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Abstract. We introduce a concept that generalizes several different notions of a “centerpoint”
in the literature. We develop an oracle-based algorithm for convex mixed-integer optimization based
on centerpoints. Further, we show that algorithms based on centerpoints are “best possible” in
a certain sense. Motivated by this, we establish structural results about this concept and provide
efficient algorithms for computing these points. Our main motivation is to understand the complexity
of oracle-based convex mixed-integer optimization.
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1. Introduction. Consider the following unconstrained optimization problem

(1) min
(x,y)∈Zn×Rd

g(x, y),

where g : Rn×R
d → R is a convex function. To keep the problem as general as possi-

ble, we assume that g can be accessed only by a first-order evaluation oracle. In other
words, when queried at a point (x, y), the oracle returns the corresponding function
value g(x, y) and an element from the subdifferential ∂g(x, y). This allows us to model
very general, possibly nonsmooth, convex functions. The only additional assumption
we make to keep (1) tractable is that the minimization problem is bounded.

We present a general cutting plane algorithm based on the concept of center-
points, which we define below. We call it the centerpoint algorithm. Our approach
bears similarities to a number of continuous convex minimization algorithms and
to Lenstra-type algorithms [31, 20] for convex integer optimization problems. Most
variations of Lenstra-type algorithms rely on a combination of the ellipsoid method
and enumeration on lower-dimensional subproblems [27, 24, 33, 25, 38, 13]. The key
difference is that our algorithm avoids enumerating low-dimensional subproblems.

The main feature of this approach is that, from the point of view of the number of
function oracle calls, this algorithm is best possible, up to a lower-order factor. For this
purpose, we present our results for a somewhat general convex optimization problem
(see section 2 for details), and then specialize the results to continuous/integer/mixed-
integer convex optimization. We now proceed to the central concept of this paper.

Centerpoints. Let μ be a Borel measure on R
n such that 0 < μ(Rn) < ∞.

Without any loss of generality, we normalize the measure to be a probability measure,

∗Received by the editors September 8, 2016; accepted for publication (in revised form) March 21,
2017; published electronically May 9, 2017. Parts of the results presented in this paper appear in
the second author’s Ph.D. thesis, prepared at ETH Zurich, Zurich [37] and in the Proceedings of
the International Conference on Integer Programming and Combinatorial Optimization, Springer,
Cham, Switzerland, 2016 [4].

http://www.siam.org/journals/siopt/27-2/M109290.html
Funding: Amitabh Basu was supported in part by NSF grant CMMI1452820.

†Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD
21218 (basu.amitabh@jhu.edu).

‡School of Mathematics, Cardiff University, Cardiff, Wales, UK (oertelt@cardiff.ac.uk).

866

D
ow

nl
oa

de
d 

06
/0

2/
17

 to
 1

31
.2

51
.2

54
.2

38
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siopt/27-2/M109290.html
mailto:basu.amitabh@jhu.edu
mailto:oertelt@cardiff.ac.uk


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CENTERPOINTS 867

i.e., μ(Rn) = 1. A reader unfamiliar with measure theory may simply consider μ
to be a mixed-integer version of the Lebesgue measure, which generalizes both the
standard volume and the “counting measure” for the integer lattice. See (7) for a
precise definition.

For S ⊆ R
n nonempty and closed, we define the set of centerpoints C(S, μ) ⊆ S

as the set that attains the following maximum:

(2) F(S, μ) := max
x∈S

inf
u∈Sn−1

μ(H+(u, x)),

where Sn−1 denotes the (n− 1)-dimensional unit sphere with center in the origin and
H+(u, x) denotes the half-space {y ∈ R

n : u · (y − x) ≥ 0}. In other words, F(S, μ) is
the largest real number M > 0, such that there is a point x ∈ S with the property
that any half-space containing x has measure at least M . This definition unifies sev-
eral definitions from convex geometry, computer science, and statistics. Two notable
examples are the following:

1. Winternitz measure of symmetry. Let μ be the Lebesgue measure restricted
to a convex body K (i.e., K is compact and has a nonempty interior) or,
equivalently, the uniform probability measure on K, and let S = R

n. F(S, μ)
in this setting is known in the literature as the Winternitz measure of sym-
metry of K, and the centerpoints C(S, μ) are the “points of symmetry” of
K. This notion was studied by Grünbaum in [22] and surveyed by the same
author in [23]. Caplin and Nalebuff [10] generalize Grünbaum’s results to
measures μ with a concave density supported on a compact set K. Reference
[42] is a recent survey on measures of symmetry of convex bodies. Convex
geometry literature also studies the closely related concepts of floating bodies
and illumination bodies; see [46] for a survey.

2. Tukey depth and median. In statistics and computational geometry, the func-
tion fμ : Rn → R defined as

(3) fμ(x) := inf
u∈Sn−1

μ(H+(u, x))

is known as the half-space depth function or the Tukey depth function for the
measure μ, first introduced by Tukey [43]. Taking S = R

n, the centerpoints
C(Rn, μ) are known as the Tukey medians of the probability measure μ, and
F(Rn, μ) is known as the maximum Tukey depth of μ. Tukey introduced
the concept when μ is a finite sum of Dirac measures (i.e., a finite set of
points with the counting measure), but the concept has been generalized
to other probability measures and analyzed from structural [17, 40, 29], as
well as computational perspectives [40, 11, 9, 18]. See [34] for a survey of
structural aspects and other notions of “depth” used in statistics, and [18] and
the references therein for a survey and recent approaches to computational
aspects of the Tukey depth.

Our results. To the best of our knowledge, all related notions of centerpoints in
the literature have only considered the case where the set S is Rn, i.e., the centerpoint
can be any point from the Euclidean space. We consider a more general S, as this
allows us to analyze convex optimization problems where the solutions have to satisfy
side constraints like mixed-integer constraints, sparsity constraints (e.g., compressed
sensing), or complementarity constraints. Essentially, the closed subset S is going to
represent nonconvex feasibility constraints of our optimization problem; at the most
general level, all we require from S is that it is closed and nonempty.
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868 AMITABH BASU AND TIMM OERTEL

Table 1

Best bounds for the convex optimization problem (4) with box constraints.

S Upper bound Lower bound

R
d O

(
log e

e−1

(
Bd

δ

))
Ω
(
log2

(
Bd

δ

))
(Nemirovsky and Yudin)

Z
n O (n2n log2(B)) Ω (2n log2(B))

Z
n × R

d O
(
2n(d+ 1) log2

(
Bn+d

δ

))
Ω
(
2n
(
log2

Bd

δ

))

In section 2, we elaborate on this connection between centerpoints and algorithms
for optimizing convex functions over general closed sets S. We first give an algorithm
for solving such problems given access to first-order (separation) oracles, based on
centerpoints. We then focus on convex mixed-integer optimization and show that the
centerpoint algorithms is “best possible” in a certain sense, amongst a large class of
first-order oracle-based methods—see Table 1. This comprises our main motivation
in studying centerpoints.

In section 3, we provide lower bounds on the value of F(S, μ). In section 3.1, we
obtain lower bounds in terms of the Helly number of S with minimal assumptions
on S and μ. In section 3.2, we obtain better lower bounds for the special case when
S = Z

n ×R
d and μ is the “mixed-integer” uniform measure on K ∩ (Zn ×R

d), where
K is some convex body. Such bounds immediately imply bounds on the complexity
of oracle-based convex mixed-integer optimization algorithms.

In section 4, we present a number of exact and approximation algorithms for
computing centerpoints. To the best of our knowledge, the computational study of
centerpoints has only been done for measures μ that are a finite sum of Dirac mea-
sures, i.e., for finite point sets, or when μ is the uniform measure on two-dimensional
polygons (e.g., see [8] and the references therein). We initiate a study for other mea-
sures; in particular, the uniform measure on a convex body, the counting measure
on the integer points in a convex body, and the mixed-integer volume of the mixed-
integer points in a convex body. All our algorithms are exponential in the dimension n
but polynomial in the remaining input data, so these are polynomial time algorithms
if n is assumed to be a constant. Algorithms that are polynomial in n are likely to
not exist because of the reduction to the so-called closed hemisphere problem—see
Chapter 7 by Bremner, Fukuda, and Rosta in the collection of articles in [32].

We mention that the algorithms for computing centerpoints from section 4 are
based on the standard Turing machine model of computation and, therefore, work
with rational arithmetic. Consequently, since the coordinates of a centerpoint could
be irrational, our algorithms return points whose coordinates are arbitrary close ap-
proximations of the centerpoint coordinates. We alert the reader that our analysis of
the oracle complexity of cutting plane algorithms in section 2 ignores such arithmetic
issues and the results assume that exact centerpoints are used in the optimization al-
gorithm. A general framework for handling such arithmetic issues is described in [20].
For this reason, we do not discuss them further in this manuscript.

