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Abstract

Wireless Mesh Networks (WMNs) are a promising flexible and low cost technology

to efficiently deliver broadband services to communities. In a WMN, a mesh router is

deployed at each house, which acts both as a local access point and a relay to other

nearby houses. Since mesh routers typically consist of off-the-shelf equipment, the

major cost of the network is in the placement and management of Internet Transit Ac-

cess Points (ITAP) which act as the connection to the internet. In designing a WMN,

we therefore aimed to minimize the number of ITAPs required whilst maximizing the

traffic that could be served to each house. We investigated heuristic and meta-heuristic

approaches with an efficient combination of move operators to solve these placement

problems by using single and multi-objective formulations. Many real-world optimisa-

tion problems involve dealing with multiple and sometimes conflicting objectives. A

multi-objective approach to optimize WMN infrastructure placement design with three

conflicting objectives is presented: it aims to minimize the number of ITAPs, maximize

the fairness of bandwidth allocation and maximize the coverage to mesh clients. We

discuss how such an approach could allow more effective ITAP deployment, enabling

a greater number of consumers to obtain internet services. Two approaches are com-

pared during our investigation of multi-objective optimization, namely the weighted

sum approach and the use of an evolutionary algorithm. In this thesis we investigate

a multi-objective optimization algorithm to solve the WMN infrastructure placement

problem. The move operators demonstrate their efficiency when compared to simple

Hill Climbing (HC) and Simulated Annealing (SA) for the single objective method.
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Chapter 1

Introduction

Broadband access has rapidly become a central part of modern life, providing great

social and financial benefits. Due to the emergence of areas such as cloud computing,

the Internet of Things, online gaming and music/video streaming, broadband traffic

in 2018 is expected to be three times that in 2013, possibly rising to a 45-to-80-fold

increase by 2030 [1]. Although broadband provision has increased significantly in the

UK, this has largely taken place in areas of high population density, due to the high

cost of providing wired connections in rural regions.

The cost and difficulty of installing wired connections in rural areas and in developing

countries was one of the motivations behind the development of Wireless Mesh Net-

works (WMNs). WMNs are a flexible solution in which customers cooperate to share

their connections to provide wider coverage, and offer many advantages for providing

broadband access. The key features of WNMs are their low-cost flexible deployment,

ease of expansion and resilience.

A WMN is created through the installation and connection of a wireless mesh router

at each network user’s premises. Each mesh router acts as a standard access point

to provide WiFi coverage to local devices, but also acts as part of the network infra-

structure, aggregating and forwarding traffic to other customers towards an Internet

gateway. In this sense, each network user generates traffic, but is also a relay, forward-

ing data from other nearby customers to the next node towards the gateway. Internet

Transit Access Points (ITAPs) serve as gateways or bridges to the Internet, for example,
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through connection to a wired backbone network. The ITAP is the only core network

infrastructure required; it shares its Internet connection wirelessly with all the houses

in its vicinity in term of wireless range connectivity. An ITAP could use identical hard-

ware to a mesh router (but with a wired connection to the internet), but could in some

cases have improved capabilities (e.g. wireless range). To initiate a network a WMN

needs a minimum of one ITAP, which can then grow automatically as more clients

join. However, although this can lead to network coverage over a large area, further

ITAPs will need to be added as the number of clients and thus traffic generated grows.

Large or small networks can be formed in this way to serve small urban communities,

or millions of residents in a city. The low initial costs make WMN particularly suitable

for rural areas or developing countries, avoiding the high cost associated with provid-

ing a wired links to every house. In this thesis, we address a number of optimisation

problems relating to the placement of ITAPs. These problems involve minimizing the

numbers of ITAPs that are required to service the needs of a community. This situ-

ation is easily modelled using graph theory. The focus of our work is to demonstrate

the effectiveness of novel move operators using a simple ideal link model for prob-

lem formulations with single and multi-objectives. A move operator is the transition

process from one solution to another within its neighbourhood. A move operator is

the transition process from one solution to another within its neighbourhood. Appro-

priate move operators for meta-heuristic approaches are key to balancing the speed

of convergence and diversity in the search space. The model connection depends on

distance (or range) and not on interference (due to geographical terrain or the related

signal reflection/absorption models). The basic ideal link model is taken from [2]. It

shows that by using a suitable combination of move operators to place the ITAPs, rapid

improvements can be made to the underlying WMN.
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1.1 Research Problem and Motivation

One of the fundamental issues in placing infrastructure to support WMN is the trade-

off between the number of ITAPs deployed (i.e. cost) and the level of traffic that can

be supported. Generally, for a given distribution of houses and set of potential ITAP

locations, the number of ITAPs required to be deployed (to meet traffic demand) is

unknown. To illustrate this trade-off, consider, for example, the simple “point to multi

point” network shown in Figure 1.1, where two houses each introduceD units of traffic

into the network, and each wireless link can support the transfer of B units of traffic.

In this network, each house communicates directly with the ITAP; hence the entire

capacity of a link can be used to deliver traffic, giving D = B. However, note that

this requires each house to be in the wireless range of the ITAP, which can lead to a

high numbers of ITAPs required. Consider the alternative distribution in Figure 1.2.

Although we still have D = B, two ITAPs are now required, since H1 is outside of

the wireless range of the location ITAP2 and H2 is outside of the wireless range of the

location ITAP1. By moving to the mesh architecture shown in Figure 1.3, we reduce

the requirement to use only one ITAP, since house H1 can relay traffic to and from

H2 and the ITAP. However, since the link to the ITAP now needs to accommodate 2D

units, the traffic that can be delivered to each house drops to B/2. This simple case

shows the advantages and disadvantages of a mesh architecture compared to a point to

multi point network.

To see the effect of ITAP placement, consider a network with potential wireless links

as shown in Figure 1.4.

Figure 1.5 shows the traffic on each link if an ITAP is deployed at the location ITAP1,

whereas Figure 1.6 shows the traffic distribution if ITAP2 is used. In Figure 1.5, each

house can be provided with B/2 units of traffic, whereas the network in Figure 1.6

can deliver only B/4 units. Note that even in this simple example, the choice of ITAP

location has a great effect on the traffic that can be served in the network, motivating

our study of an algorithm that automatically deploys ITAPs at different locations.
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H1

H2 ITAP1D

1D

Figure 1.1: Simple network model of two houses and one ITAP for D ≤ B

In Figure 1.1 the demand of both houses will be satisfied as long as D ≤ B with

single ITAP.

H2H1ITAP1
1D1D

ITAP2

Figure 1.2: Network model outside the wireless range of the ITAP location for

D ≤ B.

In Figure 1.2 the demand of both houses will be satisfied but needs two ITAPs.
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H2H1ITAP 1D2D

Figure 1.3: Network with in mesh architecture model for D ≤ B/2

In Figure 1.3 the demand of both houses is greater than B, therefore, each house will

receive B/2 only. If D ≤ B/2 then the demand of both houses will be satisfied.

H1 H3

ITAP1

H4H2 ITAP2

Figure 1.4: Network with potential wireless links

The aim is to develop algorithms capable of selecting the best locations at which to

place infrastructure for the WMNs to optimise the multiple objectives of cost, through-

put and fairness.

H1 H3

ITAP1

H4H2 ITAP2
1D

2D

1D

2D

Figure 1.5: Traffic on links towards ITAP1
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H1 H3

ITAP1

H4H2 ITAP2
1D 3D2D 4D

Figure 1.6: Traffic on links towards ITAP2

1.2 Research Aims and Objectives

• Design and implement algorithms for improving the performance and efficiency

of WMNs. In terms of challenge, WMN brings the technology to rural areas and

developed countries where standard broadband is impracticable.

• Investigate the trade-off between different performance objectives and develop

an algorithm that makes use of this trade-off. The novelty of our submission is

centred on the implementation of move operators and the effect of move operat-

ors that also strike a balance between the objectives.

1.3 Research Hypothesis

This research investigates two hypothesis;

• A single objective approach, using algorithms such as hill climbing and simu-

lated annealing, can effectively design WMNs by using a suitable combination

of move operators to place the ITAPs to improve performance and efficiency.

This technique provides a better service such as minimising the number of ITAPs

and maximising throughput in a WMN.

• With suitable crossover and mutation operators, a multi-objective genetic al-

gorithm approach is more effective than a weighted sum approach in producing
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a range of networks that encapsulate the trade-off between the number of ITAPs,

throughput and fairness of bandwidth allocation in a WMN.

1.4 Research Contributions

The main contribution of this research is the optimization of ITAP placement in WMN

that makes most effective use of different performance metrics (in a combined manner).

More specifically we will be:

• Generating simple data sets for the WMN ITAP placement problem.

• Solving the single objective problem of ITAP placement in an efficient way to

yield excellent solutions by effective combination of move operators using heur-

istic and metaheuristic algorithms.

• Demonstrating the importance of move operators through the use of metaheur-

istics for multi-objective optimization. The evaluation shows the efficiency of

using a combination of move operators and presents a better solution for the

placement of ITAPs in WMNs.

• Proposing and evaluating aggressive neighbourhood move operators to improve

the efficiency of the optimization algorithms.

• Defining and demonstrating the use of move operators for metaheuristics, cros-

sover and mutation operators for a multi-objective Genetic Algorithm.

1.5 Thesis Outline

Chapter 2 provides background and a literature review of related approaches. A

detailed explanation of some well-known heuristic and meta-heuristic algorithms
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is provided, including Greedy Algorithms, Hill Climbing (HC), Simulated Anneal-

ing (SA), Genetic Algorithms (GAs), Ant Colony Optimisation (ACO), and Particle

Swarm Optimisation (PSO) algorithms, and approaches to address multi-objective op-

timization problems.

Chapter 3 investigates of the WMN ITAP placement optimization problem by intro-

ducing the problem formulation and investigates a range of benchmark problems. It

introduces neighbourhood move operators as part of Hill Climbing and Simulated An-

nealing algorithms for the ITAP placement problem.

Chapter 4 presents the WMN bandwidth optimization problem and introduces neigh-

bourhood move operators as part of the Hill Climbing and Simulated Annealing al-

gorithms for the ITAP placement problem.

Chapter 5 introduces WMN infrastructure placement as a multi-objective optimisation

problem, with the aim of minimizing the number of ITAPs required, maximizing users’

demand that can be satisfied, and maximizing the fairness of bandwidth allocation. It

shows that the modelling is improved by using a weighted sum method.

Chapter 6 continues the investigation of the WMN ITAP placement optimization prob-

lem. Different crossover and mutation operators for a multi-objective Genetic Al-

gorithm are defined. Experimenting with different forms of parameters and applying

aggressive parameters.

Chapter 7 summarizes the research undertaken in this thesis and elaborates on the thesis

contribution before suggesting future research directions.
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Chapter 2

Background and Literature Review

There is a wealth of literature covering many aspects of wireless mesh networking

(WMN), including routing, scheduling, propagation and modelling. In this chapter we

restrict our attention to the areas relevant to infrastructure placement.

2.1 ITAP Placement Overview

The installation management cost of ITAPs in WMNs is significant, so it is crucial to

minimize the number of ITAPs required whilst maintaining an acceptable Quality of

Service (QoS). ITAP placement is addressed in [3], identifying a minimum number of

ITAPs so that the QoS requirements are satisfied. In a WMN, traffic is aggregated and

forwarded to the ITAPs to perform efficiently. The authors in [3] formulate the ITAP

placement problem as an integer linear program (ILP) and show that the problem of

finding a minimum number of ITAPs is NP-Hard. In practice, a linear programming

(LP) solver such as CPLEX can handle only small networks (of up to 10 ITAPs) under

the proposed model of [3], due to the rapid increase in the number of variables and con-

straints as the network size increases. The authors propose an algorithm that produces

recursive approximations of the problem. The approach reduced the number of ITAPs

by up to 50% of the number in other algorithms, whilst at the same time exhibiting

smooth and consistent performance when subject to different QoS constraints. From

[3] it is clear, however, that CPLEX is too slow to use on large networks, and some
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initial experimental work undertaken as part of our study also supports this conclusion.

In [4] the fundamental issues are the placement of mesh routers in a local network

that has one ITAP, and the difficulty of finding the smallest number of mesh routers

to satisfy the network coverage, connectivity constraints and meet Internet traffic de-

mand. The degree of increase of the traffic demand with respect to the number of

ITAPs increases with the network size, which indicates that in larger networks traffic

density has a significant impact on the number of required ITAPs. In [2] the authors

developed algorithms to place ITAPs in multi-hop wireless networks, so as to minimize

the number of ITAPs while satisfying users’ bandwidth requirements. Here the ITAP

placement problem is formulated as a linear program and solved via several greedy-

based approximation algorithms. In [5] an ITAP deployment problem is described: the

ITAP is an essential hop for distributing broadband service and is more expensive than

a mesh router which delivers transmit functionality. Thus the number and the location

of ITAPs in the architecture determine the performance obtainable and its cost. In [6]

the authors observe that the transmission rate and channel utilization required to satisfy

the WMNs demand depend to some extent on the device technologies, but in particular

on the distance between the mesh client and the ITAPs to which it is connected. Hence,

the allocation mechanism influences the number of mesh clients who have a chance to

exploit the available bandwidth. The authors in [7] minimize the network installation

cost while providing full coverage to wireless mesh clients. In this type of network

architecture, a limited number of ITAPs wirelessly connected to the wired network can

provide low cost internet connectivity to a large number of mesh routers. The authors

propose relaxation-based heuristic algorithms to obtain very good solutions in reason-

able computation time. The authors in [7] confirm the proposed optimization approach,

demonstrated on a generated synthetic instance of WMNs which, by changing several

network parameters, have been solved to optimality using CPLEX. With the proposed

heuristics, the numerical results show that the models are able to capture the effect on

the network configuration of all relevant parameters such as capacity, communication

range and wireless link capacity, providing a promising framework for the planning of
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WMNs. The IBM ILOG CPLEX Optimizer tool, CPLEX optimizer [8] can be used

to solve some formulations of the ITAP placement problem. Typically CPLEX is used

to assess the size of problem that can be solved exactly before alternative approaches

are proposed for the general case. CPLEX is used to reveal the size and runtime of an

exact solution to a problem. We investigated a different approach, similar to the one

proposed in [2], above. The result obtained shows the limitation of runtime in solving

large problems using CPLEX; therefore heuristic and meta-heuristic algorithms were

used to solve large complex WMN optimization problem of maintaining QoS with a

small number of ITAPs. The authors of [7] and [9] propose an optimization approach

which indicates that the heuristics can provide close to optimal solutions, even for large

instances. The obtained numerical results of [10] show that directional antennas can

greatly enhance the performance of WMNs, thus allowing high throughput services.

The main advantages of using directional antennas with wireless multi-hop networks

are the reduced interference and the possibility of having parallel transmissions among

neighbours with a consequent increase in the spatial reuse of radio resources. The

authors in [11] indicate that network performance is heavily impacted by wireless in-

terference and congestion, causing considerable frame losses and longer delays. In

[12] it is noted that interference can occur among neighbouring mesh routers, espe-

cially in urban areas or emergency environments with a dense deployment of WMN

equipment, when the coverage areas of the mesh routers overlap. In Chapter 1 the

ITAP placement problem was described. The quality of the deployment of WMN de-

pends on two parameters; the traffic demand in each house and the link capacity if the

number and position of ITAPs were given. In [7], as a result, the high data demand

with low average link rate has an impact on throughput and may lead to unfeasibil-

ity. Hence, one of the main problems facing WMN is the reduction of capacity due to

the interference caused by simultaneous transmissions. Consuming multiple channels

and wireless multi-hop networks can alleviate but not eliminate interference. The per-

formance problems occur for many reasons, such as collision, multi-path interference,

traffic slowdown due to congestion, severe co-channel interference due to poor network
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planning or to the poor configuration of ITAPs. A well-planned network was there-

fore sought, since wireless network performance degradation can be traced back to the

original design assumptions. The authors in [11] believe that a well-planned and op-

timized wireless network can often provide extra capacity with the same infrastructure

cost; for instance, this may result from more efficient use of radio frequencies. Another

way to achieve better network performance is to optimize the placement and charac-

teristics of the ITAPs before network deployment. A careful placement of ITAPs may

lead to less congestion, lower delay and eventually better throughput if the distances

and the link capacity are taken into account. Focusing on the neighbourhood search for

heuristic algorithms, the authors in [13] consider neighbourhood search-based meth-

ods to be more powerful than ad hoc methods for achieving near optimal placement of

mesh router nodes. The ad hoc methods for the placement of mesh routers are simple

methods that explore a range of possible placement topologies. The authors’ experi-

mental evaluation demonstrates excellent performance from a swap-based movement

neighbourhood search. In [14] the neighbourhoods are based on reversing segments of

routes (sub-routes) and exchanging segments between routes. The authors demonstrate

that their Variable Neighbourhood Search is very competitive compared with state-of-

the-art heuristic algorithms. In [6] the authors address the problem of placing mesh

router nodes in WMNs, and consider three different types of movement (Random, Ra-

dius and Swap). They find that combining movements produces better performance

than individual movements. They also show that the Simulated Annealing algorithm

clearly outperforms the Hill Climbing algorithm. The above literature review suggests

that a combination of different move operators would address the network optimization

problem (move operators are discussed in Chapters 3 and 4 ). In [15], the authors pro-

pose the grid-based ITAP (called “gateways”) method of deployment using cross-layer

throughput optimization to evaluate the maximal flow of different gateway deployment

schemes in random WMNs. The maximal flow is solved by linear programming. For

the cross-layer optimization, the flow supported by mesh networks not only needs to

satisfy the capacity constraints, but also needs to be schedulable by all links without in-
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terference. The authors demonstrate that the position of the gateways in WMNs affects

the total network throughput and the throughput achieved by this method is better than

either random or fixed deployment methods. The major difference between their work

and ours is that their goal is to maximize the throughput with a fixed number of ITAPs,

while ours is to minimize the number of ITAPs deployed and maximize the throughput

with fair bandwidth allocation. Chapter 3 investigates both grid based and uniform

deployment for comparison. In spite of all the benefits and differences, WMNs routers

are usually built on the basis of a similar hardware platform; consequently, algorithms,

such as heuristic and meta-heuristic methods, can be developed to determine the best

locations at which to place the infrastructure for WMNs to optimize the multiple ob-

jectives that arise. Since different ITAP placements lead to different mesh backbone

topology and affects the network throughput, it is important to find the optimal ITAP

placement to maximize the throughput.

2.2 Overview of Throughput and Fair Bandwidth Al-

location

The network throughput is the rate of successful data transferred through a communic-

ation channel per unit of time, and the end-to-end throughput increases in step with the

link capacity. Bandwidth is the raw capability of a communications channel to move

data; in other words, bandwidth can be defined as the maximum amount of data that

can move from one point to another over a given amount of time. Correspondingly, the

wireless link state i.e. (bandwidth, delay, packet loss) between the nodes affects the

QoS, i.e. a good link state guarantees the optimal QoS. In the network, the throughput

improves in direct proportion to the number of ITAPS.

