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A NEW APPROACH TO OPTIMAL DESIGNS FOR

CORRELATED OBSERVATIONS∗

By Holger Dette, Maria Konstantinou and Anatoly

Zhigljavsky

Ruhr-Universität Bochum and Cardiff University

This paper presents a new and efficient method for the construc-
tion of optimal designs for regression models with dependent error
processes. In contrast to most of the work in this field, which starts
with a model for a finite number of observations and considers the
asymptotic properties of estimators and designs as the sample size
converges to infinity, our approach is based on a continuous time
model. We use results from stochastic analysis to identify the best
linear unbiased estimator (BLUE) in this model. Based on the BLUE,
we construct an efficient linear estimator and corresponding optimal
designs in the model for finite sample size by minimizing the mean
squared error between the optimal solution in the continuous time
model and its discrete approximation with respect to the weights (of
the linear estimator) and the optimal design points, in particular in
the multi-parameter case.

In contrast to previous work on the subject, the resulting estima-
tors and corresponding optimal designs are very efficient and easy
to implement. This means that they are practically not distinguish-
able from the weighted least squares estimator and the corresponding
optimal designs, which have to be found numerically by non-convex
discrete optimization. The advantages of the new approach are illus-
trated in several numerical examples.

1. Introduction. The construction of optimal designs for dependent
observations is a very challenging problem in statistics, because - in contrast
to the independent case - the dependency yields non-convex optimization
problems. As a consequence, classical tools of convex optimization theory as
described, for example, in Pukelsheim (2006) are not applicable. Most of the
discussion is restricted to very simple models and we refer to Dette, Kunert
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2 H. DETTE ET AL.

and Pepelyshev (2008); Kisělák and Stehĺık (2008); Harman and Štulajter
(2010) for some exact optimal designs for linear regression models. Sev-
eral authors have proposed to determine optimal designs using asymptotic
arguments [see, for example, Sacks and Ylvisaker (1966, 1968), Bickel and
Herzberg (1979), Näther (1985a), Zhigljavsky, Dette and Pepelyshev (2010)],
but the resulting approximate optimal design problems are still non-convex
and extremely difficult to solve. As a consequence, approximate optimal de-
signs have mainly been determined analytically for the location model (in
this case the corresponding optimization problems are in fact convex) and
for a few one-parameter linear models [see Boltze and Näther (1982), Näther
(1985a), Ch. 4, Näther (1985b), Pázman and Müller (2001) and Müller and
Pázman (2003) among others].

Recently, substantial progress has been made in the construction of op-
timal designs for regression models with a dependent error process. Dette,
Pepelyshev and Zhigljavsky (2013) determined (asymptotic) optimal designs
for least squares estimation, under the additional assumption that the re-
gression functions are eigenfunctions of an integral operator associated with
the covariance kernel of the error process. Although this approach is able
to deal with the multi-parameter case, the class of models for which ap-
proximate optimal designs can be determined explicitly is still rather small,
because it refers to specific kernels with corresponding eigenfunctions. For
this reason Dette, Pepelyshev and Zhigljavsky (2016) proposed a different
strategy to obtain optimal designs and efficient estimators. Instead of con-
structing an optimal design for a particular estimator (such as least squares
or weighted least squares), these authors proposed to consider the problem
of optimizing the estimator and the design of experiment simultaneously.
They constructed a class of estimators and corresponding optimal designs
with a variance converging (as the sample size increases) to the optimal
variance in the continuous time model. In other words, asymptotically these
estimators achieve the same precision as the best linear unbiased estimator
computed from the whole trajectory of the process. While this approach
yields a satisfactory solution for one-dimensional parametric models using
signed least squares estimators, it is not transparent and in many cases not
efficient in the multi-parameter model. In particular, it is based on matrix-
weighted linear estimators and corresponding designs which are difficult to
implement in practice and do not yield the same high efficiencies as in the
one-parameter case.

In this paper we present an alternative approach for the construction of
estimators and corresponding optimal designs for regression models with
dependent error processes, which has important advantages compared to



OPTIMAL DESIGNS FOR CORRELATED OBSERVATIONS 3

the currently used methodology. First - in contrast to all other methods -
the estimators with corresponding optimal designs proposed here are very
easy to implement. Secondly, it is demonstrated that the new estimator and
design yield a method which is practically not distinguishable from the best
linear estimator (BLUE) with corresponding optimal design. Third, in many
cases the new estimator and a uniform design are already very efficient.

Compared to most of the work in this field, which begins with a model
for a finite number of observations and considers the asymptotic properties
of estimators as the sample size converges to infinity, an essential difference
of our approach is that it is directly based on the continuous time model.
In Section 2 we derive the best linear unbiased estimate in this model using
results about the absolute continuity of measures on the space C([a, b]). This
yields a representation of the best linear estimator as a stochastic integral
and provides an efficient tool for constructing estimators with corresponding
optimal designs for finite samples which are practically not distinguishable
from the optimal (weighted least squares) estimator and corresponding opti-
mal design. We emphasize again that the latter design has to be determined
by discrete non-convex optimization. To be more precise, in Section 3 we
propose a weighted mean, say

∑n
i=1 µiYti (here Yti denotes the response at

the point ti and n is the sample size), where the weights µ1, . . . , µn (which
are vectors in case of models with more than one parameter) and design
points t1, . . . , tn are determined by minimizing the mean squared error be-
tween the optimal solution in the continuous time model (represented by
a stochastic integral with respect to the underlying process) and its dis-
crete approximation with respect to the weights (of the linear estimator)
and the optimal design points. In Section 4 we discuss several examples and
demonstrate the superiority of the new approach to the method which was
recently proposed in Dette, Pepelyshev and Zhigljavsky (2016), in particu-
lar for multi-parameter models. Some more details on best linear unbiased
estimation in the continuous time model are given in Section 5, where we
discuss degenerate cases, which appear, for example, due to the presence of
a constant term in the regression function. For a more transparent presen-
tation of the ideas, some technical details are additionally deferred to the
Appendix.

We finally note that this paper is a first approach which uses results from
stochastic analysis in the context of optimal design theory. The combination
of these two fields yields a practically implementable and satisfactory solu-
tion of optimal design problems for a broad class of regression models with
dependent observations.
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2. Optimal estimation in continuous time models. Consider a
linear regression model of the form

(2.1) Yti = Y (ti) = θT f(ti) + εti , i = 1, . . . , n ,

where {εt | t ∈ [a, b]} is a Gaussian process with E[εti ] = 0 and K(ti, tj) =
E[εtiεtj ] denoting the covariance between observations at the points ti and tj
(i, j = 1, . . . , n). Furthermore, θ = (θ1, . . . , θm)T is a vector of unknown pa-
rameters, f(t) = (f1(t), . . . , fm(t))T is a vector of continuously differentiable
linearly independent functions, and the explanatory variables t1, . . . , tn vary
in a compact interval, say [a, b]. If Y = (Yt1 , . . . , Ytn)

T denotes the vector of
observations, the weighted least squares estimator of θ is defined by

θ̂WLSE = (XTΣ−1X)−1XTΣ−1Y,

where X = (fp(tj))
p=1,...,m
j=1,...,n is the n×m design matrix and the n×n matrix

Σ = (K(ti, tj))i,j=1,...,n is the matrix of variances/covariances. It is well

known that θ̂WLSE is the BLUE in model (2.1). The corresponding minimal
variance is given by

(2.2) Var(θ̂WLSE) = (XTΣ−1X)−1,

and an optimal design for the estimation of the parameter vector θ in model
(2.1) minimizes an appropriate real-valued functional of this matrix. As
pointed out before, the direct minimization of this type of criterion is an ex-
tremely challenging non-convex discrete optimization problem and explicit
solutions are not available in nearly all cases of practical interest. For this
reason many authors propose to consider asymptotic optimal designs as the
sample size n converges to infinity [see Sacks and Ylvisaker (1966, 1968),
Bickel and Herzberg (1979), Näther (1985a), Zhigljavsky, Dette and Pepely-
shev (2010)].

