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Real-Time Error Control for Surgical Simulation
Huu Phuoc Bui, Satyendra Tomar, Hadrien Courtecuisse, Stéphane Cotin, and Stéphane P. A. Bordas

Abstract—Objective: To present the first a posteriori
error-driven adaptive finite element approach for real-time
simulation, and to demonstrate the method on a needle
insertion problem. Methods: We use corotational elasticity
and a frictional needle/tissue interaction model. The prob-
lem is solved using finite elements within SOFA.1 For simu-
lating soft tissue deformation, the refinement strategy relies
upon a hexahedron-based finite element method, combined
with a posteriori error estimation driven local h-refinement.
Results: We control the local and global error level in the
mechanical fields (e.g., displacement or stresses) during
the simulation. We show the convergence of the algorithm
on academic examples, and demonstrate its practical
usability on a percutaneous procedure involving needle
insertion in a liver. For the latter case, we compare the force–
displacement curves obtained from the proposed adaptive
algorithm with that obtained from a uniform refinement ap-
proach. Conclusions: Error control guarantees that a tolera-
ble error level is not exceeded during the simulations. Local
mesh refinement accelerates simulations. Significance:
Our work provides a first step to discriminate between dis-
cretization error and modeling error by providing a robust
quantification of discretization error during simulations.

Index Terms—Adaptive refinement, constraint-based in-
teraction, finite element method, real-time error estimate.
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I. INTRODUCTION

A. Motivation

R EAL-TIME simulations are becoming increasingly
common for various applications, from geometric design

[1], [2] to medical simulation [3]. Our focus is on real-time
simulation of the interaction of a surgeon or interventional
radiologist with deformable organs. Such simulations are
useful to both, help surgeons train, rehearse complex operations
or/and to guide them during the intervention. In time, reliable
simulations could also be central to robotic surgery.

A number of factors are concurrently involved in defining the
“accuracy” of surgical simulators: mainly the modeling error
and the discretization error. Most work in the area has been
looking at the above sources of error as a compounded, lumped,
overall error. Little or no work has been done to discriminate
between modeling error (e.g., needle-tissue interaction, choice
of constitutive models) and discretization error (use of approx-
imation methods like finite element method [FEM]). However,
it is impossible to validate the complete surgical simulation
approach and, more importantly, to understand the sources of
error without evaluating both the discretization error and the
modeling error.

The first ingredient in any mechanical simulation is the abil-
ity to simulate the deformation of the solid of interest. This
deformable solid mechanics problem is usually solved by FEM
[4] or meshless/meshfree methods [5], which are used to dis-
cretize the equilibrium equations. It is usually uneconomical or
prohibitively expensive to use a fixed mesh for such simulations.
Indeed, coarse meshes are sufficient to reproduce “smooth” be-
havior, whereas “non-smooth” behavior such as discontinuities
engendered by cuts or material interfaces, singularities, bound-
ary layers or stress concentrations require a finer mesh. Ade-
quate approaches are thus needed to refine the discretization in
these areas.

Yet, existing numerical methods used in surgical simulation
use either a fixed discretization (finite element mesh, meshfree
point cloud, reduced order method), or adapt the mesh using
heuristics [6], [7]. To our knowledge, no approach is currently
able to adapt the finite element mesh based on rational a poste-
riori error estimates [8].

Our objective is thus to devise a robust and fast approach
to local remeshing for surgical simulations. To ensure that the
approach can be used in clinical practice, the method should
be robust enough to deal, as realistically as possible, with the
interaction of surgical tools with the organ, and fast enough for

1https://www.sofa-framework.org/
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real-time simulations. The approach should also lead to an im-
proved convergence so that an “economical” mesh is obtained at
each time step. The final goal is to achieve optimal convergence
and the most economical mesh, which will be studied in our
future work.

In this paper, we propose and benchmark a local mesh refine-
ment and coarsening approach which is based on the estimation
of the discretization error incurred by FEM in the solution of a
corotational model representing soft tissues. The general ideas
presented here can be used directly in geometric design based
on deformable models. Our proposed approach has similitudes
with the octree approaches of [9].

B. Error in Numerical Simulations

It is useful to first review the various sources of error in nu-
merical simulations. The first error source arises when a math-
ematical model is formulated for a given physical problem: this
is known as the modeling error. The second error arises upon
discretization of this mathematical model, for example using
FEM or meshfree methods. Finally, numerical error is incurred
because of the finite precision of computers and round off errors.
In this paper, we focus on the second source of error, namely
discretization error. We therefore assume that the model we use
is descriptive of reality, i.e., we are solving the right problem,
and we ask ourselves the question whether “we are solving the
problem right”, in other words, correctly.

The main difficulty in answering this question comes from
the fact that an exact solution, to which the numerical solu-
tion could be compared, is generally not available. Different
approaches exist to address this problem, which are reviewed in
the literature, see e.g., [4], [8], [10]. Simple methods available
in practice to indicate the error distribution can be categorized
into two classes: recovery-based and residual-based.

The first class of indicators assumes that the exact solution
(of stresses) is smooth enough (at least locally). They rely on
the construction of an “improved” numerical solution from the
raw numerical solution, to which the raw numerical solution
can be compared. Where these two solutions are significantly
different (above certain threshold), the error level is high and
the mesh should be refined, and where these two solutions are
close together, the mesh can be kept unchanged or coarsened.
This idea was proposed by Zienkiewicz and Zhu in [11], and its
asymptotic convergence to the exact error is studied in [12], [13].

The second class of indicators relies on the computation of the
residual of the governing equations within each computational
cell, typically each finite element. These “residual-based” error
indicators lead to mesh refinement where the solution leads to
large residuals, and keep the mesh constant or coarsen it where
the element residuals are relatively small, compared to a given
tolerance. These estimates were first proposed by Babuska and
Rheinboldt in [14].

