of having a higher proportion of octane 

relative to oxygen in the gas feed is that higher selectivity to aromatics.

Having a gas lean (C:O 2:1) feed into the reactor results in a very high selectivity to 

carbon oxides. Conversion, and thus catalytic activity, is higher than a carbon of 

oxygen ratio of 8:1 but the desired product of octenes is only produced at low levels.

Having a gas rich (C:O 12:1) feed into the reactor results in similar selectivity seen 

when the carbon to oxygen ratio is 8:1. However conversion (see Table 3.3) is lower 

and leads to an overall yield of octenes that is lower than when the C:O ratio is 8:1.



84

3.7 CATALYTIC TESTING OF THE PURE PHASE
COMPONENTS OF THE CATALYST

Iron molybdate catalysts with an excess of molybdenum7,14,17 will have several 

different species present. Both iron molybdate and molybdenum oxides7 of varying 

types. As discussed at the beginning of this chapter, the catalyst tested underwent a 

reductive pre-treatment, which produced ferric molybdate (FeMoO4) and MoO3, 

Mo4O11 and MoO2 species. This was confirmed by XPRD (see figures 3.4 and 3.6). In 

this section the pure phase species; FeMoO4, MoO3 and MoO2 were tested. Mo4O11 is 

difficult to prepare, and is best understood as a partially reduced MoO3 species18, so 

was not tested. 

For each species a catalytic activity and selectivity study at 4000h-`1 is shown between 

350-550oC. Then activity and selectivity profiles over varying GHSVs are considered at 

400oC (shown above to optimal for octene production) and 550oC (which has the 

highest activity and a high selectivity to aromatics). Aromatic selectivity is also shown. 

Each “pure phase” species was obtained from Sigma-Aldrich and was checked by XPRD 

and Raman spectroscopy to confirm purity.
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3.7 PURE PHASE CATALYTIC TESTING

3.7.1 FeMoO4– Ferrous Molybdate

Figure 3.22 –Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over pure phase 

FeMoO4. Temperature range from 350-550oC

Figure 3.22 shows that FeMoO4 is very similar in selectivity to the pre-reduced catalyst 

but with a higher selectivity to octenes, with a catalytic selectivity of ca.85% at 400oC.

This compares to ca.73% at the same conditions for the pre-reduced catalyst. This 

would suggest FeMoO4 is an active component of the catalyst. However octane 

conversion is lower (see Table 3.4), suggesting that the molybdenum oxide species also 

play a catalytic role in reaction.7 Much lower levels of aromatics at lower temperatures 

are produced when pure phase FeMoO4 is used as a catalyst instead of a catalyst with 

molybdenum oxides present. 



86

Species Pre-reduced catalyst, 

molybdenum excess

Pure phase FeMoO4

Octane conversion at 400oC 8.7% 7.8%

Selectivity to octenes at 400oC 73.2% 85.4%

Octane conversion at 550oC 14.7% 11.6%

Selectivity to octenes at 550oC 28.5% 38.2%

Table 3.4 – Comparison of octane conversion and selectivity to octenes at 400oC & 

550oC between pure phase FeMoO4 and a pre-reduced iron molybdate catalyst with  

2.7:1 molybdenum to iron excess. (8:1 C:O, 4000h-1, 1% n-octane) 

As we will see further in this section, pure molybdenum oxides do have a high 

selectivity to aromatic species. The absence of these would offer an explanation for 

the low levels of aromatic species formed between 350-400oC when a pure FeMoO4

catalyst is used.

Figure 3.23 – Aromatic selectivity distribution during the reaction of 1% n-octane 

(GHSV 4000h-1, C:O 8:1) over a FeMoO4 catalyst. Temperature range from 350-550oC

Aromatic selectivity shows one notable difference to a pre-reduced catalyst at the 

same conditions (see Figure 3.13). As with a catalyst that has a molybdenum excess, 

FeMoO4 produces benzene and toluene at lower temperatures, before 8-carbon 
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aromatics (styrene, ethylbenzene and xylene) appear at higher temperatures. Notably 

however, high levels of benzene are seen even at 500oC when FeMoO4 was the 

catalyst. With the pre-reduced catalyst this was not seen. Benzene and toluene are 

minor products at 500oC. Having 6 and 7-carbon aromatics formed from an 8-carbon 

feedstock suggests cracking in addition to an aromatisation reaction. 

This higher level of cracking could be attributed to more exposed iron species at the 

surface of the catalyst.19,20 It has been widely postulated that the surface of iron 

molybdate catalysts have a monolayer of molybdenum oxide at the catalyst surface.21

It would be expected that a catalyst with a 1:1 iron to molybdenum ratio would not 

have such a layer of molybdenum oxide, and iron sites would be present at the 

surface. X-ray photoelectron spectroscopy confirmed a greater proportion of iron sites 

at the surface in FeMoO4 than a catalyst with a molybdenum excess. The data showing 

how pure phase iron molybdate has a higher percentage of iron at the surface is 

shown in Table 3.9 at the end of this chapter. Pure phase FeMoO4 has >14% of the 

surface as iron while with the pre-reduced catalyst with a molybdenum excess, the 

value is <7%. 

3.7.2 MoO3 – Molybdenum trioxide.
Molybdenum trioxide possesses the Mo(VI) oxidation state . It is reduced to MoO2

which possesses the Mo(IV) oxidation state. Transient species such as Mo4O11 also 

exist, where  some of the MoO3 in the lattice lose its terminally bonded oxygen before 

complete reduction  to MoO2.18,22

As MoO3 is still present in the pre-reduced iron molybdate catalyst tested throughout 

this chapter, it was of interest to see how it would act as a catalyst for the reaction of 

1%-n-octane.
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Figure 3.24 –Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a pure phase 

MoO3 catalyst. Temperature range from 350-550oC

Molybdenum trioxide decomposes from temperatures of 350oC and above. This is 

different from FeMoO4. It also shows low selectivity to octenes and high selectivity to 

aromatics. Cracked oxygenates are also observed in higher concentrations than when 

FeMoO4 or the pre-reduced iron molybdate catalyst was tested at the same conditions. 

Activity was relatively high with the lowest octane conversion seen at 350oC being 

ca.8.3%. This high activity is likely due to the ready selectivity to carbon oxides.

Figure 3.25 – Aromatic selectivity distribution during the reaction of 1% n-octane 

(GHSV 4000h-1, C:O 8:1) over a MoO3 catalyst. Temperature range from 350-550oC
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As can be seen in Figure 3.25, MoO3 has very high selectivity to 8-carbon aromatic 

species. Very low levels of toluene and benzene are observed but none in high levels. 

This is in direct contrast to FeMoO4 (see Figure 3.23) which produced high levels of 

benzene. This suggests that MoO3 acts at lower temperatures as the main species 

causing aromatisation with FeMoO4 causing cracking of the 8-carbon aromatic to 

benzene or toluene. At higher temperatures, both FeMoO4 and MoO3 produce high 

levels of aromatics. With MoO3 xylenes and styrene replace ethyl benzene as the 

temperature increases.

Increasing the gas hourly space velocity to 6000h-1 sees aromatic selectivity rise at the 

expense of carbon oxides, but burning still at all the temperature profiles tested.

3.7.3 MoO2 – Molybdenum dioxide
The last pure phase species examined to see its catalytic activity and selectivity on n-

octane. MoO2 is produced, as seen at the beginning on this chapter (see Figure 3.6) when 

iron molybdate catalysts reach temperatures of 460oC and above. As MoO2 can be 

thought of as a MoO3 molecule minus the terminally bonded oxygen, it was of interest 

to see how a molybdenum surface with oxygen vacancies would act.

Figure 3.26 –Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a pure phase 

MoO2 catalyst. Temperature range from 350-550oC
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It is immediately apparent that MoO2 has a very low catalytic activity, with octane 

conversions no higher than ca.3.2%. This is in contrast with MoO3 which had 

considerably higher conversion. Unlike MoO3, MoO2 shows high selectivity to octenes 

at 400oC (ca.63.4%). This selectivity to octenes is still lower than that exhibited by 

FeMoO4. No burning or selectivity to carbon oxides is shown at 400oC or lower. 

Appreciable levels of cracked oxygenates are observed at lower temperatures before 

dropping sharply at 450oC and above. A slight increase in cracked products is seen at 

500oC and 550oC. This cracking can also be seen in the aromatic selectivities.

Figure 3.27 – Aromatic selectivity distribution during the reaction of 1% n-octane 

(GHSV 4000h-1, C:O 8:1) over a MoO2 catalyst. Temperature range from 350-550oC

Interestingly the majority of aromatic species produced are “heavy” aromatics with 

carbon chains of 12 or longer. The most common species formed were naphthalene 

and ethyl-napthalene. Very low levels of benzene and toluene are seen until 5000C and 

550oC when cracking occurs in higher levels (see Figure 3.26). At higher temperatures 

8-carbon chain aromatics start to be formed. This is in contrast to MoO3 which 

produced 8-carbon aromatics from 350oC.
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FeMoO4 as a catalyst shows similar selectivity to the pre-reduced catalyst, however 

conversion is slightly lower. This suggests that the active species for catalytic ODH is 

FeMoO4. Further work on pure FeMoO4, namely time on line (TOL) studies and 

anaerobic studies, is shown in chapter 4. Benzene is formed readily which suggests iron 

sites are responsible for catalytic cracking.

MoO3 is highly selective to aromatics and carbon oxides. It also forms higher levels of 

cracked oxygenates than the pre-reduced catalyst. It has a higher catalytic activity than 

FeMoO4. 8-carbon aromatics are seen at lower temperatures when the GHSV is 4000h-1 

unlike the pre-reduced catalyst and FeMoO4. It would appear that the terminally-

bonded oxygen on MoO3 is highly active in a Mars-Van Krevelen ODH style mechanism.

This hypothesis is supported by the very low catalytic activity exhibited by MoO2 as there 

is no terminally bonded oxygen present just a surface vacancy. MoO2 does exhibit higher 

selectivity to octenes than MoO3. It does not burn at 400oC when the gas hourly velocity 

is 4000h-1, like FeMoO4 and the pre-reduced catalyst. The major aromatic species 

produced are 12 carbon chain or larger. As the temperature increases higher levels of 

styrene and xylene are observed in line with other results. Clearly the oxygen vacancy 

on MoO2 encourages the formation of naphthalene and ethyl-napthalene. 

3.8 SCALING UP THE PROCESS – INCREASING N-OCTANE 
TO 10% OF THE GAS FEED

All of the work shown far was conducted with the concentration of n-octane in the gas 

feed being 1%. As in industry this would not be feasible, the Honeywell UOP method 

uses much higher concentrations of alkane23, the concentration of n-octane was raised 

to 10% to see what effect it would have on the reaction.

The carbon to oxygen ratio was kept at 8:1, this having been found to be the optimal 

ratio, GHSV was kept at 4000h-1, 0.2mL of catalyst was used. The catalyst used was the 

pre-reduced iron molybdate catalyst. In short all conditions except n-octane 
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concentration was kept the same. 10% n-octane in the gas feed was used as the lower 

explosive limit of n-octane is 1.1% and the upper explosive limit is 7%.

Figure 3.28 –Reaction of 10% n-octane (GHSV 4000h-1, C:O 8:1) over a pre-reduced 

iron molybdate catalyst. Temperature range from 350-550oC

The first result of note was that using a higher concentration of n-octane in the gas feed 

was that production of carbon oxides was occurring at 350oC and 400oC using identical 

conditions where no COx was produced when the percentage of n-octane was 1%. Higher 

temperatures once again saw high levels of aromatics formed. Conversion levels were 

similar to when 1% n-octane was used.  With this finding and referencing earlier results 

shown in this chapter, the GHSV was raised to observe whether burning could be 

eliminated at lower temperatures and thus increase selectivity to octenes.
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Figure 3.29 –Reaction of 10% n-octane (GHSV 6000h-1, C:O 8:1) over a pre-reduced 

iron molybdate catalyst. Temperature range from 350-550oC

As can be seen production of COx was still high. A higher GHSV led to lower oxygen 

consumption from 350-450oC. In contrast to Figure 3.28, COx are the dominant product 

at 550oC whereas when the GHSV was 4000h-1 it was aromatic species. However 

increasing the GHSV did result on octenes becoming the main product at 350oC.

Clearly to eliminate burning the GHSV would need to be raised to a higher level, although 

this required some alteration of the reactor as using high gas flows over the catalyst led 

to back-pressure issues. 
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Figure 3.30 – Aromatic selectivity distribution during the reaction of 10% n-octane 

(GHSV 6000h-1, C:O 8:1) over a pre-reduced iron molybdate catalyst. Temperature 

range from 350-550oC

Considering the aromatic selectivity when the GHSV was 6000h-1, it is notable that 8 

carbon chain aromatics are formed at low temperatures. This is consistent with earlier 

findings showing that C8 aromatics are formed whenever burning occurs. Once again, 

higher temperatures see xylene and styrene being formed at high levels.

When the GHSV was raised to 12,000h-1 carbon oxides were still being formed at 350oC 

and 400oC. Another experiment was run with the GHSV at 16,000h-1.
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Figure 3.31 –Reaction of 10% n-octane (GHSV 16,000h-1, C:O 8:1) over a pre-reduced 

iron molybdate catalyst. Temperature range from 350-550oC

As can be seen, raising the GHSV to 16,000h-1 stops selectivity to COx at lower 

temperatures, with octenes being the main product. At 400oC there is ca.77.1% 

selectivity to octenes. However from the standpoint of maximising octene production, 

this comes at a price. An octane conversion of only ca.3.2% is observed. While this gives 

a higher overall yield of octenes than at 400oC, 4000h-1, 1% n-octane, it is not as high as 

hoped. Table 3.5 (below) shows a comparison of COx free octene production at 400oC 

for both 1% and 10% n-octane

n-octane 

percentage in gas 

feed

Selectivity to 

octenes (mol %) at 

400oC

Octane conversion 

(mol %)

Yield of octenes in 

gas feed (%)

1% n-octane 73.2 8.7 0.06

10% n-octane 77.1 3.2 0.25

Table 3.5 – Comparison of octane conversion and selectivity to octenes for 1% n-

octane at 4000h-1 and 10% n-octane at 16,000h-1 
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As table 3.5 shows although 10% n-octane produces a greater concentration of 

octenes without burning at 16,000h-1 than 1% n-octane does at 4000h-1 it is not ten 

times greater. In fact it is more likely to be 4 times greater. This lower yield can be 

attributed directly to the low conversion of n-octane. This is turn can be attributed to 

the higher GHSV required with greater n-octane concentrations in the gas feed. Clearly 

there is a trade-off.

Although there is no concretely defined target for conversion and selectivity to 

octenes, this work would like it to be as high as possible. As a point of reference the 

UOP-PACOL process that uses dehydrogenation to convert n-paraffins to olefins has a 

reported conversion rate of 12-13% with a selectivity to olefins >90%.24 For this 

process to compete with that both activity and selectivity need to be higher. The 

selectivity to octenes is the most important as they are the desired product. Although 

oct-1-ene would be desirable, this process and the UOP-PACOL process both produce 

internal alkenes (olefins). These are still valuable however as they can be further 

functionalised. 

Figure 3.32 – Aromatic selectivity distribution during the reaction of 10% n-octane 

(GHSV 16000h-1, C:O 8:1) over a pre-reduced iron molybdate catalyst. Temperature 

range from 350-550oC
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The aromatic species produced over the various temperatures at 16,000h-1 are 

comparable to those produced with 1% n-octane at 4000h-1 GHSV (see Figure 3.13). 

Toluene and benzene produced from 350-400oC with 8 carbon chain aromatics being 

produced once burning occurs at 450oC and above. Curiously higher levels of benzene 

are seen at 550oC than in Figure 3.13. This could be attributed to greater surface 

coverage of olefin on the catalyst surface and more iron sites coming into contact with 

the alkane, leading to cracking, similar to what was observed when pure phase 

FeMoO4 was tested.

Catalyst testing was then done with the temperature kept at 400oC and various GHSVs 

tested to see at what contact time burning occurs. This was to see if the process could 

be “fine tuned” to obtain the highest octane conversion without combustion 

occurring. 

Figure 3.33 –Reaction of 10% n-octane (Temperature 400oC, C:O 8:1) over a pre-

reduced iron molybdate catalyst. GHSV range from 6000-16,000h-1 

As Figure 3.33 shows burning occurs until 16,000h-1. Less COx is produced  as the GHSV 

is raised but this comes as the cost of decreasing conversions. This is expected as a 
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shorter contact time on the catalyst surface will lead to lower conversions of the n-

octane to products. Equally a higher contact time will lead to more thermodynamically 

stable products (such as CO2) being produced.  