In the following discussion we consider - parallel to model (2.1) - its
continuous time version, that is

(2.3) Yt = θT f(t) + εt , t ∈ [a, b],

where the full trajectory of the process {Yt| t ∈ [a, b]} can be observed and
{εt| t ∈ [a, b]} is a centered Gaussian process with continuous covariance
kernel K, that is, K(t, t′) = E[εtεt′ ]. We will focus on triangular kernels,
which are of the form

(2.4) K(t, t′) = u(t)v(t′) for t ≤ t′,
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(K(t, t′) = K(t′, t) for t > t′), where u(·) and v(·) are some functions defined
on the interval [a, b]. An alternative representation of K is given by

K(t, t′) = v(t)v(t′)min{q(t), q(t′)}; (t, t′ ∈ [a, b]),

where q(t) = u(t)/v(t). We assume that the process {εt| t ∈ [a, b]} is non-
degenerate on the open interval (a, b), which implies that the function q
is positive on the interval (a, b) and strictly increasing and continuous on
[a, b] [see Mehr and McFadden (1965) for more details]. Consequently, the
functions u and v must have the same sign and can be assumed to be posi-
tive on the interval (a, b) without loss of generality. Note that the majority
of covariance kernels considered in the literature belong to this class, see,
for example, Näther (1985a); Zhigljavsky, Dette and Pepelyshev (2010) or
Harman and Štulajter (2011). The simple triangular kernel

K(t, t′) = t ∧ t′,

is obtained for the choice u(t) = t and v(t) = 1 and corresponds to the Brow-
nian motion. As pointed out in Dette, Pepelyshev and Zhigljavsky (2016),
the solutions of the optimal design problems with respect to different tri-
angular kernels are closely related. In particular, if a best linear unbiased
estimator (BLUE) for a particular triangular kernel has to be found for the
continuous time model, it can be obtained by simple nonlinear transforma-
tion from the BLUE in a different continuous time model (on a possibly
different interval) with a Brownian motion as error process (see Remark
2.1(b) below for more details). For this reason we will concentrate on the
covariance kernel of the Brownian motion throughout this section. Our first
result, presented in Theorem 2.1 provides the optimal estimator in the con-
tinuous time model (2.3), where the error process is given by a Brownian
motion on the interval [a, b], where a > 0 (the case a = 0 will be discussed
in Section 5). We begin with a lemma which is crucial for the definition of
the estimator. The proof can be found in the Appendix.

Lemma 2.1. Consider the continuous time linear regression model (2.3)
on the interval [a, b], a > 0, with a continuously differentiable vector of
regression functions f and a Brownian motion as error process. Then the
m×m matrix

(2.5) C =

∫ b

a

ḟ(t)ḟT (t) dt+
f(a)fT (a)

a
,

is non-singular.
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Theorem 2.1. Consider the continuous time linear regression model
(2.3) on the interval [a, b], a > 0, with a continuously differentiable vec-
tor of regression functions f and a Brownian motion as error process. The
best linear unbiased estimate is given by

(2.6) θ̂BLUE = C−1
(∫ b

a

ḟ(t) dYt +
f(a)

a
Ya

)
.

Moreover, the minimum variance is given by

(2.7) C−1 =
(∫ b

a

ḟ(t)ḟT (t) dt+
f(a)fT (a)

a

)
−1

.

Proof. Note that the continuous time model (2.3) can be written as a
Gaussian white noise model

Yt =

∫ t

0
s1(u) du+

∫ t

0
dεu, t ∈ [0, b],

where the function s1 is defined as

s1(u) = I[a,b](u)θ
T ḟ(u) + I[0,a](u)

θT f(a)

a
.

Let Pθ and P0 denote the measure on C([0, b]) associated with the process
Y = {Yt| t ∈ [0, b]} and {εt| t ∈ [0, b]}, respectively. From Theorem 1 in Ap-
pendix II of Ibragimov and Hasminskĭı (1981), it follows that Pθ is absolute
continuous with respect to P0 with Radon-Nikodym derivative given by

dPθ

dP0
(Y ) = exp

{∫ b

0
s1(t) dYt −

1

2

∫ b

0
s21(t) dt

}

= exp

{(∫ b

a

θT ḟ(t) dYt +
θT f(a)

a
Ya

)
− 1

2

(∫ b

a

(θT ḟ(t))2 dt+
(θT f(a))2

a

)}
.

The maximum likelihood estimator can be determined by solving the equa-
tion

∂

∂θ
log

dPθ

dP0
(Y ) =

∫ b

a

ḟ(t) dYt+
f(a)

a
Ya−

(∫ b

a

ḟ(t)ḟT (t) dt+
f(a)fT (a)

a

)
θ = 0.

The solution coincides with the linear estimate (2.6), and a straightfor-
ward calculation, using Ito’s formula and the fact that the random variables∫ b

a
ḟ(t)dεt and εa are independent, gives

Varθ(θ̂BLUE) = C−1
Eθ

[( ∫ b

a

ḟ(t)dεt +
f(a)

a
εa

)(∫ b

a

ḟ(t)dεt +
f(a)

a
εa

)T ]
C−1

= C−1
(∫ b

a

ḟ(t)ḟT (t)dt+
f(a)fT (a)

a

)
C−1 = C−1,
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where the matrix C is defined in (2.5). It has been shown in Dette, Pepely-
shev and Zhigljavsky (2016) that C−1 is the variance/covariance matrix of
the BLUE in the continuous time model, which proves Theorem 2.1.

Remark 2.1.

(a) For a twice continuously differentiable vector of regression functions
and Brownian motion as error process, Dette, Pepelyshev and Zhigl-
javsky (2016) determined the best linear estimator for the continuous
time linear regression model (2.3) as

(2.8) C−1
{
ḟ(b)Yb +

(f(a)
a

− ḟ(a)
)
Ya −

∫ b

a

f̈(t)Ytdt
}
.

Using integration by parts gives

∫ b

a

ḟ(t) dYt = ḟ(b)Yb − ḟ(a)Ya −
∫ b

a

f̈(t)Yt dt,

and it is easily seen that the expression (2.8) coincides with (2.6). This
means that a BLUE in the continuous time model (2.3) is even avail-
able under the weaker assumption of a once continuously differentiable
function f .

(b) The best linear estimator in the continuous time model (2.3) with
a general triangular kernel of the form (2.4) can easily be obtained
from Appendix B in Dette, Pepelyshev and Zhigljavsky (2016). To be
precise, consider a triangular kernel of the form (2.4), define

q(t) =
u(t)

v(t)
, α(t) = v(t),

and consider the stochastic process

εt = α(t)ε̃q(t),

where {ε̃t̃| t̃ ∈ [ã, b̃]} is a Brownian motion on the interval [ã, b̃] and
ã = q(a), b̃ = q(b). It follows from Doob (1949) that {εt| t ∈ [a, b]} is a
centered Gaussian process on the interval [a, b] with covariance kernel
(2.4). Moreover, if we consider the continuous time model

(2.9) Ỹt̃ = θT f̃(t̃) + ε̃t̃, t̃ ∈ [ã, b̃],

and use the transformations

(2.10) f̃(t̃) =
f(q−1(t̃))

v(q−1(t̃))
, ε̃t̃ =

εq−1(t̃)

v(q−1(t̃))
, Ỹt̃ =

Yt
v(t)

,
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then it follows from Dette, Pepelyshev and Zhigljavsky (2016) that the
BLUE for the continuous time model (2.3) (with a general triangular
covariance kernel) can be obtained from the BLUE in model (2.9) by
the transformation t̃ = q(t). Therefore, an application of Theorem 2.1
gives for the best linear estimator in the continuous time model (2.3)
with triangular covariance kernel of the form (2.4) the representation

θ̂BLUE = C−1
[ ∫ b

a

ḟ(t)v(t)− v̇(t)f(t)

u̇(t)v(t)− u(t)v̇(t)
d

(
Yt
v(t)

)
+

f(a)

u(a)v(a)
Ya

]
,

where the matrix C is given by

C =

∫ b

a

[ḟ(t)v(t)− v̇(t)ḟ(t)][ḟ(t)v(t)− v̇(t)ḟ(t)]T

v2(t)[u̇(t)v(t)− u(t)v̇(t)]
dt+

f(a)fT (a)

u(a)v(a)
.