In [16] the problem discussed is the capacity of WMNs in relation to the fairness of

multi-hop networks; for example, as more nodes are installed, the reliability and net-

work coverage increase. If one or more nodes fail, the packets will be re-routed around
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the failed node; similarly if one ITAP fails, the others will take over its traffic. From

[16] it is clear that the mesh structure guarantees the accessibility of multiple paths for

each node in the network, because originally each node was connected to several other

nodes and if one drops out of the network, its neighbours simply find another route -

therefore, the ability to configure routes is dynamic.

Maintaining fairness in WMNs is important, since, due to forwarding, nodes far away

from the ITAPs significantly reduce the overall throughput. However, this has been

given less attention than certain other aspects of the task, such as capacity maximiz-

ation and maintaining connectivity. The optimization goals of [17] are to identify the

trade-off between network throughput and fairness, and prevent unfair bandwidth al-

location to any user. The authors consider a max-min fairness model which leads to

high throughput solutions which guarantee to have the maximum minimum bandwidth

allocation value. To enhance fairness, the authors in [18] propose a 2-fold solution.

First, to use a queue for every flow that passes through a certain node; and second, to

ensure a higher attempt rate for nodes that have to forward more traffic. To this end,

they propose to assign a Contention Window to the attempt rate of each node; that is,

a function of the total number of flows passing through this node. In [19] the nodes at

greater distance (more hops) from the ITAP suffer from bandwidth starvation. There-

fore, they propose a transmission scheduler algorithm (TSA) that offers greater fairness

and maximizes bandwidth use. The algorithm assigns each node a weight based on its

location in the WMN and on its aggregated traffic load. The weight is later used to

compute the node transmission time. The results show that the TSA outperforms the

default scheduler in terms of the throughput, fairness, overall network throughput and

average end-to-end delay of the individual nodes. The authors of [20] analytically veri-

fied and modelled the presence of starvation of nodes located two hops away from the

ITAP (called the “gateway”) in a linear topology. They demonstrate that the starvation

problem can be tackled by setting the contention window of the nodes one hop away

from the ITAP to a much higher value than other nodes. The authors in [21] introduce

a Fair Access Rate (FAR) method which, to achieve fairness, takes into account the
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number of hops and the aggregate traffic. A variable transmission rate is assigned by

FAR to relay nodes based on their aggregation level. When the traffic is sufficiently

large and the nodes have data to transmit. FAR performs well in terms of both the fair-

ness index and throughput. The throughput falls considerably, however, as the number

of hops increases. This is mainly due to traffic aggregation and the saturation tree

build-up to the ITAP. In [22] the spatial contention within a wireless channel and the

reuse of the channel bandwidth introduces a conflict between optimizing the aggregate

allocated bandwidth and achieving fairness. Each flow in the network is given a fair

allocation of capacity, no matter how much more contention is perceived than in other

flows; the researchers use a construct similar to a conflict graph, called a flow conten-

tion graph, to capture interference in the wireless networks. In [12] node clustering

and subcarrier allocation are applied to improve system throughput and then allocate

bandwidth to facilitate QoS provisioning by standard means of maximum frequency

reuse and effective interference control. However, the subcarrier allocation refers to

splitting up the radio spectrum into subsections and these are the subcarriers.

The above literature review of methods of fair allocation suggests a formulation of

the fair bandwidth allocation problem. Generally, maximizing the throughput may

cause bandwidth starvation for some wireless mesh nodes, particularly nodes far from

the ITAP, which have a more significant effect on congestion within the network -

indicating the need to consider a multi-objective optimization (MOO) strategy. In order

to achieve a good bandwidth allocation with regard to both fairness and throughput,

a formulation of a fair bandwidth allocation model is proposed that achieves greater

fairness and maximizes the available bandwidth; this aspect is described in more detail

in Chapter 5.

In [23] the cost effective broadband provision problem uses a consumer device (mesh

router) to transmit data through the network. The authors use this technique to invest-

igate in detail the effect of the relationship between consumer demand and subscrip-

tion price on the design of optimized mesh networks. In a WMN, service coverage
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depends on the clients’ capacity to route traffic via subscribed nodes to the point-of-

presence (POP); an effective network placement depends on an adequate density of

subscribers and the placement of devoted seed nodes to ease routing. A seed node

is a mesh router placed as infrastructure to facilitate coverage. The model is flex-

ible and extensible enough to suggest other scenarios, such as requests for extra seed

nodes, which may be significant in improving QoS as well as offering extra cover-

age. [24] demonstrates how the performance of WMN deployments can be improved

through optimized personalized subscription pricing. The introduced model and optim-

ization algorithm can determine an individual price for each potential subscriber that

reflects their importance to the provision of connectivity within the network. Demand

curves help to model the consumer’s decisions that relate to their willingness to pay

the price of the service offered to them. Here the optimization of pricing also works

successfully, as demonstrated, when the model for willingness to pay is extended to

include measures of QoS. In [25] a multi commodity Minimum-Cost Maximum-Flow

algorithm for routing multiple unicast traffic flows in WMNs was introduced. The rout-

ing algorithm is claimed to attain the maximum flow of multiple unicast commodities

while simultaneously attaining minimum cost. The author proposes an iterative solu-

tion algorithm called Successive Relaxation, where the sub graphs originally contain

minimum-distance paths and where selective sub graphs are extended so that longer-

distance paths are included when appropriate. The suggested routing algorithm elimin-

ates undesirable edges from consideration, creating a significantly smaller LP to solve,

with significantly faster solutions. The authors in [26] present LP formulations of the

constrained Max-Flow-Min-Cost routing algorithms. Each trunk is represented as a

unicast commodity between 2 data centres, which is constrained to flow over a set of

feasible edges. In [27] a technique is presented for computing the limited fair capacity

of ITAPs as a function of the contention at each ITAP. To achieve a maximized capacity

on the current network, the authors propose two online ITAP placement algorithms that

use local search operations. The idea of local search is to carefully select a set of ITAPs

to close and open a new set of ITAPs, subject to capacity and budget constraints, in or-
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der to minimize the objective, i.e. the average hop count, usually reducing hop count

and increasing capacity. The experimental results show that the local search algorithms

outperform a greedy algorithm by up to 64% and achieve close to the optimal capacity,

which supports the use of local search operations on near optimal placements. From

the literature review, it can be seen that local search algorithms with suitable heuristic

move operators can produce acceptable results in instances that are too large for solu-

tions by exact methods. A two-phase approach is proposed for solving the network

optimization problem, in which the underlying framework iterates between the two

phases. The first phase focusses the improving of the QoS, as described in Chapter

3. The second phase then attempts to reduce the number of ITAPs required, whilst

still maintaining adequate QoS, as described in Chapter 4. To effectively support the

different goals of the two phases, a mix of move operators is required.

2.3 Heuristic and Meta-heuristic Algorithms

Heuristic algorithms suggest some approximations to solve the optimization problems

but do not guarantee that the best solution will be identified. The goal of the heuristic

algorithm is to find as good a solution as possible for all instances of the problem

in reasonable time. There are general heuristic strategies such as greedy algorithm

that have been successfully applied to various problems. Alternatively, an important

subclass of heuristics comprises meta-heuristic algorithms, which are general purpose

algorithms that can be applied to a wide range of optimization problems, with only

minor modifications to the basic algorithm definition. Many meta-heuristic techniques

attempt to mimic biological, physical and natural phenomena. Some heuristic and

meta-heuristic algorithms have been applied to solving network optimization problems,

as described in the following subsections.
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2.3.1 Greedy Algorithm

Greedy Algorithms follow the problem solving heuristic of making the locally optimal

choice at each stage in the hope of finding a global optimum, with a decision strategy

such that any choice made at any stage takes no consideration of any future state. In

[28] the strategy is to make the choice which has the greatest short-term effect on the

long-term goal. In some problems this may not produce the optimum solution, i.e. it

does not guarantee a globally optimal solution. Greedy algorithms have been widely

used in previous studies and have the advantage of being extremely fast compared to

other optimization methods such as hill climbing and simulated annealing algorithms,

whilst producing reasonably efficient solutions. Greedy Algorithms are recommended

in cases where there are many local optima, run time is important and finding a global

optimum is not necessary.

2.3.2 Local Search Algorithms

Within the context of searching for a good quality solution, the term search space is

used to denote all solutions. A neighbourhood of solutions is a subset of the search

space, generated by making a small change in the current solution. A good quality

solution can be found in a class of heuristic and meta-heuristic algorithms that are often

called Local Search, which moves from one location to another. In Local Search, the

new solution is usually generated within the neighbourhood of the previous solution.

The neighbourhood has one or more local optima, denoting the best solutions in this

neighbourhood. In general, any local search algorithm starts with an initial solution

and then continually tries to find better solutions by searching the neighbourhood of

the current solution.
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2.3.2.1 Hill Climbing Algorithm (HC)

Hill climbing is the simplest form of local search, being an improvement heuristic that

is adopted to enhance feasible solutions through a search mechanism. It starts with a

sub-optimal solution to a problem (that is, starting at the base of a hill) and then at-

tempts to repeatedly improve the solution by small steps (neighbourhood moves) until

some condition is maximized (the top of the hill is reached). The HC Algorithm will

simply accept all neighbouring solutions that are better than the current solution; when

HC cannot find any better neighbours, it stops. HC rarely finds a global optimum; it

more often gets stuck in a local optimum. Algorithm 2.1 shows the steps of an HC

procedure applied to a maximisation problem. HC is frequently applied within other

meta-heuristic techniques to improve solution quality at several phases of the search.

In this research, HC is used between certain approaches for solving the network optim-

ization problem, as described in Chapters 3 and 4. N(s) represent the neighbourhood

function.

Algorithm 2.1: Generic Hill Climbing Algorithm (s, iterations)

1 Number of iterations = 0

2 Generate an initial solution s randomly

3 Select s′ ∈ N(s) such that f(s′) is maximized ;

4 do

5 ∆← f(s′)− f(s)

6 if ∆ > 0 then

7 s← s′

8 end

9 while ∆ > 0;

10 Return s
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2.3.2.2 The Simulated Annealing Algorithm (SA)

Simulated annealing is a well-known and very powerful meta-heuristic search method

and has been shown to be an important tool in a variety of disciplines. It generally

gives a “good” solution and guarantees a statistically optimal solution that they can be

derived from maximum-likelihood or minimum variance principles for arbitrary prob-

lems more than other optimization techniques can claim. SA can deal with arbitrary

systems and cost functions. It is relatively easy to code and implement, even for com-

plex problems. The main advantages of SA over other local search methods are its

flexibility and its ability to approach global optimality. SA is similar to HC, but a

little more sophisticated. It has been used successfully in solving many combinator-

ial optimization problems, and is better at avoiding local optima than HC if it is well

implemented. SA was originally inspired by the slow cooling of metals to form crystal-

line structures of minimum energy, and the Metropolis algorithm [29] first introduced

these principles into numerical minimization. The Metropolis algorithm in statistical

procedure offers an overview of iterative enhancement, where controlled uphill moves

(moves that do not reduce the energy of the system) are probabilistically accepted in

the search to obtain a better group and escape local optima. Like HC, SA is launched

with a starting configuration, s0, and then works through a large number of neighbour-

hood moves (s to s′) in an attempt to produce better solutions. Unlike HC, however,

the acceptance criterion for s′ is less strict, allowing the algorithm to jump out of local

optima. If the new solution, s′, is better than the current solution, s, it is accepted un-

conditionally. If, however, the new solution is worse, then it is accepted with a certain

probability, related first to how much worse it is; and second, to how high the current

“temperature” of the system is. At high temperatures, the system is more likely to ac-

cept solutions that are worse. In practice, SA implementation is typically constructed

within two nested loops. In the outer loop, the temperature is reduced gradually, and

within the inner loop many perturbations of s to s′ are tried. At each step, s′ faces an

acceptance test, based on ∆ = Cost(s′) - Cost(s), where ∆ is the change in cost between



2.3 Heuristic and Meta-heuristic Algorithms 22

the new and the current solution. The new solution, s′, is accepted with a probability

of 1, if Cost(s′) < Cost(s) (as in HC), and with a probability of e−K∆/T . Otherwise,

where T is the current temperature and K is the Boltzmann constant, the probability

decreases exponentially.

The annealing temperature is preferably high at the start so that the probability of ac-

ceptance will also be high and nearly all new solutions are accepted. The temperature

is then gradually reduced. Consequently, the probability of acceptance of low qual-

ity solutions reduces and the algorithm acts more or less like hill climbing, i.e., high

temperatures allow a better investigation of the search space, while lower temperatures

allow fine changes to a good solution. The procedure is repeated until the temperature

reaches zero or no further enhancement can be attained. This is equivalent to the atoms

of the solid reaching a crystallized state. Implementing SA for a given optimization

problem requires choices regarding both general SA parameters and problem specific

decisions. The choice of SA parameters is crucial to the performance of the algorithm.

These parameters are the initial temperature value T and a temperature function that

regulates how the temperature will be modified gradually over time. The temperature

update function is typically a proportional temperature function; T (t + 1) = αT (t),

where t is the current iteration. In the system, the initial temperature is set, T0 = 2,

with the temperature reduction coefficients of alpha = 0.85 and the constant K = 3.

To reduce the temperature gradually, these values were used to provide very small re-

ductions of temperature, which led to the slow cooling of the substance until the tem-

perature reached zero. Applying SA also requires a set of problem specific decisions.

They consist of recognizing the set of feasible solutions to the problem, outlining a

clear objective function, generating an initial solution and outlining a neighbourhood

operator that creates moves using the current solution.

The general SA algorithm is defined in Algorithm 2.2, below, where the original op-

timization problem is assumed to be a minimization function.

SA has shown itself to be extremely promising for portfolio optimization and asset
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Algorithm 2.2: Simulated Annealing (s, T, α, max iterations, K)

1 Initialize T

2 Generate random configuration s

3 while T > Tmin do

4 while number of iteration < max iterations do

5 Generate new configuration s′ within the neighbourhood of s # (s’ N(s))

6 ∆ = Cost(s′)− Cost(s)

7 if ∆ < 0 then

8 Cost(s) = Cost(s′)

9 end

10 else

11 P = Random (0, 1) {generate at random number in the interval (0, 1)}

12 if P ≤ e−K∆/T then

13 Cost(s) = Cost(s′)

14 end

15 end

16 end

17 Increment number of iterations +1

18 end

19 Return s

allocation problems, making SA an attractive option for optimization problems. Un-

fortunately, there is a clear trade-off between the quality of the solutions and the time

required to compute it, which is very slow, especially if the cost function is expensive

to compute. However, because it produces excellent solutions, it was decided to make

use of SA in the research. SA was applied to maximize the throughput, as described

in Chapter 3. It was also applied to minimize the number of ITAPs required whilst

maintaining an adequate quality of service (QoS), using a single objective method, as

outlined in Chapter 4.
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2.3.3 Genetic Algorithms (GAs)

The understanding of simulating biological evolution and the choice of natural organ-

isms began in the 1950s. Again nature provides the basis technique for processing

information that are both intelligent and multipurpose. Genetic Algorithms are an op-

timization tool initially established by John Holland in 1975, with its Adaptation in

Natural and Artificial Systems MIT Press (2015) [30]. After this, GAs became popular

as an intelligent optimization technique that could be used for solving a wide diverse

range of hard problems. GAs are a search and optimization technique that owes much

to the fundamentals of natural genetics. Some essential procedures are borrowed from

genetics and used artificially to structure search algorithms that are solid and require

minimum information of the problem. GAs have been regularly implemented, in re-

cent years to solve optimization problems in various domains. GA is a collective term

describing a family of stochastic heuristic algorithms based on the natural selection

principle of survival of the fittest. The main idea behind these algorithms is to keep

evolving a population of candidate solutions one generation after another in the ex-

pectation of finding a global optimum or in the worst case a suboptimal solution. Since

GAs are population-based algorithms, several solutions can be kept simultaneously

throughout the entire process. In GAs, each individual is generally denoted by a string

of bits or vectors of integers/real numbers, analogous to chromosomes and genes, i.e.,

the parameters of the problem are the genes that are merged together in a solution

chromosome. A chromosome is a set of parameters which define a potential solution

to the problem that the genetic algorithm is attempting to solve; this set of solutions

is known as the population. Every gene is located in a chromosome, and every factor

in inheritance is due to a particular gene. Genes specify the structure of a particular

inheritance from parents. A fitness value is assigned to each individual, to evaluate its

ability to survive and breed. Being selected for reproduction gives highly fit individu-

als the chance to breed through selecting the “best fit” individuals, good features are

spread throughout the population over numerous generations, and the most promising
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areas of the search space are discovered. Finally, the population ought to converge

towards an optimal or near optimal solution. Convergence means that the population

develops in the direction of increasing consistency, and the average population fitness

approaches very close to the highest fitness. During the reproduction phase of GA,

two important operations have to be performed. The first is called crossover, which

allows the basic genetics of parents to pass to their children, their genes to be com-

bined and the next generation to be formed. The second operation is mutation, which

is applied to each child produced from a crossover; with a certain small probability

of mutation, each gene may be transformed. Hence, crossover allows a rapid explora-

tion of the search space by generating great jumps, while mutation maintains diversity

through small amount of random search. However, it is important to note that a number

of crossover and mutation operators exist, which implement the same basic principle.

In the present research, different crossover and mutation operators were investigated

to show the influence of genetic operators on the performance of GA for designing

WMN, as explained in more detail in Chapter 6. The basic outline of GA is defined in

the following algorithm, Algorithm 2.3.

In the last few years, GAs have shown themselves very well suited to solving lar-

ger knapsack problems and general integer programming problems [31]. GA can be

viewed as a general purpose search method and optimization method based on the

principle of biological evolution [32]. In [33], to optimize nonlinear and multivari-

able systems, GA with neural network are presented and used extensively. [31] and

[32] can be summarised as saying that GAs represent an intelligent search process,

since they operate on a population of solutions in promising areas of the search space.

Among evolutionary algorithms GA has received great attention [33]. Using the oper-

ations of selection, crossover, and mutation, GAs can rapidly scope fit individuals (not

always reach the best fit), but are often good enough as solutions to large-scale prob-

lems. Since crossover is considered the main GA operator, having to join two solutions

rather than one, makes designing an effective crossover operator more complex than

defining a mutation operator or a simple neighbourhood move. This generally makes
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Algorithm 2.3: Genetic Algorithm: Initialise, Population size, crossover and

mutation rate

1 Coding: initialise and generate a random population of solutions;

2 repeat

3 Fitness Assignment: decode and evaluate the fitness of each chromosome;

4 Selection: select some chromosomes from the current population for

reproduction, where the selection criterion is based on the fitness of the

selected parents;

5 Recombination: with some probability apply crossover between the

selected parents to produce new children;

6 Mutation: apply mutation with a small probability to some genes of the

newly produced offspring, or to selected members of the population;

7 Replacement: integrate the newly generated offspring with the old

population to create a new generation;

8 until certain stopping condition is satisfied;

GA implementation harder than that of SA or simple HC. This research applies a GA

to solve the problem of optimizing WMN infrastructure placement, with the aim of

minimizing the number of ITAPs required, maximizing the users’ demand that can be

satisfied and maximising the fairness of bandwidth allocation, as described in more

detail in Chapter 6.