Based on these local error estimators, mesh refinement
methodologies can be devised to derive mesh adaptation, see
e.g. [10] for a recent comprehensive presentation. This requires
two key ingredients: a marking strategy that decides which ele-
ments should be refined, and a refinement rule that defines how
the elements are subdivided. For element marking, we use the

maximum strategy, see Section III for details. Other strategies,
such as bulk/equilibration strategy or percentage strategy, see
e.g. [10], can also be used.

C. Simulation of Percutaneous Operations

Needle-based percutaneous procedures are an important part
of modern clinical interventions such as biopsy, brachytherapy,
cryotherapy or regional anesthesia. The success of these proce-
dures depends on good training and careful planning to optimize
the path to the target, while avoiding critical structures [15]. In
some instances the procedure can also be assisted by robotic
devices. Unfortunately, natural tissue motion (due to breathing,
for instance), and deformation (due to needle insertion) gener-
ally lead to incorrect or inefficient planning [15]. To address
these issues, one must rely on an accurate simulation of needle
insertion. For most problems, computational speed is also very
important, since the simulation is at the core of an optimization
algorithm (for the needle path) or a robotic control loop.

The main works on needle insertion (see the survey by [16])
propose to model the interaction between the needle and soft
tissues using FEM. In the various methods proposed in the lit-
erature, three main research directions have been followed: soft
tissue model, flexible needle model and needle-tissue interac-
tions. The needle model is usually not an issue, both in terms of
modeling choice and computational cost. For instance, in [17],
authors report computation times of a few milliseconds for a
FEM needle model composed of 50 serially-linked Timoshenko
beam elements. Soft tissue models are usually based on FEM,
and rely on linear or non-linear constitutive laws [16].

A large body of work covers the modeling and simulation
of soft tissue deformation, even under real-time computation
constraints. But overall, the interaction model between the nee-
dle and tissue remains a major challenge. It combines different
physical phenomena, such as puncturing, cutting, sliding with
friction and the Poynting’s effect. To capture the essential char-
acteristics of these interactions, existing methods usually rely
on experimental force data and remeshing techniques in order
to align nodes of the FEM mesh with the needle path. In [17],
a constraint-based approach, avoiding remeshing, was used to
simulate needle-tissue interactions. However, the simulations
did not account for realistic anatomical details. In addition,
Misra et al. [18] showed that needle steering, which occurs
when using asymmetric needle tips, can be modeled using mi-
croscopic observations of needle-tissue interactions.

Unfortunately, if no assumption can be made about the region
of the domain where the needle will be inserted, simulations
involving very detailed meshes become very slow, which is a
real issue in the context presented above. Error-controlled real-
time simulation of needle insertion is thus an unsolved problem
whose solution requires tackling a number of difficulties:

1) developing needle-tissue models. A review of cutting
simulation is provided in [19]

2) using these models within discrete approaches like FEM,
mesh-free methods, or others

3) accelerating the simulation (advanced hardware, model
order reduction)
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Fig. 1. Three types of constraints between the needle and soft tissue:
surface puncture (in red), needle tip constraint (in green) and needle
shaft constraints (in blue). A local coordinate system n-t is defined at
each constraint point.

4) validating the needle-tissue interaction model combined
with discrete solution (are we solving the right problem?)

5) verifying the discrete solution, i.e., controlling the dis-
cretization error associated with the discrete model (are
we solving the problem right?)

In this paper, we propose to focus on the last point above, with
the aim to model needle-tissue interactions using an adaptive
meshing strategy driven by simple a posteriori error estimation
techniques. Similarly to [17], we do not require the mesh to con-
form to the needle path. Mesh subdivision is only introduced as a
means to improve the accuracy of the needle-tissue interactions.
Our mesh refinement method is guided by the stress/energy
error estimate resulting from the needle-tissue interaction and
imposed boundary conditions: elements of the mesh are subdi-
vided when a numerical error threshold is reached. The subdivi-
sion process is completely reversible, i.e., refined elements are
set back to their initial topology when refinement is no longer
needed. Our refinement approach does not rely on a usual octree
structure (see also [20]), thus allowing a variety of subdivision
schemes that are well suited for needle insertions, as detailed in
Section III. Using this approach, interactive computation times
can be achieved while detailed tissue motion near the needle
shaft or tip can be computed. This opens new possibilities for
fast simulations of flexible needle insertion in soft tissues. We il-
lustrate the convergence study of the adaptive refinement scheme
and some of the possible scenarios in Section V.

II. MODEL AND DISCRETIZATION

In this section, we describe the model and the discretization
approach, which are used for needle and soft tissue interaction.

A. Problem Statement

During the needle insertion, three types of constraints are
defined, see Fig. 1.

Coulomb’s friction law is used to describe frictional contacts
within these three types of constraints. First, a puncture con-
straint is defined between the needle tip and the tissue surface.
This constraint satisfies the Kuhn-Tucker condition in the direc-
tion n (normal to the tissue surface)

δn ≥ 0, λn ≥ 0, δn · λn = 0, (1)

where δn denotes the distance between the needle tip and the
tissue surface in the direction n, and λn denotes the contact force

in that direction. Let λn0 represent the puncture strength of the
tissue. The Kuhn-Tucker condition expresses that the contact
force only exists when the needle tip is in contact with the
tissue surface. When the contact force is higher than a threshold
(puncture strength of the tissue)

λn > λn0 , (2)

the needle can penetrate into the tissue. In the tangent direction
t, Coulomb’s friction law is considered in order to take into
account the stick/slip between the needle tip and tissue surface