(c) Using integration by parts it follows (provided that the functions f ,
u, and v are twice continuously differentiable) that the BLUE in the
continuous time model (2.3) can be represented as

θ̂BLUE =

∫ b

a

Yt µ
∗(dt),

where µ∗ is a vector of signed measures defined by µ∗(dt) = Paδa +
p(t)dt+ Pbδb, δt denotes the Dirac measure at the point t ∈ [0, 1] and
the “masses” Pa, Pb and the density p are given by

Pa = C−1 1

u(a)

f(a)u̇(a)− ḟ(a)u(a)

u̇(a)v(a)− u(a)v̇(a)
, Pb = C−1 1

v(b)

ḟ(b)v(b)− v̇(b)f(b)

u̇(b)v(b)− u(b)v̇(b)
,

p(t) = −C−1 d

dt

( 1

v(t)

ḟ(t)v(t)− v̇(t)f(t)

u̇(t)v(t)− u(t)v̇(t)

) 1

v(t)
,

respectively. Now, if θ̂n =
∑n

i=1 ωiYti denotes an unbiased linear es-
timate in model (2.1) with vectors ωi ∈ R

m, we can represent this
estimator as

θ̂n =

∫ b

a

Yt µ̂n(dt),

in the continuous time model (2.3), where µ̂n is a discrete signed vector
valued measure with “masses” ωi at the points ti. Consequently, we
obtain from Theorem 2.1 that

C−1 = Var(θ̂BLUE) ≤ Var(θ̂n),

(in the Loewner ordering). In other words, C−1 is a lower bound for
any linear estimator in the linear regression model (2.1).
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3. Optimal estimators and designs for finite sample size. We
have determined the BLUE and corresponding minimal variance/covariance
matrix in the continuous time model (2.3). In the present section we now
explain how the particular representation of the BLUE as a stochastic in-
tegral can be used to derive efficient estimators and corresponding optimal
designs in the original model (2.1), which are practically not distinguishable
from the BLUE in model (2.1) based on an optimal design. Our approach is
based on a comparison of the mean squared error of the difference between
the best linear unbiased estimator derived in Theorem 2.1 and a discrete
approximation of the stochastic integral in (2.6). For the sake of a clear
representation, we discuss the one-dimensional case first.

3.1. One-parameter models. Consider the estimator θ̂BLUE defined by
(2.6) for the continuous time model (2.3) with m = 1 and define an esti-
mator θ̂n in the original regression model (2.1) by an approximation of the
stochastic integral, that is

(3.1) θ̂n = C−1
{ n∑

i=2

ωiḟ(ti−1)(Yti − Yti−1
) +

f(a)

a
Ya

}
.

Here a = t1 < t2 < . . . < tn−1 < tn = b are n design points in the
interval [a, b] and ω2, . . . , ωn are corresponding (not necessarily positive)
weights. Obviously, the estimator depends on the weights ωi only through
the quantities µi = ωiḟ(ti−1) and therefore we use the notation

(3.2) θ̂n = C−1
{ n∑

i=2

µi(Yti − Yti−1
) +

f(a)

a
Ya

}
,

in the following discussion. We will determine optimal weights µ∗

2, . . . , µ
∗

n

and optimal design points t∗2, . . . , t
∗

n−1 minimizing the mean squared error

E[(θ̂BLUE− θ̂n)
2] between the estimators θ̂BLUE and θ̂n. Our first result pro-

vides an explicit expression for this quantity. The proof is omitted because
we prove a more general result in the multi-parameter case (see Section A.3).

Lemma 3.1. Consider the continuous time model (2.3) in the one-dimensional
case. If the assumptions of Theorem 2.1 are satisfied, then

Eθ[(θ̂BLUE − θ̂n)
2] =C−1

{ n∑

i=2

∫ ti

ti−1

[
ḟ(s)− µi)

]2
ds

+ θ2
( n∑

i=2

∫ ti

ti−1

[
ḟ(s)− µi

]
ḟ(s) ds

)2}
C−1.(3.3)
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In order to find “good”weights for the linear estimator θ̂n in (3.1) we
propose to consider only estimators with weights µ2, . . . , µn such that the
second term in (3.3) vanishes, that is

n∑

i=2

∫ ti

ti−1

[
ḟ(s)− µi

]
ḟ(s) ds = 0.(3.4)

Theorem 3.1 shows that this condition is equivalent to the property that
the estimator θ̂n in (3.1) is unbiased. Furthermore, under this constraint
the minimization of Eθ[(θ̂BLUE − θ̂n)

2] is proven to be equivalent to the
minimization of the variance of the proposed estimator, that is, Eθ[(θ̂n−θ)2].
The general result for the multi-parameter case is proven in the Appendix
(see section A.4) and therefore, the proof of Theorem 3.1 is omitted.

Theorem 3.1. The estimator θ̂n defined in (3.1) is unbiased if and only
if the identity

(3.5)

∫ b

a

[ḟ(s)]2 ds =
n∑

i=2

µi

∫ ti

ti−1

ḟ(s) ds =
n∑

i=2

µi(f(ti)− f(ti−1)),

is satisfied. Moreover, for any linear unbiased estimator of the form θ̃n =∫ b

a
g(s)dYs we have

Eθ[(θ̃n − θ)2] = Eθ[(θ̃n − θ̂BLUE)
2] + C−1.

The following result describes the weights minimizing E[(θ̂BLUE − θ̂n)
2]

under the constraint (3.4).

Lemma 3.2. Consider the continuous time model (2.3) in the one-dimensional
case. If the assumptions of Theorem 2.1 are satisfied, then the optimal
weights minimizing E[(θ̂BLUE − θ̂n)

2] in the class of all unbiased linear esti-
mators of the form (3.1) are given by

(3.6) µ∗

i = κ(t1, . . . , tn)
f(ti)− f(ti−1)

ti − ti−1
,

where

κ(t1, . . . , tn) =

∫ b

a
[ḟ(s)]2 ds∑n

j=2[f(tj)− f(tj−1)]2/(tj − tj−1)
.
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Proof. Under the condition (3.4) the mean squared error simplifies to

Eθ[(θ̂BLUE − θ̂n)
2] = C−1

{ n∑

i=2

∫ ti

ti−1

[
ḟ(s)− µi

]2
ds
}
C−1

= C−1
{
−
∫ b

a

[ḟ(s)]2 ds+

n∑

i=2

µ2
i (ti − ti−1)

}
C−1.

Using Lagrangian multiplies to minimize this expression subject to the con-
straint (3.5) yields

µi =
λ[f(ti)− f(ti−1)]

2(ti − ti−1)
, i = 2, . . . , n,

where λ denotes the Lagrangian multiplier. Substituting this into (3.4) gives

λ/2 =

∫ b

a
[ḟ(s)]2 ds∑n

i=2[f(ti)− f(ti−1)]2/(ti − ti−1)
= κ(t1, . . . , tn).

Therefore, the optimal weights are given by (3.6).

Inserting these optimal weights in the mean squared error gives the func-
tion

Eθ[(θ̂BLUE − θ̂n)
2] =C−1

{(∫ b

a

[ḟ(s)]2ds
)2{ n∑

i=2

(f(ti)− f(ti−1))
2

ti − ti−1

}
−1

−
∫ b

a

[ḟ(s)]2ds
}
C−1,

which finally has to be minimized by the choice of the design points t2, . . . , tn−1.
Because we discuss the one-parameter case in this section and the matrix
C does not depend on t2, . . . , tn, this optimization corresponds to the mini-
mization of

(3.7) Φ(t1, . . . , tn) =
(∫ b

a

[ḟ(s)]2ds
){ n∑

i=2

(f(ti)− f(ti−1))
2

ti − ti−1

}
−1

− 1.

Remark 3.1. Let

eff(t2, . . . , tn−1) =
Varθ(θ̂BLUE)

Varθ(θ̂n)]
=

C−1

C−1
∫ b

a
[ḟ(s)]2dsΦ(t1, . . . , tn)C−1 + C−1

=

(
1 +

Φ(t1, . . . , tn)

1 + f2(a)
a

/
∫ b

a
[ḟ(s)]2ds

)
−1

,
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denote the efficiency of an estimator θ̂n defined by (3.1) with optimal weights.
Note that from the proof of Lemma 3.2 it follows that the function Φ is non-
negative for all t1, . . . , tn. Consequently, minimizing Φ with respect to the
design points means that t1 = a < t2 < . . . < tn−1 < tn = b have to be
determined such that

n∑

i=2

(f(ti)− f(ti−1))
2

ti − ti−1
,

approximates the integral
∫ b

a
[ḟ(s)]2ds most precisely (this produces an ef-

ficiency close to 1). Now, if f is sufficiently smooth, we have for any ξi ∈
[ti−1, ti] ∣∣∣(f(ti)− f(ti−1))

2

ti − ti−1
− [ḟ(ξi)]

2(ti − ti−1)
∣∣∣ ≤ G,

for all i = 2, . . . , n, where

G := 2 max
ξ∈[a,b]

|f ′(ξ)| max
ξ∈[a,b]

|f ′′(ξ)| · max
i=2,...,n

|ti − ti−1|2.