2.4 Other Meta-heuristic Algorithms

Other algorithms inspired by nature includes Ant Colony Optimization (ACO) and

Particle Swarm Optimization (PSO) while these are not considered in this thesis, we

give a brief overview for compleness. Other authors have applied these approaches in

multi-objective optimization problems.
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2.4.1 Ant Colony Optimization Algorithm (ACO)

The Ant Colony Optimization algorithm is a meta-heuristic technique that is stimulated

by real ant behaviour in food searches based on the generation of a pheromone trail.

The core concepts behind this approach were established by Dorigo et al. in 1991

[34]. When an ant travels through paths, from nest to food source, a substance called

a ‘pheromone’ drips from it. A pheromone is a chemical substance produced by the

ant that attracts a response in other ants. The other ants choose their paths according to

the pheromone concentration, i.e. they choose the paths with the greatest pheromone

concentration, because these are the shortest ways to the food. Thus, after a period of

time, the greatest number of ants are directed to use the shortest path. This type of

indirect communication mediated by pheromone laying is known as ‘stigmergy’ [35],

in which the theory of positive feedback is exploited to find the best potential path,

based on the choices of previous ants. An optimization algorithm can be established

from such ant behavior. The Ant System [36] was the first ACO algorithm, and later,

other implementations of the algorithm were developed [37, 38]. The authors in [39]

proposed an ITAP placement algorithm based on the ACO algorithm. Constructed on

such a model, an evaluation of the numerical results shows that the suggested algorithm

elicits much better performance than other schemes. It is also verified to be a cost-

effective solution. In [37] the ACO algorithm does not converge so fast and its result is

a little worse than Particle Swarm Optimization (PSO). Algorithm 2.4 shows the main

steps of the ACO meta-heuristic [28].

2.4.2 Particle Swarm Optimization Algorithm (PSO)

The Particle Swarm Optimization is an evolutionary optimization technique that varies

from other evolutionary approaches, such as genetic algorithms, in which there are no

crossover and mutation operators and the whole population of particles is sustained

throughout the search or exploration operation. PSO is an extremely simple algorithm
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Algorithm 2.4: Ant Colony Optimization Algorithm

1 Set parameters, initialize pheromone trails

2 while termination condition not met do

3 Construct Ant Solutions

4 Apply Local Search (optional)

5 Update Pheromones

6 end

that seems to be effective for optimizing a wide range of functions and was developed

by [39, 40]. It models the dynamic movement or behavior of the particles in a search

space, while attempting to mimic the design of flowing motion in swarms of birds and

exploring the notion of ‘collective intelligence’ in biological populations. Algorithm

2.5 shows the generic PSO Algorithm [41].

In [42], the authors propose improved particle swarm optimization hybridized with an

ant colony (PSACO) approach, for optimizing multimodal continuous functions. The

proposed method applies PSO for global optimization and uses the idea of the ant

colony approach to update the positions of particles to discover the feasible solution

space quickly. The performance study demonstrates the effectiveness and efficiency of

the proposed PSACO approach and verified approaches to solve complex optimization

problems as successful. Generally, noting the hybridized approach of two effective

algorithms can give good results. The ACO algorithm does not converge very fast

[37] and the PSO algorithm has no crossover and mutation operators. Hence the GA

approach is applied to the ITAP placement problem because it is commonly used.

2.5 Multi-Objective Optimization Approaches

Multi-Objective Optimization (MOO) deals with the task of simultaneously optimizing

two or more conflicting objectives with respect to a set of certain constraints. Problems
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Algorithm 2.5: Particle Swarm Optimization Algorithm

1 for each particle do

2 Initialize particle

3 end

4 do

5 for each particle do

6 Calculate data fitness value;

7 if the fitness value is better than the best fitness value (pBest) then

8 Set pBest = current fitness value

9 end

10 end

11 #Choose the particle with the best fitness value of all particles as the gBest

12 if pBest is better than new gBest then

13 Set gBest = pBest

14 end

15 for each particle do

16 Calculate particle velocity according to previous equations;

17 Update particle position according to previous equations;

18 end

19 while maximum iterations or minimum error criteria is false;

outside the academic world often show an attempt to improve one objective creating

difficulties for others. Each multi-objective problem has a set of Pareto-optimal solu-

tions. The solution is called Pareto optimal if none of the objective functions can be im-

proved without worsening other objective values. Each solution represents a different

trade-off between the objectives that is said to be “non-dominated” that there is no bet-

ter solution than the current one in some objective functions, since it is not possible to

improve the chance of meeting one criterion without worsening the chance of -meeting

another. The goal of the MOO algorithms is to find Pareto-optimal solutions which are
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non-dominated solutions for the entire feasible space. In [43] two approaches to solv-

ing MOO problems are described. The first is the “weighted-sum method” that uses a

single solution updated in every iteration, using a deterministic transition rule for the

most part. This method provides only one solution per simulation run. The second con-

sists of “Evolutionary Algorithms” (EAs), mimicking evolutionary principles to drive

its search to finding a population of optimal solutions in a single simulation run. The

nature of the problem lies in the decision making process, which includes several de-

cision variables, and optimizing a number of objective functions. These objectives may

conflict with one another, i.e., an increase of the value of an objective can be obtained

only by reducing the value of the others. For example, increasing the coverage by in-

creasing the number of ITAPs deployed and this will increase the cost. The challenge

lies in becoming able to search for attractive points in the simultaneous optimization

of all the objectives. The solution of the problem will be the best trade-offs between

these multiple objectives.

In [44], “Multi Objectivization” is described; a single-objective optimization problem

is decomposed into several subcomponents for the sake of a multi-objective approach.

This procedure has been found helpful for avoiding local optima in a problem and

has attracted significant attention in network optimisation. In [45] multiple objective

network planning is considered, where overall interference level is also minimized

along with low cost deployment and increased throughput. An efficient population-

based search algorithm is proposed to solve this problem. In the proposed scenario, the

chosen objectives involve minimizing the number of ITAPs, maximizing throughput

and maximizing the fair bandwidth allocation. The two best-known multi-objective

approaches are briefly explained below.
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2.6 Weighted-sum Approach

The weighted-sum method is one of the most popular approaches used in MOO, due to

its simplicity. It combines all of the objectives into a single scalar value converting the

MOO problem into a single objective problem and was introduced by Zadeh in [46].

The most general treatments of MOO simply outline the weighted-sum approach. In

[43] and [47], the technique scalarizes a set of objectives by multiplying each object-

ive with a user-defined weight. This method is applied to solve an allocation prob-

lem with two or more objective functions. Usually, the objectives have different units

(i.e., discrete and real numbers) with different numerical ranges, making it difficult to

choose appropriate weights to control the relative contribution of each objective to the

weighted total. The formulation of the objective function can be recognized as a sum of

the weighed normalized objectives, which converts the problem into a single-objective

optimization problem. In particular, the importance of the weights is not thoroughly

explored, and thus, despite the presence of many algorithms for determining weight

values, no essential guidelines have been presented for selecting weights for the ac-

curate a priori articulation of preferences. The success of this approach depends on

creating suitable selections for the weights. In [48], the method is applied to topology

optimization, minimizing compliance and maximizing the first mode of the natural fre-

quency, for two-dimensional plane stress problems. Again, the weights are altered to

yield a representation of the Pareto-optimal set. In [49] a weighted sum is used to com-

bine two objective functions in an optimization-based approach to predicting robotic

motion. In [50] a three-objective problem is presented, but the weighted sum method

is used as a platform for studying various function-transformation methods and their

effect on the depiction of the Pareto-optimal set. It is found that a convex combination

of functions is advantageous for depicting the Pareto-optimal set, as opposed to de-

termining a single solution. A mixed optimization problem (minimum and maximum)

needs to convert all the objectives into one type. It needs next to normalize the object-

ives, so that each one naturally yields values between 0 and 1. Then the normalized
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objective values should be multiplied by the appropriate weight. After the objectives

are normalized, a merged objective function f(x) can be designed by summing the

weighted normalized objectives, then converting the result to a single objective optim-

ization problem, as shown below in Equation 2.1, reproduced from [47].

Minimize f(x) =
M∑
i=1

wi× fi(x) (2.1)

where the weight of the ith objective function is normalised to fall in the range [0,

1] and the weights are chosen in such a way that their sum is equal to 1, as shown in

Equation 2.2

M∑
i=1

wi = 1 (2.2)

Selecting the most applicable weights for the several essential design objectives needs

careful thought and depends on the precise significance of the individual design ob-

jectives.

On the basis of this literature review, for the simplicity and ease of use of the weighted-

sum approach multiple objective techniques are considered for solving the network

optimization problem, where the overall number of ITAPs is minimized simultaneously

with high throughput and maximum fairness, through a weighted-sum approach based

on SA. In the allocation problem, a MOO approach is required to allow a decision

maker to evaluate the different ways of satisfying the objectives. These techniques are

discussed further in Chapter 5.

2.6.1 Evolutionary Algorithm Approach

Evolutionary algorithms (EA) are popular approaches which generate Pareto-optimal

solutions for MOO problems. They are very powerful techniques, used to find solu-

tions in many authentic search and optimization problems. Many of these problems
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have multiple objectives, which raise the need to obtain a set of optimal solutions,

known as effective solutions. It has been found that using EA is a highly effective way

of finding multiple effective solutions (a set of Pareto-optimal solutions) in a single

simulation run. The authors of [51] consider this the main benefit of Multi-objective

Evolutionary Algorithms (MOEAs). Population-based approaches such as GAs can

easily be extended to solve MOO problems; in this case they are called Multi-objective

Evolutionary Algorithms (MOEA). GAs are playing an increasingly important role in

MOEAs. GAs have been shown to be capable of handling MOO problems, where dif-

ferent solutions based on the notion of non-dominance can be found. A solution is

called non-dominated if it is not dominated by any other solution. In this framework,

GAs are called MOEAs. The authors of [52] proposed a multi-objective evolutionary

QoS routing algorithm based on GA optimization, called a Multi-constrained Genetic

Algorithm for QoS routing (MGAQ). The new options of fitness based functions on

result density were proposed to increase the ability to generate feasible routes. The

Pareto front is a set of non-dominated solutions, selected as optimal, if no objective

can be improved without sacrificing at least one other objective. The principal disad-

vantage of MGAQ is that some MOEA’s are more efficient at finding the Pareto front,

because its algorithm has an elite preserving operator, which preserves most of the

best chromosomes in a population for the next generation. Additionally it is not clear

how the writers in question implemented the algorithm and used only the bandwidth

restriction.

In [53] the authors proposed a method for solving routing problems by considering

the QoS in WMNs, using the multi-objective approach relying on EAs. In this study,

the Non-dominated Sorting based Genetic Algorithm-II (NSGA-II) was invoked for

finding different alternative routes that guaranteed the QoS requirements in both the

Voice over Internet Protocol (VoIP) and file transfer. The results demonstrate the op-

timal route found by NSGA-II. The NSGA was one of the first such EAs, proposed by

Deb et al. in [54]. Over time an improved version of NSGA was introduced, called

NSGA-II, enhancing the convergence and the spread of the solutions. Researchers in
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[53] and [55] suggest and support the NSGA-II and show that it has been able to come

closer than other EAs to the true Pareto front. For a highly effective way of finding

a set of effective solutions, multi-objective approaches may be considered for solving

the WMN optimization problem where the overall number of ITAPs is minimized lat-

erally with high throughput and maximum fairness. This is done through proposing a

MOEA, specifically the NSGA II, based on the non-dominated sort of individual, as

discussed in Chapter 6.

2.7 Chapter Summary

This chapter summarised previous studies of WMN optimization problems and meta-

heuristic algorithms. An important category of the ITAP placement and bandwidth

allocation literature in the area of WMN was reviewed. These problems are gaining

more consideration every day, due to the continuous requirement for optimized ITAP

placement in WMN. In the literature review [28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40]

different heuristic and meta-heuristic algorithms can be observed, applied to solving

WMN optimization problems. Some of these algorithms can be implemented to show

their effectiveness in the WMN optimization problem. From the literature review,

it was understood that heuristic and meta-heuristic techniques perform well in most

practical situations, which have become increasingly common for researchers in the

optimization field. Some exact algorithms were briefly highlighted, which for limited

problem sizes can be used to solve problems to optimality. For other practical ap-

plications, however, a heuristic or a meta-heuristic approach is generally the favoured

option. Some important meta-heuristic techniques were reviewed in this chapter, such

as the Hill Climbing, Simulated Annealing, Genetic Algorithms, Ant Colony Optim-

ization and Particle Swarm Optimization Algorithms. A multi-objective optimization

approaches were introduced as well.
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Chapter 3

Optimization of ITAP Placement to

Maximise Throughput

Designing a wireless mesh network (WMN) is a fundamental issue in improving net-

work efficiency and maximising objectives such as coverage and throughput capacity.

In this chapter, the WMN ITAP placement problem in multi hop WMNs under certain

constraints is addressed. Given a fixed number of ITAPs to be deployed in the net-

work, the question is where to place the ITAPs in the mesh network such that the total

throughput is maximised. The interface configuration determines the node throughput

capacity while different locations of ITAPs lead to different network topologies and

architectures [4]. Since all Internet traffic must pass through one of the ITAPs in the

WMN, the deployment of ITAPs for WMNs is critical in determining network perform-

ance. The rest of this chapter is organized as follows; Section 3.1 defines the network

model, section 3.2 presents the details of the proposed integer linear programming for-

mulations, while section 3.3 calculates the objective function. Section 3.4 specifies the

data sets used for experimentation. Section 3.5 briefly highlights some heuristic and

meta-heuristic techniques that have been applied to the placement of ITAPs, and sec-

tion 3.6 defines neighbourhood move operators. Section 3.7 presents the implementa-

tion of Hill Climbing (HC) and Simulated Annealing (SA) algorithms in an ideal link

model. Section 3.8 describes the proposed network architecture and ITAPs placement

in uniform and grid placements. Section 3.9 reports the experimental methodology and

results of the algorithm tested, and finally, section 3.10 concludes this chapter.
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3.1 Network model

The ideal link model proposed in [3] is used with the aim of deploying a fixed number

of ITAPs, while satisfying users’ bandwidth demands. Following [2], a network is

formed by a set of houses H = {h1, ....hM} , along with a set (I) of N locations at

which ITAPs can be installed. Each node has a location (x, y). Each house h has a

traffic demand, wh, and it may be said that a house is served if all traffic at this location

can be successfully transmitted to an active ITAP (possibly through a sequence of

hops). It is assumed that the traffic from each house can be subdivided and routed along

multiple paths simultaneously; hence a maximum flow algorithm is run to compute the

satisfied demand under an ideal link model. The connection in this model only depends

on distance range not on interference. The link is considered to be binary: either there

is a link or there is none. A directed graph G is constructed with H ∪ I as nodes, with

edges joining each pair of nodes that are within wireless range. The wireless range

is based on the distance of communication between the nodes. The capacity of each

edge e ∈ E (G), Cape, is the data rate that can be sustained on this link, and each

node has a capacity Caph which denotes the ability of a house to process and forward

data. Each ITAP also has a capacity limit, based on its connection to the Internet and

its processing speed, denoted Capi.

3.2 Integer Linear Programming Formulation

Following [2] the model is formally described and its variables and constraints defined.

For each edge e and house h, a variable xe,h is defined to indicate the amount of flow

which originated from h to the ITAPs that are routed through e. For each ITAP i, a vari-

able yi indicates the number of ITAPs installed at the location i. The overall objective

is then to maximise the throughput with a fixed number of ITAPs. In Formulation

3.1, constraint 3.1 ensures flow conservation, namely, for every house except the house

where the flow originated, the total amount of flow entering the house is equal to the



3.3 Defining the Objective Function 37

total amount of flow exiting it. The constraint in Equation 3.2 indicates that a house

does not receive the flow sent by itself. Constraints (3.3 - 3.5) of the integer program

capture the capacity constraints on the edges, houses and ITAPs. Equation 3.6 says that

no house is allowed to send any traffic to an ITAP location unless there is sufficient ca-

pacity from the ITAPs installed there. This inequality of Equation 3.7 constrains flows

to be positive, and follows from the ITAP capacity constraint and the assumption that

is an integer in Equation 3.8. Equation 3.9 indicates the fixed number, Y of ITAPs to

be deployed.

Formulation 3.1

Maximise
∑

h

∑
i

∑
e=(v,i) xe,h

Subject to: ∑
e=(v,h′)

xe,h =
∑

e=(h′,v)
xe,h ∀h, h′ ∈ H, h′ 6= h (3.1)∑

e=(v,h)
xe,h = 0 ∀h ∈ H (3.2)∑

h
xe,h ≤ Cape ∀e ∈ E(G) (3.3)∑

h′,e=(v,h)
xe,h′ ≤ Caph ∀h ∈ H (3.4)∑

h′,e=(v,i)
xe,h′ ≤ Capiyi ∀i ∈ I (3.5)∑

e=(v,i)
xe,h ≤ whyi ∀i ∈ I, h ∈ H (3.6)

xe,h ≥ 0 ∀e ∈ E(G), h ∈ H (3.7)

yi ∈ {0, 1, 2, ...} ∀i ∈ I (3.8)∑
i∈x

yi = Y ∀i ∈ I (3.9)

3.3 Defining the Objective Function

In practice, Formulation 3.1 cannot be solved by an exact IP solver such as CPLEX,

since it is too slow to use when the data set is large. To enable meta-heuristic algorithms
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to be applied, a flow algorithm is suggested to calculate the objective function for a

given solution. Algorithms are applied to place a set of ITAPs in different locations,

and the network flow algorithm of Ford-Fulkerson [56] is then used to ensure that de-

mand is satisfied for a specific WMN configuration. The Ford-Fulkerson Algorithm

can be used to compute the maximum flow capacity of the edges in the network flow,

and hence whether not or a given WMN configuration can support the given user de-

mand. The network graph must be modified before applying a flow algorithm as in [2],

it is necessary to complete the graph Gp, by adding a source and a sink and to set the

link capacity of these edges to infinity. Each node has an in and out node as virtual

nodes; these virtual nodes were added to permit the addition of the capacity on their

edges to represent their forwarding capacity, as shown in Figure 3.1. Let the flow be

f(y1, ..., yN) =
∑

h

∑
i

∑
e=(v,i) xe,h where yi is the number of ITAPs to be installed at

location i.