Throughout this paper we use the notation H−(u, x) := {y ∈ R
n : u · (y−x) ≤ 0}

and H(u, x) := {y ∈ R
n : u · (y − x) = 0} for u ∈ Sn−1 and x ∈ R

n. Recall
that H+(u, x) denotes the half-space {y ∈ R

n : u · (y − x) ≥ 0}. With int(X) we will
denote the interior of X ⊆ R

n.
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CENTERPOINTS 869

2. The connection to optimization. Given a nonempty, closed set S ⊆ R
n,

consider the following optimization problem:

(4) min
x∈S

g(x),

where g : Rn → R is a convex function given by a first-order evaluation oracle. The
same setting is currently being studied by De Loera et al., calling it S-optimization
[14]. Related models have also been proposed in integer programming; see [12] and
[47] and the references therein. We first define the class of algorithms against which
we will compare the centerpoint algorithm. We refer to this class as cutting plane
algorithms.

Definition 2.1 (cutting plane algorithm). Let S ⊆ R
n be a nonempty, closed

set and let ν be a Borel measure on R
n such that ν(Rn \ S) = 0, i.e., ν is supported

on S. A cutting plane algorithm for (4) with stopping criterion based on ν is an
algorithm with the following structure:

INPUT: An error guarantee δ > 0 and a convex set E0 that contains
the optimal solution in its interior and with ν(E0) > 0.
ITERATIONS: At each iteration i = 1, 2 . . . the algorithm selects a
point xi ∈ int(Ei−1)∩S, and then makes a call to a first-order oracle
for g at xi, which returns the function value g(xi) and a subgradient
hi ∈ ∂g(xi). We define x� := argminx∈{x1,...,xi} g(x) and define Ei

such that

(5) Ei ⊇ {x ∈ E0 : g(x�)− g(xj) ≥ hj · (x− xj) ∀j = 1, . . . , i}.

OUTPUT: The cutting plane algorithm stops at the N th iteration
when ν(int(EN )) ≤ δ and returns x�.

When S = R
n and ν is the standard Lebesgue measure, we obtain the standard

cutting plane algorithms for continuous convex optimization, such as the ellipsoid
method, method of centers of gravity, the Kelly method, or the level method [36,
section 3]. A variant of the cutting plane method which utilizes random sampling was
explored by Bertsimas and Vempala in [7] for continuous convex optimization. Their
method also falls under the general framework of Definition 2.1. When S = Z

n and ν
is the counting measure for Zn, we obtain cutting plane algorithms for convex integer
optimization problems. When S = Z

n × R
d, we obtain algorithms for convex mixed-

integer optimization. A natural choice of the measure is the mixed-integer measure
μ̄mixed, which we will discuss in the next section.

Remark 2.2. We give a short justification of our stopping criterion in Defini-
tion 2.1. Given general convex functions and the absence of any known structure for
S, one can only guarantee an approximate solution from an algorithmic point of view
in general (for structured S like Z

n, the situation is different). Typically, the quality
of such approximations is then quantified by an additive or multiplicative gap with re-
spect to the optimal function value. These often require additional estimations based
on further parameters, for example, a Lipschitz constant. Instead of considering the
gap in the function values, we approximate an optimal point and we quantify the ap-
proximation quality by an appropriate measure ν, thus circumventing any additional
assumptions or sources of error such as Lipschitz constants. At the end of this section,
we elaborate on how to extend our results to derive bounds on the additive gap with
respect to the optimal function value in the mixed-integer case.
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870 AMITABH BASU AND TIMM OERTEL

Remark 2.3. We also briefly comment on the assumption that ν(Rn \S) = 0, i.e.,
the measure is supported on S. One could consider more general measures that do
not satisfy this condition and analyze the class of algorithms obtained thus. However,
the mathematical analysis of this more general situation becomes more tedious with
many corner cases that need to be handled, without adding any new insight. It is more
elegant to restrict the analysis to measures that are supported on S. Consequently,
we build this into the definition of our cutting plane algorithm.

Definition 2.4 (centerpoint algorithm). Let S ⊆ R
n be a nonempty, closed set

and let ν be a Borel measure on R
n such that ν(Rn \ S) = 0. The centerpoint

algorithm is a cutting plane algorithm for (4) that chooses xi ∈ C(S, νi) from the set
of centerpoints, where νi is the measure ν restricted to int(Ei−1), and defines Ei to
be the right-hand side of (5).

For our general bounds we need three parameters related to S and ν.

Definition 2.5. Let S ⊆ R
n be a nonempty, closed subset and ν be a measure

on R
n that is finite for any bounded set.
(i) For any bounded convex set C ⊆ R

n with ν(C) > 0, define νC as the normal-
ized finite measure ν restricted to C. We define

c(S, ν) := inf
νC

F(S, νC).

(ii) We define the degeneracy parameter

χ(S, ν) := max
y∈S

min
u∈Sn−1

ν({x ∈ R
n : u · x = u · y}).

(iii) We say that ν is lower semicontinuous if for every ε > 0 and every open set
A ⊆ R

n, there exists a closed set A′ ⊆ A such that

ν(int(A′)) ≥ ν(A) − ε.

In Theorem 3.3, we will show that c(S, ν) ≥ h(S)−1, where h(S) denotes the Helly
number of S. However, for certain types of measures one can obtain stronger bounds,
e.g., see Corollary 2.8. Note that the parameter χ is zero when S corresponds to the
whole space, a mixed-integer lattice, or to sets obtained from sparsity constraints on
the variables. However, if S = Z

n and ν corresponds to the counting measure, then
χ(S, ν) = 1.

Our first general result showing the asymptotic optimality of the centerpoint-
based algorithm amongst cutting plane algorithms for (4) is the following.

Theorem 2.6 (general optimality bounds). Let S be a nonempty, closed set.
Let ν be a measure such that ν(Rn \ S) = 0, ν is finite for bounded sets, and ν is
lower semicontinuous (as defined in part (iii) of Definition 2.5). Further, assume that
c(S, ν) > 0. Let δ > 0 and E0 ⊆ R

n with ν(E0) = V > 0. The centerpoint algorithm
makes at most ⌈

log 1
1−c(S,ν)

(
V

δ

)⌉
first-order oracle calls for any convex function g. Moreover, for any cutting-plane-
based algorithm A with a stopping criterion based on ν, there exists a convex function
ĝ such that A will make at least⌈(

log2

(
V

δ + χ(S, ν)

))⌉
− 1

first-order evaluation oracle calls to ĝ.
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Proof. The upper bound follows from the fact that by choosing the centerpoint
at every iteration, one can guarantee that ν(int(Ei)) ≤ (1 − c(S, ν))ν(int(Ei−1)) for
every i = 1, . . . , N , where N is the number of iterations such that ν(int(EN )) ≤ δ.

For the lower bound, it suffices to establish the following claim whose proof ap-
pears below.

Claim 2.7. For any cutting plane algorithm A and a real number ε > 0, there
exists a sequence of convex functions {gi}∞i=1 such that for every i ≥ 1, if A runs for
i iterations on gi, then ν(int(Ei)) ≥ (12 )

iν(int(E0))− 2(ε− χ(S, μ)).

To obtain the lower bound stated in the theorem from this, we do the following:
Given δ > 0, V > 0, set N∗ := �(log2( V

δ+χ(S,ν) ))� − 1 and we run A on gN∗ . Using

Claim 2.7 with ε = δ
2 , we obtain that ν(int(EN∗)) ≥ (12 )

N∗
ν(int(E0))− δ − 2χ(S, μ).

Since the stopping criterion for the algorithm is ν(int(EN∗)) ≤ δ, the inequality
implies that A requires at least N∗ iterations to stop.

Proof of Claim 2.7. We construct the sequence {gi}∞i=1 in an adversarial manner;
we will actually construct epi(gi), the epigraphs of gi,

1 and use the fact that an
epigraph defines a convex function uniquely and vice versa.

In fact, we will inductively construct three sequences: convex functions {gi}∞i=0,
vectors {hi}∞i=1 ⊆ R

n, and real numbers {ξi}∞i=1 ⊆ R such that the following conditions
hold for every i ≥ 1.

(i) If algorithm A runs on the function gi for i iterations,

ν(int(Ei)) ≥
(
1

2

)i

ν(int(E0))−
⎛⎝i−1∑

j=0

1

2j

⎞⎠ · (ε + χ(S, ν)),

(ii) For any 0 ≤ j ≤ i, when the algorithm is executed for j iterations on gj and
gi, it queries the same points x1, . . . , xj .

(iii) For any 0 ≤ j ≤ i, {hj} = ∂gi(xj),
(iv) Let x1, . . . xi be the points queried by A when executed on gi for i iterations.

Then,

epi(gi) =
i⋂

j=1

{
(x, t) : E0 × R : t ≥ hj · (x − xj)−

j∑
k=1

ξk

}
.

First observe that (i) of the claim implies ν(int(Ei)) ≥ (12 )
iν(int(E0))−(

∑i−1
j=0

1
2j )·

(ε + χ(S, ν)) ≥ (12 )
iν(int(E0)) − 2(ε + χ(S, μ)). This would complete the proof of

Claim 2.7.
We prove the claim inductively. Let x1 ∈ int(E0) be the first point queried by A

on any convex function. Choose h1 ∈ R
n\{0} such that ν({x ∈ R

n : h1 ·x = h1 ·x1}) ≤
χ(S, ν), and that ν(int(E0)∩{x : h1 ·(x−x1) ≤ 0}) ≥ 1

2ν(int(E0)). Such a choice of h1

always exists. Set ξ1 = 0. Finally, define epi(g1) := {(x, t) : E0×R : t ≥ h1 · (x−x1)}.
One can now check that (i)–(iv) in the above claim hold for i = 1.