This gives

0 ≤ A(t1, . . . , tn) :=

∫ b

a

ḟ2(t)dt−
n∑

i=2

(f(ti)− f(ti−1))
2

ti − ti−1
≤ (n− 1)G.

As the function Φ has the representation

Φ(t1, . . . , tn) =
A(t1, . . . , tn)∫ b

a
ḟ2(s)ds−A(t1, . . . , tn)

,

it follows that (note that the expression on the right-hand side is increasing
with A(t1, . . . , tn))

(3.8) Φ(t1, . . . , tn) ≤
(n− 1) ·maxi=2,...,n |ti − ti−1|2

H(f) + (n− 1) · max
i=2,...,n

|ti − ti−1|2
,

where

H(f) =

∫ b

a
ḟ2(s)ds

2 max
ξ∈[a,b]

|ḟ(ξ)| max
ξ∈[a,b]

|f̈(s)|
.

This shows that for most models a substantial improvement of the ap-
proximation by the choice of t2, . . . , tn can only be achieved if the sample
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size is small. For moderate or large sample sizes one could use the points
ui = a+ i−1

n−1(b− a), which gives already the estimate

Φ(u1, . . . , un) ≤
1

1 + (n− 1)H(f)
= O

( 1
n

)
.

Note that we consider worst case scenarios to obtain these estimates. Con-
sequently, in many cases the design points can be chosen in an equidistant
way provided that the weights of the estimator θ̂n are already chosen in an
optimal way.

Example 3.1. Consider the quadratic regression model Yt = θt2 + εt,
where t ∈ [a, b]. Then f(t) = t2, ḟ(t) = 2t, and the function Φ in (3.7)
reduces to

Φ(t1, . . . , tn) =
4(b3 − a3)

3

{ n∑

i=2

(ti + ti−1)
2(ti − ti−1)

}
−1

− 1.

It follows by a straightforward computation that the optimal points are given
by

(3.9) t∗i = a+
i− 1

n− 1
(b− a) ; i = 1, . . . , n,

while the corresponding minimal value is

Φ(t∗1, . . . , t
∗

n) =
(a− b)3

4(n− 1)2(a3 − b3)− (a− b)3
(n ≥ 2).

Note that this term is of order O( 1
n2 ). Remark 3.1 gives the bound

Φ(t∗1, . . . , t
∗

n) ≤
1

1 + b3−a3

2b (n− 1)
= O

( 1
n

)
,

which shows that (3.8) is not necessarily sharp. For the efficiency we obtain

eff(t∗1, . . . , t
∗

n) = 1− 4(a− b)3(a3 − b3)

3a3(a− b)3 + 4(n− 1)2(a3 − b3)(a− b)3
,

which is of order 1−O( 1
n2 ). On the other hand, if f(t) = t3 the function Φ

is given by

Φ(t1, . . . , tn) =
9

5
(b5 − a5)

{ n∑

i=2

(ti − ti−1)(t
2
i + titi−1 + t2i−1)

2
}
−1

− 1

=
(a− b)2[5(n− 1)2(a3 − b3)− (a− b)3]

9(n− 1)4(a5 − b5)− (a− b)2[5(n− 1)2(a3 − b3)− (a− b)3]
,
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and optimal points have to be found numerically. However, we can evaluate
the efficiency of the uniform design in (3.9), which is given by

eff(t∗1, . . . , t
∗

n) =

1− 9(b5 − a5)(a− b)2[5(n− 1)2(a3 − b3)− (a− b)3]

9(9b5 − 4a5)(a5 − b5)(n− 1)4 + 5a5(a− b)2[5(n− 1)2(a3 − b3)− (a− b)3]
,

(n ≥ 2) and also it is of order 1−O( 1
n2 ). Thus, although the uniform design is

not optimal, its efficiency (with respect to the continuous case) is extremely
high.

3.2. Multi-parameter models. In this section we derive corresponding re-
sults for the multi-parameter case. If m ≥ 1 we propose a linear estimator
with matrix weights as an analogue of (3.1), that is

θ̂n = C−1
{ n∑

i=2

Ωiḟ(ti−1)(Yti − Yti−1
) +

f(a)

a
Ya

}
(3.10)

= C−1
{ n∑

i=2

µi(Yti − Yti−1
) +

f(a)

a
Ya

}
,

where C−1 is given in (2.7), Ω2, . . . ,Ωn are m × m matrices and µ2 =
Ω2ḟ(ti), . . . , µn = Ωnḟ(tn−1) are m-dimensional vectors, which have to be
chosen in an optimal way. For this purpose we derive a representation of the
mean squared error between the best linear estimate in the continuous time
model and its discrete approximation in the multi-parameter case first. The
proof can be found in Appendix A.3.

Lemma 3.3. Consider the continuous time model (2.3). If the assump-
tions of Theorem 2.1 are satisfied, then

Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)
T ] = C−1

{ n∑

i=2

∫ ti

ti−1

[
ḟ(s)− µi

][
ḟ(s)− µi

]T
ds

+

n∑

i=2

∫ ti

ti−1

[
ḟ(s)− µi

]
ḟT (s) ds θ θT

n∑

j=2

∫ tj

tj−1

ḟ(s)
[
ḟ(s)− µj

]T
ds
}
C−1.

(3.11)

In the following we choose optimal vectors (or equivalently matrices Ωi)
µi = Ωiḟ(ti−1) and design points ti, such that the linear estimate (3.10) is
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unbiased and the mean squared error matrix in (3.11) “becomes small”. An
alternative criterion is to replace Eθ[(θ̂BLUE− θ̂n)(θ̂BLUE− θ̂n)

T ] by the mean
squared error

Eθ[(θ̂n − θ)(θ̂n − θ)T ]

between the estimate θ̂n defined in (3.10) and the “true” vector of parame-
ters. The following result shows that both optimization problems will yield
the same solution in the class of all unbiased estimators. The proof can be
found in Appendix A.4.

Theorem 3.2. The estimator θ̂n defined in (3.10) is unbiased if and
only if the identity

(3.12)

∫ b

a

ḟ(s)ḟT (s) ds =
n∑

i=2

µi

∫ ti

ti−1

ḟT (s) ds =
n∑

i=2

µi(f(ti)− f(ti−1))
T ,

is satisfied. Moreover, for any linear unbiased estimator of the form θ̃n =∫ b

a
g(s)dYs we have

Eθ[(θ̃n − θ)(θ̃n − θ)T ] = Eθ[(θ̃n − θ̂BLUE)(θ̃n − θ̂BLUE)
T ] + C−1.

In order to describe a solution in terms of optimal “weights” µ∗

i and design
points t∗i we recall that the condition of unbiasedness of the estimate θ̂n in
(3.10) is given by (3.12) and introduce the notation

β(i) = [f(ti)− f(ti−1)]/
√
ti − ti−1,(3.13)

γ(i) = µi

√
ti − ti−1.

It follows from Lemma 3.3 that for an unbiased estimate θ̂n the mean squared
error has the representation
(3.14)

Eθ

[
(θ̂BLUE − θ̂n)

T (θ̂BLUE − θ̂n)
]
= −C−1MC−1 +

n∑

i=2

C−1γ(i)γ(i)
T

C−1,

which has to be “minimized” subject to the constraint

(3.15) M = (mℓ,k)
m
ℓ,k =

∫ b

a

ḟ(s)ḟT (s)ds =
n∑

i=2

γ(i)β(i)T .

The following result shows that a minimization with respect to the weights µi

(or equivalently γi) can actually be carried out with respect to the Loewner
ordering.
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Theorem 3.3. Assume that the assumptions of Theorem 2.1 are satis-
fied and that the matrix

B =
n∑

i=2

[f(ti)− f(ti−1)][f(ti)− f(ti−1)]
T

ti − ti−1
,

is non-singular. Let µ∗

2, . . . , µ
∗

n denote m× 1 vectors satisfying the equations

(3.16) µ∗

i = MB−1 f(ti)− f(ti−1)

ti − ti−1
i = 2, . . . , n,

then µ∗

2, . . . , µ
∗

n are optimal (vector) weights minimizing the mean squared
error Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)

T ] with respect to the Loewner ordering
among all unbiased estimators of the form (3.10).