λt < μλn (stick); λt = μλn (slip), (3)

where μ denotes the friction parameter.
Second, a needle tip constraint is defined at the tip of the

needle as soon as it penetrates into the tissue. Depending on the
relationship between the contact forces in the normal direction
n (along the needle shaft) and in the tangent direction t (see
Fig. 1), the needle tip can cut and go through the tissue or not

λn < μλt + λn0 (stick); λn ≥ μλt + λn0 (cut and slip).
(4)

Finally, needle shaft constraints are defined along the needle
shaft so that the needle shaft is enforced to follow the inser-
tion trajectory created by the advancing needle tip. Again, the
Coulomb’s friction law is applied to these constraints to repre-
sent the stick and slide contact between the tissue and the needle
shaft

λn < μλt (stick); λn = μλt (slide). (5)

B. Strong Form

We model both, the tissue and the needle, as dynamic de-
formable objects. Thus, they can be regarded as dynamic elastic
solids, and the governing equations of the model are formulated
as

div σ + b + λ = ρü in Ω (6a)

ε =
1
2

(
gradu + (gradu)T

)
(6b)

σ = f(ε,ν) (6c)

σ · n = t̄ on Γt ; (6d)

u = ū on Γu , (6e)

where σ is the Cauchy stress tensor, b is the body force vector, ρ
is the mass density, ε is the strain tensor, ν = (ν1 , ν2 , . . . , νn ) is
the vector of internal variables, (˙) denotes the partial derivative
with respect to time, n denotes the outward unit normal vector
on Γt , and λ denotes the contact force between the needle and the
tissue. The object domain and boundary conditions are shown
in Fig. 2(a).

C. Spatial and Temporal Discretization

1) Space Discretization: The basic idea of FEM is
to discretize the domain Ω into finite elements Ωe , e =
1, 2, . . . , Ne , by Nn nodes, as depicted in Fig. 2(b). Based on
the discretization concept, see e.g., [21], [22], we obtain the
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Fig. 2. A body Ω subjected to a traction t̄ on its boundary part Γt , a
body force b, and an imposed displacement ū on boundary part Γu (a);
Simplified illustration of FEM discretization (b).

discrete problem of the element e

Me üe + Ce u̇e + fe(σ) = f ext
e , (7)

where Me is the element mass matrix, Ke is the element stiff-
ness matrix, Ce is the damping matrix, f ext

e is the external force
applied to the element e, while the internal force fe(σ) reads

fe(σ) =
∫

Ωe

BT
e σ dΩ =

∫

Ωe

BT
e EBeue dΩ

= Ke · ue = Ke · (xe − x0 e) (8)

where Be is the strain-displacement matrix, E is the fourth-
order stiffness tensor, and xe and x0 e denote the current and
initial position of the element e, respectively. However, using (8)
results in inaccuracy for large rotations problems, which is ob-
served by artificially inflated deformation of the elements. To
overcome this, Felippa et al. [23] decomposed the deformation
gradient of the element into the rigid and deformation parts, and
the element nodal internal force becomes

fe = ReKe(RT
e xe − x0 e), (9)

where R stands for the element rotation matrix of the element
local frame with respect to its initial orientation, being updated
at each time step. Using this corotational formulation results in
no visual artifacts.

The global mass, stiffness and damping matrices of the system
can then be assembled from the element ones, and (7) can be
rewritten to a global system equation as

Ma = f(x,v), (10)

where a = ü, x, v = u̇ are the acceleration, position and veloc-
ity vectors, respectively, and f(x,v) = f ext − Ku − Cv rep-
resents the net force (the difference of the external and internal
forces) applied to the object.

In our simulations, a diagonally lumped mass matrix is em-
ployed, and the stiffness matrix K is computed based on the co-
rotational FE formulation described above, which allows large
rotations for both, needle as well as tissue. For higher accuracy
of the computed strain field, the soft tissue domain is discretized
using hexahedral elements. To avoid the complex issue of gen-
erating an exact hexahedral mesh of the domain, we use a mesh
that does not conform to the boundary of the domain, as in Im-
mersed Boundary Method [24]. The needle, on the other hand,

is modeled using serially-linked beam elements, as in [17]. In
this case, each node of the needle has 6 degrees of freedom (3
translations and 3 rotations), while the tissue model only uses 3
translational degrees of freedom per node.

Since the FEM formulation is based on the discretization of
the physical domain, it naturally introduces the discretization
error in the result. To control this error source, in Section III we
present an adaptive refinement scheme.

2) Time Discretization: For temporal discretization, we
use an implicit backward Euler scheme [25], which is described
as follows

u̇t+τ = u̇t + τ üt+τ ; ut+τ = ut + τ u̇t+τ , (11)

where τ denotes the time step. Inserting (11) into (10) gives the
final discrete system

(M − τC − τ 2K)
︸ ︷︷ ︸

A

dv = τ f(xt ,vt) + τ 2Kvt

︸ ︷︷ ︸
b

(12)

where dv = vt+τ − vt .
After solving (12) for dv, the position and velocity are up-

dated for needle and tissue as

vt+τ = dv + vt ; xt+τ = xt + τvt+τ . (13)

D. Constraint Enforcement for Needle-Tissue Interaction

To take into account the needle-tissue interaction when they
are in contact, a constrained dynamic system is solved for the
needle and the tissue. Equation (12) then becomes

Adv = b + Jλ, (14)

where λ denotes Lagrange multipliers representing the interac-
tion forces between the needle and the tissue, and J provides
the direction of the constraints. Different types of constraints be-
tween needle and tissue are used, and solving their interaction
is detailed in Section IV.

Remark Combining more advanced and clinically relevant
needle-tissue interaction is straightforward in our approach.