Scaling up the process and increasing the percentage of octane in the gas feed is 

feasible. However much higher GHSVs were required for a combustion free conversion 

of n-octane to octenes. The same contact times at 1% n-octane resulted in burning 

when 10% n-octane was used. This may be due to a surface coverage issue as greater 

levels of alkane come into contact with iron sites on the catalyst surface. Although 

using a higher concentration of alkane in the gas feed results in a greater 

concentration of alkenes being produced, there is a trade-off, as the higher GHSVs 

required result in lower conversions. Selectivity remained largely the same as 1% n-

octane when considering the species produced, no heavy aromatics for example, were 

observed. As contact times were shortened lower oxygen consumption was observed 

as n-octane conversion dropped, this is again expected as the reaction appears to 

proceed by an oxidative dehydrogenation mechanism.

3.9 CATALYST CHARACTERISATION

Earlier in the chapter X-ray Powder Diffraction (XRPD) patterns and Raman spectra 

were presented, showing the effect of the pre-reduction step in catalyst preparation. 

Other analytical techniques to observe the effect on the catalyst structure post 

reaction, and to elucidate details about the catalyst such as the exact ratio of 

molybdenum to iron present. 

3.9.1 SURFACE AREA MEASUREMENTS

Brunauer-Emmet-Teller measurements were used to show the surface area of the 

catalyst before and after the reaction. 
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Surface area before reaction (m2g-1) Surface area after reaction (m2g-1)

1.3 4.2

Table 3.6 – Different surface areas of the pre-reduced iron molybdate catalyst before 

and after reaction. 1% n-octane, 4000h-1, 550oC, 8:1 C:O

After being placed in the reactor the catalyst has a higher surface area. This is most 

likely due to MoO3 being reduced and forming Mo4O11 and MoO2 species as MoO3 has 

a very low surface area.25 MoO3 is recorded in the literature7as having a low surface 

area (ca. 1.0m2g-1). The formation of MoO2 and Mo4O11 species from the loss of 

terminal oxygen species from surface MoO3, could be acting to disrupt the surface 

layer of MoO3 that is observed on iron molybdate catalysts.21 This disruption would 

then lead to defect sites thus increasing surface area.26

3.9.2 THERMOGRAVIMETRIC ANALYSIS

Thermal gravimetric analysis (TGA) was performed before (fresh catalyst) and after 

(used catalyst) to observe what mass had been lost. The catalyst had been taken up to 

550oC at a C:O ratio of 8:1 under a flow of 1% n-octane. 

A ramp rate of 5 °C per minutes was used. The sample atmosphere was 10% oxygen in 

argon. Flow rate was 10ml/min. Sample mass was 0.12g.
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Figure 3.34 – TGA of catalyst before being undergoing reaction with n-octane (blue 

line) and after (red line). Conditions of 1% n-octane, 4000h-1, 550oC and 8:1 C:O used

The weight gain in the used catalyst is likely due to the molybdenum being re-oxidised 

from Mo4O11 and MoO2 to MoO3. This would come from the oxygen in the gas feed. 

This is also consistent with the surface area change.  XPS which is examined in Chapter 

4 confirms that there is some low level carbon deposition, potentially therefore the 

gain in mass may be down to sp2 and sp3 carbon species oxidising at the catalyst 

surface. Osswald et al suggest that this process would occur between 375-450oC which 

overlaps with the range in which there is mass gain in the TGA shown in Figure 3.34.27

This is important to note as carbon deposition could be removed by varying the rate of 

gas flow to 40ml/min and high temperatures. 
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3.9.3 XRPD OF CATALYST POST-REACTION

Figure 3.35- XRPD of a pre-reduced iron molybdate catalyst post reaction. Phases 

present: β-FeMoO4 (□) and Mo4O11(▲) and MoO2 (●). Conditions used in reaction 1% 

n-octane, 4000h-1, 550oC and 8:1 C:O

Species Peak (2 theta degrees) Lattice Plane d-spacing (Å) 
Mo4O11 22.2 211 4.00

22.5 501 3.95
23.7 311 3.75
25.5 601 3.48
27.3 610 3.26
34.6 602 2.56

MoO2 37.1 -211 2.42
β-FeMoO4 26.2 220 3.40

27.3 -202 3.26
31.6 112 2.83

Table 3.7 – XRPD Peak list for Figure 3.35 with associated d-spacing and lattice 

planes.

These results show that reduction does take place in the reactor. Oxygen depleted 

molybdenum species (Mo4O11 and MoO2) are observed in the catalyst. This oxygen 
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depletion would explain why the spent catalyst gains mass in TGA (reoxidation of the 

sample would explain weight gain), and why the catalyst exhibits greater surface area 

post reaction. XPS studies (below) confirm that oxygen depleted molybdenum species 

exist at the surface. This is in line with the XRPD. 

3.9.4 RATIO OF MOLYBDENUM TO IRON IN THE CATALYST

The catalyst was prepared with a ratio of 2.7:1 molydenum to iron excess, and XRPD 

patterns confirm that free molybdenum oxide species are present in the catalyst, so it 

is likely that there is a molybdenum excess. Energy dispersive X-Ray (EDX) 

spectroscopy and Microwave Plasma- Atomic Emission (MP-AES) Spectroscopy was 

carried out on the catalyst before it was tested in the reactor, to see what 

molybdenum to iron ratio is present at the catalyst .

Ratio of Mo/Fe found using EDX Ration of Mo/Fe found using MP-AES

2.4 2.7

Table 3.8 – Ratios of molybdenum to iron present using EDX and MP-AES 

spectroscopy

Clearly both spectroscopic methods show that there is an excess of molybdenum 

present. EDX shows a lower level of molybdenum than MP-AES which gives a 2.7:1 

ratio, which was what the catalyst preparation aimed for. 

3.9.5 XPS STUDIES AT THE CATALYST SURFACE

X-ray photoelectron studies were carried out on the molybdenum rich, pre-reduced 

catalyst before and after the reaction and on the pure phase FeMoO4 before reaction.

Deconvolution of the XPS spectra into special peaks was done via a Microsoft Excel 

macro “eXPFIT” in which Shirley-type background subtraction was selected. This works 

on the assumption that the shapes of the lines is Gaussian.



103

Peaks for Mo(VI) were seen in the molybdenum rich catalyst before reaction. After 

reaction this shifted to peaks for Mo(IV), Mo(V) and Mo(VI) all being present. This 

concurs with the XRPD that reduction of the catalyst occurred inside the reactor.

Figure 3.36 XPS spectra of pre-reduced iron molybdate before undergoing reaction 

with n-octane

The peak at 232.9 eV  in Figure 3.36 is indicative of Mo 3d 5/2 at (VI) oxidation state, 

which is corresponds to MoO3. The peak at 236.2 corresponds to Mo 3d 3/2 at the (VI) 

oxidation state. 

Figure 3.37 XPS spectra of pre-reduced iron molybdate after undergoing reaction 

with n-octane. Conditions of 1% n-octane, 4000h-1, 550oC and 8:1 C:O used
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Figure 3.37 shows the XPS spectra of the pre-reduced iron molybdate catalyst after 

undergoing reaction with n-octane. Peaks corresponding to molybdenum in the +4, +5 

and +6 oxidation states were observed. The binding energies (BE) at 233.15 eV and 

236.3 eV are indicative of Mo (VI) with spins indicated on Figure 3.37. This could 

indicate the presence either of MoO3 or Mo4O11 at the catalyst surface. The peaks at 

229.8 eV and 233.0 eV are indicative of Mo (IV), this would suggest there is a presence 

of MoO2. The data for assigning these peaks come from the NIST X-ray photoelectron 

spectroscopy database. Finally, work by Spevak28 suggests that an Mo (V) species can 

be observed at 230.7 eV, this oxidation state could either be from the Mo (VI) being 

reduced by  the X-rays, or be indicative of Mo4O11.  These findings correspond to the 

XRPD shown in Figure 3.35.

Figure 3.38 XPS spectra of pre-reduced iron molybdate before undergoing reaction 

with n-octane. Conditions of 1% n-octane, 4000h-1, 550oC and 8:1 C:O used

Figure 3.38 shows the XPS spectra of the pre-reduced iron molybdate catalyst after 

undergoing reaction with n-octane. Peaks corresponding to iron in the +2 and +3 

oxidation states were observed. The peak at 710.0 eV corresponds to Fe 2p 3/2 spin of 

iron in the +3 state. This correlates with the XRPD done at the beginning of this chapter 
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in Figure 3.7 which showed Fe2(MoO4)3 still present in the catalyst even after the pre-

reduction step. The narrow peak at 712.3 eV is indicative of Fe 2p 3/2 species of iron in 

the +2 oxidation state, indicating the presence of FeMoO4, although iron chloride 

which was used as a precursor for the catalyst preparation also exists in the +2 state. 

The broad peak at 726.3 eV corresponds to Fe 2p 1/2 species indicating the possible 

existence of Fe2O3 on the catalyst surface.29,30

Figure 3.39 XPS spectra of pre-reduced iron molybdate after undergoing reaction 

with n-octane. Conditions of 1% n-octane, 4000h-1, 550oC and 8:1 C:O used

As figure 3.39 shows, post-reaction there is a much subtler peak indicating the 

presence of iron in the +3 oxidation state (709.6 eV, Fe 2p 3/2 species). This implies a 

near-full reduction to FeMoO4 which is in agreement with the XRPD shown in Figure 

3.35. The peak at 711.4 eV BE is indicative of Fe 2p 3/2 and the peak at 724.2 eV BE is 

indicative of Fe 2p 1/2. Both of these show iron in the +2 oxidation state.30

Analysis of the catalyst surface showed the ratios of iron molybdenum and oxygen 

present before and after the reaction (see Table 3.9). 
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Catalyst Fe present (%) Mo present (%) Oxygen present 

(%)

Before reaction 

with 1% n-octane

6.67 25.15 68.18

After reaction with 

1% n-octane

3.74 30.39 65.87

Pure Phase 

FeMoO4 before 

reaction

14.47 18.45 67.08

Table 3.9 – Showing the composition of the catalyst surface (%) before and after 

reaction with 1% n-octane, 4000h-1, 550oC, 8:1 C:O. Also shown is pure phase 

FeMoO4 before reaction

As Table 3.9 shows, after the reaction, higher levels of molybdenum are seen at the 

catalyst surface but with lower levels of oxygen present. This suggests that some level 

of reduction is occurring with molybdenum migration to the surface. This is supported 

by the XRPD above.

As also shown in Table 3.9, FeMoO4 has more iron sites present at the surface. This 

offers an explanation as to why it had higher selectivity to cracked products and 

benzene/toluene aromatic species. Iron sites cause the cracking of the n-octane 

molecules. 

SUMMARY OF CHAPTER 3

An iron molybdate catalyst, with a molybdenum excess to iron of 2.7:1, causes 

oxidative dehydrogenation (ODH) of n-octane to octenes, chiefly trans 2-octene and 

trans 3-octene. 

Ferric molybdate and molybdenum trioxide, the oxidised common form of iron 

molybdate, is highly selective to carbon oxides and only gives a low yield of octenes. 

However ferrous molybdate and reduced molybdenum oxide species (FeMoO4 + 
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Mo4O11) show greater selectivity to octenes. This is in keeping with findings by Stern 

and Grasselli31 which showed ODH of propane over molybdate catalysts with the 

formula AMoO4 where A is a cation with a +2 oxidation state. 

At 1% n-octane with a 8:1 carbon to oxygen ratio, and a gas hourly space velocity 

(GHSV) of 4000h-1, carbon oxide free ODH is observed at 400oC. With a selectivity of 

ca.73.2% to octenes and a n-octane conversion of ca.8.7%. Lower GHSV leads to the 

formation of carbon oxides and aromatics, as longer contact times of the substrate at 

the catalyst surface leads to the formation of more thermodynamically stable 

products. Experiments at higher GHSVs lead to similar results but with lower 

conversions observed, falling to 6.5% n-octane conversion at 6000h-1.

Higher temperatures (450oC and above) lead to the formation of aromatics and carbon 

oxides. With aromatics being the main products formed from n-octane (>50% 

selectivity) at 550oC. Having a higher temperature and greater energy in the system 

could lead to the alkane bonding to the catalyst in numerous places, forming an octa-

tri-ene species which could then cyclise in an intramolecular Diels-Alder style 

mechanism.32

There is a pattern when considering the aromatic species formed. At lower 

temperatures, when no COx is formed, the only two aromatics seen are benzene and 

toluene. This suggests that cracking is occurring before or after cyclisation as 6 and 7 

carbon chain products are formed from an 8 carbon feedstock. It may be that iron sites 

at the surface cause this cracking. Indeed when pure phase FeMoO4 was used as a 

catalyst, a much higher proportion of the aromatics formed was benzene. Although 

fewer aromatics were formed overall at low temperatures when FeMoO4 was used as 

a catalyst. XPS confirmed that the ratio of iron at the surface of FeMoO4 was much 

higher than the catalyst with a molybdenum excess.  

At higher temperatures and lower GHSVs as COx is formed, longer 8-chain aromatics 

are produced. These are ethylbenzene, xylene and styrene. At the highest temperature 
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tested (550oC) the major aromatic products were xylenes and styrene, while 

ethylbenzene was observed at its highest concentrations at 450o or below if there was 

a low GHSV. When pure MoO3 was used, 8 carbon chain aromatics were the main 

species formed, so it is reasonable to suggest that is the molybdate rich parts of the 

catalyst surface that cause cyclisation. When pure phase MoO2 was used the main 

aromatic species formed was ethyl-napthalene, clearly incorporating 2 n-octane 

molecules at the surface before desorption as a heavy aromatics.

Altering the carbon to oxygen (C:O) ratio also had an effect on selectivity. Increasing 

the level of oxygen in the gas feed increased selectivity to carbon oxides significantly 

(>55% across all temperature and GHSV profiles), as expected. While increasing the 

level of alkane in the feed led to similar results to an 8:1 C:O but with lower 

conversions (drop of 1-2%) observed. Previous work on propane ODH found that the 

reaction rate of the alkane in a Mars-Van Krevelen ODH mechanism is close to one and 

close to zero with oxygen.33 This is consistent with the findings here, as conversions 

with a 12:1 C:O ratio only decreased slightly compared to conversions with an 8:1 

ratio. The increase in conversion seen for an oxygen rich species can be attributed to 

the formation of high levels of COx, which may not be formed by an MvK-ODH 

pathway. 

Using the pure phase components of the catalyst showed that FeMoO4 is highly 

selective to octenes (ca.85%), but with a slightly lower catalytic activity than the 

molybdenum rich catalyst (7.3%). MoO3 showed high activity (between 9-20% n-

octane conversion across temperature profiles) but was mainly selective to aromatics 

and carbon oxides (20-50% depending on temperature profile), and at 350oC cracked 

oxygenate species. This is likely to due to the labile terminal oxygen bonded to the 

molybdenum. MoO2 which lacks that terminal oxygen shows very low catalytic activity 

(n-octane conversions of less than 3.2%) and its main selectivity is to heavy aromatics. 

Finally the level of n-octane can be increased from 1% to 10% in the gas feed. However 

the GHSV must be altered as formation of COx occurs more readily when the 
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percentage of n-octane in the gas feed is higher. This may be due to greater surface 

coverage of the catalyst.
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4
CHAPTER 4 – TIME ON LINE STUDIES, PROPOSED 
MECHANISM AND ANAEROBIC STUDIES.

4.1 INTRODUCTION

This chapter follows on directly from findings in chapter 3, which examined the use of 

an iron molybdate catalyst formed of FeMoO4 + Mo4O11 for the oxidative 

dehydrogenation (ODH) of n-octane to octenes. In this chapter, the effects of 

prolonged use and oxygen depletion on the performance of the catalyst are 

investigated. This was done to give information on the possible mechanism of the 

catalyst. A great deal of work has been done on the use of metal molybdates for the 

oxidative dehydrogenation of shorter chain alkanes, such as propane.1–3 It is assumed 

that molybdate species use a Mars-Van Krevelen type mechanism to cause the ODH of 

an alkane to alkene.4–6 If this is the case with an iron molybdate catalyst, then 

removing the oxygen from the gas feed should stop the reaction. However a time lapse 

may be seen, as residual lattice oxygen still converts alkane to alkene, before the 

reaction stops.