House H_in H_out

ITAP ITAP_in ITAP_out

Cap_e

Cap_e

Virtual Nodes of the House

Virtual Nodes of the ITAP

Figure 3.1: Virtual nodes of the House and ITAP with the edge capacity

Every house node is directly connected to the source node and every ITAP node is

directly connected to the sink node. Let graph Gp be derived from graph G to calculate

the flow. Gp has vertices Hin ∪Hout ∪ ITAPin ∪ ITAPout. The following definition
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of the whole sets is as follows:

1. House h node:

• For each h ∈ H two vertices are created, Hin and Hout.

• Add edge between Hin and Hout vertices with Capacity Caph.

• Each edge in the graph between h and ITAP gives vertices between Hout

and ITAPin.

2. Edge (u, v)

• For each edge e = (u, v) ∈ E(G) add an edge uout, vin to Gp, between the

corresponding in and out vertices.

• The new edge has capacity Cape

3. ITAPi node

• For each i ∈ I two vertices are created, ITAPin and ITAPout.

• Add edge between ITAPin and ITAPout vertices with Capacity Capi.

• Sink is connected to each ITAPout.

The connection of edges for the graph Gp would start from the source node and go

through Hin, Hout, ITAPin and ITAPout and then to the sink node, to compute the

maximum flow of the network, as shown below in Figure 3.2.

3.4 Data sets

A simple algorithm was created to generate simple data sets to evaluate the solutions

in this thesis. The data sets were built from a number of randomly placed houses in

region (X, Y) and a number of ITAPs locations were also placed in region (X, Y).
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Sink

Source

ITAP-out

H-outH-in

H-in

H-in

H-in

H-in

H-out

H-out

H-out

H-out

ITAP-in

ITAP-out
ITAP-in

H-in H-out

H-in H-out

H-outH-in

Figure 3.2: GraphGp for set of houses and ITAPs connected with sink and source.

To create a data set, only the cases where this data sets generated a connected graph in

which all houses were connected to at least one ITAP were considered.

Parameter Settings:

The following input parameters were used to generate the data sets:

X, Y Extent of the simulation region

M Number of houses

N Number of ITAP locations

WRC Wireless range connectivity

WLC Wireless link capacity

IC ITAP capacity

hc House Capacity

wh Demand for each house

The following algorithm 3.1 describes the creation of the data set for the WMN

ITAP placement problem. In this algorithm, the houses and ITAPs locations were

selected randomly in the (X, Y ) region. The wireless nodes were connected to each

other if they were within the WRC. The data sets are available if needed at <https:

<https://www.dropbox.com/sh/y55drrkeipvrmpk/AABdft5HuipnZbiLend1rj0Oa?dl=0>
<https://www.dropbox.com/sh/y55drrkeipvrmpk/AABdft5HuipnZbiLend1rj0Oa?dl=0>
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//www.dropbox.com/sh/y55drrkeipvrmpk/AABdft5HuipnZbiLend1rj0Oa?dl=0>

Algorithm 3.1: Data Set Generation

1 Set H = {};

2 Set I = {};

3 for i = 1 to M do

4 Pick uniformly randomly x ∈ [0, X], y ∈ [0, Y ];

5 Let h be a house with demand wh and capacity hc at location (X, Y );

6 H = H ∪ {h};

7 end

8 for i = 1 to N do

9 Pick uniformly randomly x ∈ [0, X], y ∈ [0, Y ];

10 Let i be ITAP with capacity IC at location (X, Y ) to the set I;

11 I = I ∪ {i};

12 end

13 Create empty graph with vertex, set H ∪ I;

14 for each pair of vertices do

15 if corresponding wireless nodes are within distance WRC then

16 Add edge with weight WLC;

17 end

18 end

3.5 Heuristics and Meta-heuristics Applied to the ITAP

Placement Problem

In this section, heuristics and meta-heuristics are applied to the problem of placing

ITAPs under the constraints of wireless link capacity and wireless range connectivity

in the Ideal Link Model. The solution is represented by s = [y1, ..., yN ].

<https://www.dropbox.com/sh/y55drrkeipvrmpk/AABdft5HuipnZbiLend1rj0Oa?dl=0>
<https://www.dropbox.com/sh/y55drrkeipvrmpk/AABdft5HuipnZbiLend1rj0Oa?dl=0>
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3.5.1 Greedy Algorithm

Here a simple Greedy algorithm for the WMN ITAP placement problem is considered.

This is another heuristic algorithm which is used to build up an optimization solution in

a given time to give best flow by adding more ITAPs to the site. The Greedy Algorithm

starts with an empty solution and then repeatedly adds an ITAP at the location that

provides the greatest improvement that can be obtained by selecting the best ITAP

and then picking it as the initial solution. At each iteration the addition of an ITAP

is attempted at the best location tracked so far and the amount of satisfied demand in

conjunction with ITAPs added in previous iterations is evaluated. To add a new ITAP,

the best position so far is noted, as explained in the pseudocode for Algorithm 3.2,

below. The Greedy Algorithm decides the location at which to place the first ITAP

determined at a particular location by the level of demand from the house and may
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face constraints over where to put the ITAPs. C is a constant number of ITAPs.

Algorithm 3.2: Greedy Algorithm (C)

1 Set yi = 0 for 1 ≤ i ≤ N ;

2 while
∑
yi ≤ C do

3 besti = −1;

4 best = f([y1, ..., yN ]);

5 for i = 1 to N do

6 Set yi = yi + 1;

7 if f([y1, ..., yN ]) > best then

8 best = f([y1, ..., yN ]);

9 besti = i

10 end

11 Set yi = yi − 1 ;

12 if besti! = −1 then

13 ybesti = ybesti + 1 ;

14 end

15 else

16 Exit;

17 end

18 end

19 end

3.5.2 Hill-Climbing

The Hill Climbing (HC) algorithm is used for finding local optima and explores the

search space iteratively by changing a small part of the current solution to get a better

solution. In general, HC explores the whole neighbourhood and picks the best. The

neighbourhood is defined by all solutions obtained by moving one ITAP to a new loc-

ation. Stochastic Hill Climbing is used here, which picks one solution randomly in the
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neighbourhood. If it is better than the current solution, it moves the ITAP; if not, an-

other random solution is chosen. Stochastic hill climbing avoids the need to calculate

objective functions for the entire neighbourhood. The initial solution of the HC can

be anything such as a random starting solution or a solution produced by the Greedy

Algorithm. Variations of this solution should be tried until a better solution (or at least

a non-worse solution) is found, then variations of this new solution should be tried,

and so on. HC rarely finds a global optimum, since it is likely to get stuck in a local

optimum at a sub-optimal point or plateau which has no superior neighbouring points.

3.5.3 Simulated Annealing

Simulated Annealing (SA) is a meta-heuristic local search method that is more soph-

isticated than HC. It has been used successfully in solving many combinatorial optim-

ization problems. SA works differently from HC and will occasionally accept worse

solutions. SA uses a stochastic optimization method to escape from local minima as

the temperature of the system declines. This characteristic of SA helps it to jump out of

any local optimums where it might otherwise have become stuck, and it gives a much

better chance of finding the global maximum for a given solution

3.6 Definition of Neighbourhood Move Operators

In this chapter, it is proposed that two types of neighbourhood move operator should

be applied to the WMN ITAP placement problem. A move operator is the transition

process from one solution to another within its neighbourhood. The neighbourhood

move changes some attributes of the current solution to transform it to a new solution.

Local search algorithms with suitable heuristic move operators have been observed to

produce acceptable results when the numbers are too large for solutions by exact meth-

ods. Thus HC and SA algorithms are tried out as providers of simple frameworks for
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experimenting with the proposed move operators. The neighbourhood move operat-

ors may help introduce some improvement to the fitness of the current solution. Here

“Swap” and “Reallocate” moves were considered. Each of these moves works differ-

ently, and the goal is to use both moves together to sample the search space efficiently

and effectively. The “Swap” move exchanges the entire allocation of ITAPs at two ran-

domly selected locations, while “Reallocate” moves a single ITAP from one random

location to another. Figure 3.3 shows the swap move and reallocates move structures

before and after.
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Swap Move

a) before b) after
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y1

y2

y3

y4

y5

Reallocate Move

a) before b) after

y1

y2

y3

y4

y5

Figure 3.3: Structure of Swap and Reallocate Moves before and after

Algorithm 3.3 shows a pseudocode outline to generate the move, assumes M as a list

of the move operators and represents the s as the initial solution.
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3.7 Implementation of HC and SA Algorithms in the

Ideal Link Model

The performance of HC and SA Algorithm was evaluated to maximise the throughput

by means of the maximum flow algorithm. The “Swap” and “Reallocate” moves were

used in order to explore the search space by moving individual ITAPs from one location

to another. Note that if the move cannot be made (for example, no ITAPs to reallocate),

an entirely new selection is made.

Algorithms 3.4 and 3.5 show the pseudocode of the heuristic and meta-heuristic al-

gorithms.
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Algorithm 3.3: Generate (s,M)

1 Function Generate (s,M): M list of move operator function ([swap,

reallocate] in this case)

2 Select m ∈M with uniform randomness;

3 Return m(s)

4 end

5 Function Swap(s):

6 Select i and j randomly from {1, ..., N} such that i 6= j: ;

7 Set s′ = s;

8 if s′[i] 6= s′[j]: then

9 s′[i] = s[j];

10 s′[j] = s[i];

11 Return s′

12 end

13 else

14 Return Generate (s,M);

15 end

16 Function Reallocate(s):

17 Select i and j randomly from {1, ..., N} such that i 6= j: ;

18 Set s′ = s;

19 if s[i] > 0: then

20 s′[i] = s′[i]− 1;

21 s′[j] = s′[j] + 1;

22 Return s′

23 end

24 else

25 Return Generate (s,M);

26 end
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Algorithm 3.4: HC Algorithm (s, M, max iterations)

1 Iteration = 0;

2 while iteration < max iterations do

3 s′ = generate (s, M); M list of move operator function;

4 Set ∆ = f(s′)− f(s);

5 if ∆ > 0 then

6 Set s = s′;

7 end

8 end

9 Return s
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Algorithm 3.5: Simulated Annealing (s, T0, α, M , max iterations, K)

1 T0 is initial Temperature;

2 α is a parameter to control cooling;

3 K is the Boltzmann constant, used to scale the chance of accepting a worse

solution;

4 Set best = s;

5 Set fbest = f(s);

6 Set Temperature to initial value T = T0;

7 Iterations = 0;

8 while number of iterations < max iterations do

9 Set T = αT ;

10 Generate a new solution s′ within neighbourhood of s ;

11 s′ = generate(s, M) ;

12 ∆ = f(s′)− f(s) ;

13 if ∆ > 0 then

14 Set s = s′;

15 if f(s′) > fbest then

16 Set best = s′;

17 Set fbest = f(s′)

18 end

19 else if random ≤ e−K∆/T then

20 Set s = s′;

21 Iterations = iterations + 1

22 end

23 Return best
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The cost function plays a key role in any optimization problem. It is by calculating this

function that one can measure the quality of any solution. Hence, its correct definition

is essential for the behaviour of any search algorithm.

3.8 Experimental Results

Algorithms where implemented using Python Language 2.7 with NetworkX library

and experiments run on a PC with CPU Intel (R) Core (TM) i7 2.40GHz and 12 GB

RAM. The Greedy solution can be used as the starting solution. At this point, an HC al-

gorithm should be designed to improve the given starting solution and determine one or

more neighbourhood moves. Different wireless ranges (of 25, 30 and 35 meters) were

set up in order to produce different levels of connectivity in the underlying graph. Dif-

ferent wireless link capacities (5, 15 and 20 Mbps) were applied to support the traffic

flow. The numerical results obtained illustrate the solution solving of the throughput

by implementing the HC and SA algorithms. The initial temperature of the SA was set

as T0 = 2 and then the temperature was gradually reduced using a cooling schedule,

with a temperature reduction of alpha = 0.85, and the constant K = 3. If alpha is too

large then the reduction in the temperature will be very slow and the runtime will be

too long. If alpha is too small then the temperature will fall rapidly and the solution is

more likely to get stuck in a local minimum. To test the approach effectively, a range of

data sets was generated for experimentation, based on a random uniform distribution

of nodes. The number of houses, the number of ITAPs, the number of ITAP locations

and the grid size were all intentionally varied. When the same number of houses was

involved, the houses were placed in the same locations for each data set but with dif-

ferent ITAP locations. Each experiment was run 15 times with different random seed

and the average and best result, with the runtime, were reported. The approach of op-

timization using swap and reallocate moves was applied for the data sets of Table 3.1

in the HC and SA algorithms, which maximise the throughput (traffic flow) by moving

ITAPs from one place to another, without changing the number of ITAPs. The aim was
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Table 3.1: Benchmark data sets
Data sets No. of Houses No. of ITAPs ITAP Locations Grid Area

DS1 100 10 10 100× 100

DS2 500 50 10 100× 100

DS3 500 50 50 500× 500

DS4 500 50 70 500× 500

DS5 500 50 100 500× 500

DS6 500 50 100 1000× 1000

DS7 1000 50 100 500× 500

Table 3.2: Experiments using data sets

Experiments Data sets
Wireless Range

Connectivity

Wireless Link

Capacity
ITAP Capacity Iterations

E3.1 DS1 25 5 10 500

E3.2 DS2 25 5 10 1000

E3.3 DS3 25 20 20 500

E3.4 DS4 25 15 20 500

E3.5 DS3 25 15 20 1000

E3.6 DS5 25 20 20 500

E3.7 DS5 25 15 20 1000

E3.8 DS5 30 15 20 500

E3.9 DS3 35 15 20 500

E3.10 DS6 50 15 20 500

E3.11 DS2 25 5 10 500

E3.12 DS5 30 15 20 1000

E3.13 DS3 35 15 20 3000

E3.14 DS7 35 15 20 1000

to demonstrate the effectiveness of these two moves in improving the throughput for a

range of data sets with different characteristics (such as wireless range communication,

wireless link capacity and ITAP capacity) as shown in Table 3.2.
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Table 3.3: Throughput and running time of the Greedy Algorithm

Experiments
Greedy Algorithm

Cost Run Time/sec

E3.1 100 3

E3.3 416 16

E3.5 416 18

E3.8 498 25

E3.10 484 22

3.8.1 Experimental Results

The Greedy algorithm was used to generate initial solutions used in HC algorithm, as

shown in Table 3.3; it could be seen from the result that this algorithm was faster than

other heuristic algorithms.

The Swap and Reallocate moves were tested individually and together. Note that the

swap move cannot explore the entire search space, as it is limited to the numbers of

ITAPs installed in the first solution. For example, if this has no ITAP location with one

ITAP, then there is no mechanism to achieve this allocation. Due to this, we expect

swap move to be outperformed by reallocate move. The numerical results in Tables

3.4 and 3.5 include a comparison of the individual move operators, and show that the

reallocate move outperforms the swap move but takes longer, as shown in the results

Bold. Nevertheless, using the swap move reduces the chance of being trapped in a local

optimum; hence, the moves are used together to improve the throughput and running

time. Comparing the combined moves with the individual move produces the results

of the HC algorithm, which shows a slight reduction in the running time as shown in

Table 3.4, while the SA algorithm shows a better result in the throughput and running

time, as shown in Table 3.5. As expected, the deduction from Tables 3.4 and 3.5 is

that the SA algorithm outperforms the HC algorithm in both the individual and the

combined moves. It can be observed from the results that the throughput improves
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Table 3.4: Maximising Throughput value using the Reallocate and Swap moves

individually and together in the HC algorithm.

Experiments

HC

Reallocate Move Swap Move Reallocate and Swap

Cost Run Time/sec Cost Run Time/sec Cost Run Time/sec

E3.1 100 7 100 3 100 6

E3.3 360 625 345 615 360 623

E3.5 364 1289 354 1265 362 1267

E3.8 495 1071 494 1040 495 1027

E3.10 434 892 430 866 432 841

Table 3.5: Maximising Throughput value using the Reallocate and Swap moves

individually and together in the SA algorithm.

Experiments

SA

Reallocate Move Swap Move Reallocate and Swap

Cost Run Time/sec Cost Run Time/sec Cost Run Time/sec

E3.1 100 69 100 67 100 66

E3.3 366 669 365 663 416 665

E3.5 366 1356 366 1345 416 1332

E3.8 495 1073 495 1060 495 1045

E3.10 469 935 461 922 484 889

when the number of ITAP locations and wireless range connectivity is increased, as

seen in Table 3.6 showing Experiments E3.8, E3.9, E3.12, E3.13 and E3.14. The HC

and SA algorithms give the same results, showing that HC is sufficient for small and

simple data sets, as seen in Table 3.6, of Experiments E3.1, E3.2 and E3.11, but does

not work as well as the SA on large sets of data, such as those featuring in Experiments

E3.3 - E3.7 and E3.10, which are harder to resolve.
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Table 3.6: maximising Throughput in the HC and SA algorithm for combined

swap and reallocate moves.

Experiments
HC SA

Cost Run Time /sec Cost Run Time /sec

E3.1 100 6 100 66

E3.2 500 173 500 3623

E3.3 360 623 416 665

E3.4 395 762 425 797

E3.5 362 1267 416 1332

E3.6 431 862 482 935

E3.7 440 1712 482 1852

E3.8 495 1027 495 1045

E3.9 500 1000 500 1029

E3.10 432 841 484 889

E3.11 500 291 500 1811

E3.12 498 2050 498 1391

E3.13 500 2644 500 6168

E3.14 1000 8518 1000 6203

3.9 Network Architecture and ITAP Placement in

(Uniform and Grid)

HC and SA algorithms were run on several data sets and optimized the WMN ITAP

placement problem. This section suggests that the purpose of the ITAP layout experi-

ments was to justify a random layout which does not hide any unusual features. Two

network infrastructures of ITAP deployment were examined, such as uniform and grid

layout. A wide range of instances was generated for the experiments, based on a ran-

dom uniform and grid distribution of ITAPs, with the same number of houses. These

houses were placed at the same locations in every instance. Experiments with the heur-
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istic algorithm provided a simple framework and results were compared to show the

effectiveness of the chosen algorithms in a uniform and a grid ITAP placement. Figure

3.4 shows the sketch of an ITAP placement for the uniform and grid layout of the data

set (DS1).
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Figure 3.4: Layout of Houses with the Uniform and the Grid ITAP Placements of

DS1.

The efficiency of the proposed approach in Table 3.7 was evaluated by checking the

results of the Grid and Uniform ITAP placements. From the experimental result it

could be seen that the grid and uniform placement showed similar results, varying only

a little, as in Experiments E3.1 - E3.5. This indicates that with a small number of ITAP

locations, the algorithm works better for grid and uniform layout in maximising the

throughput. The instances of small grid area (100×100) give the maximum throughput

in both ITAP layouts (for example, Experiments E3.1, E3.2 and E3.11). When the

number of ITAP locations increased the uniform placement slightly outperformed the
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Table 3.7: Throughput value and running time of Grid and Uniform Placement

in the SA algorithm .