Proof. Let A denote a positive definite m×m matrix and consider the
problem of minimizing the linear criterion

tr
{
A Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)

T ]
}
,

subject to the constraint (3.15). Observing (3.14) this yields the Lagrange
function

−tr{AC−1MC−1}+
n∑

i=2

(C−1γ(i))TA(C−1γ(i))−
m∑

k,ℓ=1

λk,ℓ

(
mk,ℓ−

n∑

i=2

γ
(i)
k β

(i)
ℓ

)
,

where C = (ck,ℓ)
m
k,ℓ=1, γ(i) = (γ

(i)
1 , . . . , γ

(i)
m )T , β(i) = (β

(i)
1 , . . . , β

(i)
m )T and

Λ = (λk,ℓ)
m
k,ℓ=1 is a matrix of Lagrange multipliers. This function is ob-

viously convex with respect to γ(2), . . . , γ(n). Therefore, taking derivatives

with respect to γ
(i)
j (j = 1, . . . , k) yields as necessary and sufficient for the

extremum

m∑

p=1

cp,j
m∑

ℓ=1

ap,ℓ

m∑

k=1

cℓ,kγ
(i)
k +

m∑

p=1

m∑

k=1

cp,kγ
(i)
k

m∑

ℓ=1

ap,ℓc
ℓ,j +

m∑

ℓ=1

λj,ℓβ
(i)
ℓ = 0,

where A = (aℓ,k)
m
ℓ,k=1 and C−1 = (cℓ,k)mℓ,k=1 is the inverse of the matrix C

defined in (2.6). Rewriting this system of linear equations in matrix form
gives

C−1AC−1γ(i) + C−1ATC−1γ(i) + Λβ(i) = 0 i = 2, . . . , n,

or equivalently

C−1(A+AT )C−1γ(i) = −Λβ(i) i = 2, . . . , n.
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Substituting this last expression in (3.15) and using the non-singularity of
the matrices C and B yields for the matrix of Lagrangian multipliers

Λ = −C−1(A+AT )C−1MB−1,

which finally gives

γ(i) = MB−1β(i) i = 2, . . . , n.

Observing the notations in (3.13) shows that the optimal vector weights are
given by (3.16). Thus the optimal weights in (3.16) do not depend on the
matrix A and provide the solution for all linear optimality criteria. Con-
sequently, using the matrices A = vvT + εIm with v ∈ R

m, and consider-
ing the limit as ε → 0, shows that the weights defined in (3.16) minimize
Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)

T ] with respect to the Loewner ordering.

Remark 3.2. If the matrix B in Theorem 3.3 is singular, the optimal
vectors are not uniquely determined and we propose to replace the inverse
B by its Moore-Penrose inverse.

Note that for fixed design points t1, . . . , tn Theorem 3.3 yields universally
optimal weights µ∗

2, . . . , µ
∗

n (with respect to the Loewner ordering) for es-
timators of the form (3.10) satisfying (3.12). On the other hand, a further
optimization with respect to the Loewner ordering with respect to the choice
of the points t1, . . . , tn is not possible, and we have to apply a real valued
optimality criterion for this purpose. More precisely, let θ̂∗n denote the esti-
mator of the form (3.10) with optimal weights γ∗(i) = µ∗

i

√
ti − ti−1 given by

(3.16), then we choose t1, . . . , tn, such that

tr
(
Eθ

[
(θ̂BLUE − θ̂∗n)

T (θ̂BLUE − θ̂∗n)
])

= tr
{
− C−1MC−1 +

n∑

i=2

C−1γ
∗(i)γ

∗(i)TC−1
}

= tr
{
−C−1MC−1 + C−1M

( n∑

i=2

(f(ti)− f(ti−1)(f(ti)− f(ti−1))
T

ti − ti−1

)
−1

MC−1
}

is minimal. The performance of this method will be illustrated in the fol-
lowing section.
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4. Some numerical examples. In this section we illustrate our new
methodology using several model and covariance kernel examples. Note that
(under smoothness assumptions) our approach allows us to calculate a lower
bound for the trace (or any other monotone functional) of the variance of
any (unbiased) linear estimator for the parameter vector θ in model (2.1)
[see Remark 2.1(c)]. Therefore we evaluate the quality of an estimator (with
corresponding design), say θ̂, by the efficiency

eff(θ̂) =
tr{Varθ(θ̂BLUE)}

tr{Varθ(θ̂)}
=

tr(C−1)

tr{Varθ(θ̂)}
.

Throughout this section the estimator defined by (3.2) and Lemma 3.2 in
the case of m = 1 and by (3.10) and Theorem 3.3 for m > 1, will be denoted
by θ̂∗n. As before the univariate and multivariate cases are studied separately.

4.1. One-parameter models. Consider model (2.1) with m = 1 and n = 5
observations in the interval [a, b] = [1, 2], where the regression function is
given by f(t) = t2, t2 − 0.5 and t4 with kernel k(s, t) = s∧ t. The discussion
in Example 3.1 indicates that equally spaced design points provide already
an efficient allocation for the new estimator θ̂∗n provided that the weights are
chosen in an optimal way. Consequently, we compare the estimator θ̂DPZ,n

(with a corresponding optimal design) proposed in Section 2.5 of Dette, Pe-
pelyshev and Zhigljavsky (2016) with the BLUE for model (2.1), that is,
the weighted least squares estimator, and also with the estimator defined by
(3.2) and Lemma 3.2 both based on a uniform design. The latter two estima-
tors are denoted by θ̂uniWLSE and θ̂∗unin , respectively, and we consider a uniform
design with n = 5 equally spaced points. The corresponding efficiencies are
displayed in Table 1.

Table 1

Efficiencies (in percent) of various estimators in the univariate linear regression model
for n = 5 observations on the interval [1, 2]. θ̂uniWLSE is the BLUE for model (2.1) based on

a uniform design, θ̂∗unin is the estimator defined by (3.2) and Lemma 3.2 based on a
uniform design and θ̂DPZ,n (with a corresponding design) is the estimator proposed in

Dette, Pepelyshev and Zhigljavsky (2016).

f(t) t2 t2 − 0.5 t4

θ̂uniBLUE,n 99.798 99.783 98.416

θ̂∗unin 99.798 99.783 98.416

θ̂DPZ,n 99.582 99.346 92.662

We observe that both θ̂uniWLSE and θ̂∗unin have very good efficiencies and
therefore we did not determine the optimal allocations for the two estima-
tors. A comparison between both estimators shows that θ̂uniWLSE and θ̂∗unin are
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practically not distinguishable. In all the cases considered, the efficiencies do
not differ in the first 5 decimals. For example, for the function f(t) = t2−0.5
we have

eff(θ̂uniWLSE) = 0.99782609 , eff(θ̂∗unin ) = 0.99782596 .

The investigation of other one-dimensional examples showed a similar pic-
ture and details are omitted for the sake of brevity. Therefore, the new
estimator θ̂∗n with a uniform design is not only highly efficient (even for
small values of n), but most importantly, it is very close to the best achiev-
able, that is, the weighted least squares estimator with a uniform design.
The comparison with the estimator θ̂DPZ,n proposed in Dette, Pepelyshev
and Zhigljavsky (2016) shows that the new approach still provides an im-
provement of an estimator which has efficiencies already above 90%, with
the difference of efficiencies being small for f(t) = t2, t2 − 0.5 and large for
f(t) = t4.

4.2. Models with m > 1 parameters. We now compare the various esti-
mators in the multi-parameter case. In particular, we consider two regression
models given by

Yt = (t, t2, t3)T θ + εt, t ∈ [a, b],(4.1)

Yt = (sin t, cos t, sin 2t, cos 2t)T θ + εt, t ∈ [a, b].(4.2)

For each one of these models we study two cases of the covariance kernel of
the error process in model (2.1), namely K(t, t′) = min{t, t′} and K(t, t′) =
exp{−λ|t− t′|}. The sample size is again n = 5 and the design space is the
interval [1, 2].

It turns out that for these models and the particularly small sample size
the uniform design does not yield similar high efficiencies as in the case
m = 1 discussed in the previous section. For this reason we also calculate
the corresponding optimal designs for θ̂WLSE and the estimator θ̂∗n proposed
in this paper [see (3.10) and Theorem 3.3] using the Particle swarm op-
timization (PSO) algorithm [see for example Clerc (2006) or Wong et al.
(2015) among others].