In addition, studies on catalyst lifetime and reusability were done, and a molybdenum 

rich catalyst comprising of FeMoO4 + Mo4O11 was compared with pure phase FeMoO4

catalyst that had no molybdenum excess.

4.2 TIME ON LINE STUDY, EFFECT OF HIGH 
TEMPERATURE ON CATALYST PERFORMANCE

An iron molybdate catalyst (FeMoO4 + Mo4O11) with a molybdenum to iron excess of 

2.7:1, prepared as described in Chapter 2, pre-reduced under flowing hydrogen at 

460oC was used. Reactor conditions used 1% n-octane, 0.2mL catalyst C:O 8:1. The 

catalyst was tested at 400oC to maximise octene production. It was then taken to 
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550oC and held for 15h before being cooled to 400oC to observe if there was any 

difference in catalytic activity. 

Figure 4.1 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a pre-reduced iron

molybdate catalyst. Temperature range from 400-550oC over a period of 24 hours. 15 

hours spent at 550oC

As can be seen in Figure 4.1, the temperature can be raised from 400oC where octene 

production is maximised, to 550oC which sees combustion and high levels of aromatic 

production, before returning to 400oC and seeing similar levels of octene production as 

before. Notable differences are the higher oxygen consumption between 400oC at 0h 

and 24h, lower levels of cracked oxygenates are observed and slightly higher levels of 

aromatics and cracked products are seen.

Molybdenum, in the form of MoO3, can sublime at temperatures as low as 550oC if 

there is a flow of gas7, so it was of interest to observe whether the catalyst would be 

stable if exposed to those temperatures for a prolonged period.
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Figure 4.2 – Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a pre-reduced iron

molybdate catalyst. Temperature held constant at 550oC over a period of 15 hours.

Figure 4.2 shows the time online data from Figure 4.1 in more detail when the catalyst 

was kept at 550 oC as can be seen the catalyst is kept at steady state conditions.

4.3 TIME ON LINE STUDY – CATALYST LIFETIME

An iron molybdate catalyst (FeMoO4 + Mo4O11) was tested for 48hrs at 400oC to 

observe catalyst lifetime for octene production. 
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Figure 4.3 – TOL reaction of 1% n-octane (400oC, C:O 8:1) over a pre-reduced iron

molybdate catalyst. GHSV range from 1000h-1–4000h-1 over a period of 48 hours. 

Figure 4.3 shows the iron molybdate catalyst held at 400oC for 48 hours. The GHSV was 

lowered from 4000h-1 to 1000h-1 after 15 hours and raised to 4000h-1 again after 33 

hours. After 48 hours the catalyst was showing similar selectivity and conversions as at 

the beginning. This shows the catalyst longevity and tunability as the conditions can be 

altered and reset without lasting effect on the distribution and yield of products.

As found in chapter 3, lower GHSV leads to higher conversions and oxygen 

consumption, indicative of an oxidative dehydrogenation mechanism, but lower 

selectivity to octenes, and higher selectivity to carbon oxides and aromatics. 

4.4 PROPOSED MECHANISMS FOR FORMATION OF 
OCTENES AND AROMATICS FROM N-OCTANE

Stern and Grasseli8 proposed the following mechanism (Figure 4.4) for how the 

oxydehydrogenation of propane over nickel and cobalt molybdate catalysts can lead to 

total oxidation and the formation of carbon oxides.  
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Figure 4.4 – Proposed mechanism for oxidation of propane over molybdate catalysts8

If an assumption is made that n-octane forms aromatic species more readily rather 

than oxygenate species (in contrast to propane), then it would appear a similar 

mechanism is occurring with an iron molybdate catalyst and n-octane at 400oC. This 

assumption however assumes that the formation of aromatics comes from a 

sequential pathway via alkenes which have been formed via alkanes. 

At higher gas hourly space velocities octenes are formed more readily, while a lower 

GHSVs greater selectivity to carbon oxides and aromatics is observed. At 4000h-1 step 

1, the conversion from alkane to alkene, occurs and the shorter contact time allows 

the bulk of the hydrocarbon to be removed before sequential steps can occur. While at 

1000h-1 step 1 occurs, the alkene is formed, but due to greater contact time at the 

catalyst surface, aromatisation or total oxidation occurs, leading carbon oxide 

formation and high levels of aromatics at the expense of the desired alkene product.  

To probe the nature of the mechanism several studies were done in this work. Varying 

the GHSV altered the selectivity of products. This would suggest that contact time of 

reactants and products at the catalyst surface affects the nature of the reaction. 

Intermediates or products such as octene could be used as a feedstock to observe if 

sequential reactions are responsible for secondary products. The carbon to oxygen 

ratio was varied in the previous chapter to observe how the selectivity and conversion 

changed. In this chapter anaerobic studies were done to observe if the nature of 

gaseous oxygen is different in character to lattice oxygen. This would also offer a 

strong indicator of whether the reaction mechanism is Mars-Van Krevelen or not.  
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A proposed mechanism scheme based on Stern and Grasseli’s model is shown in Figure 

4.5. It is based on the difference in selectivity shown through varying contact times and 

temperatures shown in chapter 3 and briefly here.

Figure 4.5 -Proposed mechanism for oxidation and oxidative dehydrogenation of n-

octane over an iron molybdate catalyst

The mechanism shown in Figure 4.5 is an attempt to adapt the mechanism proposed 

by Stern and Graselli shown in Figure 4.4. It is based on observations made on how 

contact time effects selectivity. Firstly that high GHSV (low contact time), leads to high 

selectivity to octenes and cracked oxygenates. Secondly that lower GHSVs (a higher 

contact time for the n-octane to be in contact with the catalyst), leads to carbon oxides 

and aromatics being the dominant products, see Figure 4.6. Thirdly, within the 

formation of aromatics, higher GHSV sees only benzene and toluene formed, while 

lower GHSV results in styrene, xylene and ethylbenzene being produced. 

One of the problems with this mechanism are that octa-dienes are not observed as 

products. This is in direct contrast to the Honeywell UOP PACOL process which sees 

octa-dienes being produced when conditions make the catalyst “over-active”.9 A 

second problem is that the formation of aromatic species and carbon oxides also 

occurs at higher temperatures regardless of GHSV. While the oxidative 

dehydrogenation of shorter chain (C5 and lower) has been widely studied,10 there is 

considerably less literature on longer chain alkane ODH. 
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Literature on shorter chain alkane ODH indicates consecutive reactions leading to 

carbon oxides, I have attempted to portray this in Figure 4.5.11 Grabowski notes that 

the nature of the alkane used as a feedstock strongly influences reactivity.11 This 

makes generating a potential set of reaction pathways based on literature of propane 

or butane ODH very difficult. A further complicating factor is that the nature of the 

active site of the catalyst used in this work has yet to be elucidated. In an ideal 

scenario a catalyst site which only undergoes the C-H abstraction required for ODH 

would be the one studied. This is not possible. Furthermore the catalyst system used is 

a mixed metal oxide, the interplay and synergy between the molybdenum oxide 

species and the iron molybdate phase further complicates matters. This phenomenon 

has been discussed in the literature concerning methanol oxidation over an iron 

molybdates system.12,13

It should be stressed that the mechanism shown in Figure 4.5 is hypothetical and an 

early attempt to clarify what is a complicated reaction mechanism. 

Figure 4.6 – Catalytic activity and selectivity during the reaction of 1% n-octane 

(Temperature held at 400oC, C:O 8:1) over a pre-reduced iron molybdate catalyst. 

Gas hourly space velocity range from 1000-6000h-1 

A flaw with the proposed mechanism is that octadienes and octatrienes are not seen. 

It could be assumed that these species are adsorbed strongly to the catalyst surface 

and only desorb once cyclisation and aromatisation has occurred. Work by Pradhan et 
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al14 also  proposed this. Work done by Davis et al11 and Paal17 suggests that an 

octatriene or octadiene could be an intermediate leading to cyclic aromatic products 

as part of a dehydrocyclisation reaction. The octatriene surface intermediate, being 

highly unsaturated and bound to the surface at multiple points in the carbon chain 

would not desorb readily.17 However later work done by Davis15 suggests that 

cyclisation of the alkane may occur prior to unsaturation and aromatisation (see Figure 

4.7). This suggests two pathways, one forming 1,2 – dimethylcyclohexane, which leads 

to the formation of xylene, and another pathway forming ethylcyclohexane which can 

form ethylbenzene and styrene. It has also been shown in the literature15,16 that 

benzene and toluene could be formed by cracking, producing methane and ethane or 

carbon laydown at the catalyst surface.

Figure 4.7 Aromatic formation from the reaction of n-octane by a cyclisation reaction 

followed by oxidative dehydrogenation rather than via an octatriene intermediate.

In an attempt to elucidate the mechanism by which aromatics are formed oct-1-ene 

was used as a substrate in place of n-octane. If the reaction proceeds by an 

octadiene/octatriene intermediate then the use of oct-1-ene as a feedstock would 

cause higher levels of aromatisation than produced with n-octane.18
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4.5.1 REACTION OF OCT-1-ENE.

As oct-1-ene is more reactive than n-octane it would be expected that oct-1-ene would 

show higher conversion.18 The first experiment was done at 13.3ml/min to mimic 

4000h-1 GHSV in a blank stainless steel tube to see how the oct-1-ene reacted in the 

absence of a catalyst.

Figure 4.8 - Reaction of 1% oct-1-ene (13.3ml/min, C:O 8:1) through a blank tube. 

Temperature range from 350-550oC

As can be seen the oct-1-ene is converted to octadienes and iso-octene even in the 

absence of a catalyst, due to the temperature of the furnace. The conversion to iso-

octene from oct-1-ene is unsurprising it is a more stable isomer. Low levels of 

aromatics are observed from ≥450oC. Catalytic cracking is seen in from 350-550oC. Low 

levels of COx are seen from ≥450. 
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Figure 4.9 - Aromatic selectivity Reaction of 1% oct-1-ene (13.3ml/min, C:O 8:1) 

through blank stainless steel tube. Temperature range from 350-550oC

As can be seen from the aromatic selectivity, oct-1-ene shows high selectivity to xylene 

at 450oC and above, with styrene being produced at ≥500oC (although in 

concentrations of ≤3%). This would suggest that 2,7 ring closure is favoured when oct-

1-ene is produced to yield xylene as the dominant product. 
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4.5.2 REACTIVITY OF 1% OCT-1-ENE OVER PRE-REDUCED 
IRON MOLYBDATE CATALYST

Figure 4.10 - Reaction of 1% oct-1-ene (GHSV 4000h-1, C:O 8:1) over a pre-reduced 

iron molybdate catalyst. Temperature range from 350-550oC 

Once a catalyst is added, much higher activity is observed, with conversions as high as 

ca.42% at 500oC being observed. Considering the greater reactivity of oct-1-ene 

compared to n-octane this is to be expected. At ≤400oC selectivity of ca.90% is 

observed for octadienes and iso-octene. As the temperature increases above 400oC 

more aromatics are seen, with very low levels of COx (≤7.5%) produced. 

However aromatic selectivity is lower than when n-octane was used as a substrate 

(Table 4.1). This does not indicate that aromatic formation follows an 

octadiene/octatriene intermediate. Aromatic formation may be formed by ring closure 

and subsequent oxidative dehydrogenation. This process is favoured by higher contact 

times and temperatures. The lower selectivity to aromatics exhibited by oct-1-ene is 

due to its greater reactivity, thus conversion to octadienes/iso-octenes occurs 

preferentially to ring closure.  
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Temperature 

sampled / oC

Selectivity to aromatics (mol. %) 

when n-octane used as a 

substrate

Selectivity to aromatics (mol. 

%) when oct-1-ene used as a 

substrate

350 9.6 4.9

400 17.2 6.7

450 30.1 19.5

500 53.9 40.2

550 55.1 52.8

Table 4.1 – Comparison of aromatic selectivity when 1% n-octane and 1% oct-1-ene 

are reacted over a pre-reduced catalyst at 4000h-1 

Figure 4.11 - Aromatic selectivity Reaction of 1% oct-1-ene (4000h-1, C:O 8:1) over a 

pre-reduced iron molybdate catalyst. Temperature range from 350-550oC

Aromatic selectivity shows in contrast to n-octane, that oct-1-ene produces 

ethylbenzene at low temperatures, when reacted over a pre-reduced iron molybdate 

catalyst. Very low levels of benzene and toluene are detected, which could indicate 

lower carbon laydown at the catalyst surface. At ≥450oC o-xylene becomes the 

dominant product, although high levels of styrene are produced at 550oC. 

Ethylbenzene production did not increase with temperature, unlike xylene and 

styrene, this may indicate that it is an intermediate to forming styrene. 
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4.5.3 EFFECT OF ALTERING C:O AND GHSV RATIO WITH 
THE REACTION OF OCT-1-ENE

Work with n-octane shows that temperatures of ≥500oC and low GHSV results in the 

production of aromatics as the dominant product, while higher GHSV and 

temperatures of ≤400oC result in octenes as the main product. Introducing more 

oxygen to the gas feed led to greater levels of carbon oxides produced and greater 

activity across all temperatures tested, while a greater proportion of n-octane to 

oxygen led to lower conversions and activity. 

Oct-1-ene was expected to follow a similar trend, with higher GHSVs maximising 

octadiene and iso-octene production, while lower GHSVs would maximise aromatic 

and carbon oxide production. Greater ratios of oxygen to carbon in the gas feed was 

expected to cause greater carbon oxide production. While more carbon to oxygen was 

expected to result in lower oct-1-ene conversions due to depressed catalytic activity 

from a lack of oxygen. 

Figure 4.12 - Reaction of 1% oct-1-ene (temperature held at 400oC) over a pre-

reduced iron molybdate catalyst over a range of C:O ratios and GHSV
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Figure 4.12 shows that greater levels of oxygen in the gas feed lead to higher oct-1-ene 

conversions. Lower GHSV also gives higher conversions. Where conversion rises so 

does oxygen consumption, showing oxidative dehydrogenation (ODH) is occurring. 

Where less oxygen was present (12:1 C:O) in the gas feed, lower conversions were 

observed, while all oxygen was consumed, again suggesting ODH is occurring. Higher 

levels of oxygen present in the gas feed (2:1 C:O) resulted in the formation of carbon 

oxides. Low GHSV (1000h-1) across all carbon to oxygen ratios resulted in the formation 

of carbon oxides and higher levels of cracked products.

These findings are similar to the results observed with n-octane, indicating the same 

mechanism. Lower GHSVs (higher contact times) favour the production of carbon 

oxides and also result in higher conversions. Higher GHSVs (lower contact times) result 

in lower conversions but greater selectivity to octadienes. If the carbon to oxygen ratio 

is 2:1 higher conversion is observed but carbon oxides are formed. If C:O ratio is 12:1 

lower conversion but greater selectivity to octadienes is found.

Figure 4.13 - Reaction of 1% oct-1-ene (temperature held at 550oC) over a pre-

reduced iron molybdate catalyst over a range of C:O ratios and GHSV
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Figure 4.13 also shows that lower GHSV leads to higher oct-1-ene conversions. Greater 

levels of oxygen present in the gas feed lead to greater oct-1-ene conversion, this is 

indicative of ODH occurring. 

At 550oC aromatic species are the main products formed. Oxygen consumption across 

all carbon to oxygen profiles is 100%, again indicative of ODH occurring. Lower 

selectivity to carbon oxides is observed with oct-1-ene as the substrate when 

compared to n-octane. Higher substrate conversions are also seen.  This is due to the 

alkene being more reactive than the alkane. 

In summary, it appears that the aromatisation occurs via a dehydrocyclisation 

mechanism rather than an octadiene/triene intermediate. It was expected that if 

aromatisation occurred via the latter pathway then placing oct-1-ene in the reactor in 

place of n-octane would lead to a greater selectivity to aromatics. This was not the 

case (see table 4.1). Across all temperature profiles n-octane showed greater 

selectivity to aromatics than oct-1-ene.  Oct-1-ene also showed greater reactivity than 

n-octane. 

4.6 DEHYDROGENATION STUDIES

The data presented so far in both this chapter and chapter 3 has focused on studies 

where a mixture of 1% alkane/alkene, with a varying concentration of oxygen (ranging 

12:1 carbon atoms to oxygen atoms down to 2:1 carbon atoms to oxygen atoms) and 

the remainder of the gas feed (ca.96-98.5%) being helium as a carrier gas, being 

passed over a pre-reduced iron molybdate catalyst. In Chapter 3 a 10% alkane 

concentration with an 8:1 carbon to oxygen ratio was also tested.