III. ERROR ESTIMATE AND ADAPTIVE REFINEMENT

To achieve faster and more accurate FEM simulations, dif-
ferent adaptive techniques have been proposed in the literature.
Octree-based approaches [26] are the most common, but the
refinement procedure is limited to cubic elements which are
recursively subdivided into eight finer elements. To overcome
this limitation, more generic remeshing techniques [27]–[29]
have been proposed. However, they are complex to implement,
and may lead to ill-shaped elements. Our template-based re-
finement algorithm is designed to be independent of the type
of element (tetrahedra, hexahedra, others), and produces a high
quality mesh (thanks to the well-shaped elements of the prede-
fined template).

Starting with an initial, relatively coarse mesh (as required to
achieve real-time simulation), a criterion based on a posteriori
error estimate is evaluated to drive the local refinement. The ele-
ments where the stress increases, i.e., dσ/dt > 0, are considered
for refinement, and the elements where the stress decreases, i.e.,
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Fig. 3. Smoothed gradient obtained from an element patch.

dσ/dt < 0, are taken to a lower refinement (coarsening) level.
We define the approximate error of an element Ωe as

ηe =

√∫

Ωe

(εh − εs)T (σh − σs)dΩ, (15)

which is the energy norm of the distance between the FEM
solution (denoted by h) and an improved solution (denoted by
s) obtained by the Zienkiewicz-Zhu smoothing procedure [11].
Among the elements with increasing stress, only those elements,
where the error exceeds the predefined threshold, are subdivided
(refined). Similarly, among the elements with decreasing stress,
only those elements, where the error is smaller than the above
threshold, are coarsened. Note that we are not limited by the
regularity of the mesh, and can start from any (reasonable)
heterogeneous mesh as a starting point prior to refinement.

A. Zienkiewicz-Zhu Error Estimate

Using the superconvergent patch recovery (SPR) proce-
dure [11], the smoothed stress field σs is recovered from the
stresses computed at the element center. The idea of this tech-
nique is based on the fact that the stress and strain at the su-
perconvergent points (at element center in the case of linear
hexahedral elements) are accurate with higher order than at the
element nodes, and these values are employed to recover the
nodal stress and strain within the least squares sense. A 2D
representation of a patch of 8 hexahedral elements is shown
in Fig. 3. For each component σh

j of the FEM solution σh , the
nodal recovered stresses are computed by defining a polynomial
interpolation within the element patch as

σ̃s
j = Paj = [1x y z xy yz zx xyz][a1 a2 a3 a4 a5 a6 a7 a8 ]Tj .

(16)
Let Pk ≡ P(xk , yk , zk ). To determine the unknowns aj we
minimize, for 8 sampling points k of an element patch,

Π =
8∑

k=1

[
σh

j (xk , yk , zk ) − Pkajk

]
. (17)

This minimization results in finding aj by

aj = A−1b (18)

where

A =
8∑

k=1

PT
k Pk and b =

8∑

k=1

PT
k σh

j (xk , yk , zk ). (19)

Once aj is available, the nodal recovered stress values are ob-
tained by simply employing (16) with P evaluated at the corre-
sponding node. 2

B. Element Marking Strategy

After obtaining error distribution across all the elements, we
employ the maximum strategy to select those elements which
must be refined for the next level mesh. In this strategy, only
those elements, where error (see (15)) is higher than certain
threshold, are refined. Let ηM = maxe ηe , where ηe is defined
in (15). We mark an element for refinement if

ηe ≥ θηM with 0 < θ < 1. (20)

Other marking strategies, such as bulk/equilibration strategy,
or percentage strategy, see e.g. [10], can also be used. However,
the maximum strategy described above is the cheapest among
all, and hence, it is preferred for our use. In the maximum strat-
egy, a large value of θ leads to small number of elements marked
for refinement, and small value of θ leads to large number of
elements marked for refinement. In our studies presented in
Section V, we set θ = 0.3.

C. Template-Based Adaptive h-Refinement

Once the refinement criterion is satisfied within an element,
the element is replaced by several elements according to a pre-
defined template. The template is simply a set of nodes and an
associated topology, defined using an isoparametric formula-
tion. The template nodes are added by using their natural coor-
dinates. The position xj , in Cartesian coordinates, of the new
node j is defined as xj = xiξ

j
i , where the Einstein summation

convention is applied on the nodes i of the removed element
(i = 1, 2, . . . 8 for hexahedral elements). The shape function ξj

i

is computed from the barycentric coordinates of template node j
with respect to the node i. The procedure is summarized below:

1) Remove the element to be refined
2) Add template nodes and then template

elements using the element shape
functions

3) Update the topology of the global
mesh

4) Compute stiffness matrix of new ele-
ments

5) If needed, update the mass and damp-
ing matrices

It is worth mentioning that if, after refinement, a new element
fulfills the refinement criterion, it can be refined again, using

2Similar to the displacements, the recovered stresses σs can also be obtained
using element shape functions σs = Nσ̃s .
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Fig. 4. Adaptive subdivision process: each element to be subdivided
is topologically transformed in its reference shape, using a template
expressed in natural coordinates. Cartesian coordinates in the mesh
are computed using the element shape functions. The process can be
applied recursively, and is completely reversible.

the same predefined template. This results in a multi-resolution
mesh (see Fig. 4). Conversely, if the coarsening criterion is
satisfied in already refined elements, the coarsening procedure
is applied by simply removing respective fine elements, and
updating the associated matrices.