Experiments
Grid Placement Uniform Placement

Cost Cost

E3.1 100 100

E3.2 500 500

E3.3 424 416

E3.4 430 425

E3.5 424 416

E3.6 439 482

E3.7 439 482

E3.8 473 495

E3.9 484 500

E3.10 460 484

E3.11 500 500

E3.12 490 498

E3.13 496 500

E3.14 1000 1000

grid placement, as shown in Experiments E3.6, E3.7, E3.8, E3.10, and E3.12. Thus, the

algorithm in grid placement works well with small data sets, while uniform placement

does better with small and large data sets, taken together. Overall, the algorithm for

uniform placement gives better results.

3.10 Chapter Conclusion

This chapter has presented the WMN ITAP placement problem formulated as an in-

teger linear programming (ILP). Small and large data sets were generated for exper-
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iments with heuristic and meta-heuristic algorithms. Common heuristic and meta-

heuristic techniques, such as Greedy, Hill Climbing and Simulated Annealing were

reviewed in this chapter. The Greedy Algorithm was implemented to obtain the ini-

tial solution; its experimental results showed that it is faster than other heuristic and

meta-heuristic algorithms. In practice, the problem cannot be solved by an exact IP

solver such as CPLEX, because of the limitations in solving large problems. CPLEX

can handle only small networks and is clearly too slow to use on large ones. Hence,

approaches were developed to optimize the mesh network problem. An approach and

a heuristic move operator have, however, been developed for solving the WMN ITAP

placement problem. This heuristic move operator involves the moves of “Swap” and

“Reallocate”. The approach has been shown to be highly successful for optimizing

ITAP placements in WMNs. It can be verified from the experimental results that

the reallocate move always performed better than the swap move, even though it was

slower. The effectiveness of the proposed algorithms for the ITAP placement of Uni-

form and Grid layouts was assessed, demonstrating by the experimental results that

the algorithms used with the uniform and grid ITAP placements in different data sets

were efficient. According to the results, the SA in use produces better results than

the HC, but takes slightly longer to run. Therefore, in some experiments the imple-

mentation of SA algorithm achieved the best possible solution, giving full coverage of

the bandwidth, whereas in other cases good solutions were hard to find. Experimental

evaluation showed the efficiency of combining the two move operators; this provided a

better solution for the placement of ITAPs in WMNs. Having shown the suitability of

meta-heuristic techniques, we will consider other aspects of modelling the problem.
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Chapter 4

Optimization of ITAP Placement to

Minimise the Number of ITAPs

Chapter 3 considered the problem of maximising the demand that could be supported

by a specific number of ITAPs. This chapter demonstrates the effectiveness of novel

move operators within the framework of heuristic and meta-heuristic single objective

optimization techniques in dealing with the ITAP placement problem. The aim is to

minimise the number of ITAPs while satisfying the users’ bandwidth requirements as

a hard constraint. The proposed approach shows that rapid improvements to the cost

of a WMN can be made simultaneously, by using an effective combination of move

operators. This chapter is structured as follows: Section 4.1 defines the Integer Linear

Programming Formulation of the ITAP placement problem, while section 4.2 defines

the neighbourhood move operators proposed for solving the WMN bandwidth optim-

ization problem. Section 4.3 provides a framework for implementing Hill Climbing

and Simulated Annealing in optimizing ITAP placement. Section 4.4, details the find-

ings when implementing the move operators. Section 4.5 elaborates on some further

analysis of the impacts of parameters on network performance. Finally, section 4.6

concludes this chapter.
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4.1 The ITAP Placement Problem

In Chapter 3, the number of ITAPs to be deployed was a hard constraint, whereas in

this chapter the throughput demanded by houses should be satisfied as a hard constraint

and attempts should be made to minimise the number of ITAPs. The ideal link model

used in Chapter 3 is modified to reflect this in the equations and inequalities listed

below.

The general objective is to minimise the number of ITAPs while satisfying users’ de-

mand for bandwidth. The inequality, equation 4.2 formulates the constraint that each

house has wh amount of flow sent. The rest of the equations 4.3 - 4.9 are identical to

Formulation 3.1 described in Chapter 3.

Formulation 4.1:

Minimise
∑

1≤i≤N yi

Subject to: ∑
e=(v,h′)

xe,h =
∑

e=(h′,v)
xe,h ∀h, h′ ∈ H, h′ 6= h (4.1)

∑
e=(v,h)

xe,h ≥ wh ∀h ∈ H (4.2)∑
e=(v,h)

xe,h = 0 ∀h ∈ H (4.3)∑
h
xe,h ≤ Cape ∀e ∈ E(G) (4.4)∑

h′,e=(v,h)
xe,h′ ≤ Caph ∀h ∈ H (4.5)∑

h′,e=(v,i)
xe,h′ ≤ Capiyi ∀i ∈ I (4.6)∑

e=(v,i)
xe,h ≤ whyi ∀i ∈ I, h ∈ H (4.7)

xe,h ≥ 0 ∀e ∈ E(G), h ∈ H (4.8)

yi ∈ {0, 1, 2, ...} ∀i ∈ I (4.9)
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4.2 The Modified Neighbourhood Move Operators in

ITAP placement

Following the same principle as Chapter 3, the neighbourhood is considered first. The

methodology of a neighbourhood move is to pick a nearby solution and evaluate it and

then decide whether to accept or reject that solution. The same algorithm should con-

tinue to be used for each iteration. Here two additional neighbourhood move operators

are proposed, which allow exploration of the search space. The operators are a De-

lete move, which removes an ITAP from a random location, and an Add move which

increases the number of ITAPs at a random location. The structure of the delete and

add moves before and after are shown in Figure 4.1. These moves are in addition to

those introduced in Chapter 3, namely, the swap and reallocate moves. The goal is to

use combinations of moves to sample the search space more efficiently and effectively.

The cost function is to minimise the number of ITAPs. As in Chapter 3, a solution is

represented by a vector [y1, ..., yN ] where yi is the number of ITAPs to be installed at

location i. A move modifies a solution s to a new solution s′.
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Figure 4.1: Structure of Delete and Add moves before and after
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4.3 HC and SA in Optimizing ITAP Placement

HC and SA algorithms are again applied with a combination of move operators to

solve the WMN bandwidth optimization problem. The performance of HC and SA

algorithms in maximising throughput and reducing the number of ITAPs is evaluated.

Algorithm 4.1 shows the pseudocode outlines of the four moves; i.e. Swap, Reallocate,

Delete and Add.
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Algorithm 4.1: Generate (s,M)

1 Function Generate (s,M): M list of move operator functions

2 Select m ∈M with uniform randomness;

3 Return m(s)

4 end

5 Function Swap (s):

6 Select i and j randomly from {1, ..., N} such that i 6= j: ;

7 Set s′ = s;

8 if s′[i] 6= s′[j]: then

9 s′[i] = s[j];

10 s′[j] = s[i];

11 Return s′

12 end

13 else

14 Return Generate (s,M);

15 end

16 Function Reallocate (s):

17 Select i and j randomly from {1, ..., N} such that i 6= j: ;

18 Set s′ = s;

19 if s[i] > 0: then

20 s′[i] = s′[i]− 1;

21 s′[j] = s′[j] + 1;

22 Return s′

23 end

24 else

25 Return Generate (s,M);

26 end
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1 Function Delete (s):

2 Select i randomly from {1, ..., N} : ;

3 Set s′ = s;

4 if s[i] > 0: then

5 s′[i] = s[i]− 1;

6 Return s′

7 end

8 else

9 Return Generate (s,M);

10 end

11 Function Add (s):

12 Select i randomly from {1, ..., N};

13 Set s′ = s;

14 s′[i] = s[i] + 1;

15 Return s′

16 end

The pseudocode outlines of the heuristic and meta-heuristic algorithms described in

Algorithm 4.2 and 4.3. The only change from Chapter 3 is the direction of optimiz-

ation regarding minimisation instead of maximisation. We also use the cost function

f([y1, ..., yN ]) =
∑

1≤i≤N yi.

4.4 Experimental Results

Experiments were carried out with the HC and SA algorithms with the proposed move

operators: Swap, Reallocate, Delete and Add. These moves are all designed to work in

different ways on the same aspects of the solution to the number of ITAPs at the loca-



4.4 Experimental Results 64

Algorithm 4.2: HC Algorithm (s, M , max iterations)

1 Iterations = 0;

2 while iterations < max iterations do

3 s′ = generate(s,M) #Generate a new solution s′ within the neighbourhood of

s ;

4 Set ∆ = f(s′)− f(s)

5 if ∆ ≤ 0 then

6 Set s = s′;

7 end

8 end

9 Return s

tions, and the goal is to use combinations of the moves to sample the search space most

efficiently and effectively. To minimise the number of ITAPs and maximise through-

put, the NetworkX was applied with a minimum flow algorithm. More data sets were

generated, following the same processes described in Chapter 3, to test the approach;

some of the data sets in Chapter 3 were tested in the experiments, as shown in Tables

4.1 and 4.2, on the basis of a random uniform distribution of nodes. The number of

houses, the number of ITAP locations and the grid size were all varied. For example,

all the houses were placed at the same locations for each data set. Each experiment

ran 15 times with different random seeds and the average and best result, together with

the runtime, were reported. The approach was applied using all four move operators.

The main goal here was to minimise the number of ITAPs. The effectiveness of the

four moves in improving the throughput was demonstrated by using the “Swap” and

“Reallocate” move and the number of ITAPs was minimised by using the “Add” and

“Delete” moves on a range of data sets with different characteristics (such as ITAP

capacity, the number of ITAP locations, wireless link capacity and wireless range com-

munication).

Different starting solutions were investigated by placing an initial number of ITAPs
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Algorithm 4.3: SA Algorithm (s, T0, α, M , max iterations, K)

1 T0 is initial Temperature;

2 α is a parameter to control cooling;

3 K is the Boltzmann constant, used to scale the chance of accepting a worse

solution;

4 Set best = s;

5 Set fbest = f(s);

6 Set Temperature to initial value T = T0;

7 Iterations = 0;

8 while iterations < max iterations do

9 Set T = αT ;

10 s′ = generate (s,M) #Generate a new solution s′ within the neighbourhood

of s;

11 ∆ = f(s′)− f(s)

12 if ∆ ≤ 0 then

13 Set s = s′;

14 if f(s′) ≤ fbest then

15 Set best = s′;

16 Set fbest = f(s′)

17 end

18 else if random ≤ e−K∆/T then

19 Set s = s′;

20 Iterations = iterations + 1

21 end

22 Return best

randomly (i.e. 40, 50 and 60). The experimental results in Table 4.3 show that using

combinations of moves is able to reduce the number of ITAPs that are required to

satisfy the demands. However, the cost function that was used for these experiments
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Table 4.1: Benchmark data sets
Data sets No. of Houses No. of ITAPs ITAP Locations Grid Area

DS2 500 50 10 100× 100

DS3 500 50 50 500× 500

DS5 500 50 100 500× 500

DS7 1000 50 100 500× 500

Table 4.2: Experiments on data sets
Experiments Data sets Wireless Range Wireless Link ITAP Capacity Iterations

E4.1 DS2 25 5 10 500

E4.2 DS5 30 15 20 1000

E4.3 DS3 35 15 20 3000

E4.4 DS7 35 15 20 1000

shows that there is a trade-off between minimised ITAPs and unsatisfied houses. An

improvement in reducing the number of ITAPs can be observed from the results, when

the number of ITAP locations and the wireless range connectivity are increased, as seen

in E4.2 and E4.3 for both algorithms. The greatest reduction of ITAPs was effected by

using the SA Algorithm.

The experimental results confirm the evaluation of the combination of move operators

with the SA algorithm as good and efficient in satisfying the demand from the houses

with fewer ITAPs, as shown in Table 4.3. The cost function of E4.2 and E4.3 showed

the efficiency with a smaller number of ITAPs. Thus, the cost function in SA surpasses

HC and yields excellent solutions by effectively combining different move operators,

as seen in Table 4.3 in bold. Figure 4.2 shows the result of E4.2 starting with different

numbers of ITAPs (40, 50 and 60). This shows that the HC struggles to move away

from the initial solution and thus does not change the number of ITAPs significantly,

but the SA made a reduction in the number of ITAPs and finds a consistent solution.
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Table 4.3: Cost function of the data sets using all move operators with a different

number of ITAPs in the HC and SA Algorithms.

Experiments
HC SA

Cost Min

(Avg)
RT/sec

Satisfied

Houses

#ITAP End

(start)

Cost Min

(Avg)
RT/sec

Satisfied

Houses

#ITAP End

(start)

E4.1 590(596) 237 500 59(60) 500(500) 1697 500 50(60)

E4.2 735(755) 1555 495 58(60) 425(441) 2131 495 27(60)

E4.3 580(594) 1050 500 58(60) 250(250) 5962 500 25(60)

E4.4 600(600) 5320 1000 60(60) 500(500) 8569 1000 50(60)

E4.1 500(500) 175 500 50(50) 500(500) 1759 500 50(50)

E4.2 635(667) 1545 495 48(50) 415(425) 2152 495 26(50)

E4.3 470(496) 741 500 47(50) 250(250) 6099 500 25(50)

E4.4 500(500) 2152 1000 50(50) 500(500) 9006 1000 50(50)

E4.1 3200(3380) 153 410 41(40) 500(500) 1755 500 50(40)

E4.2 545(733) 1421 495 39(40) 415(423) 2161 495 26(40)

E4.3 370(396) 2747 500 37(40) 250(250) 6167 500 25(40)

E4.4 5380(6234) 3723 840 42(40) 500(500) 9080 1000 50(40)
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Figure 4.2: Result of E4.2 starting with different numbers of ITAPs (40, 50 and

60).
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4.5 Effect of parameters on network performance

Different parameters were used in the network optimization problem and these para-

meters have impacts on the wireless networking performance. The performance could

include the quality of the solution returned and the time taken by the algorithm. Many

factors, depending on areas within the network itself, affect the wireless networking

performance, such as the technology of the devices used, the local environment and the

fundamental physics behind wireless transmission. Some of these cannot be avoided

and action can only be taken to minimise the negative effects that these factors will

have on the network performance, but others can be resolved completely either through

equipment upgrading or good network planning. Many parameters and constraints of

the model need to be taken account of, since they impact on the wireless network per-

formance in providing optimal solutions such as:

1. Network Size: The impact of network size on the placement algorithms should

be considered. There is a random distribution of nodes (houses) in anN×N area.

The evaluation results show that an increase in the network size will increase the

number of ITAPs required. As might be expected, an increase in the grid size

leads to a greater number of ITAPs being required to cover the region, which is

spread over a large grid area (see E4.2, E4.3 and E4.4).

2. Neighbourhood Topology: The placement algorithms and number of houses,

which have a big impact on the network performance, should be evaluated. The

experimental evaluation indicates that many houses are connected with each

other through a high communication range, leading to a single connected com-

ponent 1 of the neighbourhood. For instance, comparing E4.4 with other exper-

iments shown in Table 4.3 shows that a smaller number of ITAPs is required,

1Sometimes a graph may not be fully connected or it may have groups of vertices that are closely

connected. Hence, a connected component is a maximal connected sub graph of G. Each vertex belongs

to one connected component only, as does each edge
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since the houses will be close to each other and they can be connected as one

component, which will then be of high capacity. Conversely, a smaller num-

ber of houses with a small communication range will lead to multi connected

components in this neighbourhood, in which case a high number of ITAPs is re-

quired. Additionally, the more nodes installed, the higher the network coverage

in the neighbourhood, as indicated in E4.4.

3. ITAP Capacity: Increasing ITAP capacity will proportionally decrease the re-

quired number of ITAPs. The experimental results demonstrate the high flow

and number of ITAPs required when increasing the capacity of these ITAPs, as

shown in E4.2.and E4.3, whereas reducing ITAP capacity increases the required

number of ITAPs, as shown in E4.1. The ITAP can serve nodes as long as the

sum of their demands does not exceed the capacity of the ITAP.

4. Wireless Range Communication: This is the distance of coverage between two

nodes in the network, measured in meters. In the experiment a fixing communic-

ation radius between 25 and 35 meters was applied. Consequently the increase in

communication range would create much overlap in the wireless coverage of the

houses, as noted above. Therefore with a high wireless range fewer ITAPs are

required to satisfy the houses’ demands, as shown in E4.3 where all the houses

are satisfied with a smaller number of ITAPs. If the communication range is

very small, most houses are disconnected from one another and the number of

ITAPs required is nearly the number of houses, as in E4.1. A high number of

ITAPs is then required to satisfy the demand from the houses. Thus the number

of required ITAPs decreases with increased communication range. This can be

illustrated from the experimental results.

5. Wireless Link Capacity: The wireless link capacity can make a big impact

on the network performance. When the wireless bandwidth is equal to a single

house’s demand, the number of ITAPs required is significantly large, as in E4.1,

with small wireless link capacity of 5 Mbps a large number of ITAPs are needed
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to satisfy the demand from all the houses. With an additional increase in the

wireless capacity, the link is no longer a bottleneck and the overall bandwidth

can increase; then the number of required ITAPs remains the same as shown in

E4.2 - E4.4. Hence, the wireless link capacity has a big impact on the number of

ITAPs required.

4.6 Conclusion

This chapter has presented an approach for solving the WMN bandwidth optimization

problem, using heuristic move operators. It has been demonstrated that the approach is

highly successful for optimizing ITAP placements in WMNs. Clearly, the application

of the correct neighbourhood move operator is essential to the success of the search

algorithm. The experimental evaluation shows the efficiency of a combination of all

four move operators because it provides a better solution for the placement of ITAPs in

WMNs. The results show that the SA produces better results than the HC in satisfying

the houses’ demand with fewer ITAPs, but takes longer to run. The parameters used

in the model showed a big impact on the network performance in optimizing ITAP

placement as regards the maximising of throughput and minimising of the number of

ITAPs.
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Chapter 5

Optimizing Bandwidth Allocation in

WMN

Chapter 3 and Chapter 4 considered the problem of optimizing the number of ITAPs

and throughput respectively (while keeping the other fixed). Such problems are known

as single objective optimisation problems, where a single objective function is to be

minimised or maximised while satisfying a number of hard constraints as in [57]. Many

practical problems, however, need to optimize several objectives simultaneously in

order to achieve a desired result. For example, here there is a direct trade-off between

the number of ITAPs deployed and the throughput that can be achieved. This type of

problem is known as a multi-objective optimization problem (MOO). In this chapter we

address the WMN infrastructure placement optimization problem as a multi-objective

approach with three conflicting objectives:

• Minimising the number of Internet Transit Access Points (ITAP)

• Maximising the fairness of bandwidth allocation to users

• Maximising the total throughput delivered in the network

We apply the weighted-sum method and implement a metaheuristic algorithm, using

also the novelty of an efficient combination of move operators to solve the problem.