Now, suppose we have defined g1, . . . , gi, h1, . . . , hi, and ξ1, . . . , ξi for some i ≥ 1
such that (i)–(iv) hold. We now construct gi+1, hi+1, and ξi+1. Note that by (iii), the
algorithm chooses xi+1 ∈ int(Ei), where

Ei ⊇ Êi :=

{
x ∈ E0 : hj · (x − xj) ≤ −

i∑
k=j+1

ξk, j = 1, . . . , i

}
.

1For any function f : Rn → R, the epigraph of f is epi(f) := {(x, t) ∈ R
n × R : t ≥ f(x)}.
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If xi+1 ∈ int(Êi), then set gi+1 = gi, hi+1 ∈ ∂gi(xi+1) (which is well-defined) and
ξi+1 = 0. Otherwise, by our assumption that ν is lower semicontinuous, one can
choose ξi+1 > 0, such that following conditions hold for Ẽi := {x ∈ E0 : hj ·(x−xj) ≤
−∑i

k=j+1 ξk − ξi+1, j = 1, . . . , i}:
(A) ν(int(Êi))− ε ≤ ν(int(Ẽi)) and
(B) xi ∈ Ẽi.

Let hi+1 ∈ R
n \ {0} such that the following all hold:

(a) ν({x ∈ R
n : hi+1 · x = hi+1 · xi+1}) ≤ χ(S, ν),

(b) ν(int(Êi) ∩ {x ∈ R
n : hi+1 · (x− xi+1) ≤ 0}) ≥ 1

2ν(int(Êi)) and

(c) int({(x, t) : t ≥ hi+1 · (x− xi+1)−
∑i+1

k=1 ξk)}) ⊇ Êi × {∑i
k=1 ξk}.

Condition (a) can be ensured by the definition of χ(S, ν), (b) can be ensured by
choosing one of the closed half-spaces corresponding to the normal minimizing the
degeneracy parameter χ(S, ν), and (c) can finally be ensured by scaling down hi+1 as
required. Last, define

(6) epi(gi+1) = epi(gi) ∩
{
(x, t) : E0 × R : t ≥ hi+1 · (x− xi+1)−

i+1∑
k=1

ξk

}
.

To confirm condition (i), we observe that Ei+1 ⊇ Êi+1 and, therefore,

ν(int(Ei+1)) ≥ ν(int(Êi+1))

= ν(int(Ẽi ∩Hi+1))

≥ ν(int(Êi ∩Hi+1))− ε

≥ ν(int(Êi) ∩Hi+1)− χ(S, ν)− ε

≥ 1
2ν(int(Êi))− χ(S, ν)− ε.

To verify condition (ii), by induction we simply need to verify that if A queries
x1, . . . , xi on the first i iterations while executing on gi, then gi(xk) = gi+1(xk) for
all k = 1, . . . , i. This follows from condition (c) above that was maintained during
the choice of hi+1. Condition (iii) also follows from condition (c) above that was
maintained during the choice of hi+1. Condition (iv) follows from (6) and the fact
that inductively condition (ii) ensures that A queries the same points x1, . . . , xi on gi
and gi+1.

This concludes the proof of Theorem 2.6.

We obtain, as a special case, a known result of Nemirovski and Yudin [35] on the
optimality of the centerpoint algorithm for continuous convex optimization.

Corollary 2.8 (continuous convex optimization bounds). The centerpoint al-
gorithm is optimal amongst cutting plane algorithms for continuous convex optimiza-
tion in terms of number of function oracle calls, up to the constant factor log2(

e
e−1 ).

Proof. Grunbaüm showed that when S = R
n and ν is the Lebesgue measure,

c(S, ν) = ( n
n+1 )

n ≥ 1
e [22]. Theorem 2.6 then gives the result.

Remark 2.9. The assumption c(S, ν) > 0 in Theorem 2.6 excludes pathological
situations where the algorithm does not terminate. As an example, if S = Sn−1 is the
unit sphere, ν is the uniform measure supported on S, and g = ‖x‖2, then at every
iteration of the algorithm, only a single point is excluded and no progress is made in
terms of the measure even after countably many iterations.
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A more refined analysis for lattices and mixed-integer lattices. In this
section we consider the two cases S = Z

n and S = Z
n×R

d and where μ is the “uniform
measure” on a convex set intersected with S. More precisely, let K ⊆ R

n × R
d be a

convex set. Let vold be the d-dimensional volume (Lebesgue measure). We define the
mixed-integer volume with respect to K as

(7) μmixed,K(C) :=

∑
z∈Zn vold(C ∩K ∩ ({z} × R

d))∑
z∈Zn vold(K ∩ ({z} × Rd))

for any Lebesgue measureable subset C ⊆ R
n×R

d. For later use we want to introduce
the notation μ̄mixed(C) =

∑
z∈Zn vold(C ∩ ({z} × R

d)). The dimensions n and d will
be clear from the context.

Remark 2.10. Let K ⊆ R
n+d be a convex body and let μmixed,K denote the

mixed-integer volume with respect to K, as defined in (7). Observe that, if n = 0,
then μmixed,K(H+(u, x)) is continuous in u. Thus, the infimum over the compact unit
sphere is achieved. When n = 0 the function μmixed,K(H+(u, x)) remains continuous
nearly everywhere on Sn+d−1. Only on Sn−1×{0}d is the function piecewise constant
In particular, this implies that the infimum in (2) and (3) is actually achieved.

We will show below that when S = Z
n, and ν is the counting measure on Z

n,
c(S, ν) = 1

2n ; see Corollary 3.4. Note that when S = Z
n, one can choose δ < 1 in

which case a cutting plane algorithm will return a true optimal solution because if
ν(int(EN )) ≤ δ, this means there is no integer point left in EN and thus x� must
be an optimal solution. To this point we have made no assumption on our initial
E0, except that ν(E0) = V > 0. It is possible to design E0 such that either the
lower or the upper bound provided by Theorem 2.6 is the best possible. Examples
would be E0 = [0, B]× {0}n−1 or E0 = [0, B] × [0, 1]n−1, respectively, where B ≥ 1.
However, these are rather artificial constructions. A more common assumption is that
an optimal solution x̂ has a bounded representation, say ‖x̂‖∞ ≤ B for some natural
number B ≥ 1. This would imply that we initiate the algorithm with E0 being a box.
For ease of presentation we will assume that E0 = [0, B)n, i.e., E0 is not centrally
symmetric to the origin. It follows, that ν(E0) equals Bn and Bn+d for the integer
and the mixed-integer case, respectively. (Of course other definitions of initial E0’s
are also plausible, for example, balls. In these cases one could also do a more refined
analysis as described below. In the case of the ball the bound would differ only by a
linear factor in terms of the root of the dimension. This is a consequence of John’s
ellipsoid theorem.) Then, the bound in Theorem 2.6 says that the centerpoint-based
algorithm takes at most⌈

log 1
1−c(S,ν)

(
V

δ

)⌉
= O (n2n log2(B))

function oracle calls, where one uses the inequality − ln(1 − x) ≥ x for 0 < x < 1 to
deduce that − ln(1− 1

2n ) ≥ 1
2n . On the other hand, the lower bound in Theorem 2.6

gives ⌈
log2

(
V

δ

)⌉
− 1 = �n log2(B)� − 1.

This exponential gap between the upper and the lower bounds can be improved using
the lattice structure of S.

Theorem 2.11 (pure integer convex optimization bound). Let S = Z
n, ν is the

counting measure on Z
n, E0 = [0, B)n where B ≥ 2 is an integer, and δ < 1. Then
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for any cutting plane algorithm A there exists an instance such that A makes at least
2n−1 (�log2(B)�+ 1) first-order evaluation oracle calls on ĝ.

Proof. The proof follows the same idea as in the proof of Theorem 2.6, except
that this time we exploit the discrete structure of S. The important thing to illustrate
is the choice of the subgradents {hi}∞i=1 from that proof.

For each v ∈ {0, 1}n−1 we define the fiber Fv := {0, 1, . . . , B − 1} × {v} and let
S0 := ∪v∈{0,1}n−1Fv. We now construct the adversarial ĝ in an analogous manner to
the proof of Theorem 2.6 by defining the adversarial subgradient half-spaces, or cuts.
Whenever an algorithm queries the function oracle on a point x /∈ S0, then we can
always choose the subgradient at x such that the half-space contains S0. Otherwise,
if x ∈ S0, we know by definition that x ∈ Fv̄ for some v̄ ∈ {0, 1}. We now choose
the subgradient half-space that removes at most half of the remaining points in Fv̄

and keeps the remaining fibers Fv, v = v̄ intact. It then follows that on each of the
2n−1 fibers, the algorithm has to perform at least �log2(B)�+ 1 function oracle calls.
Therefore, in all, the algorithm must perform at least 2n−1(�log2(B)� + 1) function
oracle calls.