D. T-Junction Handling

Since elements are refined by using templates, regardless
of their neighboring elements, some T-junctions (incompatible
nodes or hanging nodes) are generated. To avoid discontinuities
at the T-junctions during the simulation, these nodes need to be
handled in a special way, in which T-junction nodes are consid-
ered as slave of other independent (master) degrees of freedom
(DOFs). One of the possible options is to use Lagrange mul-
tipliers, but this approach increases the total number of DOFs
(as to solve the unknown Lagrange multipliers in addition), and
usually leads to ill-conditioned systems. In our approach, we
follow the method proposed by [30], which considers only the
reduced system (without T-junctions) when solving for the new
positions. Let T denote the transformation matrix from the re-
duced system to the full one (with T-junctions). The matrix T
contains the barycentric coordinates of the T-junctions (slaves)
with respect to their masters, and contains 1 for all other normal
DOFs. The reduced system matrix Ar is then computed from
the full system matrix Af as

Ar = TT Af T. (21)

The nodal forces in the reduced space is computed from the
full space as fr = TT ff . The reduced system Ar dvr = fr is
solved to find dvr , the difference of velocity between current
and previous time step. Once dvr is available, the difference of
velocity in the full space are easily deduced as dvf = Tdvr .
The latter is employed to update the new position and velocity
of the object as in (13).

A heuristic example is shown in Fig. 5 to explicitly illustrate
the method for T-junction handling, especially how the full and
reduced systems are defined, resulting in the computation of the
transformation matrix between them. After subdivision, node 7
is a T-junction in the full system (see Fig. 5(a)). Within this
heuristic illustration, considering that each node has only one
DOF and the static condition is applied, the displacement of the

Fig. 5. Illustration of T-junction handling method on a schematic
example.

node 7 is expressed from those of node 2 and 3 as

u7 = 0.5u2 + 0.5u3 . (22)

Fig. 5(b) shows the reduced system where the T-junction node 7
is not considered. The displacement fields between these full
and reduced systems are expressed (by taking into account (22))
through the transformation matrix T as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0
u1
...

u7

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
︸ ︷︷ ︸

uf

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0.5 0.5 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
T

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0
u1
...

u6

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

︸ ︷︷ ︸
ur

(23)

The transformation matrix T for the general 3D case where
each node has three DOFs is built straightforwardly from this
example.

Assuming we are using a non-linear constitutive law (e.g.,
hyperelastic) or a co-rotational FE formulation, the system ma-
trix needs to be updated at each time step. Consequently, the
local updating of the topology has a very limited impact on
the computation. The main overhead comes from the T-junction
handling, but it is somewhat compensated by the reduced dimen-
sions of the linear system to be solved (although the reduced
matrix is denser than the initial one). Our experience has shown
that if we consider that about 10% of the mesh elements are sub-
divided, approximately 20% of the nodes in the resulting mesh
are T-junctions. Obviously, the number of T-junctions depends
strongly on the template mesh used by the refinement, and also
on the fact that the elements are subdivided locally within one
or several regions.

IV. NEEDLE-TISSUE INTERACTION ALGORITHM

To model the interaction of needle and tissue, we consider two
different constraints: penetration (puncture) and sliding [17]. To
avoid remeshing when modeling needle-tissue interaction, we
use the same constraints based approached as described in [17].
However, unlike [17], we solve the constrained system differ-
ently. Before entering the tissue, the needle-tissue constraint is
only created when the needle tip is in contact with the tissue sur-
face. This penetration constraint is represented mathematically
as P(xn ,xt) ≥ 0, where xn , and xt stand for the position of
the needle, and tissue, respectively. Immediately after entering
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the tissue, sliding constraint between the needle and tissue is
created along the needle trajectory as S (xn ,xt) = 0. When
friction is considered, both P and S are nonlinear. The con-
straints P and S between the tissue (denoted by subscript
1) and needle (denoted by subscript 2) are expressed through
the global coordinate system using Lagrange multipliers λ as
follows

⎛

⎝
A1 0 JT

1
0 A2 JT

2
J1 J2 0

⎞

⎠

⎧
⎨

⎩

dv1
dv2
λ

⎫
⎬

⎭
=

⎧
⎨

⎩

b1

b2

0

⎫
⎬

⎭
, (24)

where A1 and A2 are the system matrices for the soft tissue
and needle, respectively; J1 and J2 account for constraint di-
rections between the needle and tissue. In the local coordinate
system attached to the needle, constraints between needle and
tissue are only expressed in two directions orthogonal to the
needle shaft, resulting in a needle-tissue sliding constraint. The
expressions of these constraints in the global coordinate system
J1 and J2 are then built by transforming the local constraint
expressions from the local coordinate system to the global one.
However, formulating the problem as (24) leads to a non posi-
tive definite global matrix, which makes the system challenging
to solve. An alternative approach, as proposed in [15], [17], is to
solve the interaction problem in three steps: predictive motion
(no interaction constraints), constraint solving, and corrective
motion. However, this alternative requires the computation of
matrix inverse A−1

1 and A−1
2 . This approach is time consum-

ing, especially for large systems. Unlike this method, we solve
the constrained problem iteratively by using the augmented La-
grangian method [31]

(A + JT WJ)dvk+1 = b − JT λk (25a)

λk+1 = λk − WJdvk+1 , (25b)

where W is the penalty weight matrix with finite values. The
advantage of this method is that the exact solution of the needle-
tissue interaction can be obtained, as compared to the penalty
method (see e.g., [32]), and no additional DOFs are needed,
as compared to the classical Lagrange multiplier method [33].
A critical feature of this approach is that the system matrix
in (25a) is positive definite, therefore iterative solvers, such as
the conjugate gradient, can be used efficiently.

It is worth stressing that using the augmented Lagrangian
method for solving needle-tissue interaction, combined with
the T-junction handling in the tissue, is straightforward. Indeed,
as mentioned above, it is sufficient to solve (25a) in the reduced
space, and dvk+1 is easily computed from the reduced solution.

V. RESULTS AND DISCUSSIONS

To demonstrate the efficiency of our method, we present sev-
eral numerical studies. We first present the convergence of the
stress error on a typical L-shaped domain. The motivation for
this test is because of its localized nature, i.e., stress is concen-
trated at the corner of the domain, which mimics the localized
scenario of needle insertion. To demonstrate the computational
advantage of adaptive refinement over uniform refinement, we
also present the computational time for this problem. Then, to

Fig. 6. Boundary conditions of the L-shaped domain test.