This algorithm produces a set of effective optimization solutions under the ideal link

network model, as described in Chapter 3.
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In the present chapter we briefly describe in section 5.1 the objective functions,

throughput and fairness of the bandwidth and the trade-off between the objectives.

Section 5.2 briefly highlights the integer linear program formulation of our problem.

We then proceed in section 5.3 to review important techniques that are usually ap-

plied in solving optimization problems of WMN infrastructure placement, using the

weighted-sum method. A Simulated Annealing algorithm for ITAP placement and

bandwidth allocation, and a combination of moves that may be applied in the search

for a good solution are introduced in section 5.4. Section 5.5 describes the normaliza-

tion of the objective functions. Section 5.6 reports the experimental results of the best

moves investigated for a range of benchmark problems. Finally, section 5.7 concludes

the chapter.

5.1 Objective Functions

The objective of minimising the number of ITAPs placed is again used to model the

additional infrastructure cost required to serve additional houses. Here we define, as

described in Chapter 3, the measures of throughput and fairness in wireless mesh net-

works.

5.1.1 Throughput

Throughput refers to the amount of data that can be transferred from one location to

another in a given time period. Real traffic typically varies over many or all time

scales, and is characterised by its bursts (from inconsistent traffic levels). Although

traffic typically occurs in bursts, for the infrastructure placement problem considered

here, we consider data rates averaged over a long time period, of the order of seconds,

in effect averaging and smoothing out the bursts over a given time interval.



5.1 Objective Functions 73

5.1.2 Fairness

In WMNs fairness is generally attributed to bandwidth allocation. Fairness is used to

determine whether users are receiving a fair share of bandwidth allocation. Different

models of fairness can be applied to WMN, as discussed in Chapter 2. Achieving

fairness in WMNs is equivalent to solving a maximisation problem, subject to the

transmission constraints. Maintaining fairness in WMNs is fairly important but has

been given less attention than other attributes, such as capacity maximisation and con-

nectivity. Hence, we consider fairness as one of the crucial objective functions. In

the interests of fairness, it is preferable to allocate the bandwidth as evenly as possible.

The significance of a bandwidth unfairly allocated between different individual users is

that it may lead to bandwidth starvation. Bandwidth starvation occurs when a house is

not being served, that is when no bandwidth is available to one or more houses. Thus,

we look into bandwidth allocation in order to achieve a good trade-off between fair-

ness and throughput. Providing equal amounts of throughput for nodes far and near to

ITAPs is fairer than not doing so. There are also considerable issues surrounding fair-

ness in WMN, such as the fact that nodes far from the ITAPs have a more significant

effect on congestion in the network.

Our model of fairness is to allocate a proportion of the demand from each house. To

calculate fairness, one needs to work out the minimum flow of traffic attributable to

each house in relation to all the traffic that flows, as shown in the equation below.

fairness = min
1≤h≤M

(
∑

e=h,v
xe,h) (5.1)

5.1.3 Trade-off between objectives

We consider three interdependent objectives in our optimization problem; improving

one of these may have a negative effect on the other objectives. We can add more

infrastructure to reduce unserved demand and to increase fairness; for example, if we

increase the number of ITAPs we will reduce unserved demand but if we increase the
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number of houses served, this may reduce fairness. This highlights the fundamental

problem of forwarding. Regarding the distance, far nodes have a dramatic effect on

capacity, as seen in Figure 5.1, which shows that the far nodes require forwarding

which reduces the capacity available for traffic on all links on the path to the ITAP.

In order to support major possible applications such as internet broadband access, it is

important to allocate the limited bandwidth fairly to all users. We look at the trade-off

between the nodes that are far from and near to the ITAPs; if, for instance, we allocate

high bandwidth to one house close to the ITAP (which now has access to all the traffic

it needs), it would give high throughput and no contention on the link, but would be

very unfair to the other houses. Equally, allocating everyone a fair proportion of traffic

would have a significant effect because ‘this action’ has to forward and increase capa-

city, and might need more ITAPs and reduce the overall throughput that is delivered.

The bandwidth becomes a bottleneck and yet has to transfer the heaviest traffic in the

network. The presence of these bottlenecks reduces the available capacity for each

house. Hence, the model of fairness that we select to be fair to everyone, giving them

all the same proportion of their demand, will regulate the throughput of the entire net-

work. In some cases, to maximise fairness we have no need to maximise throughput,

but could provide the same throughput to all nodes, whether far or near, which would

result in a good trade-off between throughput and fairness. In Chapter 3 we investig-

ated where to place the ITAPs in order to maximise throughput, so it is important to

find the optimal ITAP placement that will maximise the throughput. Figure 5.1 shows

the connection of far and near nodes to the ITAPs: the blue nodes represent the ITAPs,

with each ITAP consisting of in and out nodes as virtual nodes. An orange node rep-

resents a house which also has an in and an out node as virtual nodes. The oval outline

represents the wireless range of connectivity, which means that all the nodes in the

same oval are within communication range of each other.

We have three case scenarios to discuss:

• Increasing the number of houses
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Figure 5.1: Nodes far from and near to the ITAPs in the search space

• Increasing the number of houses and the number of ITAPs

• Increasing the number of ITAPs and determining their placement

The first one, which increases the number of houses, is the base case as seen in Figure

5.1 which shows the connection of far and near nodes in relation to the ITAP. This scen-

ario demonstrates the problem of scaling the number of houses in terms of increasing

the demand that cannot be met by ITAPs. For example, H5 has the sum of traffic from

H3, H4 and H5, as shown in Figure 5.2. In the second scenario, we increase the number

of houses and number of ITAPs and this is the scale base case that increases the number

of subscribers, as shown in Figure 5.3. There is a trade-off between nodes when the

traffic of far and near nodes is forwarded. The third scenario is to have an increasing

number of ITAPs and determine their placement; this demonstrates the trade-off that

results from adding ITAPs and determining their placement so as to serve more houses.
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Figure 5.2 shows the parameters of capacity for the edges, houses and ITAPs in these

scenarios; these capacities relate to the equations in Formulation 5.2.

Adding houses further away from the ITAPs has a dramatic reductive effect on capacity.

Figure 5.3 shows the trade-off entailed by adding ITAPs and serving more houses.
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Figure 5.2: Far and near nodes in relation to ITAPs in the search space
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Figure 5.3: Trade-off between ITAPs and houses to ease the traffic
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5.2 Integer Linear Program Formulation

As mentioned before in Chapter 3, we use the ideal link model proposed in [2], and

aim to minimise the number of ITAPs required, while maximising users’ bandwidth

requirements with the fairest possible allocation. In Chapter 4, algorithms are applied

to place ITAPs at different locations, with a minimum flow algorithm to model the

flow of traffic through the network. Before applying a minimum flow algorithm, how-

ever, it is necessary to transform the WMN into an equivalent single source, single sink

model. Once this has been done, the minimum flow algorithm can be used to compute

the maximum flow capacity of the edges in the network flow, and hence to determine

whether or not a given WMN configuration is able to support the user demand in prac-

tice. Fairness in the network can be manipulated by adding a series of variables to limit

the maximum bandwidth that we allow each user to receive. To provide a normalised

set of decision variables, we model this bandwidth allocation as a proportion of the

traffic demand from each house. Making the bandwidth bh means that the bandwidth

allocated to each house will be at most bhWh. In this section, we formally describe

the model and define the variables and constraints as shown in Formulation 5.2. Con-

straints 5.2 - 5.9 are identical to those described in Chapter 3. Constraint 5.10 specifies

that the flow from a house must be equal to or less than demand scaled by the allocation

for the house. Constraint 5.11 indicates the proportion of demand that each house is

allocated, specifically between [0, 1].

Formulation 5.2:

Minimise Wl fl(x) +WD fD(x) +WU fU(x)∑
e=(v,h′) xe,h =

∑
e=(h′,v) xe,h ∀h, h′ ∈ H, h′ 6= h

Subject to: ∑
e=(v,h′)

xe,h =
∑

e=(h′,v)
xe,h ∀h, h′ ∈ H, h′ 6= h (5.2)

∑
e=(v,h)

xe,h = 0 ∀h ∈ H (5.3)
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∑
h
xe,h ≤ Cape ∀e ∈ E(G) (5.4)∑

h′,e=(v,h)
xe,h′ ≤ Caph ∀h ∈ H (5.5)∑

h′,e=(v,i)
xe,h′ ≤ Capiyi ∀i ∈ I (5.6)∑

e=(v,i)
xe,h ≤ whyi ∀i ∈ I, h ∈ H (5.7)

xe,h ≥ 0 ∀e ∈ E(G), h ∈ H (5.8)

yi ∈ {0, 1, 2, ...} ∀i ∈ I (5.9)∑
e=(h,v)

xe,h ≤ bhwh ∀h ∈ H (5.10)

bh ∈ [0, 1] ∀h ∈ H (5.11)

5.3 Weighted Sum Approach

We provided a brief description of the weighted-sum approach in Chapter 2, a common

approach used in MOO on account of its simplicity, which combines all objectives into

a single scalar value to be optimized as a single objective. The objectives have differ-

ent units, with different numerical ranges, making it difficult to choose the appropriate

weights to control the contribution of each objective in relation to the weighted total.

The objective function of Formulation 5.2 represents a sum of the weighted normalized

objectives. In our experiment we change the value of weights in order to investigate

the Pareto fronts and the trade-off between the three objectives. The weighted sum

approach means that we have to set arbitrary weights which are used to balance the ob-

jectives in advance of optimization. We formulate the WMN infrastructure placement

optimization problem of the ITAP placement and bandwidth allocation problem for the

ideal link model as an integer program, as shown in Formulation 5.2 , to minimise the

composite objective function in (5.12)

f(x) = WI fI(x) +WD fD(x) +WU fU(x) (5.12)
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We express the set of weights as (WI , WD WU ), denoting the relative importance of

optimizing separately the number of ITAPs, unserved demand and unfairness. The

weight of each objective function is in the range [0, 1] and the weights are chosen such

that.

WI +WD +WU = 1 (5.13)

5.4 ITAP Placement and Bandwidth Allocation using

Simulated Annealing

In practice we could not solve Formulation 5.2 by an exact IP solver such as Cplex,

since it is too slow to use on large examples; hence, we again utilize the Simulated

Annealing (SA) algorithm. We apply SA straightforwardly to this problem, proposing

novelty in the moves to ensure a balance between optimality and diversity in the search.

Decision variables are encapsulated in a vector x = [y1, ..., yN , b1, .., bM ], where N

denotes the number of ITAP locations, M denotes the number of houses and bi denotes

the amount of bandwidth allocated to house i. U(s), represents a uniformly random

selection from the set s.

In Algorithm 5.1, we provide pseudo code outline of the SA method that assumes “M”

to be a list of move operators. This element of novelty, bringing diversity to the search

space by different types of neighbourhood move operators to maximise the network

flow and minimise the number of ITAPs in these locations, is described in Chapters 3

and 4.

Initially, in Chapter 4 we used an SA algorithm to provide a simple framework for

experimenting with our proposed move operators: Swap, Reallocate, Delete, and Add.

Each of these moves is designed to work on different ways on the same aspects of the

candidate WMN configuration, and our goal was to use combinations of our moves to

sample the search space efficiently and effectively.



5.4 ITAP Placement and Bandwidth Allocation using Simulated Annealing 80

Algorithm 5.1: Simulated Annealing (s, T0, α, M , max iterations, K)

1 #T0 is initial Temperature;

2 #α is a parameter to control cooling;

3 #K is the Boltzmann constant, used to scale the chance of accepting a worse

solution;

4 Generate an initial solution ;

5 s = [y1, ..., yN , b1..., bm];

6 Set best = s;

7 Set fbest = f(s);

8 Set Temperature to initial value T = T0;

9 Iterations = 0;

10 while number of iterations < max iterations do

11 Set T = αT ;

12 #Generate a new solution s′ within the neighbourhood of s ;

13 s′ = generate(s, M);

14 ∆ = f(s′)− f(s)

15 if f(s′) ≤ fbest then

16 Set s = s′;

17 Set best = s;

18 Set fbest = f(s)

19 else if U([0, 1]) ≤ e−K∆/T then

20 Set s = s′;

21 Iterations = iterations + 1

22 end

23 Return best

The “Swap placement” move exchanges the entire allocation of ITAPs at two ran-

domly selected locations, while “Reallocate placement” moves a single ITAP from

one random location to another. “Delete placement” removes an ITAP from a random
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location, and “Add placement” increases the number of ITAPs at a random location. In

this chapter, similar moves are defined here for the bandwidth allocated to each house

i.e. “Reallocate Allocation, Swap Allocation, Delete Allocation, and Add Allocation”.

Since the number of houses is typically large, and it is difficult to move from one solu-

tion to another around the search space, a good set of moves that lets us move from

one area to another fairly quickly was applied. We further define the moves that make

larger changes possible. The adding aggressive move “Add delta allocation” increases

the bandwidth allocation of all houses by a randomly chosen value ∆ ∈ [0, 1], while

the deleting aggressive move “Delete delta allocation” removes bandwidth allocation

from all houses simultaneously.

The general mechanism of the move operator is to select a random move from the

move operator uniformly randomly. If the selected move was “Delete Placement”,

removing an ITAP from a random location, and if the selection was invalid (such that

no ITAPs were removed), then we should go back to the whole move operator list

and call another move (a new and different type of move) with uniform randomness.

We should keep trying to select an alternative move and check whether it has a valid

selection of properties. The reallocation move moves an allocation from one house

to another. We selected the value of 0.1 to allow a reasonable level of granularity of

moves and we choose this value as a compromise between 0 and 1. In Algorithm

5.2, we provide pseudo code outline of our move operator for ITAP locations and

bandwidth allocation.
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Algorithm 5.2: Generate (s,M)

1 Function Generate (s,M): M list of move operator function

2 Select m ∈M with uniform randomness;

3 Return m(s)

4 end

5 Function Reallocate Placement(s):

6 Select i and j randomly from {1, ..., N} such that i 6= j ;

7 Set s′ = s;

8 if s[i] > 0: then

9 #Move one ITAP from i to j;

10 s′[i] = s′[i]− 1;

11 s′[j] = s′[j] + 1;

12 Return s′

13 end

14 else

15 Return Generate (s,M);

16 end

17 Function Reallocate Allocation(s):

18 Select i and j randomly from {1, ...,M} such that i 6= j ;

19 Set s′ = s;

20 #Move 0.1 Allocation from i to j;

21 s′[N + i] = s′[N + i]− 0.1;

22 s′[N + j] = s′[N + j] + 0.1;

23 if s′[i] < 0 or s′[j] > 1: then

24 Return Generate (s,M);

25 else

26 Return s′

27 end

28 end
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1 Function Swap Placement(s):

2 Select i and j randomly from {1, ..., N} such that i 6= j ;

3 Set s′ = s;

4 if s′[i] 6= s′[j]: then

5 #Swap ITAPs between i and j in s′;

6 s′[i] = s[j];

7 s′[j] = s[i];

8 Return s′

9 end

10 else

11 Return Generate (s,M);

12 end

13 Function Swap Allocations(s):

14 Select i and j randomly from {1, ...,M} such that i 6= j ;

15 Set s′ = s;

16 if s′[i] 6= s′[j]: then

17 #Swap Allocation between i and j in s’;

18 s′[N + i] = s[N + j];

19 s′[N + j] = s[N + i];

20 Return s′

21 end

22 else

23 Return Generate (s,M);

24 end
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1 Function Delete Placement(s):

2 Select i randomly from {1, ..., N} ;

3 Set s′ = s;

4 if s[i] > 0: then

5 s′[i] = s[i]− 1 #Delete one ITAP from i;

6 Return s′

7 end

8 else

9 Return Generate (s,M);

10 end

11 Function Delete Allocation(s):

12 Select i randomly from {1, ...,M} ;

13 Set s′ = s;

14 ∆ = random(0, 1);

15 if s[N + i] = 0: then

16 Return Generate (s,M);

17 end

18 s′[N + i] = max(s[N + i]−∆, 0) #Delete random Allocation from i;

19 Return s′

20 end

21 Function Delete Delta Allocation(s):

22 if max(s[N + 1], ...s[N +M ]) = 0: then

23 Return Generate (s,M);

24 end

25 Set s′ = s;

26 ∆ = random(0, 1);

27 for i in {1, ...,M} do

28 s′[N + i] = max(s[N + i]−∆, 0);

29 end

30 Return s′

31 end
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1 Function Add Placement (s):

2 Select i randomly from {1, ..., N};

3 Set s′ = s;

4 #Add one ITAP to i;

5 s′[i] = s[i] + 1;

6 Return s′

7 end

8 Function Add Allocation(s):

9 Select i randomly from {1, ...,M};

10 Set s′ = s;

11 ∆ = random(0, 1);

12 #Add random Allocation to i

13 s′[N + i] = min(s[N + i] + ∆, 1);

14 Return s′

15 end

16 Function Add Delta Allocation(s):

17 #Add random Allocation to all houses;

18 if max(s[N + 1], ..., s[N +M ]) = 0: then

19 Return Generate (s,M);

20 end

21 Set s′ = s;

22 ∆ = random(0, 1);

23 for i in {1, ...,M} do

24 s′[N + i] = min(s[N + i] + ∆, 1);

25 end

26 Return s′

27 end
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5.5 Normalization of the objective functions

Here we define the normalized objective function values. The objectives are normal-

ized approximately to the same units on the same range, as shown in Equations 5.14,

5.15, and 5.16, then multiplied by the appropriate weight and added together to get the

total objective value, as defined in the Integer Linear Program Formulation 5.2. The

definition of the objective functions, (fD(x), fU(x) and fI(x)), separately denotes the

normalization of Unserved Demand, Unfairness, and the number of ITAPs, all needing

to be minimised.

fD(x) =

((∑M
h=1wh

)
−
(∑M

h=1

∑
e=h,v xe,h

))
∑M

h=1 wh

(5.14)

fU(x) =
[A−min1≤h≤M(

∑
e=h,v xe,h)]

A
(5.15)

fl(x) =

∑N
i=1 yi × Capi∑M

h=1 wh

(5.16)

A = min
1≤h≤M

wh (5.17)

We calculate the normalized objective values to make them comparable in the weighted

function. In Equation 5.14 normalizing unserved demand between 0 and 1, we subtract

total flow from total demand and then divide by the total demand. In Equation 5.15 nor-

malizing unfairness, we subtract the minimum flow of all houses from the minimum

of all demand and then divide by the minimum of all demand, so that the bandwidth

allocation and fairness naturally yields values between 0 and 1. While the ITAPs could

be normalized at higher than one, it is hard to normalize ITAPs because there is no

natural upper bound on them. We estimate an upper bound by considering the min-

imum number of ITAPs that would be needed to provide capacity to satisfy all houses.