For the mixed-integer case S = Z
n × R

d with the measure ν = μ̄mixed, we will
show below that c(S, ν) ≥ 1

2n(d+1) ; see Corollary 3.4. Similarly to the pure integer

case above, assuming we start with E0 as the box [0, B)n for some natural number
B ≥ 2, the bound in Theorem 2.6 says that the centerpoint-based algorithm takes at
most ⌈

log 1
1−c(S,ν)

(
V

δ

)⌉
= O

(
2n(d+ 1) log2

(
Bn+d

δ

))
function oracle calls. On the other hand, the lower bound in Theorem 2.6 gives⌈

log2

(
V

δ

)⌉
= (n+ d) log2

(
B

δ

)
.

However, similarly to Theorem 2.11, one can improve the lower bound in the
mixed-integer case too.

Theorem 2.12 (mixed-integer convex optimization bound). Let S = Z
n × R

n,
and ν is the mixed integer measure on S. Then for any cutting plane algorithm A
there exists an instance such that A makes at least 2n(log2(

Bd

δ ) + n − 1) first-order
evaluation oracle calls on ĝ.

Proof. The proof is similar to the proof of Theorem 2.11. We can construct an
adversarial function, that treats each fiber Fv := {v}× [0, B), where v ∈ {0, 1}n, as a
separate d-dimensional continuous problem.

For all fibers Fv, let δv denote the measure of EN intersected with Fv. By the
stopping criteria, it must hold that

∑
v δv ≤ δ. By Theorem 2.6 we know that at least

(log2(
Bd

δi
)) − 1 function oracle calls must be performed on each Fv, and by choosing

our subgradient half-spaces in the same way as in the proof of Theorem 2.11, we
obtain that the algorithm must make at least

N ≥
∑

v∈{0,1}n

((
log2

(
Bd

δv

))
− 1

)
= 2n(log2(B

d)− 1)− log2

⎛⎝ ∏
v∈{0,1}n

δv

⎞⎠
function orcale calls. Note that the last summand is minimized when δi =

δ
2n for all
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i = 1, . . . , 2n. Hence,

N ≥ 2n(log2(B
d)− 1)− log2

((
δ

2n

)2n
)

= 2n
(
log2

(
Bd

δ

)
+ n− 1

)
.

This completes the proof.

We finish this section with a few remarks. As it was already proven by Nemirovsky
and Yudin [35], the centerpoint algorithm is optimal for the continuous case up to
a constant factor. For the pure integer case we could prove that our algorithm is
optimal up to a linear factor in n. For the mixed-integer case, if Conjecture 3.5 would
be true, we would have an upper bound of⌈

log e

e− 1
2n

(
Bn+d

δ

)⌉
.

In particular, this would imply that the cutting plane algorithm, using centerpoints,
is optimal for mixed-integer optimization, up to a linear factor only in n, which would
nicely unify the continuous and discrete optimization theory; see Table 1.

Next, we want to point out that it is not difficult to generalize the cutting plane
algorithm to the constrained optimization case:

min
x∈Zn×Rd,

h(x)≤0

g(x),

where g, h : Rn ×R
d → R are convex functions given by first-order oracles. However,

it is crucial that the feasible domain has a reasonably sized measure, as otherwise
it might be impossible to find any feasible point, let alone an approximate optimal
point. Further, the algorithm can be extended to handle quasi-convex functions, if
one has access to separation oracles for their sublevel sets.

Finally, note that for the purely discrete case, when S = Z
n, we can guarantee

to find the optimal point of (4), provided we choose δ < 1. Only when there are
continuous variables, do we need to talk about approximations. Thus, let S = Z

n×R
d

with d = 0. We assume that for every fixed x ∈ Z
n, g(x, y) is Lipschitz continuous in

the y variables with Lipschitz constant L. Let (x̂, ŷ) ∈ Z
n×R

d attain the optimal value
ĝ of problem (4) and let (x�, y�) be the best point that the cutting plane algorithm has
returned with objective value g�. By standard arguments, we can bound μ̄mixed(Ek)
from below as follows:

μ̄mixed(Ek) ≥ μ̄mixed({(x, y) ∈ Z
n × R

d : g((x, y))− ĝ ≤ g� − ĝ})

≥ μ̄mixed

({
(x̂, y) ∈ {x̂} × R

d : ‖(x̂, ŷ)− (x̂, y)‖2 ≤ g� − ĝ

L

})
=

(
ĝ − g�

L

)d

κd,

where κd denotes the volume of the d-dimensional unit ball. On the other hand, after
N iterations it holds that

μmixed(EN ) ≤ δ.

Thus, we can guarantee that the algorithm returns a point satisfying g(x�, y�) −
g(x̂, ŷ) ≤ L( δ

κd
)

1
d .
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3. Bounds on F(S, µ). We first establish some analytic properties of fμ. This
will justify the use of “maximum” in (2), instead of a supremum. The goal of this
section is to establish a bound on the quality of the centerpoints based on Helly
numbers of S, which will be followed by a better lower bound when S is the mixed-
integer lattice. We will denote the complement of a set X by Xc. We begin with a
useful lemma.

Lemma 3.1. For any probability measure μ, fμ(x) defined in (3) is quasi-concave
on R

n and upper semicontinuous.

Proof. For quasi-concavity, see [40, Proposition 1], and for upper semicontinuity,
see [40, Proposition 4].

Remark 3.2. Lemma 3.1 shows that supx∈S fμ(x) is always attained. See [40,
Proposition 7] where this is discussed for S = R

n. The generalization to any nonempty,
closed subset S is easy; see also [40, Proposition 5] which states the for every α > 0,
the set {x ∈ R

n : fμ(x) ≥ α} is compact.

3.1. A general lower bound based on Helly numbers. We generalize a
theorem well known in the literature on half-space (Tukey) depth [40, Proposition 9];
this was earlier stated by Grünbaum [22, Theorem 1] for uniform probability measures
on convex bodies. In all of these works, the authors consider S = R

n, as discussed
in the introduction. We consider more general sets S. For this we define the Helly
number of a set S ⊆ R

n. Let K := {S∩K | K ⊆ R
n convex}. Then the Helly number

h = h(S) ∈ N of S is defined as the smallest number such that the following property
is satisfied for all finite subsets {C1, . . . , Cm} ⊆ K: If

Ci1 ∩ · · · ∩ Cih = ∅ for all {i1, . . . , ih} ⊆ {1, . . . ,m}
then

C1 ∩ · · · ∩ Cm = ∅.
If no such number exists, then h(S) = ∞. This extension of Helly’s number was first
considered by Hoffman [26], and has recently been studied in [2, 1, 15].

Theorem 3.3. Let S ⊆ R
n be a nonempty, closed subset and let μ be such that

μ(Rn \ S) = 0. If h(S) < ∞, then F(S, μ) ≥ h(S)−1.

Proof. The proof follows along similar lines to [40, Proposition 9]. It suffices to
show that for every ε > 0, the set {x ∈ R

n : fμ(x) ≤ h(S)−1 − ε} is nonempty. By
standard measure-theoretic arguments, there exists a ball B centered at the origin
such that μ(B) ≥ 1 − ε

2 and {x ∈ R
n : fμ(x) ≤ h(S)−1 − ε} ⊆ B (by Remark 3.2,

{x ∈ R
n : fμ(x) ≤ h(S)−1 − ε} is compact). By [40, Proposition 6],

{x ∈ S : fμ(x) ≤ h(S)−1 − ε}
=
⋂

{H ∩ S : H is a closed half-space with μ(H) ≥ 1− (h(S)−1 − ε)}.

Define C = {B∩H∩S : H is a closed half-space with μ(H) ≥ 1−(h(S)−1−ε)}. Thus,
C is a family of compact sets such that {x ∈ S : fμ(x) ≤ h(S)−1− ε} =

⋂{C : C ∈ C}.
For any subset {C1, . . . , Ch(S)} ⊆ C of size h(S), we claim

μ(Cc
1 ∪ . . . Cc

h(S)) ≤ 1− h(S)
ε

2
.

This is because each Cc
i = Bc ∪ Hc

i ∪ Sc for some half-space Hi satisfying μ(Hc
i ) ≤

h(S)−1 − ε. Since μ(Bc) ≤ ε
2 and μ(Sc) = 0, we obtain that μ(Cc

i ) ≤ h(S)−1 − ε
2 .
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Therefore,

μ(C1 ∩ . . . ∩Ch(S)) = 1− (μ(Cc
1 ∪ . . . Cc

h(S))) ≥ 1−
(
1− h(S)

ε

2

)
= h(S)

ε

2
> 0.

This implies that C1 ∩ . . .∩Ch(S) = ∅. Therefore, by the definition of h(S), for every
finite subset {C1, . . . , Cm} ⊆ C, C1 ∩ · · · ∩Cm = ∅. By the finite intersection property
of compact sets, we obtain that {x ∈ S : fμ(x) ≤ h(S)−1 − ε} =

⋂{C : C ∈ C} is
nonempty.

By applying the well-known bound for the mixed-integer Helly number [26, 2, 15]
we get the following corollary.

Corollary 3.4. F(Zn×R
d, μ) ≥ 1

2n(d+1) for any finite measure μ on R
n+d such

that μ(Rn+d \ (Zn × R
d)) = 0. In particular, this holds for μmixed,K for any convex

body K ⊆ R
n × R

d.