This section examines the effect of removal of the oxygen from the reaction feed. The 

previous results indicate catalytic oxidative dehydrogenation is occurring with oxygen 

consumption rising with increased conversion and overall conversions becoming 

higher with increased oxygen concentrations in the gas feed. Molybdates are also 

noted for being ODH catalysts.1,2
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If oxygen is removed from the system then it would be expected that the ODH reaction 

would cease to occur.19 However molybdates intercalated in a hydrotalcite have been 

shown to exhibit dehydrogenation of cyclohexane.20

It was therefore of interest to examine the effect of removing oxygen totally from the 

catalytic system. It was initially expected that there would be some initial catalytic 

activity as the oxygen rich molybdates continued ODH via a Mars-Van Krevelen style 

mechanism21, before seeing a drop in activity as the lattice oxygen in the iron 

molybdate catalyst was not replenished.

The first experiment was done at a GHSV of 4000h-1 with a range of temperatures to 

observe any catalytic activity. The system was run under anaerobic conditions for 15 

hours before any sampling was undertaken, to ensure any residual oxygen was purged. 

Figure 4.14 - Reaction of 1% n-octane (anaerobic conditions, 4000h-1) over a pre-

reduced iron molybdate catalyst temperature range 350-550oC

Figure 4.14 showed a reaction occurring. With n-octane conversions of ca.16.5% at 

550oC exhibited and octenes as the main product. Carbon oxides, produced at 

temperatures of ≥450oC at the conditions of Figure 4.14 when oxygen was present in 

the system, are not produced. This suggested that carbon oxides are produced from 
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oxygen species from the gas phase rather than via the bulk lattice oxygen present in 

iron molybdate. The presence of cracked oxygenates at lower temperatures showed 

that oxygen was still present in the system, from the catalyst lattice. 

As the temperature increased selectivity to aromatics and cracked products increased. 

Octenes were the main product, even at 550oC. This was not the case when oxygen 

was present in the same conditions, as aromatics and carbon oxides were produced in 

greater levels than octenes. 

An experiment to observe the effect of altering GHSV was then undertaken.

Figure 4.15 - Reaction of 1% n-octane (anaerobic conditions, 400oC) over a pre-

reduced iron molybdate catalyst GHSV range 1000-16,000h-1 

Across all of the GHSVs tested in Figure 4.15 cracked oxygenates were observed. This 

indicated the presence of oxygen in the system. No carbon oxides were observed at 

lower GHSV. Lower GHSV resulted in greater n-octane conversion and greater 

selectivity to aromatics with high conversions. Higher GHSV resulted in greater 

selectivity to octenes. 
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Figures 4.13 and 4.14 showed a reaction was occurring without oxygen but whether it 

was catalytic ODH or dehydrogenation (DH) occurring was unclear. ODH with the 

remainder of lattice oxygen from the catalyst could have been occurring, resulting in 

the presence of cracked oxygenate products. 

A time on line (TOL) study was done to observe if activity and selectivity altered over 

time in an anaerobic environment.

Figure 4.16 – TOL study of the reaction of 1% n-octane (anaerobic conditions, 400oC, 

4000h-1) over a pre-reduced iron molybdate catalyst. Lasting 30 hours

Figure 4.16 shows that selectivity to octenes increases as the reaction progresses. 

Selectivity to cracked oxygenates drops from ca.2.7% after 1 hour to ca.0.3% after 20 

hours, before not being seen at 25 and 30 hours. This suggests that lattice oxygen is 

being removed as the reaction continues in an anaerobic environment. Selectivity to 

aromatics drops slightly from ca.12.9% to ca.6.5% through the reaction. Conversion 

decreases notably after 20 hours. By 30 hours the lattice oxygen is exhausted and 

oxidative dehydrogenations is no longer occurring. The carbon balance drops 
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considerably during the reaction until 20 hours. This may suggest carbon laydown is 

occurring. Analysis was done on the catalyst after the TOL anaerobic study.

This finding shows that the pre-reduced iron molybdate catalyst proceeds by an 

oxidative dehydrogenation mechanism, the continuing catalytic activity for more than 

25 hours without the presence of oxygen suggests that the a Mars-Van Krevelen is 

occurring, with lattice oxygen still abstracting hydrogen atoms from the alkane. 

However with no oxygen present, this lattice oxygen is not replaced. 

The absence of carbon oxides, when the reaction is run without oxygen, indicates that 

it is an oxygen species from the gas phase that forms carbon oxides. Lattice oxygen 

species do not act so. This may mean that carbon oxides are formed via a Langmuir-

Hinshelwood or Eley-Rideal style mechanism. 

4.6.1 ANALYSIS OF THE CATALYST AFTER ANAEROBIC TOL 
REACTION 

The structure of the catalyst after being deprived of oxygen and being reacted with 1% 

n-octane (see Figure 4.16). X-ray powder diffraction (XRPD) was carried out.

Figure 4.17- XRPD of a pre-reduced iron molybdate catalyst post TOL study. Phases 

present: β-FeMoO4 (□) and MoO2 (●). (1% n-octane, 4000h-1, 400oC and anaerobic 

conditions, 30 hours on line).
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Species Peak (2 theta degrees) Lattice Plane d-spacing (Å) 
MoO2 26.0 -111 3.42

37.1 -211 2.42
53.9 -213 1.69
57.4 -303 1.60
66.6 -402 1.40

Β-FeMoO4 26.2 220 3.40
36.3 400 2.47

Table 4.2 – XRPD Peak list for Figure 4.17 with associated d-spacing and lattice 

planes.

Figure 4.17 shows that after a 20 hour reaction without the presence of oxygen, there 

are no Mo4O11 species present. MoO2 is present. This suggests the free molybdenum in 

the bulk of the pre-reduced iron molybdate catalyst has been reduced from a +6 to a 

+4 oxidation state.  This correlates with the results in Figure 4.16 where the cracked 

oxygenate species stop being produced as the reaction progresses, along with the 

eventual drop in catalytic conversion, suggesting the stripping of lattice oxygen. This is 

consistent with a Mars-Van Krevelen ODH mechanism.21 Figure 4.17 also shows the 

presence of β-FeMoO4 which has not been reduced further.

Ultra-violet Raman spectroscopy was carried out on the catalyst sample.

Figure 4.18- UV Raman spectra of pre-reduced iron molybdate catalyst post TOL 

study (1% n-octane, 4000h-1, 400oC, anaerobic conditions, 30 hours on line)
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The peaks at 881cm-1 in Figure 4.18 indicate of antisymmetric Mo-O-Mo stretching 

vibrations in molybdenum oxides. The absence of peaks at ca.995cm-1 shows no 

terminal molybdenum oxygen bonds are detected. This would suggest that it is MoO2

that is present in the bulk lattice not Mo4O11 or MoO3. The peak at 788cm-1 is 

indicative of the molybdenum oxygen bond stretching in iron molybdate. The spectra 

indicates that the catalyst sample has been reduced to a MoO2 + FeMoO4 system. This 

is also shown in the XRPD in Figure 4.17.

The peaks at 1378cm-1, 1557cm-1, 1618cm-1 and 2328cm-1 suggest the presence of 

graphitic carbon at the catalyst surface.22–24 The peak at 1378cm-1 is indicative of the 

D-mode of carbon. The peaks at 1557cm-1 and 1618cm-1 are indicative of G-band 

splitting, with the peak 1557cm-1 being the G-peak and 1618cm-1 the D’-peak.22 The 

peak at 2328cm-1 is the 2D(G*) band, which is indicative of graphitic sp2 materials.23,25

Carbon nanotubes could be a structure formed which would exhibit sp2 hybridisation.

Figure 4.18 with the difference in D and G bands and the presence of a sharp G* band 

indicates the presence of single walled carbon tubes (SWNT) or graphene.26

Carbon nanotubes have been shown to be produced on molydates.27,28 Lamoroux et al 
29 have shown the production of single walled carbon nanotubes via an FeMoO4 phase.

X-ray photo electron spectroscopy (XPS) was then done on the catalyst sample to 

observe if carbon is present on the surface. Two experiments were carried out, firstly 

XPS was run on a sample that had been exposed to oxidative dehydrogenation. 

Conditions of 8:1 C:O ratio, 4000 h-1, 400oC, 30 hrs on-line. Then XPS was carried out 

on another sample which had been deprived of oxygen. Anaerobic conditions of 4000 

h-1, 400oC, 30 hrs on-line.
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Figure 4.19 – XPS spectra of surface of pre-reduced iron molybdate after undergoing 

catalytic testing with oxygen. Conditions of 8:1 C:O ratio, 4000 h-1, 400oC, 30 hrs on-

line.

As can been seen in Figure 4.19 a low level peak corresponding to a C (1s) species is 

observed at ca.284.9 eV, this corresponds with C-C bonds, the peaks being centred at 

284.9eV suggests sp3 carbon. There is a second peak of low intensity at the binding 

energy of 289.2 eV, the literature indicates this is C (1s) of trace levels of C=O bonds 

seen at 289 eV.30 However after the anaerobic testing a much stronger, more intense 

carbon peak was observed. This gives further evidence to suggest carbon laydown is 

occurring when oxygen is removed from the system.30,31
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Figure 4.20 – XPS spectra of surface of pre-reduced iron molybdate after undergoing 

catalytic testing without oxygen. Anaerobic conditions of 4000 h-1, 400oC, 30 hrs on-

line.

Although Figure 4.20 looks simple, one peak with a binding energy (BE) of 284.2 eV, it 

can be inferred from the long asymmetric tail toward higher binding energy that the 

presence of sp2 carbon at the catalyst surface is likely post reaction.32 The peak shift of 

0.7 eV from Figure 4.19 also indicates the presence of sp2 type carbon in Figure 4.20 as 

proposed by Estrade-Szwarckopf.33 This shift in XPS data from Figure 4.19 to 4.20 and 

the much higher intensity of counts suggests carbon laydown, potentially of sp2 

hybridised graphitic type materials as suggested by Li et al34. 

4.6.2 Catalytic activity of pure phase FeMoO4 in an anaerobic 
environment
Having hypothesised that bulk lattice oxygen from the Mo4O11 phase of the pre-

reduced iron molybdate causes ODH to still occur in an anaerobic environment, pure 

phase FeMoO4 was tested to observe activity.
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Figure 4.21 - Reaction of 1% n-octane (anaerobic conditions, 4000h-1) over a pure 

phase FeMoO4 catalyst, temperature range 350-550oC

Figure 4.21 illustrates how pure phase FeMoO4 exhibits no catalytic activity when no 

oxygen was present in the system. This was expected as there was no molybdenum 

oxides present from which lattice oxygen could be used. 

These findings confirm that the pre-reduced iron molybdate catalyst proceeds by an 

oxidative dehydrogenation system. When oxygen is removed from the system, the 

catalyst still exhibits activity due to the lattice oxygen present, this can be attributed to 

the oxygen rich Mo4O11 species in the catalyst. This was proven by testing pure phase 

FeMoO4 as a catalyst when oxygen is not present, no activity was observed. After a 

period of 30 hours the lattice oxygen is exhausted and the catalyst ceases to be active.

The catalyst once inactive possesses a structure of bulk MoO2 + FeMoO4. UV Raman 

and XPS show that a layer of carbon is deposited on the surface that is not observed 

when oxygen is present in the system. Molybdenum at the surface shows a 

combination of molybdenum oxygen states, with Mo(VI) being attributed to the 
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FeMoO4 phase, and Mo(V) and Mo(IV) states being attributed to the reduced 

molybdenum.

It was also shown that carbon oxides are not produced when the system is deprived of 

oxygen. Cracked oxygenates are initially formed before the catalyst undergoes 

reduction. This indicates that carbon oxides are formed through a surface reaction 

involving gaseous oxygen, and is not formed via the Mars-Van Krevelen mechanism 

that produces cracked oxygenates, octenes and aromatic species. 

4.7 RE-INTRODUCTION OF OXYGEN TO THE SYSTEM 
AFTER REDUCTION

As demonstrated in the previous section, the catalyst when deprived of oxygen will 

cease to be active after lattice oxygen has been removed. In this section the effect of 

reintroducing oxygen to the system will be examined. It was of interest to observe the 

effect that reduction would have on activity and selectivity, as Figure 4.17 shows, the 

catalyst system after oxygen removal is comprised of MoO2 + FeMoO4. 

As seen in chapter 3, FeMoO4 is an active ODH catalyst with a high selectivity to

octenes. MoO2 exhibits much lower activity but with high selectivity to heavy 

aromatics such as naphthalene. 

The pre-reduced iron molybdate catalyst that has been exposed to anaerobic 

conditions, at 400oC, 4000h-1, for 30 hours will be referred to as the oxygen depleted 

catalyst to avoid confusion.
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Figure 4.22 - Reaction of 1% n-octane (C:O 8:1, 4000h-1) over an oxygen depleted iron 

molybdate catalyst, temperature range 350-550oC

Figure 4.22 shows that after re-introduction of oxygen to the gas feed the oxygen 

depleted catalyst exhibits very different activity and selectivity to its prior state. 

Selectivity to aromatics is much higher and greater levels of cracked oxygenates are 

seen. Carbon oxides are observed only at ≥500oC and selectivity to them is lower than 

a pre-reduced Mo4O11 + FeMoO4 system exhibits. Cracked products even at high 

temperatures are negligible.

The n-octane conversion rises in line with oxygen consumption, showing that oxidative 

dehydrogenation is occurring once more. 
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Figure 4.23 - Reaction of 1% n-octane (C:O 8:1, 4000h-1) over an oxygen depleted iron 

molybdate catalyst, temperature kept constant at 350oC for a period of 8 hours.

To ensure the reaction in Figure 4.22 was steady state and that oxygen re-adsoprtion 

to the lattice was not influencing results, the reactor was kept at 350oC for 8 hours 

with a gas flow of 1% n-octane and oxygen. Figure 4.23 shows the reaction is steady 

state. 

Considering the high selectivity to aromatics it is worth comparing the results in Figure 

4.22 to the results obtained for the reaction of n-octane over a MoO2 catalyst shown in 

Figure 4.24.
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Figure 4.24 - Reaction of 1% n-octane (C:O 8:1, 4000h-1) over MoO2 catalyst, 

temperature range 350-550oC

Although there are some similarities (relatively high levels of cracked oxygenates at 

lower temperatures) between the results in Figures 4.22 and 4.24 there are obvious 

differences. This indicates that it is not only MoO2 that is having an effect on the 

products.

Equally of interest are the aromatic species formed.

Figure 4.25 - Aromatic selectivity Reaction of 1% n-octane (4000h-1, C:O 8:1) over an 

oxygen depleted iron molybdate catalyst. Temperature range from 350-550oC
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Figure 4.25 shows how after being oxygen deprived the catalyst  produces “heavy” (12 

carbons or greater) aromatics, mainly naphthalene and naptha-2-ene. As temperature 

increases so does selectivity to these large aromatic species. Again it is worth 

comparing these results to when MoO2 was used as a catalyst in the same conditions.

Figure 4.26 - Aromatic selectivity Reaction of 1% n-octane (4000h-1, C:O 8:1) over a 

MoO2 iron molybdate catalyst. Temperature range from 350-550oC

The data in Figure 4.26 appears to show the opposite trend to that of Figure 4.25. As 

the temperature increases with a MoO2 catalyst the selectivity to heavy aromatics 

drops, and greater levels of 8 carbon chain aromatics are produced.

The production of high levels of 12 (and higher) carbon aromatics with an oxygen 

depleted catalyst may therefore be due to a combination of MoO2 and the carbon 

laydown at the surface of the catalyst. Potential carbon chain growth on the 

molybdenum31,35–37 could lead to polyaromatic formation which at higher 

temperatures desorbs from the surface, giving the high selectivity for heavy aromatics. 

As noted earlier in the chapter, carbon deposits on the catalyst surface occur in when 

n-octane is passed over the catalyst in an anaerobic environment. 

The effect of gas hourly space velocity on the activity  and selectivity was then tested. 

The temperature of 400oC was chosen as the constant as it was interest to observe if 

carbon oxides would be produced at lower temperatures.