We multiply the total number of ITAPs by their capacity and then divide by the total

demand, as shown in Equation 5.16 and 5.17 indicates the minimum of all demand.
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Table 5.1: Benchmark data sets
Data Set No. of Houses No. of ITAPs No. of ITAP-Location Grid Area

DS1 100 10 10 100x100

DS7 1000 50 100 500x500

Table 5.2: Experiments with data sets
Experiments Data sets Wireless Range Connectivity Wireless Link Capacity ITAP Capacity Iterations

E5.1 DS1 25 5 10 500

E5.2 DS7 35 15 20 1000

E5.3 DS7 35 54 20 1000

5.6 Experimental Results

To test our algorithms, we used the data set samples shown in Table 5.1. The simulated

annealing algorithm was implemented using Python Language 2.7 on a PC with Intel

(R) Core (TM) i7 2.40GHz and 12 GB RAM. The initial temperature of the SA was

set as T0 = 2 with the temperature reduction α = 0.85 and the constantK = 3. Briefly,

to test our approach effectively, we constructed three problem instances by distributing

houses and ITAPs in a uniformly random manner across a region, as shown in Table

5.1. The benchmark data sets and Table 5.2 show the implemented experiments. The

house capacity was set to 10 Mbps.

To generate an initial solution, 10 ITAPs were placed at randomly chosen locations for

DS1 and 50 ITAPs were placed randomly for DS7. We generated a uniform initial

allocation for all houses (of different values, i.e. 0.1, 0.3, 0.5, 0.9, and 1.0). The traffic

demand wh of each house in all experiments was 1. Each experiment was run 15 times

with the different random seeds and the average and best results were reported; see

Tables 5.3, 5.4 and 5.5.
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5.6.1 Weighted sum Performance and Evaluation

We illustrate the numerical results obtained from optimizing multi-objective functions

using the weighted-sum approach with the combinations of different move operators in

the SA algorithm. Different weight values were applied to all instances with the solu-

tions presented in Tables 5.3, 5.4 and 5.5. The uniform initial allocation for all houses

(of different values, i.e. 0.1, 0.3, 0.5, 0.9, and 1.0) shows the spread of solutions on

the search space. Allocation is the portion of demand given to each house. The non-

dominated sets were calculated using the Non-Dominated Sorting algorithm used with

NSGA-II (see Chapter 6). Specifically, the goal of the multi-objective algorithms is to

find non-dominated solutions. The concept of domination refers to the situation where

two solutions are compared to each other on the basis of whether one solution domin-

ates another solution or not; is a significant concept in MOO. The general definition of

domination for multi-objectives can be made by a feasible solution A, which may be

said to dominate another feasible solution B, and can be expressed mathematically as:

A ≺ B, if and only if:

1. The solution A is no worse than B with respect to all objective values, AND

2. The solution A is strictly better than B in at least one objective value;

Therefore solution A dominates solution B, solution A is not dominated by solution

B or solution B is dominated by solution A where the notation “≺” represents the

domination symbol. Identifying non-dominated solutions in a particular population

allows the decision maker to consider a set of solutions that contain the best trade-

off. Therefore, for a given set of solutions, making all possible comparisons, will

allow us to identify the solutions which belong to the non-dominated set. A Pareto

front was deployed to show the enhancement of solutions in the weighted sum. The

results are extremely sensitive to the weights used in the weighted sum. In the data

sets the experiments runs for 1000 iterations and the tables shows the result of the
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initial allocation 0.1. The other initial allocation values are not shown individually but

are shown in comparison with other values in Figures 5.4, 5.5 and 5.6. We briefly

summarize the experimental results of 3 objective functions with the relative value of

Weights of Unserved demand dominant, Unfairness dominant, ITAP dominant, single

objective and double objective for DS1, as shown in Table 5.3. The experiment E5.1

is repeated with different allocation values. With a low initial allocation we get some

unserved demand but the number of ITAPs remains low and fairness values are close

together: with high initial allocation everyone is served but with a high number of

ITAPs. For example, when the initial allocation is 0.1 then 10% of all demand is served,

while when the initial allocation is 1.0 all demands are served but with a high number of

ITAPs, as shown below in Figures 5.4, 5.5 and 5.6 with all initial allocations. The non-

dominated evaluation solutions of all uniform initial allocation values are displayed as

a Pareto optimal front in Figure 5.7.
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Figure 5.4: Solutions of DS1 with different initial allocation values

The experimental results of 3 objective functions with the relative value of Weights for
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Table 5.3: Solutions of 3 objective functions of DS1 for the initial allocation 0.1
Dominants Unserved Demand Weight ITAP Weight Unfairness Weight

Normalized Values Un Normalized

Values

fD fI fU fD fI fU

Unserved Demand

Dominant

0.5 0.1 0.4 0.56 0.5 1 56 5 100

0.5 0.2 0.3 0.6 0.4 1 60 4 100

0.5 0.3 0.2 0.6 0.4 1 60 4 100

0.5 0.4 0.1 0.9 0.1 1 90 1 100

0.5 0.3 0.15 0.81 0.5 1 81 5 100

0.34 0.33 0.33 0.6 0.4 1 60 4 100

0.7 0.07 0.23 0.31 0.7 1 31 7 100

Unfairness Dominant

0.25 0.05 0.7 0.9 1 0.9 90 10 90

0.32 0.08 0.6 0.8 0.2 1 80 2 100

0.1 0.4 0.5 0.9 0.1 1 90 1 100

0.3 0.3 0.4 0.81 0.6 1 81 6 100

0.2 0.1 0.7 0.9 1 1 90 10 100

0.23 0.07 0.7 0.89 1 0.9 89 10 90

ITAP Dominant

0.3 0.6 0.1 0.9 0.1 1 90 1 100

0.1 0.7 0.2 0.9 0.1 1 90 1 100

0.15 0.8 0.05 0.9 0.1 1 90 1 100

0.2 0.5 0.3 0.81 0.5 1 81 5 100

Single Objective

1 0 0 0.81 1.8 1 81 18 100

0 1 0 0.84 0.4 1 84 4 100

0 0 1 0.9 1 0.9 90 10 90

Double Objective

0.5 0.5 0 0.84 0.7 1 84 7 100

0 0.5 0.5 0.83 0.3 1 83 3 100

0.5 0 0.5 0.88 1.2 0.9 88 12 90

DS7 as shown in Table 5.4. The experiment E5.2 is repeated with different allocation

values as shown in Figures 5.8, 5.9 and 5.10. The non-dominated evaluation solutions

of all the uniform initial allocation values are displayed as a Pareto optimal front in

Figure 5.10.

The experimental results of 3 objective functions with the relative value of weights

for DS7 of Experiment E5.3 are shown in Table 5.5. The results as shown indicate

that increasing wireless capacity will serve the demand from more houses more fairly,

which improves the overall fairness of the bandwidth allocation. The experiment is

repeated with different allocation values, as shown in Figures 5.12, 5.13 and 5.14. The

non-dominated evaluation solutions of all uniform initial allocation values are shown

as a Pareto optimal front in Figure 5.15.
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Figure 5.7: Pareto Optimal Front of all the initial Allocations of DS1

0
10
20
30
40
50
60
70
80
90

100
110

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 I

TA
P

Unserved Demand

Allocation 0.1 Allocation 0.3 Allocation 0.5
Allocation 0.9 Allocation 1.0

Figure 5.8: Solutions of DS7 of E5.2 with different initial allocation values
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Table 5.4: Solutions of 3 objective function of DS7 of E5.2 for the initial allocation

0.1.
Dominants Unserved Demand Weight ITAP Weight Unfairness Weight

Normalized Values Un Normalized

Values

fD fI fU fD fI fU

Unserved Demand

Dominant

0.5 0.1 0.4 0.812 0.24 1 812 12 100

0.5 0.2 0.3 0.812 0.22 1 812 11 100

0.5 0.3 0.2 0.813 0.22 1 813 11 100

0.5 0.4 0.1 0.812 0.22 1 812 11 100

0.5 0.35 0.15 0.817 0.26 1 817 13 100

0.34 0.33 0.33 0.812 0.2 1 812 10 100

0.7 0.07 0.23 0.819 0.28 1 819 14 100

Unfairness Dominant

0.25 0.05 0.7 0.899 1 0.9 899 50 90

0.32 0.08 0.6 0.819 0.3 1 819 15 100

0.1 0.4 0.5 0.818 0.26 1 818 13 100

0.3 0.3 0.4 0.818 0.26 1 818 13 100

0.2 0.1 0.7 0.82 0.18 1 820 9 100

0.23 0.07 0.7 0.819 0.24 0.9 819 12 90

ITAP Dominant

0.3 0.6 0.1 0.818 0.26 1 818 13 100

0.1 0.7 0.2 0.816 0.2 1 816 10 100

0.15 0.8 0.05 0.82 0.18 1 820 9 100

0.2 0.5 0.3 0.818 0.26 1 818 13 100

Single Objective

1 0 0 0.84 1.98 1 840 99 100

0 1 0 0.832 0.22 1 832 11 100

0 0 1 0.9 1 0.9 900 50 90

Double Objective

0.5 0.5 0 0.824 0.3 1 824 15 100

0 0.5 0.5 0.839 0.24 1 839 12 100

0.5 0 0.5 0.898 1.04 0.9 898 52 90

The results of the experiments with the sample of data sets are displayed in Figures 5.4,

5.5, 5.6, 5.8, 5.9, 5.10, 5.12, 5.13 and 5.14; they demonstrate the different solutions

of different starting conditions without an aggressive move. The figures indicate that

starting with a high allocation value, i.e. 0.9 and 1.0, biases the result towards finding

fair solutions. Non-dominated sets of all solutions are provided for comparison. This

analysis shows a near linear front for the case without “delta” moves, as seen in Figures

5.7, 5.11 and 5.15.
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Figure 5.9: Solutions of DS7 of E5.2 with different initial allocation values
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Figure 5.11: Pareto Optimal Front of all the initial Allocations of DS7 of E5.2
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Figure 5.12: Solutions of DS7 of E5.3 with different initial allocation values
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Table 5.5: Solutions of 3 objective function of DS7 of E5.3 for the initial allocation

0.1.
Dominants Unserved Demand Weight ITAP Weight Unfairness Weight

Normalized Values Un Normalized

Values

fD fI fU fD fI fU

Unserved Demand

Dominant

0.5 0.1 0.4 0.812 0.28 1 812 14 100

0.5 0.2 0.3 0.812 22 1 812 11 100

0.5 0.3 0.2 0.812 0.22 1 812 11 100

0.5 0.4 0.1 0.812 0.2 1 812 10 100

0.5 0.35 0.15 0.812 0.2 1 812 10 100

0.7 0.07 0.23 0.812 0.24 1 813 12 100

0.34 0.33 0.33 0.812 0.22 1 812 11 100

Unfairness Dominant

0.25 0.05 0.7 0.9 1 0.9 900 50 90

0.2 0.1 0.7 0.812 0.24 1 812 12 100

0.23 0.07 0.7 0.829 0.3 0.9 829 15 90

0.32 0.08 0.6 0.812 0.28 1 812 14 100

0.1 0.4 0.5 0.812 0.2 1 812 10 100

0.3 0.3 0.4 0.812 0.22 1 812 11 100

ITAP Dominant

0.3 0.6 0.1 0.812 0.24 1 812 12 100

0.1 0.7 0.2 0.824 0.22 1 824 11 100

0.15 0.8 0.05 0.812 0.24 1 812 12 100

0.2 0.5 0.3 0.824 0.3 1 824 15 100

Single Objective

1 0 0 0.832 2.28 1 832 114 100

0 1 0 0.832 0.22 1 832 11 100

0 0 1 0.9 1 0.9 900 50 0.9

Double Objective

0.5 0.5 0 0.823 0.2 1 823 10 100

0.5 0 0.5 0.899 1 0.9 899 50 90

0 0.5 0.5 0.843 0.18 1 843 9 100
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Figure 5.13: Solutions of DS7 of E5.3 with different initial allocation values
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Figure 5.15: Pareto Optimal Front of all the initial Allocations of DS7 of E5.3
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5.6.2 Performance and Evaluation of Aggressive moves

We investigate the effect of the more aggressive “delta” moves of adding and delet-

ing allocation, by running each experiment for each initial allocation value with and

without the aggressive move. The previous section displayed the results without the

aggressive move, but the result of including the “delta” moves showed a degree of im-

provement in the data sets DS1 and DS7. Because of their diversity it is hard to com-

pare and express the problem of having three objectives. The result shows a diversity

and spread of solutions which motivate the use of set coverage. The set coverage met-

ric gives the relative spread of solutions between two non-dominated sets of solutions.

Hence the set coverage metric was applied to these results to measure any improve-

ment of solutions with and without the aggressive moves of a uniform initial allocation

(over the range 0.1− 1.0) as shown in Figures 5.16, 5.17 and 5.18.

Figure 5.16: DS1of E5.1 with and without the Aggressive Move
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Figure 5.17: DS7 of E5.2 with and without the Aggressive Move
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Figure 5.18: DS7 of E5.3 with and without the Aggressive Move
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Table 5.6: Solutions of 3 objective functions without and with the Aggressive Move

of DS7 of E5.3 for the initial allocation (01).

Dominants Unserved Demand Weight ITAP Weight Unfairness Weight
Un-normalized

Values without

the Aggressive

Move

Un-normalized

Values with

the Aggressive

Move

fD fl fU fD fl fU

Unserved Demand

Dominant

0.5 0.1 0.4 812 14 100 0 50 0

0.5 0.2 0.3 812 11 100 0 50 0

0.5 0.3 0.2 812 11 100 0 50 0

0.5 0.4 0.1 812 10 100 0 50 0

0.5 0.35 0.15 812 10 100 0 50 0

0.7 0.07 0.23 813 12 100 0 50 0

0.34 0.33 0.33 812 11 100 0 50 0

Unfairness Dominant

0.25 0.05 0.7 900 50 90 0 50 0

0.2 0.1 0.7 812 12 100 0 50 0

0.23 0.07 0.7 829 15 90 0 50 0

0.32 0.08 0.6 812 14 100 0 50 0

0.1 0.4 0.5 812 10 100 0 50 0

0.3 0.3 0.4 812 11 100 0 50 0

ITAP Dominant

0.3 0.6 0.1 812 12 100 0 50 0

0.1 0.7 0.2 824 11 100 0 50 0

0.15 0.8 0.05 812 12 100 0 50 0

0.2 0.5 0.3 824 15 100 0 50 0

Single Objective

1 0 0 832 114 100 0 51 0

0 1 0 832 11 100 560 22 100

0 0 1 900 50 90 0 50 0

Double Objective

0.5 0.5 0 823 10 100 19 49 100

0.5 0 0.5 899 50 90 0 50 0

0 0.5 0.5 843 9 100 0 50 0

Table 5.6 show the improvement of aggressive move in the DS7 of E5.3 compared

with the solutions without the aggressive move. This demonstrates the balance of the

3 objectives with the range of solutions on the search space (see Figure 5.18).

5.6.3 Set Coverage and Spread

Different metrics could be used in multi-objective optimisation algorithms to compare

populations: the two most common performance metrics are set coverage and spread.
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In [58] the spread can be calculated based on the separation of non-dominated solu-

tions. The set coverage metric C(SA, SB), for each data set for the non-dominated sets

of “without aggressive move” and “with aggressive move” are used to show the im-

provement and to compare the two fronts. Two sets, SA and SB, of the non-dominated

solutions are defined separately from the “without aggressive move” and “with ag-

gressive move” cases. The set coverage of SA with respect to SB, C(SA, SB) is the

percentage of solutions in SB, that are weakly dominated by at least one solution in

SA . Hence, if the metric value C(SA, SB) = 100, it means that for every solution

in SB there is a solution in SA that is at least as good with respect to all performance

measures, and if C(SA, SB) = 0, it means that no member of SB is weakly dominated

by SA. That is, the higher the set coverage measure C(SA, SB), the greater the number

of solutions in SA that would improve SB. Since the domination operator is not a sym-

metric operator, C(SA, SB) is not necessarily equal to 1− (SB, SA). It is necessary to

calculate both C(SA, SB) and C(SB, SA) to understand how many solutions of SA are

covered by SB, and vice versa. However, the set coverage of the solutions for “without

the Aggressive” and “with the Aggressive” move in DS1 of E5.1 shows as 50% and

30%, while the set coverage of DS7 of E5.2 is 8% and 25%, and the set coverage of

DS7 of E5.3 is 25% and 33%. These percentage values illustrate the relative benefit

of the aggressive move in DS1 and DS7. The set coverage results indicate that the

Aggressive move has a significant effect on the data sets.

5.7 Chapter Conclusion

This chapter demonstrates that a tool to optimize the multi-objective function of ITAP

placement and bandwidth allocation can be implemented using the weighted sum

method. In our search for techniques that will yield the best solution, this chapter

provides an understanding of the way in which the weighted sum method works on

the effect of the move operator in WMNs and explores the significance of the weights

with respect to preferences. The weighted sum method provides a simple and user-



5.7 Chapter Conclusion 103

friendly approach for multi-objective optimization and shows that there is a trade-off

between unfairness and throughput. The result indicates that starting with high alloca-

tion value, i.e. 0.9 and 1.0, is biased towards finding fair solutions. Implementing the

non-dominated evaluation shows the linear line in the Pareto front of the retrieved solu-

tions achieved by a uniform initial allocation (with different values, i.e. 0.1, 0.3, 0.5,

0.9, and 1.0). The evaluation results show the difficulty of managing the unfairness and

sensitivity parameters because no essential guidelines have been presented for select-

ing weights. A set of weights is considered for emphasizing each of the objectives and

we compared the effect of granularity in the moves. The Pareto front results from a spe-

cific set of weight values based on our chosen constraints. The evaluation results show

that our proposed approach is able to balance the three objectives under review, using

the aggressive move operator, and to come up with a range of solutions to cover the

search space. The quality of solutions with the aggressive move is better than without

the aggressive move because the aggressive move showed a slight improvement in our

experiments and it is also sensitive to the weights.
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Chapter 6

Multi-Objective Optimization of ITAP

Placement using Genetic Algorithms

Evolutionary algorithms (EA) are powerful and popular approaches that are frequently

applied to solve many real-world search and optimization problems. EAs are capable

of generating good solutions to single-objective problems, but in addition they offer

considerable advantages when applied to problems with multiple objectives. In many

practical problems, it is common to find that optimizing one objective in a solution

leads to a degradation in other objective(s). For example, it clearly possible to in-

crease the overall capacity of a WMN by adding additional ITAPs, but this comes at

the expense of additional infrastructure costs. For such problems, it is hard to algorith-

mically capture which of two solutions is the better overall. For example, consider the

solutions to the hypothetical problem shown in Figure 6.1 which has the objectives of

minimising both A and B. It is not possible for an optimization process to determine

the better solution without additional information from the user - each outperforms

the other in one objective. In Chapter 5, this information was provided in the form

of a priori weights to encapsulate the relative importance of each, but this approach is

limited because the relationships between the objectives are not constant as regards all

values of the objectives and it does not admit a diversity of solutions [59]. Moreover,

no guidelines are available to show which weight values give the best solutions. The

applied weight values need to be decided in advance. Alternatively, EAs address this

by maintaining a population of several solutions throughout the optimization process
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and allowing the population to have different solutions. Some of these populations are

good in cost, while others are good in throughput. Combining the population may have

some opportunity to introduce diversity. EAs have the potential of finding multiple

Pareto-optimal solutions in a single simulation run for Multi-Objective Optimization

(MOO).