3.2. Better bounds for the mixed-integer lattice. We would like to im-
prove the bound on F(Zn × R

d, ν) coming from Helly numbers (Theorem 3.3 and
Corollary 3.4) when ν is a mixed-integer measure. Better bounds have been obtained
by Grünbraum for the purely continuous case (n = 0), by exploiting properties of
the centroid of a convex body K, which is defined as cK :=

∫
K xdμ(x), where the

integral is taken with respect to the uniform measure μ on K. Grünbaum proved in
[22] that μ(H+(u, cK)) ≥ ( d

d+1 )
d ≥ e−1 for any u ∈ Sd−1, which immediately implies

that F(Rd, μ) ≥ e−1. This, of course, drastically improves the Helly bound of 1
d+1 .

Note that, even though the centerpoint and centroid are equal for several extreme
cases, this is, in general, not true. In the following we want to extend these improved
bounds to the mixed-integer setting. Ideally, we would want to prove the following
conjecture.

Conjecture 3.5. Let S = Z
n × R

d and let ν := μmixed,K for some convex body
K ∈ R

n+d. Then F(Zn × R
d, ν) ≥ 1

2n (
d

d+1)
d ≥ 1

2n
1
e .

While we have not been able to resolve the above conjecture, we show that it
holds in the regime of convex sets K with “large” lattice width, where the lattice
width is defined as

ω(K) := min
z∈Zn\{0}

[
max
x∈K

u · x−min
x∈K

u · x
]
.

In fact, we prove something stronger in this regime.

Theorem 3.6. There exists a universal constant α such that for all n, d ∈ N and
any convex body K ⊆ R

n+d with ω(K) > 2cn(n + d)5/2αnn+1 for some c ∈ R+, the
following holds:

F(Zn × R
d, ν) ≥ e−

1
c−1 + e−

2
c − 1.

In particular, when c ∈ R+ is such that e−
1
c−1 + e−

2
c − 1 ≥ 2−n−1, we have

F(Zn × R
d, ν) ≥ 1

2n
1
2 ≥ 1

2n (
d

d+1 )
d ≥ 1

2n
1
e .

We denote the projection of a set X ⊆ R
n+d onto the first n coordinates by X |Rn .

Remark 3.7. Theorem 3.6 provides some evidence towards our belief in Conjec-
ture 3.5. In particular, we see that it holds in two distinct regimes.

Suppose the convex set K is such that K|Rn is “thin” in every direction; more
precisely, suppose there exists a constant C such that for every unit vector ei, i =
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1, . . . , n, we have maxx∈K ei ·x−minx∈K ei ·x ≤ C. Then F(Zn×R
d, ν) ≥ 1

Cn (
d

d+1 )
d.

This is witnessed by choosing the centroid of the fiber with at least 1
Cn fraction of the

total mass of K ∩ (Zn ×R
d)—such a fiber exists because there are at most Cn fibers

intersecting K.
On the other hand, suppose K is such that K|Rn is “fat” in every direction; more

precisely, the hypothesis of Theorem 3.6 holds. Then we get an even stronger bound
than 1

2n (
d

d+1)
d from Theorem 3.6.

The rest of this section is devoted to the proof of Theorem 3.6. The main in-
gredient in the proof of Theorem 3.6 is Lemma 3.8, where we show that for convex
sets with large lattice width, the d-dimensional Lebesgue measure ν̄ := μ̄mixed of
K ∩ (Zn ×R

d) can be approximated by the (d+ n)-dimensional Lebesgue measure μ̄
of K and vice versa. (Note that in this case we do not normalize the measures.) In
the pure integer setting, i.e., d = 0, this connection is well known. However, to the
best of our knowledge, this kind of result has never been proven for the mixed-integer
setting nor explicitly with respect to the lattice width.

Lemma 3.8. There exists a universal constant α such that for all n, d ∈ N and
any convex body K ⊆ R

n+d and ω(K|Rn) ≥ cn(n+d)5/2αnn+1 for some c ∈ R+, then
the following holds:

e−
1
c ≤ ν̄(K ∩ (Zn × R

d))

μ̄(K)
≤ e

1
c .

For the proof of Lemma 3.8 we need two technical auxiliary lemmas. The first
lemma, Lemma 3.9, gives an ellipsoidal approximation of a convex body using the
centerpoint as the center of the two ellipsoids used for the approximation. This is a
variation on the classical Fritz-John ellipsoidal approximation result. In the second
lemma, Lemma 3.10, we show that for a convex body K with large lattice-width,
there exists a basis for the mixed-integer lattice such that K contains a scaled copy
of the fundamental parallelepiped of the lattice with respect to this basis, centered at
the centerpoint of K.

Lemma 3.9. Let K ⊆ R
n be a compact convex set with nonempty interior and let

μ be the uniform measure with respect to K. Further let x� ∈ C(Rn, μ). Then, there
exists an ellipsoid E centered at the origin such that

x� + E ⊆ K ⊆ x� + n5/2E.

Proof. Without loss of generality we assume that x� = 0. We prove that for any
u ∈ Sn−1

(8)
1

n2
≤
∣∣∣∣maxx∈K uTx

minx∈K uTx

∣∣∣∣ ≤ n2.

It suffices to show the lower bound, since the upper bound follows from replacing
u with −u.

Let |maxx∈K uTx
minx∈K uTx | be minimized at u = ū. Since the arguments below are invariant

to scaling, we will assume that minx∈K ūTx = −1 and maxx∈K ūTx =: α, and assume
to the contrary that α < 1

n2 . Let z := argminx∈K ūTx. We define for every t ∈ R

the set Kt := K ∩ {x ∈ R
n : uTx = t}. Further, we define C := z + cone(K0 − z),

X1 := {x ∈ R
n : −1 ≤ uTx ≤ 0}, and X2 = {x ∈ R

n : 0 ≤ uTx ≤ α}. Then
K ∩X1 ⊃ C ∩X1 and K ∩X2 ⊆ C ∩X2. By Grünbaum’s theorem [22, Theorem 2]
we have that 1−( n

n+1 )
n ≥ μ(K∩X1) ≥ μ(C∩X1) =

1
n

V
vol(K) , where V represents the

D
ow

nl
oa

de
d 

06
/0

2/
17

 to
 1

31
.2

51
.2

54
.2

38
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CENTERPOINTS 879

(n−1)-dimensional measure ofK0. On the other hand we have ( n
n+1 )

n ≤ μ(K∩X2) ≤
μ(C ∩X2) = ( (1+α)n

n − 1
n )

V
vol(K) . Combining these two inequalities, we arrive at the

inequality
1

e − 1
≤ ( n

n+1 )
n

1− ( n
n+1 )

n
≤ (1 + α)n − 1 ≤

(
1 +

1

n2

)n

− 1.

However, (1 + 1
n2 )

n − 1 < 1
e−1 for all n ≥ 2, leading to a contradiction.

We now define

sym(K) = max{α ≥ 0 : α(−y) ∈ K for every y ∈ K},
a notion that was introduced by Minkowski, and has been extensively studied in
convex geometry literature [6, 42]. Combined with [6, Proposition 1], (8) implies that
sym(K) ≥ 1

n2 . Then [6, Theorem 7] shows that there exists an ellipsoid E centered

at the origin satisfying E ⊆ K ⊆ n5/2E.

Lemma 3.10. There exists a universal constant α such that the following holds
for all n, d ∈ N. Let K ⊆ R

n+d be a convex body and let x� ∈ C(Rn, μ), where μ is
the uniform measure with respect to K. If ω(K|Rn) ≥ cn(n + d)5/2αnn+1 for some
c ∈ R+, then there exists a matrix B = [b1, . . . , bn] ∈ R

(n+d)×n such that

x� + cnB[−1/2, 1/2]n ⊆ K,

and b1|Rn , . . . , bn|Rn forms a lattice basis of Zn.

Proof. By Lemma 3.9, there exists an ellipsoid E such that x� + E ⊆ K ⊆
x� + (n + d)5/2E. We define φ : Rn → R

n as the linear map such that φ(E|Rn) =
{x ∈ R

n : ‖x‖2 ≤ 1}. Let Λ := φ(Zn).

Let B̂ be a matrix whose columns B̂�,1, . . . , B̂�,n form a Korkine–Zolotarev basis
of Λ [28]. Then, a well-known property is that

(9) ‖B̂�,1‖2 · · · ‖B̂�,n‖2 ≤ αnn det(Λ)

(see [30, Theorem 2.3]), where α is a universal constant. Further, the Gram–Schmidt

orthogonalization B̃�,1, . . . , B̃�,n of B̂ satisfies

(10) ‖B̃�,i‖2 ≤ ‖B̂�,i‖2 for all i = 1, . . . , n

and it holds that

(11) det(Λ) = det(B̂) = det(B̃) =
n∏

i=1

‖B̃�,i‖2

(see, for example, [21, Chapter 28]). Since K ⊆ x� + (n + d)5/2E, the definition of
the lattice width ω(K|Rn) implies that

(12) ‖B̃�,n‖2 ≤ 2(n+ d)5/2

ω(K|Rn)
.