If the error process is a Brownian motion, the optimal design of θ̂∗n is ob-
tained by applying the PSO algorithm on the trace of the mean squared error
Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)

T ] given in (3.14) (or equivalently on the trace
of Eθ[(θ̂n−θ)(θ̂n−θ)T ]), using the optimal weights µ∗

i , i = 2, . . . , n, given in
Theorem 3.3. In the case of the exponential kernel K(t, t′) = exp{−λ|t− t′|}
we follow the same procedure as before but for the transformed continuous
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time model given in (2.9). The optimal design for the initial model with the
exponential covariance kernel can then be obtained by the transformation
t̃ = q(t) applied on each one of the optimal design points the algorithm will
yield (see Remark 2.1(b)). Minimizing (using the PSO method) the trace
of Var(θ̂WLSE) given in (2.2) for the corresponding variance/covariance ma-
trix Σ = (K(ti, tj))i,j=1,...,n of the error process gives the optimal design for

θ̂WLSE.
For the model and covariance kernel examples under consideration, the

optimal designs for the estimators θ̂WLSE and θ̂∗n are presented in Table 2.
The corresponding designs for the estimator θ̂DPZ are chosen as described
in Dette, Pepelyshev and Zhigljavsky (2016).

Table 2

Optimal five-point designs in the interval [1, 2] for the estimators θ̂WLSE and θ̂∗n for
models (4.1) and (4.2) with two different covariance kernels.

Optimal designs

Model Kernel θ̂WLSE,n θ̂∗

n

(4.1)
t ∧ t′ [1, 1.466, 1.680, 1.852, 2] [1, 1.444, 1.668, 1.846, 2]

exp{−|t− t′|} [1, 1.474, 1.683, 1.852, 2] [1, 1.459, 1.674, 1.847, 2]

(4.2)
t ∧ t′ [1, 1.111, 1.243, 1.800, 2] [1, 1.120, 1.264, 1.802,2]

exp{−|t− t′|} [1, 1.113, 1.245, 1.800, 2] [1, 1.120, 1.263, 1.801, 2]

We observe that regardless of the model and the covariance kernel, the
optimal designs for the estimators θ̂WLSE and θ̂∗n are very similar. Further-
more, for the specific examples, the choice of covariance kernel does not
affect the optimal design since for a given estimator, the two kernels yield
the same design (up to 2 d.p.) for both models. In particular, the optimal
designs are always supported at both end-points of the design space. For
model (4.1), although the uniform design is not optimal, the middle points
of the optimal design are somewhat spread in the interval (1, 2), whereas in
the case of model (4.2), more points are allocated closer to the lower bound
t = 1 of the design space.

Table 3 gives the efficiencies of the three estimators θ̂WLSE, θ̂
∗

n and θ̂DPZ,n

for the optimal design of each estimator (upper part) and the uniform design
(lower part) with n = 5 equally-spaced observations. For model (4.1) and
any of the two covariance kernels, if the uniform design is used both θ̂WLSE

and θ̂∗n estimators are very efficient. The efficiencies of course increase when
observations are taken according to the optimal instead of the uniform design
but remain below 90% when the four-dimensional model (4.2) is considered.

We also observe that the estimator θ̂∗n proposed in this paper has sub-
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Table 3

Efficiencies (in percent) of the estimators θ̂WLSE, θ̂
∗

n and θ̂DPZ,n for models (4.1) and
(4.2) and for two different covariance kernels of the error process. The design is the

uniform or the optimal design with five observations

Efficiencies

Model Kernel θ̂WLSE θ̂∗

n θ̂DPZ,n

optimal design

(4.1)
t ∧ t′ 96.77 96.71 82.14

exp{−|t− t′|} 96.72 96.65 79.60

(4.2)
t ∧ t′ 83.98 83.40 70.91

exp{−|t− t′|} 83.47 82.95 71.57

uniform design

(4.1)
t ∧ t′ 94.35 93.82 76.38

exp{−|t− t′|} 94.07 93.46 75.10

(4.2)
t ∧ t′ 73.13 73.12 70.91

exp{−|t− t′|} 72.56 72.46 71.57

stantially larger efficiencies than θ̂DPZ,n (always well below 90%) and thus
the new approach provides a substantial improvement and is additionally
much easier to implement for multi-parameter models than that introduced
in Dette, Pepelyshev and Zhigljavsky (2016). Finally, the estimators θ̂WLSE

and θ̂∗n have similar efficiencies regardless of the underlying design. We there-
fore conclude that the alternative approach proposed in this paper provides
estimators with corresponding optimal designs which are practically not dis-
tinguishable from the optimal estimator and corresponding design for finite
sample.

Table 4

Efficiencies (in percent) of the estimators θ̂WLSE, θ̂
∗

n and θ̂DPZ,n for models (4.1) and
(4.2) and for two different covariance kernels of the error process. The design is the

uniform or the optimal design with ten observations

Efficiencies

Model Kernel θ̂WLSE θ̂∗

n θ̂DPZ,n

optimal design

(4.1)
t ∧ t′ 99.39 99.32 95.38

exp{−|t− t′|} 99.36 99.35 94.28

(4.2)
t ∧ t′ 96.64 96.56 92.03

exp{−|t− t′|} 96.20 95.68 92.51

uniform design

(4.1)
t ∧ t′ 98.89 98.87 94.42

exp{−|t− t′|} 98.83 98.81 93.83

(4.2)
t ∧ t′ 94.62 94.61 89.76

exp{−|t− t′|} 94.47 94.46 88.01
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As pointed out by a referee, it is of interest to also consider larger values
for the sample size. Note that for one-parameter models, all estimators have
efficiencies well above 90% already for n = 5 and therefore, we only examine
the multi-parameter case. Table 4 is the analogous of Table 3 for the case of
sample size n = 10.

As expected, an increase in the sample size results in the efficiencies of all
three estimators to be increased. Furthermore, as in the case of n = 5, the
proposed estimator θ̂∗n has substantially larger efficiencies that θ̂DPZ,n and
is practically not distinguishable from the BLUE for finite sample size, that
is, θ̂WLSE. We also observe that even though the optimal design performs
best, the uniform design produces efficiencies above 90% for all model and
covariance kernel examples. However, the estimator θ̂∗n with equally spaced
time-points is efficient only provided that the weights are chosen in an op-
timal way, that is, as in Theorem 3.3.

5. Degenerate models. So far we have considered the continuous re-
gression model (2.3) with a covariance kernel of the form (2.4) satisfying
u(a) 6= 0. If u(a) = 0, then the variance of the observation at t = a is 0
and all formulas of Section 2 and 3 degenerate in this case. The estimator
θ̂BLUE in the continuous time model and its discrete approximation (3.10)
are not well defined and the results of previous sections cannot be applied.
In this section, we indicate how the methodology can be extended to the
case u(a) = 0. For the sake of brevity we only consider the continuous time
model with a Brownian motion as error process, since the transformation
(2.10) which reduces any model with the covariance kernel (2.4) to the case
of Brownian motion can still be applied.

The main idea is to construct the BLUE θ̂BLUE in the continuous time
model (2.3) on the interval [0, b] by a sequence of estimators θ̂BLUE,a for the
same model on the interval [a, b], where a → 0. For this purpose we make the
dependence of some quantities in the following discussion more explicit. For
example, we write Ca for the matrix C defined in (2.5). The three different
cases of degeneracy are discussed below.

5.1. Models with no intercept, that is 1 /∈ span{f1, . . . , fm}. By Lemma
A.1 in Section A.1, if 1 /∈ span{f1, . . . , fm} then the matrix

(5.1) Ma =

∫ b

a

ḟ(s)ḟT (s)ds,
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is non-singular for all a ∈ [0, b). In particular, M−1
0 exists. Additionally, in

this case, for any a > 0 the inverse of the matrix

Ca =

∫ b

a

ḟ(t)ḟT (t) dt+
f(a)fT (a)

a
= Ma +

f(a)fT (a)

a
,

can be expressed in the form

(5.2) C−1
a = M−1

a − M−1
a f(a)fT (a)M−1

a

a+ fT (a)M−1
a f(a)

.

We now discuss the cases f(0) 6= 0 and f(0) = 0 separately.