Fig. 7. Convergence of the relative error, comparison between uniform
and adaptive refinements.

TABLE I
COMPUTATIONAL TIME (IN 10−3 s). TC: TOPOLOGICAL CHANGES, MS:

SYSTEM MATRIX SOLVE

DOFs Time Total time

TC MS

Full refinement 44064 x 12140.8 12140.8
Local refinement 7473 319.24 417.17 736.41

point out the benefits of a local mesh refinement in needle in-
sertion simulation, we study a needle insertion scenario with
friction to show the impact of local refinement on the displace-
ment field around the needle shaft and also on the needle-tissue
interaction force profile. Finally, a more complicated scenario
is simulated i.e., insertion of a needle into a liver which is un-
dergoing breathing motion. In our simulations, the needle and
soft tissue follow a linear elastic constitutive law, associated to
a co-rotational FE formulation.

A. Convergence Study

To show the advantage of error-controlled adaptive refine-
ment scheme, as compared to the uniform mesh refinement, a
convergence study is performed on a 3D L-shaped domain. As
shown in Fig. 6, the L-shaped domain is clamped at the right
boundary, and simply supported in the vertical direction at the
top boundary. The dimension is set to L = 4 and the thickness
of the domain is L/2 = 2. Young’s modulus, and Poisson’s ra-
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Fig. 8. Variation of tissue displacement resulting from friction during needle insertion, measured along a vertical line located at the needle tip.
(a) The un-refined mesh; (b) adaptive refinement using an anisotropic template 2 × 3 × 3; (c) adaptive refinement using an isotropic template
3 × 3 × 3; and (d) full refinement. The graph (e) shows the benefits of the anisotropic refinement.

tio of the tested material are 1 × 103 , and 0.3, respectively. The
domain is subjected to a uniformly distributed traction force on
the left surface boundary.

Starting with the mesh having 8 × 8 × 4 hexahedral elements
(excluding the 4 × 4 × 4 corner elements), two types of refine-
ments are performed. The first one, called uniform refinement,
consists of subsequently subdividing every hexahedral element
in to 8 smaller elements. In the second approach, called adap-
tive refinement, only those elements which satisfy the marking
condition (20) are refined (subdivided in to 8 smaller elements).

We define the relative error η as

η =

√∑Ne

e=1

∫
Ωe (εh − εs)T (σh − σs)dΩ

√∑Ne

e=1

∫
Ωe (εh)T σhdΩ

. (26)

In Fig. 7, we show the plots of the relative error versus the
number of DOFs for uniform and adaptive refinement. We see
that for the uniform refinement, the relative error η converges
with a slope of 0.21, which corresponds to the theoretical slope
of 2/9 for singular problems in 3D. By comparison with the
uniform refinement, the adaptive refinement converges with a
higher slope (0.31). Clearly, to achieve certain expected error of
the simulation, the adaptive refinement needs fewer DOFs than
the uniform refinement.

To demonstrate the performance of adaptive (local) re-
finement in terms of computational time, as compared to
uniform (full) refinement of the mesh, with the same ex-
pected relative error η = 8%, we again studied the L-
shaped domain problem. The result is reported in Table I.
The local refinement decreases the number of DOFs by
a factor of 5.9 (7473 vs. 44064) associated with a com-
putational speed-up by a factor of 16 (736.41 ms vs.
12140.8 ms).

In view of above observations, it is a strong argument to
support the employment of adaptive refinement scheme while
limiting the discretization error in real-time simulations.

B. Impact of Local Mesh Refinement on Displacement
Field

We now present the results of a simulation of needle insertion
into a homogeneous 3D tissue model. For this study, we consider
the Young’s modulus of 108 for the needle, and 103 for the tissue,

Fig. 9. Schematic representation of needle insertion simulation into a
phantom tissue. The phantom tissue is clamped at the right surface.

whereas the Poisson’s ratio is taken as 0.4 for both. The friction
coefficient between the needle and the tissue is set to 0.9. The
displacement field due to frictional interactions with the needle,
viewed from the xy plane of the tissue, is shown in Fig. 8.

It is shown (by the nonlinear variation of the displacement
field in the vicinity of the needle) that when the mesh is adap-
tively refined near the needle shaft, the needle-tissue interac-
tion is captured as good as in the case of full refinement (see
Fig. 8(d)). Indeed, closer the position is to the needle shaft,
higher the obtained displacement field. Conversely, when a
coarse element is used, and is not refined during the simula-
tion, the above behavior is not reproduced within the element
(Fig. 8(a)). It is important to point out that the refinement using
anisotropic template, as in Fig. 8(b), is very relevant since it gen-
erates fewer DOFs than using the isotropic template (Fig. 8(c)),
while still catching the nonlinear displacement field. Note that
the refinement is not restricted to one element, but only one level
of refinement is used. It also happens that the criterion used in
this simulation leads to refining only one element.

C. Impact of Local Mesh Refinement on Needle-Tissue
Interaction

In order to gain insight into the nonlinear behavior of the
needle-tissue interaction around the needle shaft, and to exhibit
the effect of the adaptive refinement on a trade-off between
computational time and precision, a needle insertion simulation
into a phantom tissue test is carried out, see Fig. 9. For this study,
we consider the Young’s modulus of 50 MPa for the needle, and
10 MPa for the tissue, whereas the Poisson’s ratio is taken as
0.4 for the tissue, and 0.3 for the needle, respectively. Note that,
in a separate study for the tissue (not reported here for brevity
reasons), we also run the simulation for Young’s modulus 2 MPa
and Poisson’s ratio 0.49, and the results are qualitatively same
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Fig. 10. Comparison of needle-tissue interaction forces along the needle shaft within two cases: without refinement (with different mesh resolutions)
and with adaptive refinement. The penetration strength is varied while keeping the same frictional coefficient μ = 0.5 between the needle shaft and
the soft tissue. (a) λn 0 = 0 N. (b) λn 0 = 10 N. (c) λn 0 = 20 N.