140

Figure 4.27 - Reaction of 1% n-octane (400oC, C:O 8:1) over an oxygen depleted iron 

molybdate catalyst. GHSV range from 1000-12,000h-1 

Figure 4.27 shows that at higher GHSVs conversion drops in line with oxygen 

consumption as would be expected with an ODH reaction. As GHSV rises so does 

selectivity to octenes and cracked oxygenates. When GHSV was at 1000h-1 carbon 

oxides were observed, suggesting that higher contact time allowed the surface 

reaction producing COx to occur.

When aromatic selectivity was examined (see Figure 4.28) higher GHSVs resulted in 

lower levels of polyaromatic hydrocarbons produced. This suggests that that lower 

contact times of n-octane to the catalyst surface mean it is less likely for polyaromatic 

hydrocarbons to form.
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Figure 4.28 - Aromatic selectivity Reaction of 1% n-octane (400oC, C:O 8:1) over an 

oxygen depleted iron molybdate catalyst. GHSV range from 1000-12,000h-1 

SUMMARY OF CHAPTER 4

The pre-reduced iron molybdate acts as a catalyst for an oxidative dehydrogenation 

reaction. Catalytic activity rises in line with oxygen consumption. When oxygen is 

removed from the system and n-octane is passed over the catalytic activity is observed 

for up to 30 hours, although conversions decline after 20 hours in an anaerobic 

environment. 

High selectivity to octenes was observed when there was no oxygen in the gas feed 

and no carbon oxides were produced. This indicates that carbon oxide production is 

produced from oxygen in the gas phase and not lattice oxygen in the molybdate. 

Cracked oxygenates were still produced when there was no oxygen in the gas feed 

suggesting they are produced via lattice oxygen in Mo4O11.

When pure phase FeMoO4 was tested as catalyst for n-octane with no oxygen in the 

gas feed, no catalytic activity was observed. This shows that it is the Mo4O11 species in 

the pre-reduced iron molybdate catalyst that provide the lattice oxygen required for 

activity. This confirms that the oxidative dehydrogenation proceeds by a Mars-Van 

Krevelen style mechanism.
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Time on line studies showed that the carbon balance dropped when n-octane was 

passed over the catalyst with no oxygen present in the gas feed. Analysis by both XPS 

and UV Raman confirmed that carbon laydown was occurring. The data from UV 

Raman indicated that the carbon was of graphitic sp2 structure.

XRPD and UV Raman analysis showed that the molybdenum species were reduced 

from Mo4O11 to MoO2. FeMoO4 phases remained unchanged.

When oxygen was reintroduced to the system after the catalyst had been reduced to 

FeMoO4 + MoO2, selectivity of products was very different. Low levels of carbon oxides 

were observed only ≥500oC. Selectivity to aromatics increased notably. At lower 

temperatures relatively high levels of cracked oxygenates were observed. The majority 

of aromatic products were polyaromatic hydrocarbons. The production of these is a 

point of interest, it has been found that MoO2 showed a high selectivity to 

polyaromatics but the role of deposited carbon may also play a role. Raising the GHSV 

increases the selectivity to octenes and limits the production of polyaromatic 

hydrocarbons. 

Altering the substrate to oct-1-ene showed that it is more reactive than n-octane. Oct-

1-ene does not show higher selectivity to aromatic species than n-octane. This was of 

interest as the nature of aromatic formation was of interest. Two possible routes of 

formation were suggested. Either an octane molecule undergoes ODH to form an octa-

diene/octatriene which then cyclises via an internal diels-alder style mechanism, or a 

dehydrocyclisation mechanism which then undergoes further removal of hydrogen to 

form an aromatic system. In the case of the former it was hypothesised that if octene 

was used as a substrate then selectivity to aromatics would rise compared to octane. 

This did not happen, selectivity to aromatics was actually slightly lower overall 

temperature profiles tested. This finding indicates that aromatics are formed via a 

cyclisation reaction before undergoing aromatisation. 

It was also found that altering the GHSV and temperature for a period of 24 hours or 

more did not affect catalyst performance, as long as there was a flow of oxygen 

present, this suggests a degree of tunability.
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5
CHAPTER 5 –USING NICKEL AND COBALT MOLYBDATES 
AS CATALYSTS FOR THE OXIDATIVE DEHYDROGENATION 
OF N-OCTANE.

5.1 INTRODUCTION

This chapter examines the performance of nickel and cobalt molybdates as catalysts 

for the oxidative dehydrogenation (ODH) of n-octane. As both nickel molybdate1–3 and 

cobalt molybdate4,5 have been shown to catalyse the ODH of propane to propene,  

propane was also tested as a substrate to observe activity. 

Cobalt molybdate has already been shown as a catalyst for the ODH of n-octane.6

Fadlalla and Friedrich found that the aromatic species of ethyl benzene, xylene and 

styrene were the main products formed. Higher temperatures led to higher selectivity 

to aromatic species formed. They found that altering the carbon to oxygen ratio from 

8:1 to 2:1 led to an increase in conversion but greater selectivity to carbon oxides. 

These results were similar to findings with iron molybdate in the FeMoO4 phase, 

presented in previous chapters.

As both nickel and cobalt molybdates have received much more attention in the 

literature as ODH catalysts compared to iron molybdates (more known as a catalyst for 

the oxidation of methanol to formaldehyde7–9) it was of interest to observe how they 

compared to an iron molybdate catalyst for the ODH of n-octane.

As both nickel and cobalt form molybdates have the formula of NiMoO4 and CoMoO4

with both nickel and cobalt in a +2 oxidation state, no pre-reduction step needed in 

the preparation of the catalysts (see Chapter 2 for full details). The pre-reduction step 

was used for the iron molybdate catalyst to convert it from the ferric form Fe2(MoO4)3

where iron is in a +3 oxidation state, to the ferrous form, FeMoO4, where iron is in a +2 

oxidation state. 
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Catalysts with a molybdenum molar excess of 1.5:1 were synthesised for both nickel 

and cobalt molybdates. Nickel and cobalt molybdates with no molybdenum excess 

were also synthesised, to create pure phase NiMoO4 and CoMoO4. It has been 

reported10 that nickel molybdate with an excess of molybdenum is particularly active, 

for the conversion of n- butane to maleic anhydride.11

5.2 CHARACTERISATION OF CATALYSTS 

X-ray powder diffraction (XRPD) and Raman spectroscopy was used to confirm the 

structures of the catalysts prepared.

Figure 5.1- XRPD of a cobalt molybdate catalyst prepared with a Co:Mo ratio of 1:1

Phases present: CoMoO4 (†) and MoO3 (○)
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Species Peak (2 theta degrees) Lattice Plane d-spacing (Å) 
MoO3 23.3 011 3.86

25.2 200 3.42
26.2 111 3.42
33.8 -211 2.62
41.5 310 2.14
42.1 220 2.04

CoMoO4 12.5 001 7.09
18.9 -201 4.70
23.7 021 3.76
25.1 -112 3.55
28.5 220 3.13
32.2 312 2.77
38.3 022 2.78
38.3 202 2.34
43.3 023 2.09
46.8 -204 1.94

Table 5.1 – XRPD Peak list for Figure 5.1 with associated d-spacing and lattice planes.12

The presence of MoO3 phases may indicate that some cobalt oxides could be present 

as the 1:1 molar ratio of molybdenum to cobalt suggests that no MoO3 should be 

formed. However no such cobalt phases were observed in the XRPD. The preparation 

of the catalyst was via a pH controlled co-precipitation technique, thus some cobalt 

may have not precipitated out form the reaction mixture, leaving free molybdenum to 

form MoO3 post-calcination.
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Figure 5.2- XRPD of a cobalt molybdate catalyst prepared with a Co:Mo ratio of 1:1.5

Phases present: CoMoO4 (†) and MoO3 (○)

Species Peak (2 theta degrees) Lattice Plane d-spacing (Å) 
MoO3 23.3 011 3.86

25.2 200 3.42
26.2 111 3.42
33.8 -211 2.62
41.5 310 2.14
42.1 220 2.04

CoMoO4 12.5 001 7.09
18.9 -201 4.7
23.7 021 3.76
25.1 -112 3.55
28.5 220 3.13
32.2 312 2.77
38.3 022 2.78
38.3 202 2.34
43.3 023 2.09
46.8 -204 1.94

Table 5.2 – XRPD Peak list for Figure 5.2 with associated d-spacing and lattice planes.

As Figures 5.1 and 5.2 show, the molybdenum trioxide content present in the catalyst 

increased when increasing the ratio of Mo/Co in preparation. Relative intensity ratios

indicated a presence of 25% MoO3 for the 1:1 Mo/Co catalyst, and a presence of 55% 

for the 1.5 ratio.
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It should be noted that using relative intensity ratios is only a semi-quantitative 

technique that estimates the ratios of the phases present in the samples. XRPD is a 

bulk technique, it may not give an accurate depiction of the catalyst surface. 

Species Wavenumber / cm-1

CoMoO4 946(s) 940(s) 895(vw) 880(w) 704(m) 700(m) 695 (m) 

NiMoO4 963(vs) 916(s) 709(s) 494(m) 420(m) 389(m) 373(m) 179(m)

MoO3 996(vs) 820(vs) 667(m) 380(w) 337(m) 292(m) 284(s) 247(w) 218(w) 199(w)

TABLE 5.3 - RAMAN ABSORPTION PEAKS FOR COBALT MOLYBDATE, NICKEL MOLYBDATE AND 

MOLYBDENUM TRIOXIDE11,13

Figure 5.3 – Raman spectra of a cobalt molybdate catalyst with a Co:Mo ratio of 1:1

Figure 5.3 shows only peaks corresponding to CoMoO4 suggesting no molybdenum 

excess was present when the catalyst was prepared with a 1:1  cobalt to molybdenum 

ratio. Figure 5.4 confirmed that molybdate excess was present when the catalyst was 

prepared with a molybdenum excess of 1.5:1.

Figure 5.4 – Raman spectra of a cobalt molybdate catalyst with a Co:Mo ratio of 1:1.5
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Figure 5.5- XRPD of a nickel molybdate catalyst prepared with a Ni:Mo ratio of 1:1
Phases present: NiMoO4 (†)

Species Peak (2 theta 
degrees)

Lattice Plane d-spacing (Å) 

NiMoO4 14.3 110 6.19
16.2 011 5.50
19.0 101 4.67
23.9 -121 3.71
25.3 -112 3.51
28.9 220 3.09
32.6 022 2.75
38.8 -132 2.32
41.4 040 2.18
43.8 330 2.06
47.5 -204 1.92
53.3 510 1.72
55.2 -202 1.66

Table 5.4 – XRPD Peak list for Figure 5.5 with associated d-spacing and lattice planes.

No molybdenum trioxide phases were observed, suggesting that the nickel molybdate 

prepared with a 1:1 nickel molybdenum molar ratio is pure phase NiMoO4.
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Figure 5.6- XRPD of a nickel molybdate catalyst prepared with a Ni:Mo ratio of 1:1.5
Phases present: NiMoO4 (†) and MoO3 (○)

Species Peak (2 theta 
degrees)

Lattice Plane d-spacing (Å) 

MoO3 23.3 011 3.86
25.2 200 3.42
26.2 111 3.42
33.8 -211 2.62
35.2 102 2.56
44.5 -311 2.04
46.7 022 1.93
49.1 122 1.86
55.1 -131 1.67
57.5 411 1.60

NiMoO4 14.3 110 6.19
16.2 011 5.50
19.0 101 4.67
23.9 -121 3.71
25.3 -112 3.51
28.9 220 3.09
32.6 022 2.75
38.8 -132 2.32
41.4 040 2.18
43.8 330 2.06
47.5 -204 1.92
53.3 510 1.72
55.2 -202 1.66

Table 5.5 – XRPD Peak list for Figure 5.6 with associated d-spacing and lattice planes.
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Preparing the catalyst with a molybdenum excess led to the formation of both nickel 
molybdate (NiMoO4) and molybdenum trioxide (MoO3).

Figure 5.7 – Raman spectra of a nickel molybdate catalyst with a Ni:Mo ratio of 1:1

A similar trend to cobalt molybdate was seen with nickel molybdate. No molybdenum 

trioxide was detected when the catalyst was prepared with a 1:1 molar ratio of nickel 

and molybdenum. MoO3 was observed when the catalyst was prepared with a 

molybdenum excess.

Figure 5.8 – Raman spectra of a nickel molybdate catalyst with a Ni:Mo ratio of 1:1.5

After the findings, microwave plasma – atomic emission spectroscopy (MP-AES) 

analysis was used upon the catalysts to obtain a more quantitative measure of the 

molybdenum excess present in the catalysts.
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Molybdenum ratio used 

in catalyst preparation

Molybdenum excess 

found by AES - cobalt 

molybdate

Molybdenum excess 

found by AES – nickel 

molybdate

1.0 (no excess) 1.0 (no excess) 1.0 (no excess)

1.5 1.2 1.4

Table 5.6 – Molybdenum excess relative to cobalt or nickel in catalysts calculated via 

MP-AES analysis

Analysis by MP-AES showed that preparing the catalysts with a molybdenum excess 

did lead to the material having excess molybdenum. Nickel molybdate showed a 

greater molybdenum excess than cobalt molybdate. This finding was consistent with 

what was found via XRPD and Raman spectroscopy on the cobalt molybdate. No MoO3

was observed for the XRPD of pure phase NiMoO4. 

5.3 – CATALYTIC TESTING OF CATALYSTS FOR PROPANE 
OXIDATIVE DEHYDROGENATION

The catalysts were tested for the oxidative dehydrogenation of propane. Due to 

experimental constraints the catalytic testing was run on a separate reactor to the 

octane oxidative dehydrogenation reactor. Full details of this are found in Chapter 2.

It should be noted for Figures 5.9-5.12 that although there is a steep increase in 

conversion above 500 oC, it is likely homogeneous gas phase catalytic processes may 

be taking place. This is an observation that is well documented in the literature.14,15

Blank experiments done (no catalyst present) showed a propane conversion to 

produce carbon oxides once the temperature rose above 500oC. This propane 

conversion with a blank test was lower (ca.10-15% in total) than the catalytic tests 

outlined in Figure 5.9-5.12 but still substantial. 
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Figure 5.9 - Reaction of 4.75% propane (GHSV 4000h-1, C:O 3:2) over a cobalt 

molybdate catalyst (1:1 Co:Mo). Temperature range from 350-600 °C

As seen in Figure 5.9 a pure phase CoMoO4 catalyst with no molybdenum excess shows 

very little selectivity to propene. Propane conversion increases with temperature but 

this was due to the formation of carbon oxides and homogeneous gas-phase reactions.

Figure 5.10 - Reaction of 4.75% propane (GHSV 4000h-1, C:O 3:2) over a cobalt 

molybdate catalyst (1:1.5 Co:Mo). Temperature range from 350-600 °C

As seen in Figure 5.10 a cobalt molybdate catalyst with an excess of molybdenum 

shows a much higher selectivity to propene. Activity was similar to Figure 5.9. 
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Selectivity to propene falls as temperature increases. The increase in activity was due 

to the formation of carbon oxides and likely homogeneous reactions. 

The high selectivity to carbon oxides may be caused by the relatively high oxygen to 

carbon levels. Unfortunately with the set-up of the reactor and time constraints it was 

not possible to alter the carbon to oxygen ratios sufficiently to perform a full study on 

this. However the purpose of this section was simply to observe if the catalysts 

exhibited activity in converting propane to propene and if so, which catalyst was most 

active and selective. This could then be compared to catalytic activity for ODH of n-

octane. 

Figure 5.11 - Reaction of 4.75% propane (GHSV 4000h-1, C:O 3:2) over a nickel 

molybdate catalyst (1:1 Ni:Mo). Temperature range from 350-600 °C

As seen in Figures 5.12 and 5.13, nickel molybdate shows higher conversions of 

propane than cobalt molybdate, suggesting it was a more active catalyst. Pure phase 

NiMoO4 with no molybdenum excess shows no selectivity to propene beyond 350 °C. 

At 550 °C the near complete conversion of propane was occurring, attributable to 

carbon oxides. 

Nickel molybdate with a molybdenum excess shows greater selectivity to propene with 

slightly lower conversions until 600 °C. This follows the same trend as cobalt 

molybdate. Results show cobalt molybdate with a molybdenum excess was the best 

catalyst, exhibiting lower propane conversions but much higher selectivity to propene 
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across all temperature profiles. Nickel molybdate with an excess of molybdenum 

formed other products such as acrolein and acrylic acid at lower temperatures. 

The results indicate that molybdenum excess was needed for the oxidative 

dehydrogenation of propane to propene. 