Theorem 5.1. Consider the continuous time linear regression model
(2.3) on the interval [0, b] with a continuously differentiable vector f of re-
gression functions. If each component of f is of bounded variation, 1 /∈
span{f1, . . . , fm} and f(0) 6= 0 ∈ R

m, then the estimator

(5.3) θ̂BLUE = C

∫ b

0
ḟ(t) dYt +

M−1
0 f(0)

fT (0)M−1
0 f(0)

Y0 ,

is the best linear unbiased estimator, where

C = lim
a→0

C−1
a = M−1

0 − M−1
0 f(0)fT (0)M−1

0

fT (0)M−1
0 f(0)

= Var(θ̂BLUE) .

Proof. For any a > 0 the BLUE θ̂BLUE,a in the continuous time model
(2.3) on the interval [a, b] is given by

(5.4) θ̂BLUE,a = C−1
a

(∫ b

a

ḟ(t) dYt +
f(a)

a
Ya

)
.

As a → 0,

(5.5) lim
a→0

C−1
a

∫ b

a

ḟ(t) dYt = C

∫ b

0
ḟ(t) dYt,

and

lim
a→0

C−1
a

f(a)

a
= lim

a→0

(
M−1

a

f(a)

a
− M−1

a f(a)fT (a)M−1
a f(a)

a(a+ fT (a)M−1
a f(a))

)

= lim
a→0

M−1
a f(a)

a+ fT (a)M−1
a f(a))

=
M−1

0 f(0)

fT (0)M−1
0 f(0)

.
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Hence the left-hand side of (5.3) is the limit of the estimators θ̂BLUE,a as
a → 0. The covariance matrix of this estimator is obtained by Ito’s formula
and the fact that ε0 = 0 , that is

Var(θ̂BLUE) = C

[∫ b

0
ḟ(t)ḟT (t) dt

]
C = CM0C = I−M−1

0 f(0)fT (0)

fT (0)M−1
0 f(0)

C = C .

In order to prove that the derived estimator (5.3) is in fact BLUE we use
Theorem 2.3 in Näther (1985a), which states that an unbiased estimator of

the form θ̂ =
∫ b

a
YtdG(t) with covariance matrix C = Var(θ̂) is BLUE in

model (2.1) if the identity

(5.6)

∫ b

a

K(s, t)dG(s) = Cf(t),

holds for all t ∈ [a, b]. Here G is a vector measure on the interval [a, b]. In
the present case a = 0 and K(s, t) = min(s, t), and in order to prove that
the estimator (5.3) is indeed BLUE we use the representation

∫ b

0
ḟ(t) dYt = ḟ(b)Yb − ḟ(0)Y0 −

∫ b

0
Ytdḟ(t),

for the stochastic integral
∫ b

0 ḟ(t) dYt. This defines the vector measure dG

in an obvious manner, that is, it has mass Cḟ(b) at the point b, the density
−Cf̈(t) for t ∈ [0, b] and some mass at the point 0. The validity of (5.6) for
θ̂BLUE and C now follows from

−
∫ b

0
min(s, t)dḟ(s) = −

∫ t

0
sdḟ(s)− t

∫ b

t

dḟ(s)

= −[tḟ(t)− f(t) + f(0)]− t[ḟ(b)− ḟ(t)] = −f(0) + f(t)− tḟ(b),

by noting that Cf(0) = 0 and that the weight at b cancels out.

If f(0) = 0 ∈ R
m, the observation at t = 0 necessarily gives Y0 = 0 and

provides no further information about the parameter vector θ. We obtain
the following result.

Theorem 5.2. Consider the continuous time linear regression model
(2.3) on the interval [0, b] with a continuously differentiable vector f of re-
gression functions. If each component of f is of bounded variation, 1 /∈
span{f1, . . . , fm} and f(0) = 0 ∈ R

m, then

(5.7) θ̂BLUE = M−1
0

∫ b

0
ḟ(t) dYt ,
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and
Var(θ̂BLUE) = M−1

0 .

Proof. Since for any p = 1, . . . ,m the function fp(t) is continuously
differentiable on [0, b], the limit limt→0 fp(t)/t is necessarily finite, possibly
0. Using this and the fact that f(0) = 0, the representation (5.2) gives
lima→0C

−1
a = M−1

0 , and the limit of θ̂BLUE,a defined in (5.4) is obviously
(5.7). The covariance matrix of this estimator is again obtained by an ap-
plication of Ito’s formula and its optimality follows by similar arguments as
given in the proof of Theorem 5.1.

5.2. Models with an intercept, that is 1 ∈ span{f1, . . . , fm}. Without
loss of generality, we may assume f1(t) = 1 for all t ∈ [0, b] and rewrite the
original regression model (2.3) as

Yt = θ1 + θ̃T f̃(t) + εt, t ∈ [0, b],

where θ̃ = (θ2, . . . , θm)T and f̃(t) = (f2(t), . . . , fm(t))T ). Note that the
observation at t = 0 is error-free and gives Y0 = θ1+ θ̃T f̃(0). By subtracting
we obtain

(5.8) Yt − Y0 = θ̃T (f̃(t)− f̃(0)) + εt.

Note that 1 /∈ span{f̃2(t) − f̃2(0), . . . , f̃m(t) − f̃m(0)} and f̃(t) − f̃(0) is
obviously 0 at t = 0. For computing the BLUE for θ̃ and its covariance
matrix in model (5.8) we can apply Theorem 5.2 and obtain

θ̃BLUE = M̃−1
0

∫ b

0

˙̃
f(t) d(Yt) ,(5.9)

Var(θ̃BLUE) = M̃−1
0 =

[∫ b

0

˙̃
f(t)

˙̃
fT (t)dt

]−1

.(5.10)

Finally, the BLUE for θ1 is given by θ̂1 = Y0− θ̃TBLUEf̃(0). Noting that Y0 is

a constant, we obtain cov(θ̂1, θ̂p) = −f̃T (0)M−1
0 ep (p = 2, . . . ,m) , where

ep is the p-th coordinate vector. The variance of θ̂1 is given by Var(θ̂1) =
f̃T (0)M−1

0 f̃(0).

5.3. Optimal designs. In the previous sections we have derived the BLUE
θ̂BLUE in the continuous time model (2.3) for the three cases of degeneracy.
The corresponding linear unbiased estimators with optimal designs in the
original model (2.1) can be obtained using a discrete approximation of the
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stochastic integral in the representation of the corresponding BLUE and
following similar arguments as those presented in Section 3.

For example, in the case of Theorem 5.2, that is, for models with no
intercept and f(0) = 0 ∈ R

m, we define the approximate linear estimator

(5.11) θ̂n = M−1
0

n∑

i=2

Ωiḟ(ti−1)(Yti − Yti−1
) = M−1

0

n∑

i=2

µi(Yti − Yti−1
).

Then using the condition (equivalent to the property that θ̂n is unbiased)

n∑

i=2

µi(f(ti)− f(ti−1))
T =

n∑

i=2

µi

∫ ti

ti−1

ḟT (s) ds = M0 =

∫ b

0
ḟ(s)ḟT (s) ds,

and following along the same lines as in the proof of Theorem 3.3, we obtain
the optimal (vector) weights µ∗

2, . . . , µ
∗

n satisfying the equations

µ∗

i = M0B
−1 f(ti)− f(ti−1)

ti − ti−1
, i = 2, . . . , n,

which minimize the mean squared error Eθ[(θ̂BLUE− θ̂n)(θ̂BLUE− θ̂n)
T ] with

respect to the Loewner ordering among all unbiased estimators of the form
(5.11).

The optimal weights for the two other cases of degeneracy can be derives
in a similar manner. Finally, as before the optimal time-points t∗1, . . . , t

∗

n

are chosen numerically such that the tr
(
Eθ

[
(θ̂BLUE − θ̂∗n)

T (θ̂BLUE − θ̂∗n)
])

is minimized, where θ̂∗n denotes the linear unbiased estimator with optimal
weights for the corresponding case of degenerate model.

APPENDIX A: APPENDIX: MORE TECHNICAL DETAILS

A.1. An auxiliary result.

Lemma A.1. Let f(t) = (f1(t), . . . , fm(t))T be a vector of continuously
differentiable linearly independent functions on the interval [a, b] with 0 ≤
a < b and define M =

∫ b

a
ḟ(s)ḟT (s)ds.