Fig. 11. Comparison of needle-tissue interaction forces along the needle shaft within two cases: without refinement (with different mesh resolutions)
and with adaptive refinement. The frictional coefficient between the needle shaft is varied while keeping the same penetration strength (10 N) at the
tissue surface. (a) μ = 0.1. (b) μ = 0.3. (c) μ = 0.5.

as those reported in the above-mentioned case. Again, a linear
elastic model based on corotational formulation is employed for
the needle as well as the tissue. The dimension of the tissue is
4 × 2 × 2 cm. The needle length and radius are of 3.2 cm and
0.1 cm, respectively.

Three meshing schemes are employed: a coarse mesh with
resolution 10 × 5 × 5 nodes, a fine mesh with resolution
20 × 10 × 10 nodes and an adaptive mesh (starting with the
coarse mesh 10 × 5 × 5 nodes and adaptively refining the mesh
during the simulation). Within the adaptive meshing scheme, the
mesh refinement is again piloted by the error estimate described
in Section III.

To investigate the sensitivity of the needle-tissue interaction
parameters (frictional coefficient and puncture strength) on the
resulting mesh adaptation, and thus on computational output,
two scenarios are studied. The first concerns varying the punc-
ture strength σn0 parameter (0 N, 10 N, and 20 N), while keeping
the same frictional coefficient μ = 0.5 between the tissue and
the needle shaft. The second is dedicated to study the influence
of the frictional coefficient by setting it to 0.1, 0.3 and 0.5, while
keeping the puncture strength unchanged (σn0 = 10 N). Within
these two scenarios, the frictional coefficient on the tissue sur-
face is set to 0.8.

Fig. 10 shows the plots of the integrated interaction force
along the needle shaft versus the displacement of the needle
tip for the first scenario. The second scenario is depicted in
Fig. 11.

It shows that when the contact force between the needle tip
and the tissue surface is higher than the tissue puncture strength,
the needle penetrates into the tissue. Right after this penetration
event, a relaxation phase can be observed that induces a decreas-
ing force at the needle bases. Thereafter, it is observed that as
the needle moves forward, the interaction force increases due
to the increasing frictional force along the needle shaft (which
is directly proportional to the insertion distance). Only when
the contact force at the needle tip is greater than the cutting
strength of the soft tissue, the needle cuts the tissue and con-
tinues going ahead. Immediately after this cutting action, the
relaxation phase is observed anew. This behavior is periodi-
cally observed during the needle insertion. These observations
are clearly shown in Fig. 12(a), which is obtained by zooming
in Fig. 10(b). A typical behavior with distinguished phases is
presented in Fig. 12(b).

It is observed that under mesh refinement the resulting global
behavior of needle-tissue system is less stiff. This is explained
by the fact that beneath mesh refinement, a greater displacement
field is obtained, which results from the needle-tissue interaction
(as also observed in Section V-B). It is also shown that using the
adaptive refinement scheme, the needle-tissue interaction behav-
ior is close to those when using a fine mesh (see Fig. 10). As can
be seen in Fig. 13, an interesting observation is that the number
of DOFs in the adaptive refinement simulation is significantly
fewer than that of using the fine mesh. This obviously results in
an important gain in terms of computational time. Indeed, the
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Fig. 12. (a) Puncture, cutting and relaxation behaviors are shown by a zoom-in plot from Fig. 10(b). (b) The typical behavior is shown in phases.
Phase (1): The needle is puncturing the tissue surface. Phase (2): Just after the penetration event, the relaxation occurs. Phase (3): The interaction
force increases due to the fact that frictional force increases with insertion distance. When the needle tip has cut the tissue to advance forward, the
relaxation occurs again.

Fig. 13. Number of DOFs during the needle insertion of the simulation
in Fig. 10(b).

simulation using the adaptive refinement mesh runs at nearly
45 FPS compared to 4 FPS of that using the uniform fine mesh.

It is seen from Fig. 11 that the smaller the frictional coefficient
is, the more the behavior of the adaptive refinement scheme
differs from that of the simulation using the fine mesh. It aligns
nicely with the fact that smaller friction force does not lead
to mesh refinement around the needle shaft. Indeed, as seen
in Fig. 14, the refinement in the case of frictional coefficient
μ = 0.1 is mostly due to the penetration force at the tissue
surface. Note that, for a fair comparison, the θ coefficient in (20)
was chosen as θ = 0.3 for all friction coefficients. However,
it is also possible to use lower values of θ for lower values
of the friction coefficient (such as μ = 0.1), which leads to a
higher degree of local refinement. We also remark that when
uniformly very fine meshes (30 × 15 × 15 and 40 × 20 × 20
nodes) are used (not shown here for brevity reasons), the force-
displacement responses converge. However, simulations on such
fine meshes are computationally very expensive, and because of
the required constraint of real-time simulation, such meshes can
not be employed. The proposed adaptive refinement allows us to
perform real-time simulations while keeping the error in control.