Figure 5.12 - Reaction of 4.75% propane (GHSV 4000h-1, C:O 3:2) over a cobalt 

molybdate catalyst (1:1.5 Ni:Mo). Temperature range from 350-600 °C

5.4 CATALYTIC TESTING FOR THE OXIDATIVE 
DEHYDROGENATION OF N-OCTANE.

The catalysts were then tested for ODH of n-octane. Two tests were run at different 

carbon to oxygen ratios. Firstly each catalyst was tested at a 3:2 carbon to oxygen ratio 

to compare results as closely as possible to the ODH of propane. Then each catalyst 

was tested at an 8:1 carbon to oxygen ratio. This was to compare the activity and 

selectivity of nickel and cobalt molybdates with that of iron molybdate. Cobalt 

molybdate results could also be compared to work done by Fadlalla and Friedrich. 
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5.4.1 CATALYTIC TESTING FOR THE OXIDATIVE 
DEHYDROGENATION OF N-OCTANE WITH A 3:2 CARBON 
TO OXYGEN RATIO.

Figure 5.13 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 3:2) over a cobalt 

molybdate catalyst (1:1 Co:Mo). Temperature range from 350-550 °C

Figure 5.13 shows that a CoMoO4 catalyst with no molybdenum excess shows high 

selectivity to carbon oxides. This can be attributed to the ratio of carbon to oxygen. 

Previous results in Chapter 3 and Chapter 4, showed with an FeMoO4 catalyst that 

increasing the level of oxygen in the gas feed relative to carbon, led to much greater 

selectivity to carbon oxides. 

As temperature increased so did selectivity to aromatics. Selectivity to octenes was 

low. This could be attributed to the n-octane that does not from carbon oxides rapidly 

cyclising before undergoing ODH. This was found in Chapter 4. This is an area where 

cobalt molybdate differs from iron molybdate. Oxygen conversion rises in line with n-

octane conversion, as would be expected for an ODH process. 
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Figure 5.14 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 3:2) over a cobalt 

molybdate catalyst (1:1.5 Co:Mo). Temperature range from 350-550 °C

Cobalt molybdate with a molybdenum excess (Figure 5.13) shows lower n-octane 

conversions, suggesting lower catalytic activity than pure phase CoMoO4 (Figure 5.14). 

The opposite trend was seen for propane conversions. Selectivity to carbon oxides was 

very high. Selectivity to octenes was higher at temperatures of ≤450 °C in Figure 5.14 

than Figure 5.13. Selectivity to aromatics increases as temperature increases. Oxygen 

conversion rises in line with hydrocarbon conversion. 
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Figure 5.15 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 3:2) over a nickel 

molybdate catalyst (1:1 Ni:Mo). Temperature range from 350-550 °C

Pure phase NiMoO4 with no molybdenum excess shows high selectivity to carbon 

oxides with the relatively high level of oxygen to carbon as expected. NiMoO4 as a 

catalyst exhibited similar n-octane conversions to  the cobalt molybdate catalysts. 

Unlike the cobalt molybdate catalysts, NiMoO4 exhibits higher selectivity to aromatics 

across all temperatures profiles. 

At temperatures of ≥500 °C significant levels of cracked products, chiefly methane, 

were observed. This could be attributable to the presence of nickel oxide which is a 

methanation catalyst.16,17 The lack of hydrogen in the oxidised reaction atmosphere is 

a likely reason that the selectivity to methane does not rise above ca.9%. However 

some hydrogen will be present from the dehydrogenation of n-octane to aromatics at 

the catalyst surface, which could result in methane formation. 

Previous work has been done suggesting that catalytic processes which result in the 

dehydrogenation of ethylbenzene to styrene would produce the hydrogen required to 

also catalytically convert carbon oxides to methane.18 If a similar trend was occurring it 

would offer an explanation as to why selectivity to carbon oxides fell in Figure 5.15 as 
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selectivity to cracked products (chiefly methane) rose. Work by Park et al19 showed 

how CO2 can be used for the  oxidative dehydrogenation of ethylbenzene to styrene 

using a ceria-zirconia catalyst. McFarland and Park20 demonstrated how a palladium

and magnesium catalyst over silica  is active for the methanation of CO2. Work done by 

Ravindram21 and Yamasaki22 has shown that nickel catalysts exhibiting this catalytic 

behaviour.

Figure 5.16 Proposed reaction for the conversion of ethylbenzene to styrene and 

production of methane using carbon dioxide over a nickel catalyst.

Figure 5.16 illustrates the proposed reaction for the production of methane when n-

octane is passed over a nickel molybdate catalyst. Figure 5.23 (toward the end of this 

chapter) shows that pure phase nickel molybdate produces high levels of ethylbenzene 

between 350-450 °C but at 500 °C and above styrene is the major aromatic product 

produced. There is also a notable increase in selectivity to toluene which may also be 

producing methane as a by-product.
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Figure 5.17 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 3:2) over a nickel 

molybdate catalyst (1:1.5 Ni:Mo). Temperature range from 350-550 °C

A nickel molybdate catalyst with a molybdenum excess  showed lower conversions 

than a pure phase NiMoO4 catalyst.

At  temperatures of ≤400 °C octenes were more favoured selectively than aromatic 

species and higher levels of cracked oxygenates were observed. Cracked products 

were not prominent at higher temperatures unlike when pure phase NiMoO4 was used 

as a catalyst. This could be due to the molybdenum rich surface preventing the 

formation of nickel oxide which would cause the production of methane (a cracked 

product). 

In summary, cobalt and nickel catalysts with a molybdenum excess (of 1.5:1 Mo:Co/Ni) 

were superior catalysts for the production of octene from n-octane via ODH. Pure 

phase CoMoO4 and NiMoO4 catalysts (possessing no molybdenum excess) exhibited 

higher conversions but lower selectivity to the alkene. This trend is the same as found 

with the ODH of propane under the same conditions. 
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However while cobalt molybdate catalyst with a molybdenum excess gave the highest 

selectivity to propene, a nickel molybdate catalyst yielded the best performance for 

selectivity to octenes. 

5.4.2 CATALYTIC TESTING FOR THE OXIDATIVE 
DEHYDROGENATION OF N-OCTANE WITH AN 8:1 
CARBON TO OXYGEN RATIO.

The catalysts were tested in a more gas rich system to directly compare them to the 

iron molybdate catalyst tested in previous Chapters, where the majority of catalytic 

testing had occurred with an 8:1 carbon to oxygen ratio.

Figure 5.18 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a cobalt 

molybdate catalyst (1:1 Co:Mo). Temperature range from 350-550 °C

As seen in Figure 5.18, the use of lower levels of oxygen to carbon sees a notable 

difference in selectivity. Carbon oxide selectivity was much lower, and at temperatures 

of ≤400 °C octenes were the major product. As temperature increases selectivity to 

aromatics increases while octene selectivity decreases. Oxygen conversions reach 

100% from 500 °C. 
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Conversion was lower than when a 3:2 carbon to oxygen ratio was tested with the 

same catalyst (Figure 5.13) but this would be expected, as limiting the level of oxygen 

would limit catalyst activity in a catalytic ODH system. 

Figure 5.19 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a cobalt 

molybdate catalyst (1:1.5 Co:Mo). Temperature range from 350-550 °C

A cobalt catalyst with a molybdenum excess (Figure 5.19) showed even higher 

selectivity to octenes than pure phase CoMoO4. Higher levels of cracked oxygenates 

were observed with a cobalt molybdate catalyst with molybdenum excess. This 

suggests that cracked oxygenates were produced via oxygen species from the 

molybdenum trioxide lattice (something discussed in Chapter 4 with iron molybdates). 

At higher temperatures aromatic species and carbon oxides were the main products. 

As n-octane conversion with a cobalt molybdate catalyst is very similar to a pure phase 

CoMoO4 catalyst, and exhibiting higher selectivity to octenes, it appears that cobalt 

molybdate with a molybdenum excess is a superior catalyst to pure phase CoMoO4 for 

the ODH of n-octane. This finding was also seen with propane ODH. 

Aromatic product distribution was very similar between both catalysts and so will be 

examined against nickel molybdate later in this chapter.  
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Figure 5.20 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a nickel 

molybdate catalyst (1:1 Ni:Mo). Temperature range from 350-550 °C

Nickel molybdate (catalytic data shown in Figure 5.20) was not as promising a catalyst 

for the ODH of n-octane. High selectivity to carbon oxides was observed, even with a 

greater proportion of carbon to oxygen in the gas feed. Aromatic species were the 

secondary product formed at lower temperatures, as the temperature increased 

aromatic selectivity increased. 

At ≥500 °C a significant proportion of products are cracked species, particularly 

methane. This is likely due to nickel oxide at the catalyst surface, due to the ability of 

nickel oxide to be a methanation catalyst and is discussed earlier in relation to Figure 

5.15.16,17

While pure phase NiMoO4 showed low selectivity to octenes compared to cobalt 

molybdates, it shows high selectivity to aromatics, especially at ≥500 °C. NiMoO4 has 

been shown by Ozkan and Schrader11 to be catalytically active in the formation of 

maleic anhydride from C4 hydrocarbons. This suggests that it is an active 

dehydrocyclisation catalyst which may explain the formation of aromatics. Work by 

Pillay et al23 showed that nickel molybdate catalysts form benzene from n-hexane.  
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Figure 5.21 - Reaction of 1% n-octane (GHSV 4000h-1, C:O 8:1) over a nickel 

molybdate catalyst (1:1.5 Ni:Mo). Temperature range from 350-550 °C

Nickel molybdate with a molybdenum excess showed lower selectivity to carbon 

oxides at ≤450 °C when compared to pure phase NiMoO4. Higher selectivity to octenes 

was observed, and higher levels of cracked oxygenates were observed. Cracked 

products were observed but not in the same concentration as when pure phase 

NiMoO4 was used. This may be due to the molybdenum excess preventing the 

formation of nickel oxide particles at the catalyst surface.

Aromatic selectivity between pure phase NiMoO4 and nickel molybdate with a 

molybdenum excess was very similar. The differences between the aromatic product 

distribution produced from cobalt and nickel molybdate catalysts are shown in Figures 

5.23 and 5.24 and discussed. 
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Figure 5.22 - Aromatic selectivity of 1% n-octane (4000h-1, C:O 8:1) over a cobalt 

molybdate catalyst (1:1 Co:Mo). Temperature range from 350-550 °C

Cobalt molybdates show high selectivity to benzene across all temperature profiles. As 

temperature increases so does selectivity to styrene. The selectivity to ethyl benzene 

decreases and temperature increases.

Nickel molybdate shows high selectivity to ethyl benzene at lower temperatures and 

styrene at higher temperatures. There is an increase in benzene and toluene at higher 

temperatures as the level of cracked products increases, suggesting aromatic 

formation followed by cracking. The increase in styrene selectivity occurring as 

methane selectivity increases, fits with the proposed mechanism in Figure 5.16 with 

CO2 acting to oxidatively dehydrogenate ethyl benzene.
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Figure 5.23 - Aromatic selectivity of 1% n-octane (4000h-1, C:O 8:1) over nickel 

molybdate catalyst (1:1Ni:Mo). Temperature range from 350-550 °C

5.5 CONCLUSIONS AND SUMMARY OF CHAPTER 5

Nickel and cobalt molybdates show activity as catalysts for the oxidative 

dehydrogenation of n-octane to octenes. A greater level of carbon to oxygen gives 

greater selectivity to octenes. A lower carbon to oxygen ratio results in very high 

selectivity to carbon oxides. 

Cobalt and nickel catalysts with a molybdenum excess exhibit higher selectivity to 

octenes than pure phase nickel and cobalt molybdate (NiMoO4 and CoMoO4). This may 

be due to a synergistic effect between the different phases.23 When a catalyst with a 

molybdenum excess is tested, there are levels of cracked oxygenate products 

compared to pure phase catalysts. Pure phase nickel molybdate, when tested at higher 

temperatures produces notable selectivity (ca.10%) to cracked products, chiefly 

methane. This is likely due to the formation of nickel oxide. When a nickel 

molybdenum catalyst with a molybdenum excess was tested, this was not seen. This 

suggests excess molybdenum is required to prevent segregation of nickel particles at 

the catalyst surface. 

Cobalt molybdate showed much higher selectivity to octenes than nickel molybdate. 

Nickel molybdate showed greater selectivity to aromatic products. Lower n-octane 



168

conversions were found than those reported by Fadlalla and Friedrich6 for pure phase 

cobalt molybdate at 8:1 C:O. However as they did not report on product distribution at 

these conditions, selectivity cannot be compared. It should be noted that this work 

was with 1% n-octane while work done by Fadlalla and Friedrich was at 10%. 

Comparing cobalt and nickel molybdates to iron molybdate, iron molybdate shows the 

lowest conversions at the conditions tested (8:1 C:O, 4000h-1, 350-550 °C). However 

iron molybdate at those conditions does not produce carbon oxides until 450 °C. 

Cobalt and nickel molybdates produces carbon oxides at all temperature profiles 

examined. Iron molybdate shows the highest selectivity to octenes of the three 

molybdates tested. 

Comparing pure phase CoMoO4, NiMoO4 and FeMoO4 at 400 °C, iron molybdate 

appears the most impressive catalyst for the ODH of n-octane.

Catalyst n-octane conversion at 

400 °C (mol %)

Selectivity to octenes at 

400 °C (mol %)

FeMoO4 7.8 85.4

CoMoO4 7.3 51.4

NiMoO4 12.1 10.8

Table 5.7 – Comparison of catalyst conversion of n-octane and selectivity to octenes 

at 400 °C, 4000h-1, 8:1 C:O

Work done by Igleslia et al24 which tested the effect of Lewis acidity of molybdate 

catalysts on propane ODH, found that increasing Lewis acidity increased the difference 

in activation energy between combustion of propene (lower in energy) and propane 

ODH (higher energy). Therefore greater Lewis acidity of molybdates results in greater 

levels of combustion and thus carbon oxide production with lower selectivity to 

propene. 

If the ODH of n-octane is assumed to be similar in nature to propane ODH, which has 

been demonstrated in this chapter then any difference in Lewis acidity between cobalt 

molybdate and nickel molybdate would result in differences in activity and selectivity. 

Ouqour et al25 demonstrated that nickel molybdate is more Lewis acidic than cobalt 
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molybdate. This finding would corroborate with findings in this work which shows 

nickel molybdate exhibiting high selectivity to carbon oxides through combustion, 

which is due to its greater Lewis acidity. Cobalt molydate with its lower Lewis acidity 

exhibited consistently lower selectivity to carbon oxides than nickel molybdate. This 

may be one reason between the differences in catalytic performance. 
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6
CHAPTER 6 – CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

An iron molybdate catalyst was shown to be active for the oxidative dehydrogenation 

(ODH) of n-octane. Performing a pre-reduction step on the catalyst prior to catalytic 

testing led to an improvement in selectivity to octenes as the product. The pre-

reduced iron molybdate catalyst, composed of the two species FeMoO4 + Mo4O11, 

performed the ODH of n-octane at 400oC without the formation of carbon oxides, 

providing an 8:1 carbon to oxygen ratio and a gas hourly space velocity (GHSV) of 

4000h-1 or above was applied. 

Temperatures of between 350-550oC were tested. Conversion of n-octane increased in 

line with temperature. At temperatures of or above 450oC carbon oxides were 

produced. Higher temperatures led to aromatic species or carbon oxides becoming the 

major products. Increasing GHSV led to lower conversions but increased selectivity to 

octenes. This was expected as increasing GHSV would lead to decreased contact time 

on the surface which would result in lower conversion.1 This finding also indicated that 

the formation of carbon oxides and aromatics were formed over a longer timescale 

than octenes. 

Increasing the carbon to oxygen ratio to a 12:1 C:O ratio led to greater octene 

selectivity but lower n-octane conversion. This offered evidence that the process was 

catalytic ODH as removing oxygen from the system would limit activity. Decreasing the 

carbon to oxygen ratio to 2:1 C:O increased conversions but led to a large increase in 

product selectivity to carbon oxides across all temperature profiles. 

Most testing done was with a gas flow of 1% n-octane with an 8:1 C:O ratio and helium 

as a carrier gas. In Chapter 3, experiments where the n-octane concentration in the gas 
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flow was increased to ca.10% were discussed. The most notable finding when the 

concentration of n-octane was increased, was the shift in conditions which had 

resulted in ODH with no carbon oxide formation. When 1% n-octane was passed over 

the catalyst, an 8:1 carbon to oxygen ratio, at 400oC and 4000h-1 GHSV were the 

conditions which gave maximum conversion to octenes, while not producing carbon 

oxides. When the n-octane concentration increased to ca.10% however, gas hourly 

space velocity had to be increased from 4000h-1 to 16,000h-1 to attain a carbon oxide 

free reaction. This finding suggests considerable challenges ahead for scaling up the 

catalytic process, as increasing the GHSV leads to lower conversions. 