Putting all these relations together, for all j ∈ {1, . . . , n}, we have the following:

(
∏

i�=n ‖B̃�,i‖) · ‖B̂�,n‖ ≤ (
∏

i�=n ‖B̂�,i‖) · ‖B̂�,n‖ using (10)

≤ αnn det(Λ) using (9)

= αnn(
∏n

i=1 ‖B̃�,i‖) using (11)

≤ (
∏

i�=n ‖B̃�,i‖)αnn 2(n+d)5/2

ω(K|Rn) using (12)
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and, thus, we obtain

‖B̂�,n‖2 ≤ 2αnn(n+ d)5/2

ω(K|Rn)
.

If we change the order of the columns in B̂, (9)–(12) still hold (with a different B̂�,n),
and thus we obtain a bound on the Euclidean length of all Korkine–Zolotarev vectors,
i.e., for all i = 1, . . . , n

‖B̂�,i‖2 ≤ 2αnn(n+ d)5/2

ω(K|Rn)
.

This implies that

1

n

1

αnn

ω(K|Rn)

(n+ d)5/2
B̂[−1/2, 1/2]n ⊆ {x ∈ R

n : ‖x‖2 ≤ 1}.

Since ω(K|Rn) ≥ cn(n+ d)5/2αnn+1, we obtain that

cnB̂[−1/2, 1/2]n ⊆ {x ∈ R
n : ‖x‖2 ≤ 1}.

We now use the fact that there exists an affine subspace H ⊆ R
n+d of dimension

n such that E|Rn = (E ∩ H)|Rn . This follows from a repeated application of [16,
Lemma 3]. Let B be the matrix whose columns span the linear space parallel to H

and these columns project to φ−1(B̂�,1), . . . , φ
−1(B̂�,n). B now satisfies the condition

desired.

We are now ready to prove Lemma 3.8.

Proof of Lemma 3.8. By Lemma 3.10 there exists a matrix B ∈ R
(n+d)×n such

that x� + cnB[−1/2, 1/2]n ⊆ K. Since B|Rn is unimodular, we may assume after
a unimodular transformation that B|Rn equals the identity matrix. After a further
volume preserving linear transformation we may even assume that B equals the first
n unit vectors in R

n+d. Since K is full dimensional, there exists an ε > 0 such that
c n[−1/2, 1/2]n × ε[−1/2, 1/2]d ⊆ K − x�. To make the calculations below easy, we
translate everything by −x�, so that we assume below that x� = 0.

We next exploit that limk→∞ 1
kd |K ∩ (Zn × 1

kZ
d)| = ν̄(K ∩ (Zn ×R

d)), where | · |
denotes the cardinality. We will use this fact to prove the following.

Claim 3.11.(
1− 1

cn

)n(
1− 1

εk

)d

≤
1
kd |K ∩ (Zn × 1

kZ
d)|

μ̄(K)
≤
(
1 +

1

cn

)n(
1 +

1

εk

)d

.

Proof. Let Q := [−1/2, 1/2]n × [−1/2k, 1/2k]d. Further we define

K̄ :=

(
K ∩ (Zn × 1

k
Z
d)

)
+Q

and Kλ,γ :=
(

λIn 0
0 γId

)
K for λ, γ ∈ R+. Notice that Kλ1,γ1 +Kλ2,γ2 = Kλ1+λ2,γ1+γ2

and Q ⊆ K 1
cn , 1

εk
.

Since 1
kd |K ∩ (Zn × 1

kZ
d)| = μ̄(K̄), it suffices to show that

K1− 1
cn ,1− 1

εk
⊆ K̄ ⊆ K1+ 1

cn ,1+ 1
εk
.

One of the containments follows from the observations that K̄ ⊆ K+Q and K+Q ⊆
K1+ 1

cn,1+1/εk. In order to prove K1− 1
cn ,1− 1

εk
⊆ K̄, suppose to the contrary that there
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exists an x ∈ K1− 1
cn ,1− 1

εk
\ K̄. We define z ∈ Z

n × 1
kZ

d, such that zi = �xi� for

1 ≤ i ≤ n and zi =
1
k �k xi� for n < i ≤ n+ d.2 Then, since z − x ∈ Q ⊆ K 1

cn , 1
εk

and

x ∈ K1− 1
cn ,1− 1

εk
, we obtain that z must be in K ∩ (Zn × 1

kZ
d). Since Q is symmetric,

x − z is also in Q, and therefore x ∈ z + Q ⊆ K ∩ (Zn × 1
kZ

d) + Q = K̄, which
contradicts the choice of x.

We get the desired inequalities from Claim 3.11 by letting k go to infinity and
using the fact that (1 + 1

cn )
n ≤ e

1
c and (1− 1

cn )
n ≥ e−

1
c for all c ∈ R+ and n ∈ N.

To complete the proof of Theorem 3.6 we introduce the following technical round-
ing procedure. Let K be a convex body with a sufficiently large lattice width, i.e.,
ω(K) > cn(n + d)5/2αnn

√
n for some positive integer c, where α is the constant

from Lemma 3.8. Let μ be the uniform measure on K and let x� ∈ C(Rn+d, μ).
By Lemma 3.10, there exist bi ∈ (−x� + K) ∩ (Zn × R

d) for i = 1, . . . , n such that
b1|Rn , . . . , bn|Rn is a lattice basis of Zn and x� + cnB[−1/2, 1/2]n ⊆ K. In addition
we define bi ∈ R

n+d as the ith unit vector for i = n+1, . . . , n+d. Hence, b1, . . . , bn+d

define a basis of Rn+d.
Given x =

∑n+d
i=1 λibi ∈ R

n+d with λi ∈ R for all i, we define [x]K ∈ Z
n × R

d as∑n
i=1�λi�bi+

∑n+d
i=n+1 λibi, i.e., we round x to a close mixed-integer point with respect

to K (the dependence on K is through Lemma 3.10 which defines the matrix B).

Theorem 3.12. Let α be the constant from Lemma 3.8. Let ν := μmixed,K, where
K ⊆ R

n+d is a convex body and ν(K) = 0, and let x� be the centerpoint with respect
to μ, the uniform measure on K. If ω(K|Rn) > 2cn(n+d)5/2αnn+1 for some c ∈ R+,
then

fν([x
�]K) ≥ e−

1
cF(Rd+n, μ) + e−

2
c − 1.

Grünbaum’s theorem implies then, that F(Zn×R
d, ν) ≥ e−

1
c−1+ e−

2
c − 1, giving

us Theorem 3.6.

Proof of Theorem 3.12. As before, let μ̄ denote the (d+n)-dimensional Lebesgue
measure with respect to K and let ν̄ denote the d-dimensional Lebesgue measure with
respect to K ∩ (Zn × R

d), i.e., they are not normalized.
In a first step we prove the following claim.

Claim 3.13. For any half-space H+,

ν(H+) ≥ μ(H+) + e−
2
c − 1.

Proof of Claim 3.13. Let H+ be any half-space and let H− denote its closed com-
plement. The lattice width of either (K ∩ H+)|Rn or (K ∩ H−)|Rn is larger than or
equal to ω(K|Rn)/2. If ω(K ∩H−) ≥ cn(n+ d)5/2αnn√n, then, by Lemma 3.8,

ν(H+) =
ν̄(K ∩H+)

ν̄(K)
≥ e−

1
c μ̄(K)− e

1
c μ̄(K ∩H−)

e
1
c μ̄(K)

=
μ̄(K ∩H+)

μ̄(K)
+

(e−
1
c − e

1
c )μ̄(K)

e
1
c μ̄(K)

= μ(H+) + e−
2
c − 1.

2For x ∈ R, �x� denotes the integer z ∈ Z such that for each component |z − x| ≤ 1
2
.
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If ω(K ∩H+) ≥ cn(n+ d)αnn
√
n, then, by Lemma 3.8,

ν(H+) =
ν̄(K ∩H+)

ν̄(K)
≥ e−

1
c μ̄(K ∩H+)

e
1
c μ̄(K)

= e−
2
c μ(H+)

= μ(H+)− (1− e−
2
c )μ(H+)

≥ μ(H+) + e−
2
c + 1.

The last inequality holds since μ(H+) ≤ 1 and 1− e−
2
c ≥ 0.

In the second step we bound the error made by rounding the x� to [x�]K . Note
that this is done with respect to a matrix B that is returned from Lemma 3.10. We
first make a unimodular transformation so that B|Rn is the identity and then make
an affine transformation so that B consists of the first n unit vectors in R

n+d. To
make a further simplification, we translate everything by −x� so that x� = 0.

Define Kλ,γ :=
(

λIn 0
0 γId

)
K for any λ, γ ≥ 0. Since we assume x� = 0, our

rounding procedure implies that [x�] ∈ B[−1/2, 1/2]n. By Lemma 3.10, this implies
that [x�] ∈ K 1

cn ,0. Therefore, [x�] + K1− 1
cn ,1 ⊆ K. This implies that for any u ∈

Sn+d−1, μ(H+(u, [x�]K)) ≥ (1− 1
cn )

nμ(H+(u, x�)) ≥ e−
1
cμ(H+(u, x�)).