D. Application to Liver

The method proposed in this paper is now applied to a liver
model undergoing breathing motion, to mimic a typical case of

radio-frequency ablation of a tumor. The same Young’s mod-
ulus and Poisson’s ratio for the needle and the tissue as in
Section V-C are employed. The frictional coefficient is set to
0.5 when the needle is inserted and to 0.1 when it is pulled back
(the performance of the adaptive refinement scheme does not
depend on the ratio between the frictional coefficients during
insertion and retraction). The puncture force at the tissue sur-
face is set to 10 N. Induced by error estimate ((20)), the needle
insertion and constraints applied to the liver lead to refinements
in different regions. The initial mesh has 1179 DOFs. When
the needle advances into the liver, combining with the motion
of the liver due to breathing effect, the mesh is progressively
refined to accurately take in to account the interaction of needle
and liver. The maximum number of DOFs when the needle is
completely inserted into the liver is 2961. And, when the needle
is steadily pulled back, the mesh is then progressively coarsened
until the needle is completely outside of the liver. Thereafter,
the refinement process is now only due to the movement of the
liver by breathing effect and imposed boundary conditions. The
number of DOFs at this stage is 1509. By applying this adap-
tive refinement/coarsening procedure, it is not only guaranteed
that the discretization error is fully controlled, but the compu-
tational cost is also kept as small as possible. Indeed, without
adaptive remeshing procedure applied on the initial mesh, the
simulation runs at 35 FPS while the discretization error is 12%,
whereas when the adaptive refinement is performed, it runs at
22 FPS while decreasing the discretization error to 6%. Note
that these frame rates result not only from computational reso-
lutions of needle, tissue and their interactions but also from their
visualization cost (Fig. 15).

In order to investigate the benefits of the adaptive refine-
ment scheme when the needle is inserted and retracted into
the liver phantom, tests with uniform and adaptive refinement
schemes are carried out. Within the uniform refinement case, a
coarse mesh with 723 DOFs and a fine mesh with 3894 DOFs
are used for the liver discretization. Whereas upon the adap-
tive refinement scenario, the simulations start with the coarse
mesh 723 DOFs and is adaptively refined by two schemata:
each marked element is refined into (i) 2 × 2 × 2 elements,
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Fig. 14. Refinement patterns (colored by stress level) of the adaptive scenario while using different frictional coefficients. (a) μ = 0.1. (b) μ = 0.3.
(c) μ = 0.5.

Fig. 15. (a) Simulation of needle insertion in a liver; (b) using dynamic mesh refinement scheme driven by error estimate; (c) visual depiction. The
simulation runs at 22 Hz (on a 4 GHz processor).

Fig. 16. Needle-liver phantom interaction force during needle insertion
and pullback. The interaction force varies due to advancing friction and
tissue cutting strength, globally increases (with positive values) during
the insertion stage. At 4 cm of the needle-tip displacement, the needle
is retracted and the interaction force changes the direction, varies due to
retrograding friction, globally decreases and gets zero when the needle
is completely pulled out. These form a loop profile for force-displacement
curve resulting from needle insertion-retraction.

and (ii) into 3 × 3 × 3 elements. The integrated needle-tissue
interaction force along the needle shaft is plotted versus the
needle tip displacement when the needle is inserted and pulled
back, see Fig. 16.

It is observed that when the needle is outside the tissue, there
is no interaction force between them. This is also detected when
the needle is completely retracted from the tissue. It is clearly
shown that the needle-tissue interaction depends strongly on the
mesh used (especially if the mesh is coarse). The mesh influence
reveals a stronger effect on the insertion stage than the pullback
one. This is fully understood by the fact that the frictional coef-
ficient between the needle shaft and the tissue is more important

during the insertion steps than that during the pullback ones
(0.5 versus 0.1, respectively). Using the coarse mesh, the punc-
ture force at the tissue surface is not well captured compared to
the case where the fine mesh or adaptive refined mesh is em-
ployed, see Fig. 16. Under mesh refinement around the needle
shaft guided by error estimate, the needle-tissue interaction con-
verges to the solution of the fine mesh. However, the maximum
number of DOFs when using the adaptive refinement schemes
2 × 2 × 2 and 3 × 3 × 3 is 1071, and 2193 respectively. There-
fore, as observed in Section V-C, using the adaptive refinement
scheme results in significantly fewer DOFs compared to the
employment of uniform fine mesh. All of these lead to the con-
clusion that even starting with the coarse mesh but employing
the adaptive refinement scheme, the needle-tissue interaction
can be simulated more precisely compared to the coarse mesh,
and with significantly lower computational cost compared to the
uniform fine mesh.

VI. CONCLUSION AND PERSPECTIVES

This paper contributes a structured approach to answering
the important but rarely tackled question of accuracy in surgical
simulation.

The novelty of our paper is to drive local adaptive mesh refine-
ment during needle insertion by a robust a posteriori estimate of
the discretization error.

This can be seen as a first step to control the error associated
with acceleration methods in needle insertion simulations, and
to separate the modeling (are we solving the right problem?)
and discretization error (are we solving the problem right?).

Verification of the discrete scheme is guaranteed in our ap-
proach because the a posteriori estimate asymptotically con-
verges to the exact error. As we use an implicit approach, we
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also control the error on the equilibrium equations. As such,
assuming a proper material model and kinematics for the prob-
lem, we can guarantee the accuracy of the solution. This is not
the case in explicit time stepping approaches.

Validation of the approach is not considered. We focus here
only on one source of error (discretization). Whilst this is a
limitation, we do believe that quantifying discretization errors
separately to modeling errors is necessary to devise accurate and
clinically-usable surgical simulators and to better understand the
resulting simulation results.

A natural direction for research, building on recent work on
data-driven simulations is to devise error-controlled approaches
able to learn from data as it is acquired during the simulation
[34]–[36]. In such a paradigm, the model would adapt to the real
situation, as opposed to being driven by a continuous indirect
comparison, as is the case in this work, with an unknown exact
solution. In turn, such a data-driven approach would facilitate
patient-specific simulations, which were not considered here.
We are currently investigating such directions through Bayesian
inference for parameter identification and model selection [37]
and uncertainty quantification approaches [38].
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