Pure phases of the iron molybdate system were tested as catalysts to observe the 

activity and selectivity. Pure phase FeMoO4 showed very similar activity and selectivity 

to a pre-reduced catalyst which possessed a molybdenum excess. This indicated that 

the active phase in the catalyst was FeMoO4. Higher levels of cracked products were 

observed with pure phase FeMoO4 this was suggested to be caused by iron particles at 

the catalyst surface. The molybdenum oxides of MoO3 and MoO2 were also tested. 

They showed lower activity than the pre-reduced iron molybdate catalyst and also 

higher selectivity to aromatic species. MoO2 led to the formation of so called “heavy” 

aromatics such as ethyl naphthalene. MoO3 exhibited a high selectivity to 8 carbon 

aromatic species and cracked oxygenates were produced in higher levels than when an 

iron molybdate catalyst was tested.  Given the role of MoO3 in the partial oxidation of 

methanol to formaldehyde2,3 this finding is perhaps not surprising. 

The pre-reduced iron molybdate catalyst underwent time on line studies to observe 

how holding the catalyst at 550oC for a prolonged period affected catalyst 

performance. The catalyst proved both durable and stable provided oxygen was 

available.

When oxygen was removed from the gas feed and n-octane was passed over the pre-

reduced iron molybdate catalyst in an anaerobic atmosphere, activity was still 

observed for up to 30 hours. This was attributed to a time-lapse in the reaction, as the 

oxygen rich molybdenum lattice still retained the oxygen atoms to allow a Mars-Van 
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Krevelen4 style mechanism to drive an ODH reaction. Iron molybdates have been 

associated with Mars-Van Krevelen mechanisms5 so this finding is explicable.

It was found that carbon oxides were produced from oxygen present in the gas flow, 

while cracked oxygenates were formed from oxygen originating in the molybdate 

lattice.  Product selectivity to octenes was higher when no oxygen was present in the 

gas feed. Carbon laydown was also observed with a sp2 type carbon material growing 

at the catalyst surface. 

These findings are correlate with literature regarding nucleophilic and electrophilic 

oxygen. This work shows that lattice oxygen from an iron molybdate system possesses 

nucleophilic character while gas phase oxygen is electrophilic in nature.6,7 Carbon 

laydown was unexpected but suggests that gas feed oxygen is required to replenish 

the catalyst surface. 

Once the catalyst had ceased to exhibit activity in an anaerobic environment an 

irreversible change occurred. The catalyst was shown to have the bulk structure of 

FeMoO4 + MoO2.  When oxygen was reintroduced into the gas feed with this system 

the n-octane was largely converted to “heavy” aromatic species such as naphthalene 

and ethyl naphthalene. It is unclear whether this was due to the presence of MoO2 in 

the oxygen depleted catalyst or the effect of the carbon laydown at the catalyst 

surface. Lower selectivity to carbon oxides was also observed with the oxygen 

depleted catalyst. 

Carbon oxides were attributed to oxygen species from the gas feed undergoing a 

surface reaction with the hydrocarbons. Cracked oxygenates were attributed to lattice 

oxygen from the molybdate excess. Cracked products appeared to be formed at high 

temperatures over iron particles at the catalyst surface. Octenes were formed via ODH 

using lattice oxygen. The formation of aromatic species, chiefly benzene, toluene, ethyl 

benzene, xylenes and styrene was also investigated. It had been suggested by Pillay et 

al8 that the formation  of aromatic species was from cyclisation via octene 

intermediate undergoing further ODH to an octadiene or octatriene, before 

undergoing a cyclisation. To test this oct-1-ene was used as a feedstock in place of n-

octane, if Pillay et al suggested mechanism was correct it would be expected that 
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higher selectivity to aromatic species would be observed. This was not the case.  

Although oct-1-ene was much more reactive than n-octane, selectivity to aroamtics as 

a percentage of total products was actually lower with oct-1-ene as a substrate. The 

major product produced was octadienes. Thus it was suggested that the formation of 

aromatics is due to a cyclisation of the alkane followed by ODH to result in an 

aromatised system. It should be noted that no cyclic products such as  cyclohexane 

were observed, as such this proposed mechanism comes with a significant caveat. 

Nickel and cobalt molybdates have been shown within in existing literature9,10 to be 

active ODH catalysts for small chain alkanes. More recently8,11 they have been 

reported for ODH of hexane and octane. As such it was of interest to prepare and test 

the species before comparing them to iron molybdates.

Iron molybdate was shown to be a more promising catalyst for the ODH of n-octane to 

octene than cobalt and nickel molybdates. Pure phase CoMoO4 and NiMoO4 showed 

very high selectivity to carbon oxides at conditions where FeMoO4 was highly selective 

to octenes.  

Nickel and cobalt molybdates with a molybdenum molar excess exhibited more 

promising results for the ODH of n-octane than pure phase CoMoO4 and NiMoO4. 

Although n-octane conversion was lower, higher selectivity to octenes was observed. 

Cobalt molybdate with a molybdenum excess was the best of the cobalt and nickel 

molybdates tested. 

6.2 FUTURE WORK

There are numerous directions this research could take for future work. Testing C9-C20

hydrocarbons produced from the Fischer-Tropsch process as it would be of interest to 

observe if longer chain hydrocarbons act in the same manner as n-octane. Increasing 

the concentration of the alkane in the gas feed from 10% or above would be crucial in 

indicating if the catalyst could be an alternative to current processes such as the 

Honeywell UOP PACOL process. 

Altering the catalyst volume or catalyst bed may also substantially alter results. Subtle 

changes of temperature around 400oC would also be of interest, to observe at what 



174

temperature carbon oxide formation begins, and to maximise activity and selectivity to 

octenes. 

Testing other molybdates for catalytic activity such as MgMoO4 would be of interest as 

numerous molybdates have been tested for catalytic activity in the ODH of butane and 

propane.12 Producing materials where the molybdenum is in a +5 oxidation state 

would also be an area to explore, as the redox state of molybdates may play a key role 

in the catalytic mechanism.

Tungstates could also be tested and compared to nickel, cobalt and iron molybdates. 

The effect of promoters such as alakali metals13 on molybdates and tungstates could 

also be tested.

For the elucidation of how products are formed isotopic labelling experiments could be 

carried out. Using O18 in the gas feed would confirm beyond doubt whether an ODH-

Mars-Van Krevelen mechanism is occurring. However aerobic and anaerobic studies 

done in Chapter 4 provide strong proof that the nature of the catalytic mechanism is 

Mars-Van Krevelen in nature. It has also been shown that the lattice oxygen of the iron 

molybdate catalyst is nucleophilic in nature, in direct contrast with the electrophilic 

nature of the oxygen from the gas phase which is required for the formation of carbon 

oxides. 

From this it is possible to suggest some general trends regarding a possible 

mechanism.

Lower catalyst contact time increases the selectivity to octenes as the product. Higher 

contact times lead to higher selectivity toward aromatic species. Work in chapter 4 

suggests that the reaction pathways are competing rather than sequential, and that a 

dehydrocyclization mechanism is responsible for the formation of aromatic species.  

However this work is inconclusive. Use of deuterium on the alkane feedstock could 

determine where hydrogen abstraction is occurring on the alkane chain using isotopic 

labelling. This would help elucidate if dehydrocyclization of the alkane is occurring. 

Higher contact time at lower temperatures also results in greater selectivity to carbon 

oxides, suggesting electrophilic oxygen from the gas feed inserts into an adsorbed 
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carbon chain at the catalyst surface in a competing manner to nucleophilic lattice 

oxygen which undergoes hydrogen abstraction. Low levels of cracked products such as 

methane and cracked oxygenates such as propan-1-ol were produced but in low 

concentrations.

Figure 6.1 Proposed reaction pathways that n-octane undergoes

Figure 6.1 shows a proposed set of reaction pathways from the findings in this work. It 

is unlikely that octenes undergo no further reaction as work in Chapter 4 shows oct-1-

ene undergoing aromatisation. However the majority of octenes formed in the 

reactions of n-octane were trans oct-3-ene. This would exhibit lower reactivity than 

oct-1-ene. I consider it still likely however that octenes once formed from n-octane 

would undergo further reactions forming carbon oxides or aromatic species. Future 

work could look at placing a gas feed of trans oct-3-ene into the reactor to observe 

what happens in the presence of an iron molybdate catalyst. This could be repeated 

with other isomers of octene.  

There are many different directions future work could take. In the short term I would 

not alter the catalyst, keep using FeMoO4 + MoO3, and alter the other reaction 

variables. GHSV, concentration of hydrocarbon in the feed and the differences 

between alkanes and alkenes all offer intriguing alleyways of future work. 



176

Bibliography

1 Fluid Catalytic Cracking VII:: Materials, Methods and Process Innovations, Elsevier, 
2011.

2 J. S. Chung, R. Miranda and C. O. Bennett, J. Catal., 1988, 114, 398–410.
3 J. Nováková, P. Jírů and V. Zavadil, J. Catal., 1970, 17, 93–97.
4 C. Doornkamp and V. Ponec, J. Mol. Catal. Chem., 2000, 162, 19–32.
5 M. P. House, phd, Cardiff University, 2007.
6 G. Centi, F. Cavani and F. Trifirò, Selective Oxidation by Heterogeneous Catalysis, 

Springer Science & Business Media, 2012.
7 R. H. Holm, Chem. Rev., 1987, 87, 1401–1449.
8 B. Pillay, M. R. Mathebula and H. B. Friedrich, Appl. Catal. Gen., 2009, 361, 57–64.
9 D. Levin and J. Y. Ying, in Studies in Surface Science and Catalysis, ed. S. T. O. R.K. 

Grasselli A. M.Gaffney and J. E.Lyons, Elsevier, 1997, vol. 110, pp. 367–373.
10 Y. S. Yoon, W. Ueda and Y. Moro-oka, Top. Catal., 1996, 3, 265–275.
11 M. I. Fadlalla and H. B. Friedrich, Catal. Sci. Technol., 2014, 4, 4378–4385.
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APPENDIX 1

Name and formula

Reference code: 00-022-0628 

Common name: β-Fe Mo O4 
PDF index name: Iron Molybdenum Oxide 

Empirical formula: FeMoO4
Chemical formula: FeMoO4

Crystallographic parameters

Crystal system: Monoclinic 

a (Å): 10.2900
b (Å): 9.3940
c (Å): 7.0720
Alpha (°): 90.0000
Beta (°): 106.3100
Gamma (°): 90.0000

Calculated density (g/cm^3): 4.37
Volume of cell (10^6 pm^3): 656.10
Z: 8.00

RIR: -

Subfiles and Quality

Subfiles: Inorganic
Corrosion

Quality: Star (S)

Comments

General comments: High-temperature, low pressure form. 
Structure: Isostructural with ''Mn Mo O4'' and ''Mg Mo O4''. 
Unit cell data source: Powder Diffraction. 

References

Primary reference: Sleight et al., Inorg. Chem., 7, 1093, (1968)

Peak list

No.    h   k    l      d [A]     2Theta[deg] I [%]   
1    1    1    0      6.81000    12.990      65.0
2   -2    0    1      4.66000    19.029       5.0
3    0    2    1      3.86000    23.022      15.0
4    2    0    1      3.55000    25.064      10.0
5    2    2    0      3.40000    26.189     100.0
6   -1    1    2      3.30000    26.998      20.0
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7   -2    0    2      3.26000    27.335      10.0
8    1    1    2      2.82700    31.624      20.0
9    0    2    2      2.75100    32.521      10.0

10   -2    2    2      2.67500    33.472      15.0
11   -3    1    2      2.67200    33.511      15.0
12    4    0    0      2.46900    36.358      10.0
13    0    4    0      2.34900    38.286      10.0
14   -1    3    2      2.34200    38.405   5.0
15   -4    0    2      2.33200    38.576       5.0
16    3    3    0      2.26900    39.691      35.0

Stick Pattern
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APPENDIX 2

Name and formula

Reference code: 00-037-1445 

Common name: β-Mo O3 
PDF index name: Molybdenum Oxide 

Empirical formula: MoO3
Chemical formula: MoO3

Crystallographic parameters

Crystal system: Monoclinic 
Space group: P21/c 
Space group number: 14

a (Å): 7.1220
b (Å): 5.3740
c (Å): 5.5650
Alpha (°): 90.0000
Beta (°): 91.8800
Gamma (°): 90.0000

Calculated density (g/cm^3): 4.49
Volume of cell (10^6 pm^3): 212.88
Z: 4.00

RIR: -

Status, subfiles and quality

Status:
Subfiles: Inorganic

Alloy, metal or intermetalic
Corrosion

Quality: Indexed (I)

Comments

Color: Yellow. 
General comments: â-''Mo O3'' is metastable, converting to the orthorhombic form 

of ''Mo O3'' (á-''Mo O3'') at elevated temperatures (above 
~350 C). 

Sample preparation: Prepared by thermal treatment of a spray-dried molybdic acid 
solution. 

Melting point: Metastable. 

References
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Primary reference: McCarron, E., E.I. DuPont de Nemours and Company, Inc., 
Wilmington, Delaware, USA., Private Communication, (1986)

Unit cell: McCarron, E., J. Chem. Soc., Chem. Commun., 336, (1986)

Peak list

No.    h    k    l      d [A]     2Theta[deg] I [%]   
1    0    1    1      3.86200    23.010     100.0
2    2    0    0      3.55700    25.014      89.0
3   -1    1    1      3.42700    25.979      27.0
4    1    1    1      3.37300    26.403    23.0
5    0    0    2      2.78100    32.161       9.0
6    0    2    0      2.68500    33.344      19.0
7   -2    1    1      2.64900    33.810      24.0
8   -1    0    2      2.61900    34.210      25.0
9    2    1    1      2.58800    34.632      20.0

10    1    0    2      2.56200    34.995      16.0
11    3    1    0      2.17200    41.544      10.0
12    2    2    0      2.14400    42.112      15.0
13   -3    1    1      2.04100    44.347      10.0
14    0    2    2      1.93400    46.943      15.0
15   -1    2    2      1.87400    48.541      17.0
16    1    2    2      1.85500    49.071      14.0
17    4    0    0      1.78000    51.285      22.0
18   -2    2    2      1.71400    53.413   20.0
19    4    1    0      1.68600    54.372      15.0
20   -1    3    1      1.66500    55.116      23.0
21    4    1    1      1.60100    57.519      10.0
22    4    2    0      1.48200    62.634      15.0
23   -3    1    3      1.43200    65.084      10.0
24    3    1    3      1.38700    67.473       9.0
25    5    1    0      1.37600    68.085       8.0

Stick Pattern



181

APPENDIX 3

Name and formula

Reference code: 00-005-0338 

Common name: χ-Mo4 O11 
PDF index name: Molybdenum Oxide 

Empirical formula: Mo4O11
Chemical formula: Mo4O11

Crystallographic parameters

Crystal system: Orthorhombic 
Space group: Pn21a 
Space group number: 33

a (Å): 24.4000
b (Å): 5.4500
c (Å): 6.7230
Alpha (°): 90.0000
Beta (°): 90.0000
Gamma (°): 90.0000

Calculated density (g/cm^3): 4.16
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Volume of cell (10^6 pm^3): 894.02
Z: 4.00

RIR: -

Status, subfiles and quality

Status: Marked as deleted by ICDD
Subfiles: Inorganic

Alloy, metal or intermetalic
Quality: Indexed (I)

Comments

Deleted by: Continuation of 00-005-0337. 
Color: Reddish violet. 