Together with the previous claim it follows that

fν([x
�]K) = maxu∈Sn+d−1 ν(H+(u, [x�]K))

≥ maxu∈Sn+d−1 μ(H+(u, [x�]K)) + e−
2
c − 1

≥ maxu∈Sn+d−1 e−
1
cμ(H+(u, x�)) + e−

2
c − 1

≥ e−
1
cF(Rd+n, μ) + e−

2
c − 1.

This completes the proof.

4. Computational aspects. All our algorithms discussed in this section are
under the standard Turing machine model of computation. We say that x ∈ S is an
ε-centerpoint for S, μ, if fμ(x) ≥ F(S, μ) − ε, where F(S, μ) is defined in (2) and fμ
is defined in (3).

A central tool in the following algorithms for computing (approximate) center-
points is solving convex mixed-integer optimization problems. The classical result
here is due to Grötschel, Lovász, and Schrijver [20]. This classical algorithm requires
an access to a first-order oracle for the convex function at all points in R

n. It can
be modified to solve the problem with access to a first-order oracle that only queries
mixed-integer points (as opposed to any point in R

n). This modification will be use-
ful for us in this section, in particular, for Theorem 4.4. For completeness, we give
a description of the result most amenable for our purposes; an appropriate reference
for this version is [38].

Theorem 4.1. Let S = Z
n × R

d, B ≥ 0, and ε > 0. Let f : Rn × R
d → R be

a quasi-concave function equipped with an oracle such that there exists δ ≤ (C ε
B )n+d

for some universal constant C independent of B, n, d, ε with the following property.
For any point (x̄, ȳ) ∈ S, the oracle returns an approximate function value f̄ and an
approximate separation vector ū ∈ Sn+d−1 with the following guarantees:

(i) There exists an optimal solution in argmaxx∈S f(x) with norm at most B,
(ii) |f(x̄, ȳ)− f̄ | ≤ δ,
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(iii) ‖u− ū‖∞ ≤ δ for some u ∈ Sn+d−1 satisfying {(x, y) ∈ S : f(x, y) ≥ f(x̄, ȳ)}
⊆ {(x, y) : u · (x, y) ≤ u · (x̄, ȳ)}.

Then there is an algorithm that computes a point x∗ ∈ S such that maxx∈S f(x) −
f(x∗) ≤ ε. Moreover, if n is fixed, the algorithm runs in time polynomial in log(B),
log(1ε ), and d.

4.1. Exact algorithms.

4.1.1. Uniform measure on polytopes. Since the rationality of the center-
point for uniform measures on rational polytopes is an open question, we consider an
“exact” algorithm as one which returns an ε-centerpoint and runs in time polynomial
in log(1ε ) and the size of the description of the rational polytope.

Theorem 4.2. Let n be a fixed natural number. There is an algorithm which
takes as input a rational polytope P ⊆ R

n and ε > 0, and returns an ε-centerpoint for
S = R

n and μ, the uniform measure on P . The algorithms runs in time polynomial
in the size of an irredundant description of P and log(1ε ).

Proof. Since fμ defined in (3) is quasi-concave by Lemma 3.1, an x∗ satisfying
fμ(x

∗) ≥ F(S, μ) − ε can be found using Theorem 4.1, if one has an approximate
evaluation oracle for fμ, and an approximate separation oracle for the level sets.

Implementing these oracles boils down to the following: Given x̄ ∈ R
n and δ > 0,

find ū ∈ Sn−1 such that

(13) μ(H+(ū, x̄)) ≤ min
u∈Sn−1

μ(H+(u, x̄)) + δ and ‖u− ū‖∞ ≤ δ

for some u ∈ argminu∈Sn−1 μ(H+(u, x̄)).
Given x̄, let P be the set of all partitions of the vertices of P into two sets that can

be achieved by a hyperplane through x̄. (Note that, since n is assumed to be fixed, the
number of vertices of P is polynomially bounded and they can be computed in time
bounded by a polynomial in terms of the input size of P .) This induces a covering of
the sphere Sn−1: For each X ∈ P define UX to be the set of u ∈ Sn−1 such that the
hyperplane u · x = u · x̄ induces the partition X on the vertices of P . The number
of such partitions is closely related to the Vapnik–Chervonenkis (VC) dimension of
hyperplanes and, in particular, is easily seen to be O(Mn), where M is the number
of vertices of P . Indeed, let X ∈ P . Then there exists a u ∈ cl(UX) (where cl(·)
denotes the closure), such that the hyperplane defined by u contains n − 1 vertices
{v1, . . . , vn−1} of P such that {x̄, v1, . . . , vn−1} are affinely independent. Thus, we
can construct a uX ∈ UX by perturbing this hyperplane to obtain the partition X .
Moreover, one can enumerate these partitions in the same amount of time, by picking
n−1 vertices {v1, . . . , vn−1} of P such that {x̄, v1, . . . , vn−1} are affinely independent.
0 To solve problem (13), we will proceed along these steps.

1. For each X ∈ P , find ūX ∈ Sn−1 be such that

μ(H+(ūX , x̄)) ≤ min
u∈UX

μ(H+(u, x̄)) + δ and ‖u− ūX‖∞ ≤ δ

for some u ∈ argminu∈UX
μ(H+(u, x̄)).

2. Pick X∗ such that μ(H+(ūX∗ , x̄)) ≤ μ(H+(ūX , x̄)) for all X ∈ P and report
ūX∗ as the solution to (13).

To complete the proof, we need to implement step 1 above in polynomial time.
This is done in Lemma 4.3.
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Lemma 4.3. For a fixed X ∈ P, one can compute ūX ∈ Sn−1 such that

μ(H+(ūX , x̄)) ≤ min
u∈UX

μ(H+(u, x̄)) + δ and ‖u− ūX‖∞ ≤ δ

for some u ∈ argminu∈UX
μ(H+(u, x̄)), using an algorithm whose running time is

bounded by a polynomial in log(1δ ) and the size of an irredundant description of P .

This lemma can be proved using methods from real algebraic geometry for quan-
tifier elimination in systems of polynomial inequalities.

Proof. For a fixed partition X ∈ P the feasible region UX is described by a system
of linear inequalities Au ≤ b and a single quadratic equality constraint u2

1+u2
2+ · · ·+

u2
n = 1. We claim the objective function can be written as the ratio of two polynomials

in u1, . . . , un. Subject to these constraints, we need to minimize μ(H+(u, x̄)). Since
X is the partition of the vertices of P induced by the hyperplane u · x = u · x̄ (since
u ∈ UX), the set of edges intersected by this hyperplane is fixed. Moreover, the
coordinates of the point of intersection of any such edge and this hyperplane can
be expressed by a ratio of linear functions of u1, . . . , un. Indeed, suppose the edge
intersected is the convex hull of the vertices v1, v2 ∈ R

n. Then there exists λ ∈ [0, 1]

such that u ·(λv1+(1−λ)v2) = u ·x̄. Thus, λ = u·(x̄−v2)
u·(v2−v1)

, and the point of intersection

is λv1 + (1− λ)v2 which is a ratio of linear functions of u. Also, P ∩H+(u, x̄) can be
decomposed into a simplicial complex whose combinatorial structure only depends on
X and not on the actual values of u ∈ UX . The volume of P∩H+(u, x̄)) can be written
as the sum of the volumes of these simplices. Since the volume of a simplex can be
written as a polynomial in the coordinates of its vertices, we obtain that μ(H+(u, x̄))
is the sum of ratios of polynomials in u1, . . . , un with degree bounded by a function
of n only, which can be written as a single ratio of polynomials in u1, . . . , un, where
the degrees of the polynomials are bounded by a function of n only. Thus, finding
uX ∈ argminu∈UX

μ(H+(u, x̄)) is equivalent to solving a mathematical optimization
problem of the following type:

min
u1,...,un

p(u)

q(u)
s.t. Au ≤ b, u2

1 + u2
2 + · · ·+ u2

n = 1.

The above is equivalent to the following polynomial optimization problem:

min
z,u1,...un

z s.t. p(u) = z · q(u), Au ≤ b, u2
1 + u2

2 + · · ·+ u2
n = 1.

This optimization problem can be solved to within δ accuracy of the objective and
the solution by performing a binary search on the objective value and using quantifier
elimination methods for testing feasibility of polynomial systems of inequalities and
equalities. For polynomial systems with a fixed number of variables this can be done
in polynomial time in the size of the coefficients [5]. See also [19, Remark on p. 2].

4.1.2. Counting measure on the integer points in two-dimensional poly-
topes. If we use the counting measure on the integer points in a polytope, the algo-
rithm requires no accuracy parameter ε.

Theorem 4.4. Let P = {x ∈ R
2 : Ax ≤ b} be a rational polytope, where A ∈

Z
m×2 and b ∈ Z

m, such that P ∩Z2 = ∅. Let μ denote the uniform measure on P ∩Z2.
Then in polynomial time in the input size of A and b, one can compute a point

z ∈ C(Z2, μ).
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Proof. By utilizing the fact that fμ is concave (Lemma 3.1) and Theorem 4.1, it
suffices to show that for a given x̄ ∈ Z

2 one can compute in polynomial time

ū ∈ argmin
u∈S1

μ(H+(u, x̄)).