1. The matrix M is non-singular if and only if 1 /∈ span{f1, . . . , fm}.
2. If 1 ∈ span{f1, . . . , fm} then rank(M) = m− 1.

Proof.
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1. Obviously the non-singularity of M implies that 1 /∈ span{f1, . . . , fm}.
To prove the converse we consider the equation

(A.1) a1ḟ1(t) + . . . am ˙fm(t) = 0, ∀t ∈ [a, b],

for scalars a1, . . . , am. This equation is satisfied if and only if for some
a0 we have

(A.2) a0 + a1f1(t) + . . . amfm(t) = 0, ∀t ∈ [a, b] .

By the assumption, the functions f1, . . . , fm are linearly independent
on the interval [a, b] and 1 /∈ span{f1, . . . , fm}, which implies that the
m + 1 functions 1, f1, . . . , fm are also linearly independent on [a, b].
Consequently, the equation (A.2) has only the trivial solution a0 =
a1 = . . . = am = 0 which yields that the equation (A.1) has only trivial
solution a1 = . . . = am = 0. Therefore, the functions ḟ1(t), . . . , ˙fm(t)
are linearly independent on the interval [a, b] and the non-singularity
of M follows from basic results on Gramian matrices [see Akhiezer and
Glazman (1993), p. 12].

2. To prove the second part assume now that 1 ∈ span{f1, . . . , fm}. Since
f1, . . . , fm are linearly independent we may assume without loss of
generality that f1(t) is constant for all t ∈ [a, b]. In this case, ḟ1 = 0
and 1 /∈ span{f2, . . . , fm} and part (1) shows that the (m−1)×(m−1)

submatrix of the matrix (
∫ b

a
fk(s)fl(s)ds)k,l=2,...,m has full rank, which

implies that rank(M) = m− 1.

A.2. Proof of Lemma 2.1. If 1 /∈ span{f1, . . . , fm} if follows from
Lemma A.1 in Section A.1 that the matrix M is non-singular and hence
positive definite, which implies C > 0. If 1 ∈ span{f1, . . . , fm} we may
assume without loss of generality that f1(t) ≡ 1. As the functions f2, . . . , fm
are linearly independent and 1 /∈ span{f2, . . . fm} it follows that

M =

∫ b

a

ḟ(t)ḟT (t)dt =

(
0 0

0 M̃

)
,

where (by Lemma A.1) the matrix M̃ = (
∫ b

a
ḟk(t)ḟ

T
l (t)dt)

m
k,l=2 has rank

m−1. Define f(t) = (1, f̃(t)T ), where f̃T (t) = (f2, . . . , fm) and assume that
the matrix C is singular. Then there exists a vector z = (z1, z̃

T ) ∈ R
m \ {0}

with z̃ ∈ R
m−1 such that

zTCz = zTMz +
zT f(a)fT (a)z

a
= z̃T M̃ z̃ + (zT f(a))2/a = 0.
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As both terms in the sum are nonnegative we have z̃T M̃ z̃ = 0 and zT f(a) =
0. Since M̃ is a positive definite matrix we obtain z̃ = 0 ∈ R

m−1. The
equation zT f(a) = 0 then becomes z1f1(0) = 0 implying z1 = 0 and hence
z = 0 ∈ R

m. This yields a contradiction to the assumption that the matrix
C is singular and proves Lemma 2.1.

A.3. Proof of Lemma 3.3. Define the random variables

Xi =

∫ ti

ti−1

[ḟ(s)− µi] dYs, i = 2, . . . , n.

From the definition of θ̂BLUE and θ̂n in (2.6) and (3.10), respectively, we
have

Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)
T ] = C−1

Eθ

[ n∑

i=2

Xi

n∑

j=2

XT
j

]
C−1.

Observing the fact that the random variables X2, . . . , Xn are independent
we obtain

Eθ

[ n∑

i=2

Xi

n∑

i=2

XT
i

]
=

n∑

i=2

Eθ

[
(Xi−Eθ[Xi])(Xi−Eθ[Xi])

T ]+

n∑

i=2

Eθ[Xi]

n∑

j=2

Eθ[X
T
j ].

Ito’s isometry yields

Eθ[Xi] =

∫ ti

ti−1

[ḟ(s)− µi]ḟ
T (s)θds, i = 2, . . . , n,

and

Eθ[(Xi − Eθ[Xi])(Xi − Eθ[Xi])
T ] = Eθ

[ ∫ ti

ti−1

[ḟ(s)− µi] dεs

∫ ti

ti−1

[ḟ(s)− µi]
T dεs

]

=

∫ ti

ti−1

[ḟ(s)− µi][ḟ(s)− µi]
T ds.

Therefore,

Eθ

[ n∑

i=2

Xi

n∑

i=2

XT
i

]
=

n∑

i=2

∫ ti

ti−1

[ḟ(s)− µi][ḟ(s)− µi]
T ds

+

n∑

i=2

∫ ti

ti−1

[ḟ(s)− µi]ḟ
T (s)θ ds

n∑

j=2

∫ tj

tj−1

θT ḟ(s)[ḟ(s)− µj ]
T ds,

which proves the assertion.
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A.4. Proof of Theorem 3.2.. Standard calculations show that

Eθ[θ̂n] = C−1
[ n∑

i=2

µi(f(ti)− f(ti−1))
T +

f(a)fT (a)

a

]
θ.

Observing the definition of the matrix C in (2.7) it follows that the estimator
θ̂n defined in (3.1) is unbiased if and only if the identity (3.12) is satisfied.
In order to prove the second part of Theorem 3.2 we use the decomposition

Eθ[(θ̃n − θ)(θ̃n − θ)T ] = E1 + E2 + ET
2 + E3,(A.3)

where the terms E1, E2 and E3 are defined by

E1 = Eθ[(θ̃n − θ̂BLUE)(θ̃n − θ̂BLUE)
T ],

E2 = Eθ[(θ̃n − θ̂BLUE)(θ̂BLUE − θ)T ],

E3 = Eθ[(θ̂BLUE − θ)(θ̂BLUE − θ)T ].

By Theorem 2.1 we have

E3 = C−1 =

[∫ b

a

ḟ(s)ḟT (s) ds+
f(a)fT (a)

a

]−1

.

Using the definition of θ̃n and θ̂BLUE in (2.6), yields

C(θ̃n − θ̂BLUE) = C

∫ b

a

g(s) dYs −
∫ b

a

ḟ(s) dYs −
f(a)

a
Ya

= C

∫ b

a

g(s)ḟT (s)θ ds+ C

∫ b

a

g(s) dεs −
∫ b

a

ḟ(s)ḟT (s)θ ds−
∫ b

a

ḟ(s) dεs

− f(a)fT (a)

a
θ − f(a)

a
εa

=

∫ b

a

[Cg(s)− ḟ(s)] dεs −
f(a)

a
εa,

where the last identity follows from the fact that θ̃n is unbiased, that is,

(A.4)

∫ b

a

g(s)ḟT (s)ds = I.

On the other hand

C(θ̂BLUE − θ) =

∫ b

a

ḟ(s) dYs +
f(a)

a
Ya −

∫ b

a

ḟ(s)ḟT (s) dsθ − f(a)fT (a)

a
θ

=

∫ b

a

ḟ(s) dεs +
f(a)

a
εa.
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Therefore we obtain for the term E2 the representation

E2 = C−1
{
Eθ

[( ∫ b

a

[Cg(s)− ḟ(s)] dεs −
f(a)

a
εa

)(∫ b

a

ḟ(s) dεs +
f(a)

a
εa

)T ]}
C−1

= C−1
{
Eθ

[ ∫ b

a

[Cg(s)− ḟ(s)] dεs

∫ b

a

ḟT (s) dεs

]
− Eθ

[f(a)
a

εaε
T
a

fT (a)

a

]}
C−1

= C−1
[ ∫ b

a

[Cg(s)− ḟ(s)]ḟT (s) ds− f(a)fT (a)

a

]
C−1

= C−1
[
C −

∫ b

a

ḟ(s)ḟT (s) ds− f(a)fT (a)

a

]
C−1 = 0,

where the last identity is again a consequence of (A.4). Hence it follows from
(A.3)

Eθ[(θ̃n − θ)(θ̃n − θ)T ] = Eθ[(θ̃n − θ̂BLUE)(θ̃n − θ̂BLUE)
T ] + C−1,

which proves the assertion of Theorem 3.2.
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