References

Primary reference: Magneli, a. et al., Univ. of Uppsala, Sweden., Private 
Communication

Structure: Asbrink, Kihlborg., Acta Chem. Scand., 18, 1571, (1964)

Peak list

No.    h    k    l      d [A]     2Theta[deg] I [%]   
1    2    0    0     12.30000     7.181      30.0
2    3    0    1      5.19000    17.071      10.0
3    4    0    1      4.53000    19.581      25.0
4    0    1    1      4.24000    20.935      45.0
5    2    1    1      4.00000    22.206     100.0
6    5    0    1      3.95000    22.491      65.0
7    3    1    1      3.75000    23.707      95.0
8    6    0    1      3.48000    25.577      85.0
9    1    0    2    3.33000    26.750      10.0

10    6    1    0      3.26000    27.335      20.0
11    3    0    2      3.11000    28.681      15.0
12    2    1    2      2.78700    32.090      50.0
13    5    0    2      2.77100    32.280      15.0
14    0    2    0 2.72200    32.878      60.0
15    3    1    2      2.70000    33.153      45.0
16    8    1    0      2.66300    33.627      70.0
17    6    0    2      2.59300    34.563      30.0
18    2    2    1      2.47300    36.297      10.0
19    7    0    2      2.42300    37.073      12.0
20   10    1    0      2.22500    40.510      30.0
21    2    0    3      2.20700    40.855      15.0
22    6    2    1      2.14600    42.071      35.0
23    7    2    1      2.04600    44.233      10.0
24   10    0    2      1.97500    45.912      30.0
25    5    2    2      1.94100    46.764      45.0
26    6    2    2      1.87700    48.459      40.0
27   11    0    2      1.85200    49.156      35.0
28    7    2    2      1.81000    50.375   30.0
29    7    1    3      1.78400    51.161      35.0
30    1    3    1      1.75000    52.230      10.0
31    2    3    1      1.73300    52.781      10.0
32    1    2    3      1.72600    53.012      50.0
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33   13    1    1      1.71600    53.345      40.0
34   11    2    1      1.66600    55.080      15.0
35    9    1    3      1.64800    55.733      70.0
36   14    1    1      1.61200    57.091      30.0
37   12    2    1      1.58300    58.236      45.0
38    7    3    1      1.56700    58.888      15.0
39    8    3    0      1.56000    59.179      20.0
40    6    0    4      1.55500    59.388      25.0
41   11    2    2      1.53000    60.459      20.0
42    8    3    2      1.41500    65.965      15.0
43    4    2    4      1.39500 67.034      15.0
44    5    2    4      1.37300    68.255      20.0
45    4    4    0      1.33000    70.785      25.0
46    9    3    3      1.25100    76.012      40.0
47   10    3    3      1.22100    78.230      15.0
48    4    3    4      1.20900    79.157      20.0
49   15    3    2      1.14000    85.017      15.0
50    8    2    5      1.12100    86.811      20.0
51   17    2    3      1.10500    88.390      20.0

Stick Pattern
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APPENDIX 4

Name and formula

Reference code: 00-032-0671 

Mineral name: Tugarinovite, syn 
PDF index name: Molybdenum Oxide 

Empirical formula: MoO2
Chemical formula: MoO2

Crystallographic parameters

Crystal system: Monoclinic 
Space group: P21/n 
Space group number: 14

a (Å): 5.6068
b (Å): 4.8595
c (Å): 5.5373
Alpha (°): 90.0000
Beta (°): 119.3700
Gamma (°): 90.0000

Calculated density (g/cm^3): 6.46
Volume of cell (10^6 pm^3): 131.48
Z: 4.00

RIR: -

Subfiles and Quality

Subfiles: Inorganic
Mineral
Alloy, metal or intermetalic
Corrosion
Common Phase
Educational pattern
Forensic
NBS pattern

Quality: Star (S)

Comments

Color: Black. 
Sample preparation: The sample was made at NBS, Gaithersburg, Maryland, USA, 

Parker, H.S., by heating ''Mo O3'' in a Mo boat for 20 hours at 
372 C in an atmosphere of 95% ''N2'' and 5% ''H2'' gases. 

Additional pattern: To replace 00-005-0452 and 00-033-0929. See PDF 01-086-
0135. 

CAS Number: 18868-43-4. 
Additional diffraction line(s): Plus 7 additional reflections to 1.0780. 
Unit cell data source: Powder Diffraction. 
Temperature: Pattern taken at 298 K. 
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References

Primary reference: Natl. Bur. Stand. (U.S.) Monogr. 25, 18, 44, (1981)

Peak list

No.    h    k    l      d [A]     2Theta[deg] I [%]   
1   -1    0    1      4.80500    18.450       2.0
2   -1    1    1      3.42000    26.033     100.0
3    1    0    1      2.81300    31.785       4.0
4    2    0    0      2.44200    36.775      30.0
5    1    1    1      2.43700    36.853      30.0
6   -2    1    1      2.42600    37.026      70.0
7   -2    0    2      2.40300    37.393      35.0
8    2    1    0      2.18100    41.365       6.0
9    0    2    1      2.17100    41.564       2.0

10   -2    1    2      2.15600    41.867       5.0
11   -3    0    1      1.84100    49.469      11.0
12    2    1    1  1.72500    53.045      30.0
13    2    2    0      1.72300    53.112      35.0
14   -3    1    2      1.71100    53.514      40.0
15   -2    2    2      1.70900    53.581      35.0
16   -2    1    3      1.69760    53.970      20.0
17   -3    0    3      1.60330    57.429       1.0
18    3    1    0      1.54430    59.842       7.0
19    0    3    1      1.53600    60.198      13.0
20    0    1    3      1.52720    60.581       9.0
21   -3    2    1      1.46760    63.319       4.0
22    2    0    2      1.40570    66.458       4.0
23   -4    0    2      1.40190    66.661      20.0
24   -2    0    4      1.38450    67.611       5.0
25    3    0    1      1.35480    69.301       2.0
26    0    3    2      1.34480    69.891   1.0
27   -3    2    3      1.33810    70.293       1.0
28   -4    1    1      1.30330    72.461       5.0
29   -4    1    3      1.29120    73.250       5.0
30   -3    1    4      1.28290    73.802       1.0
31    4    0    0      1.22190    78.161       7.0
32    2    3    1      1.21750    78.498      10.0
33    1    3    2      1.21460    78.721       6.0
34   -2    3    3      1.20760    79.267       7.0
35   -2    2    4      1.20280    79.647       4.0
36    3    2    1      1.18370    81.197       2.0
37    1    2    3      1.17640    81.808       1.0
38    3    3    0      1.14850    84.242       2.0
39    0    3    3      1.14140    84.889       4.0

Stick Pattern
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APPENDIX 5

Name and formula

Reference code: 01-073-1331 

Common name: cobalt molybdate 
PDF index name: Cobalt Molybdenum Oxide 

Empirical formula: CoMoO4
Chemical formula: CoMoO4

Crystallographic parameters

Crystal system: Monoclinic 
Space group: C2/m 
Space group number: 12

a (Å): 9.6660
b (Å): 8.8540
c (Å): 7.7550
Alpha (°): 90.0000
Beta (°): 113.8200
Gamma (°): 90.0000

Calculated density (g/cm^3): 4.79
Measured density (g/cm^3): 4.69
Volume of cell (10^6 pm^3): 607.16
Z: 8.00

RIR: 3.24

Subfiles and Quality

Subfiles: Inorganic
Corrosion
ICSD Pattern

Quality: Star (S)

Comments

ANX: ABX4. 
Wyckoff Sequence: j3 i4 h g (C12/M1). 
Additional pattern: See PDF 00-025-1434. 
ICSD collection code: 23808. 
Test from ICSD: Calc. density unusual but tolerable. 

References

Primary reference: Calculated from ICSD using POWD-12++, (1997)
Structure: Smith, G.W., Ibers, J.A., Acta Crystallogr., 19, 269, (1965)

Peak list
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No.    h    k    l      d [A]     2Theta[deg] I [%]   
1    0    0    1      7.09442    12.467       0.9
2    1    1    0      6.25670    14.144     100.0
3   -1    1    1      5.54375    15.974       7.4
4   -2    0    1      4.69979    18.867      15.4
5    0    2    0      4.42132    20.067       1.2
6    1    1    1      4.14196    21.436       3.4
7    0    2    1      3.75576    23.671      16.3
8   -1    1    2      3.55182    25.051      61.8
9    2    0    1      3.21453    27.729       5.1

10    2    2    0      3.12835    28.509      98.3
11   -3    1    1      3.02754    29.480       1.2
12    3    1    0      2.79952    31.942   4.7
13   -3    1    2      2.77187    32.270      58.9
14    0    2    2      2.76532    32.348      66.6
15   -1    3    1      2.72582    32.830       0.9
16    2    2    1      2.60113    34.452       0.1
17   -2    0    3      2.55890    35.039       0.1
18    1    3    1      2.49736    35.931       1.3
19   -1    1    3      2.45636    36.552       0.6
20   -4    0    1      2.40430    37.372       0.1
21    0    0    3      2.36481    38.020       1.5
22   -4    0    2      2.34844    38.295      15.6
23    2    0    2      2.34318    38.385      13.8
24    3    1    1      2.31650    38.845       1.6
25   -3    1    3      2.28938    39.323       0.7
26    0    4    0      2.21350    40.730      12.8
27   -3    3    1      2.17624 41.459       0.8
28   -4    2    1      2.11282    42.764       4.1
29    0    2    3      2.08557    43.351      43.1
30    1    1    3      2.02865    44.632       0.8
31   -2    4    1      2.00252    45.246       2.7
32    2    4    0      1.97931    45.806       3.3
33   -2    0    4      1.93874    46.821      25.4
34   -1    3    3      1.93244    46.983      14.1
35    4    0    1      1.90349    47.742       0.1
36   -4    2    3      1.88996    48.105       0.1
37   -2    4    2      1.87788    48.434       1.4
38    3    1    2      1.87454    48.526       1.4
39   -5    1    1      1.86209    48.872       0.6
40   -3    1    4      1.85297    49.128       3.3
41   -1    1    4      1.85077    49.190   3.2
42   -3    3    3      1.84792    49.271       2.4
43    2    4    1      1.82309    49.988       1.6
44    2    0    3      1.80414    50.550       0.1
45    0    0    4      1.77286    51.506       0.6
46    4    2    1      1.74869    52.272       1.1
47    1    5    0      1.73633    52.672       8.8
48    5    1    0      1.73427    52.740       9.2
49   -1    5    1      1.71831    53.268       0.7
50    1    3    3      1.70242    53.805       0.5
51   -2    4    3      1.67408    54.791       0.5
52    2    2    3      1.67073    54.911       1.8
53   -4    2    4      1.64949    55.679      11.7
54    0    2    4      1.64639    55.793      15.2
55   -4    4    1      1.62846    56.461       0.2
56    0    4    3      1.61603    56.935       1.9
57   -4    4    2      1.61124    57.120      13.7
58    3    3    2      1.60824    57.236      14.1
59   -5    1    4      1.59543    57.739       0.9



189

60   -1    3    4      1.59315    57.829       0.9
61    1    1    4      1.59123    57.906       0.8
62   -6    0    1      1.57521    58.552       0.9
63    4    4    0      1.56418    59.005       1.6
64    5    1    1      1.54908    59.638       0.7
65   -2    0    5      1.54466    59.826   0.4
66   -5    3    3      1.54264    59.913       0.3
67    3    1    3      1.53836    60.096       0.4
68   -4    4    3      1.51964    60.915       1.6
69   -6    2    2      1.51286    61.217      19.3
70    4    2    2      1.51077    61.311      16.2
71   -4    0    5      1.50104    61.751       1.0
72   -6    2    1      1.48406    62.537       0.2
73    0    6    0      1.47567    62.933       4.0
74    6    0    0      1.47377    63.023       4.3
75   -2    2    5      1.45842    63.764       5.1
76   -1    5    3      1.45547    63.909       4.6
77    0    6    1      1.44474    64.441       0.8
78    3    5    1      1.42494    65.447       1.5
79   -4    2    5      1.42146    65.627       9.5
80   -3    5    3      1.41848 65.782      11.9
81    2    6    0      1.39976    66.776       1.6
82    6    2    0      1.39832    66.854       1.6
83    5    3    1      1.38838    67.397       0.9
84   -6    2    4      1.38634    67.509       1.1
85    2    2    4      1.38266    67.713       1.0
86    3    3    3      1.38065    67.825       0.4
87    4    0    3      1.36342    68.801       0.6
88    5    1    2      1.35993    69.003       0.4
89    0    2    5      1.35105    69.521       0.5
90    2    6    1      1.34111    70.112       0.1
91    6    0    1      1.33927    70.222       0.1
92   -1    3    5      1.33639    70.396       0.3
93   -7    1    1      1.32551    71.061       0.1
94    1    1    5      1.30562    72.312   0.3
95   -5    5    2      1.30261    72.506       0.7
96    3    5    2      1.30108    72.605       0.6
97   -5    5    1      1.29737    72.846       0.7
98   -3    5    4      1.29381    73.079       4.3
99    3    1    4      1.29071    73.283       4.2

100   -6    4    1      1.28340    73.769       1.2
101   -2    6    3      1.27894    74.069       2.1
102   -6    2    5      1.26809    74.811       0.7
103   -5    5    3      1.26561    74.982       0.8
104   -4    6    1      1.25767    75.538       0.7
105    5    5    0      1.25134    75.988       4.1
106    2    6    2      1.24731    76.278       2.2
107   -4    4    5      1.24233    76.639       0.6
108   -7    3    3      1.24045    76.776       0.6
109   -5    1    6      1.22914 77.614       2.6
110   -1    1    6      1.22761    77.729       2.4
111   -7    3    1      1.22116    78.217       0.8
112   -6    4    4      1.21862    78.412       0.9
113    2    0    5      1.21612    78.604       1.0
114   -1    7    2      1.20250    79.670       5.8
115    6    0    2      1.20005    79.866       4.1
116    0    4    5      1.19454    80.309       0.5
117    5    1    3      1.19146    80.559       0.3
118   -3    3    6      1.18394    81.177       1.4
119    0    0    6  1.18240    81.305       1.0
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120   -3    7    1      1.17737    81.726       0.7
121   -8    0    4      1.17422    81.993       3.0
122    4    0    4      1.17159    82.216       2.8
123   -8    0    1      1.16625    82.675       0.4
124   -8    2   3      1.16236    83.013       2.1
125    7    3    0      1.16133    83.103       2.6
126    6    2    2      1.15825    83.373       1.3
127    7    1    1      1.15515    83.647       0.4
128    6    4    1      1.14585    84.482       0.1
129    0    2    6      1.14224    84.812       0.6
130   -8    2    4      1.13539    85.445       1.0
131   -1    7    3      1.13437    85.540       0.8
132    4    2    4      1.13260    85.706       1.2
133   -8    2    1      1.12767    86.171       0.8
134   -8 0    5      1.11790    87.111       0.3
135   -3    7    3      1.11588    87.309       0.6
136    5    3    3      1.11353    87.540       0.3
137   -5    5    5      1.10875    88.014       0.1
138   -2    4    6      1.10675    88.214       0.3
139 1    1    6      1.10533    88.357       0.4
140   -3    1    7      1.09696    89.210       0.1
141    0    8    1      1.09352    89.566       0.1

Stick Pattern
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APPENDIX 6

Name and formula

Reference code: 00-016-0291 

PDF index name: Nickel Molybdenum Oxide 

Empirical formula: MoNiO4
Chemical formula: NiMoO4

Crystallographic parameters

Crystal system: Monoclinic 
Space group: P2/c 
Space group number: 13

a (Å): 4.5800
b (Å): 5.6700
c (Å): 4.8700
Alpha (°): 90.0000
Beta (°): 89.3200
Gamma (°): 90.0000

Volume of cell (10^6 pm^3): 126.46
Z: 2.00

RIR: -

Subfiles and Quality

Subfiles: Inorganic
Corrosion

Quality: Indexed (I)

Comments

Sample preparation: High pressure modification formed at 60 kbar and 900 C. 
Unit cell data source: Powder Diffraction. 

References

Primary reference: Young, Schwartz., Science, 141, 348, (1963)

Peak list

No.    h    k    l      d [A]     2Theta[deg] I [%]   
1    1    0    0      4.57000    19.408      20.0
2    0    1    1      3.69000    24.099      30.0
3    1    1    0      3.56000    24.993      50.0
4    1    1    1      2.88600    30.961     100.0
5   -1    1    1      2.86100    31.238     100.0
6    0    2    0      2.83400    31.544      10.0
7    0    2    1      2.44500    36.728      20.0
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8    2    0    0      2.29000    39.312      10.0
9    1    2    1      2.16600    41.664      15.0

10   -1    1    2      2.00300    45.234      10.0
11    0    2    2      1.84900    49.241      30.0
12    2    2    0      1.78300    51.192      20.0
13    1    3    0      1.74700    52.326   40.0
14    2    0    2      1.67900    54.617      40.0
15   -2    0    2      1.66100    55.260      20.0

Stick Pattern