Let g : [0, 2π) → [0, 1] be defined as g(α) := μ(H+((sin(α), cos(α))T, x̄)). The
key observations are that g is piecewise constant and that the domain [0, 2π) can be
partitioned into a polynomial number of intervals Si such that g is monotone on each
of them. This implies, that in order to compute ū, one only needs to evaluate g at
the beginning and the end of each interval Si.

Let l+(α) denote the line segment P ∩{x̄+λ(sin(α+π/2), cos(α+π/2))T : λ ≥ 0}
and let l−(α) denote P ∩ {x̄+ λ(sin(α− π/2), cos(α− π/2))T : λ ≥ 0}. Observe that
g(α) is monotone increasing if the line segment l+(α) is longer than the line segment
l−(α) and g(α) is monotone decreasing if the line segment l+(α) is shorter than the
line segment l−(α). Hence, the monotonicity can only change when the two lengths
are equal. All those critical α can be computed by comparing each pair of facets.

4.2. Approximation algorithms.

4.2.1. A Lenstra-type algorithm to compute approximate centerpoints.
As we already pointed out in section 2, centerpoints can be used to design “optimal”
oracle-based algorithms for convex mixed-integer optimization problems. In turn, it is
possible to employ linear mixed-integer optimization techniques to compute approxi-
mate centerpoints. However, this comes with a significant loss in the approximation
guarantee. Recall the definition of μmixed,P from (7).

Theorem 4.5. Let n, d ∈ N be fixed and let P be a rational polytope. Then in
polynomial time in the input size of P , one can find a point

z ∈
{
x ∈ Z

n × R
d : fμmixed,P

(x) ≥ 1

2n2(d+ 1)(n+1)

}
.

Proof. By Theorem 4.2, the statement holds for n = 0. Also, since Theorem 3.12
is constructive, there exists an ω̄ that only depends on n and d, such that the theorem
holds true provided that the lattice width of P is larger than ω̄.

By induction we assume that the result is true for n − 1. Further, we may as-
sume that the lattice width is smaller than ω̄. Without loss of generality, we assume
that the flatness direction of P is equal to the nth unit vector, i.e., minx∈P xn ≥
0 and maxx∈P xn ≤ ω̄. We define Pi := P ∩ {x ∈ R

n+d : xn = i} and the
corresponding uniform measure μi. By the induction hypothesis, we can compute
zi ∈ {x ∈ Z

n × R
d : fμi(x) ≥ 1

2(n−1)2 (d+1)(n)
} for i = 0, . . . , ω̄.

We define the finite auxiliary measure

μ̄(x) :=

{
μ(Pi) if x = zi,

0 otherwise.

Then, with a brute force approach, we compute the centerpoint z in C(Zn × R
d, μ̄).

It remains to show that z ∈ {x ∈ Z
n × R

d : fμmixed,P
(x) ≥ 1

2n2 (d+1)(n+1)
}. Let

H+ be any half-space containing z. Note that, for all i we have μ(Pi ∩ H+) ≥
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1

2(n−1)2 (d+1)n
μ̄({zi} ∩H+). Hence,

μ(P ∩H+) =

ω̄∑
i=0

μ(Pi ∩H+) ≥ 1

2(n−1)2(d+ 1)n

ω̄∑
i=0

μ̄({zi} ∩H+) ≥ 1

2n2(d+ 1)n+1
,

where the last inequality comes from Theorem 3.3.

4.2.2. Computing approximate centerpoints with a Monte Carlo algo-
rithm. In this section, we compute ε-centerpoints, but for any family of measures
from which one can sample uniformly. However, now the algorithm’s runtime de-
pends polynomially on 1

ε , as opposed to log(1ε ) as for the uniform measure on rational
polytopes from section 4.1.

Suppose we have access to two black-box algorithms:
1. OPT is an algorithm which works for some family S of closed subsets of

R
n. OPT takes as input a closed set S ∈ S and (approximately) computes

argmaxx∈S g(x) for any quasi-concave function g, given an (approximate)
evaluation oracle for g and an (approximate) separation oracle for the sets
{x : g(x) ≥ α}α∈R. Let T1(S) be the number of calls that OPT makes to the
evaluation and separation oracles, and T2(S) be the number of elementary
arithmetic operations OPT makes during its execution.

2. SAMPLE is an algorithm which works for some family of probability measures
Γ. SAMPLE takes as input a measure μ ∈ Γ and produces a sample point
x ∈ R

n from the measure μ. Let T (μ) be the running time for SAMPLE.
We now show that with access to the above two algorithms, one can compute an

ε-centerpoint for (S, μ) ∈ S × Γ.

Theorem 4.6. Let S be a family of closed subsets of Rn equipped with an algo-
rithm OPT as described above, and let Γ be a family of measures on R

n equipped with
an algorithm SAMPLE as described above.

There exists a Monte Carlo algorithm which takes as input (S, μ) ∈ S × Γ, real
numbers ε, δ > 0 and computes an ε-approximate centerpoint for S, μ with probability
at least 1 − δ. The running time of this algorithm is T1(S) ·Nn + T2(S) + T (μ) ·N ,
where N = O( 1

ε2 ((n+ 1) + log 1
δ )).

To prove this theorem, we will need a deep result from probability theory that
has resulted after a long line of research sparked by the seminal ideas of Vapnik
and Chervonenkis [44], and culminated in a result of Talagrand [41]. The following
theorem is a rewording of Talagrand’s result [41], specialized for function classes with
bounded VC-dimension.

Theorem 4.7. Let (X,μ) be a probability space. Let F be a family of functions
mapping X to {0, 1} and let ν be the VC dimension of the family F . There exists a
universal constant C, such that for any ε, δ > 0, if M is a sample of size C· 1

ε2 (ν+log 1
δ )

drawn independently from X according to μ, then with probability at least 1 − δ, for

every function f ∈ F , | |{x∈M :f(x)=1}|
|M| − μ({x ∈ X : f(x) = 1})| ≤ ε.

Proof of Theorem 4.6. We call SAMPLE to create a sample M of size
C · 1

ε2 ((n + 1) + log 1
δ ) by drawing independently and uniformly at random from S

(note that M may contain multiple copies of the same point from S). Since the VC
dimension of the family of half-spaces in R

n is n+1, we know from Theorem 4.7 that

with probability at least 1− δ, for every half-space H+, | |H+∩M|
|M| − μ(H+)| ≤ ε. Let

μ′ be the counting measure on M . Then we obtain that |fμ′(x) − fμ(x)| ≤ ε for all
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x ∈ R
n. Therefore, any x∗ ∈ argmaxx∈S fμ′(x) is an ε-centerpoint for S. This can

be achieved by calling OPT to compute x∗ ∈ argmaxx∈S fμ′(x). For this, we need to
exhibit evaluation and separation oracles for fμ′ . But notice that, by Lemma 3.1, this
can be accomplished by simply implementing the following procedure: Given x ∈ R

d,

find the best hyperplane H through x such that |H+∩M|
|M| is minimized. This can

be done in time O(|M |n) by simply enumerating all hyperplanes that contain n − 1
affinely independent points from M .

The following result is a consequence.

Theorem 4.8. Let n and d be fixed integers. There exists a Monte Carlo algo-
rithm which takes as input an integer m ≥ 1, a matrix A ∈ R

m×(n+d), a vector b ∈ R
m,

real numbers ε, δ > 0 and returns an ε-approximate centerpoint when S = Z
n × R

d

and μ is the uniform measure on {x ∈ Z
n ×R

d : Ax ≤ b}, with probability 1− δ. The
running time of the algorithm is a polynomial in m, log(max{|Ai,j |, |bk|}), 1

ε , log
1
δ .

Proof. By using classical results on maximizing quasi-concave functions over the
integer points in a polyhedron [20], OPT can be implemented for the family S which is
the collection of all sets S that can be represented as the set of mixed-integer points
in a rational polytope. For n = 0, SAMPLE can be implemented for the uniform
measure on polytopes using well-studied techniques; e.g., see Vempala’s survey [45].
For n ≥ 1, SAMPLE can be implemented for the uniform measure on mixed-integer
points in a polytope by adapting a result of Pak [39] on d = 0 to d ≥ 1 and using results
on computing mixed-integer volumes in polynomial time for fixed dimensions [3].

Acknowledgments. We thank two anonymous referees whose pointers to the
literature and numerous suggestions helped to improve the content and presentation of
this paper. Earlier versions of this paper from arxiv.org and IPCO 2016 contained
results about the uniqueness of the centerpoint. We were made aware by one of
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geometry literature [46, Proposition 1]. While our uniqueness result had been obtained
independently and without knowledge of these prior results, the proof ideas used by
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including these results in this version of the paper.
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[22] B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J.
Math., 10 (1960), pp. 1257–1261.

[23] B. Grunbaum, Measures of symmetry for convex sets, in Convexity: Proceedings Sympos.
Pure Math. 7, AMS, Providence, RI, 1963, pp. 233–270.

[24] S. Heinz, Complexity of integer quasiconvex polynomial optimization, J. Complexity, 21 (2005),
pp. 543–556, https://doi.org/10.1016/j.jco.2005.04.004.
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