Objective A

Objective B

Solution 1

Solution 2

Figure 6.1: A multi-objective optimization problem

As considered in Chapter 5, the problem of optimizing the WMN infrastructure place-

ment is inherently multi-objective, with the aim of minimising the number of ITAPs

required, maximising the number of users’ demands that can be satisfied and maxim-

ising the fairness of bandwidth allocation. In this chapter, a Genetic Algorithm (GA)

(a particular class of EA) is applied, specifically the popular Non-Dominated Sorting

Genetic Algorithm (NSGA-II) [55] as a potential solution technique for the problem.

NSGA-II has been shown to be a widely applicable solution technique and hence the

focus is on investigating the definition and application of crossover and mutation op-

erators suitable for this problem. Although GAs are the most frequently encountered

type of EA, they are a sub set of EAs. A GA relies on the binary representation of
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individuals: an individual is a string of bits, on which the mutation and crossover are

easy to implement, whereas an EA relies on customized data structures (instead of a

string of bits) and appropriately crafted mutation and crossover operators. A GA or any

other EA applies the principles of evolution found in nature to the problem of finding

an optimal solution to a solver’s problem.

This chapter is organized as follows: Section 6.1 discusses techniques for multi-

objective optimization and for defining a series of crossover and mutation operators.

Section 6.2 defines the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and

shows its implementation. Section 6.3 reports the experimental results of using the

NSGA-II. Finally, Section 6.4 draws some conclusions.

6.1 Techniques for Multi-Objective Optimization

GAs are very popular meta-heuristic search methods, which are used as the foundation

of many evolutionary algorithms to solve optimization problems with single and mul-

tiple objectives. In a GA, a population of potential solutions, termed chromosomes, is

developed over a sequence of generations, using a set of genetic operators called selec-

tion, crossover and mutation. Each chromosome represents a solution to the problem

and is composed of a list of genes. These are typically bit-strings or vectors of in-

tegers/real numbers, but can be more complex, for instance, if they are permutation

based. For the problem of optimizing WMN infrastructure placement, we define a

chromosome following the same principle as in Chapter 5. That is, for a data set with

M houses and N potential ITAP locations, a vector of length M + N , is considered,

where the first M elements specify the bandwidth allocated to each house and the re-

maining N elements specify the number of ITAPs to be installed at each location. This

can be seen in Figure 6.2. More formally, in a chromosome p:

p[i] is the bandwidth allocation to house i, for 1≤ i ≤M

p[M + i] is the number of ITAPs installed at location i, for 1 ≤ i ≤ N
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For single objective problems, a fitness value can be calculated for each chromosome,

whereas for multi-objective problems the fitness value is replaced by a vector of fit-

ness values for each objective. For the problem of optimizing WMN infrastructure

placement, the objectives fD, fU and fI as defined in Equations 5.14, 5.15 and 5.16 in

Chapter 5 are chosen.

A GA maintains a population of solutions which are updated through a process of

reproduction over a number of generations. The overall aim is that the structures in

chromosomes that correspond to “good” solutions should survive and propagate into

the next generation. Reproduction typically consists of three elements. First, a selec-

tion operator is applied to choose the chromosomes that will be part of the reproduction

process. At its simplest, pairs of chromosomes are picked from the mating pool at ran-

dom, but more sophisticated selection operators aim to preferentially choose “good”

solutions while avoiding “weak” solutions in the population. For example, tournament

selection incorporates elitism where two individuals are randomly picked and the bet-

ter one is chosen to reproduce once. If they happen to have the same fitness, then one

of them is randomly chosen to reproduce. Similarly, roulette wheel selection is per-

formed by picking parents with a probability proportional to their fitness. In NSGA-II,

parents are selected from the population using binary tournament selection based on

both the quality of their solution and how spread out they are (described in more detail

below). In the remainder of the reproduction process, new individuals (termed chil-

dren) are created through the application of crossover and mutation operators to a pair

of parent chromosomes. Crossover operators blend the genetic information between a

pair of parent chromosomes to explore the search space, whereas mutation operators

are used to maintain sufficient diversity in the population. Crossover allows the basic

genetic material of parents to pass to their children, who then form the next generation.

A number of crossover operators have been proposed for use in GAs, but in almost

all of these, pairs of each gene from the parent chromosomes are combined to pass the

corresponding gene on to the child. In what follows the genetic operators are explained

in detail. In NSGA-II, elitism is used in building the next generation. The elitism op-
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erator combines the old population with the newly created population and chooses to

keep the better solutions from the combined population. Such an operation makes sure

that an algorithm will have a monotonically non-degrading performance. Elitism can

speed up the performance of the GA significantly and this can also help to prevent the

loss of good solutions once they are found.

1 0 3 5 2 0

Elements referring to Allocation
0 to M-1

0.5 0.8 0.2 0.3 0.9 1.0 0.1 0.5 0.7 0.1

Elements referring to number of ITAP Locations
M to M+ N-1

M N

Figure 6.2: Single Chromosome of Allocation and Placement

Many new MOO techniques have been developed, including the Non-dominated Sort-

ing Genetic Algorithm II (NSGA-II). The NSGA-II algorithm sorts the population ac-

cording to various non-domination levels. The technique of identifying the solutions

that belong to a non-dominated set involves comparing all possible pairs of solutions

using a dominance operator.

6.1.1 Crossover Operator

This section discusses some of the most commonly used crossover operators. Cros-

sover operators create new offspring by “mating” two selected parents with the aim of

maintaining beneficial structures in the children. There are many types of crossover,

the most well-known being single point crossover. In this simple approach, one cros-

sover point is selected randomly and, to get a new offspring, a binary string from the

beginning of the chromosome to the crossover point is copied from one parent and the

rest is copied from the other parent. The link order of the genes in the chromosome is

important if the ordered chromosomes have a relationship with each other; in this case,
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the single point crossover would be suitable for use. However, in this problem the order

of genes in the chromosomes is arbitrary and there is no direct relationship between

adjacent genes; hence, it is not appropriate to use single point crossover. Selecting and

implementing a crossover operator depends on the chromosome representation and

also on the optimization problem. Initially two types of crossover operator are applied

to WMN: Arithmetic crossover and Uniform crossover

1. Arithmetic Crossover Arithmetic crossovers are commonly applied in real-

coded GAs; they work by taking the weighted average of the two parents, using

the basis of arithmetic mean as shown in Algorithm 6.1. In [60] arithmetic cros-

sover generates a high number of individuals in the search space and creates a

greater variety of individuals by increasing the “genetic diversity” of the popu-

lation while still maintaining adequate coverage of the ranges near and between

the parents. The blending of genes, of the two chromosomes from the parents

called arithmetic crossover uses the arithmetic mean to produce offspring, as

shown in Algorithm 6.1. Arithmetic crossover creates individuals based on the

average, seeking to combine elements of the two parents in order to balance their

strengths. Previous studies have shown that arithmetic crossover can enhance the

rate of convergence [60]. Figure 6.3 shows an example of arithmetic crossover

applied to two parents for the ITAP placement problem. As in Chapter 5, U(s)

denotes a random value selected as a uniformly random value from the set s.

2. Uniform Crossover Uniform crossover is a simple and often used method for

GAs. This idea was first used by Gilbert Syswerda [61], who implicitly assumed

that the Bernoulli parameter was p = 0.5. For each gene in turn, uniform cros-

sover makes a random, binary decision on which parent to select, based on a

specific mixing ratio. For example, with a mixing ratio of 0.5 the child has an

equal probability of receiving a given gene from either parent, whereas for a ra-

tio of 0.75, selection is biased towards the first parent. In this thesis, the mixing

ratio is fixed at 0.5. This is described formally in Algorithm 6.2, while Figure
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Algorithm 6.1: Arithmetic Crossover (p, q, M, N)

1 p, q: parent chromosomes //(Select p and q randomly from population)

2 M,N : number of houses, potential ITAP locations

3 σ = U([0, 1])

4 c is an empty chromosome of length M +N #initialize child to Empty list

5 Loop over Houses, build allocations for child from parents

6 for i ∈ {1, ...,M} do

7 c[i] = σ.p[i] + (1− σ).q[i]

8 end

9 Loop over Placement, build placement for child from parents

10 for i ∈ {M + 1, ...,M +N} do

11 c[i] = bσ.p[i] + (1− σ).q[i]c

12 end

13 Return c

3 1 1 0 1 20.1 0.3 0.1 0.9 0.7 0.4 0.5 1.0 0.2 0.9

1 0 3 5 2 00.5 0.8 0.2 0.3 0.9 1.0 0.1 0.5 0.7 0.1
Parent 1

Parent 2

Child 2 0 1 1 1 10.22 0.45 0.13 0.72 0.76 0.58 0.38 0.85 0.35 0.66

Figure 6.3: Example of Arithmetic Crossover with α = 0.3 on individual chromo-

somes.
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6.4 shows an example of uniform crossover.

Algorithm 6.2: Uniform Crossover (p, q, M, N)

1 p, q: parent chromosomes //(Select p and q randomly from population)

2 M,N : number of houses, potential ITAP locations

3 c is an empty chromosome of length M +N // initialize child to Empty list

4 for i ∈ {1, ...,M +N} do

5 if U([0, 1]) > 0.5 then

6 c[i] = p[i]

7 end

8 else

9 c[i] = q[i]

10 end

11 end

12 Return c

3 1 1 0 1 20.1 0.3 0.1 0.9 0.7 0.4 0.5 1.0 0.2 0.9

1 0 3 5 2 00.5 0.8 0.2 0.3 0.9 1.0 0.1 0.5 0.7 0.1
Parent 1

Parent 2

Child 1 0 1 0 1 00.5 0.3 0.2 0.3 0.7 0.4 0.1 0.5 0.7 0.1

Figure 6.4: Example of Uniform Crossover on Individual Chromosomes
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6.1.2 Mutation Operator

Mutation is a genetic operator used to maintain genetic diversity from one generation

of a population of GA chromosomes to the next. The role of mutation is to intro-

duce diversity into the population to address the local minimum problem, where meta-

heuristic algorithms get stuck in a local optimum. Mutation is applied to each child

with a small probability Pm (termed the mutation rate) after crossover has taken place.

Mutation alters one or more of the child’s gene values in a chromosome from its initial

state, to produce diversity from different chromosomes. GA can come to a better solu-

tion by using mutation, which occurs during evolution. The best mutation rate is often

difficult to determine, since a small value may not introduce sufficient diversity, while

a large value leads to many offspring, leading to a random walk in the search space.

Two mutation operators GA, Gaussian and Uniform, are tested here. These types of

mutation operator can be used only for integer and real valued genes.

1. Gaussian Mutation

This operator adds a unit Gaussian distributed random value to the chosen gene

of the allocation and placement chromosomes, as shown in Algorithm 6.3. The

aim of Gaussian mutation is to avoid being trapped in the local minimum by

having more chance to pick genes (a small number of solutions is generated)

close to the current solution rather than anywhere else, while mutating the gene

preserves more of the current solution [62], and applies diversity on Gaussian

principles on a smaller scale. Since allocation values must fall within the range

[0, 1], if the mutated value falls outside these limits, it is “clipped” to the max-

imum/minimum allowed. For the genes corresponding to ITAP placement, clip-

ping is necessary only for the lower bound of 0, but, because Gaussian mutation

leads to non-integral values, the resulting values are rounded downwards. The

effect of Gaussian mutation is controlled by the standard deviation. The nota-

tion of λP and λA represents the gene mutation probabilities of placement and
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allocation. In Gaussian mutation, the ways to mutate genes for placement and

allocation are specified below;

• Each gene corresponding to ITAP placement is modified with probab-

ility λP/N

Adds a unit of Gaussian distributed random value to the original gene.

• Each gene corresponding to bandwidth allocation is modified with

probability λA/M

With probability λA/M , the bandwidth allocated to a house is set by adding

a unit of Gaussian distributed random value to the original gene.

P denotes the population, Pm represents the mutation rate, σP represent the

standard deviation for placement and σA represents the standard deviation for

the allocation.

2. Uniform Mutation

Uniform mutation considers each gene in turn and makes a decision whether

to modify each gene separately. Normally, this operation replaces the value of

the gene with a value selected uniformly randomly between the upper and lower

bounds, as described in Algorithm 6.4. However, since there is no upper bound

on the number of ITAPs that can be installed at a location, separate gene muta-

tion rates and processes for placement and allocation are applied. For ITAP

placement a small perturbation is made to the value, rather than selecting an

entirely new value.

• Each gene corresponding to ITAP placement is modified with probab-

ility λP/N

Randomly select to either add 1 to or subtract 1 from the original gene.

• Each gene corresponding to bandwidth allocation is modified with a

given probability.
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Algorithm 6.3: Gaussian Mutate (P , Pm, σP , σA, λP , λA, M , N )

1 p, q: parent chromosomes //(Select p and q randomly from population)

2 M,N : number of houses, potential ITAP locations

3 c is an empty chromosome of length M +N // initialize child to Empty list

4 Loop over Houses;

5 for i ∈ {1, ...,M} do

6 Checking Mutation rate Pm;

7 if U([0, 1]) < λA/M then

8 Gaussian mutation & clipping ;

9 c[i] = max(min(c[i] +N(0, σA), 1.0), 0)

10 end

11 end

12 Loop over placement;

13 for i ∈ {M + 1, ...,M +N} do

14 Checking Mutation rate Pm;

15 if U([0, 1]) < λp/N then

16 Gaussian mutation & clipping ;

17 c[i] = max(c[i] + bN(0, σP )c, 0)

18 end

19 end

Select a random value of delta and then replace the original gene value for

each gene of the allocation chromosome. Each of two forms of mutation

are selected randomly. First, with the probability λA/M , the bandwidth

allocated to a house may be set at a random value between 0 and 1. If this

change is not made, with probability λA/M , the bandwidth allocated to the

house is set to 0 (i.e. choosing not to serve them at all).
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Algorithm 6.4: Uniform Mutate (P , Pm, λP , λA M , N )

1 p, q: parent chromosomes //(Select p and q randomly from population)

2 M,N : number of houses, potential ITAP locations

3 c is an empty chromosome of length M +N // initialize child to Empty list

4 Loop over Houses;

5 for i ∈ {1, ...,M} do

6 Checking Mutation rate Pm

7 if U([0, 1]) < λA/M then

8 c[i] = 0

9 else if U([0, 1]) < λA/M then

10 Mutate Gene

11 c[i] = U([0, 1])

12 end

13 Loop over placement;

14 for i ∈ {M + 1, ...,M +N} do

15 Checking Mutation rate Pm

16 if U([0, 1]) < λp/N then

17 Mutate Gene & clipping

18 c[i] = max(c[i] + U({−1, 1}), 0)

19 end

20 end

6.2 Non-Dominated Sorting Genetic Algorithm-II

(NSGA-II)

The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) was chosen for imple-

mentation in the research for solving a multi-objective problem. NSGA-II is a com-

monly used multi-objective optimization algorithm with three special characteristics
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[55]: a) it is a sorting non-dominated procedure where all the individuals are sorted

according to the level of non-domination; b) it implements elitism, which stores all

non-dominated solutions and hence enhances convergence properties; and c) it adapts

a suitable automatic mechanics based on the crowding distance, in order to guaran-

tee diversity and spread of solutions; Constraints are implemented using a modified

definition of dominance without the use of penalty functions. The population is initial-

ized to a set of random solutions. At each generation the population is sorted on the

basis of non-domination into a number of fronts. The first front, F0, is the complete

non-dominant set in the current population. The second front, F1, contains only those

solutions that are dominated by individuals in the first front, and so on for subsequent

fronts (as shown in Figure 6.5). Each individual in a population is assigned a rank

(fitness) value based on the front that they belong to (individuals in the first front are

given a fitness value of 1 and individuals in the second are assigned a fitness value of 2,

and so on). In addition to the fitness value, a new parameter called crowding distance

is calculated for each individual. The crowding distance is a measure of how close an

individual is to its neighbours in terms of their fitness. Large average crowding dis-

tance will result in greater diversity in the population. Parents are selected from the

population using binary tournament selection based on rank and crowding distance.

An individual is selected if its rank is less than the other’s or if the crowding distance

is greater than the other’s; in other words, crowding distance is compared only if the

rank for both individuals is the same. The selected population generates an offspring

population Q0 of size |P | (the same as the number of population) from crossover and

mutation operators, as discussed in section 6.1. The population with the current popu-

lation and current off-springs is sorted again on the basis of non-domination and only

the best |P | individuals are selected, by keeping the previous population that got the

chance to survive to the next generation if they were better, where |P | is the population

size and Q0 is the initial offspring. The selection is based on rank and on the crowding

distance on the last front.

To identify the Pareto set, the procedure of sorting solutions, taken from [55], is im-
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F0 F1 F2

𝑓1

𝑓2

Figure 6.5: Fronts of a non-dominant set in the current population

plemented. In order to identify the non-dominated set, each solution can be compared

with every other solution to find if it is dominated. This process continues until all the

non-dominated individuals have been identified. For each chromosome in the popu-

lation P0 the objectives are evaluated by applying the crowding-distance assignment

procedure. Then a fast non-dominated sort is applied to P0, where P0 is the initial pop-

ulation and Pt is the population in generation t, (see Algorithm 6.5), which assigns the

non-dominated solutions. Initially, for each solution the NSGA-II algorithm calculates

two entities:

1) Domination count np, the number of solutions which dominate the solution p,

and 2) Sp, a set of solutions that the solution p dominates, At each iteration of

NSGA-II, start with the population and generate offspring and then combine those

offspring with the population (Pt ∪ Qt) and sort them out to perform fronts, where

the Qt is the offspring in generation t. Next introduce diversity among the non-

dominated solutions by comparing the crowding distance. The Algorithm 6.5 shows

the general pseudo code outline of the non-dominated sorting genetic approach [55].
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Algorithm 6.5: Fast non-dominated sorting approach (P, I)

1 F1 = { } Pareto fronts

2 for each p ∈ P do

3 Sp = {}

4 np = 0

5 for each q ∈ P do

6 if (p < q) if p dominates q ;

7 then

8 Sp = Sp ∪ {q} Add q to the set of solutions dominated by p ;

9 end

10 else if (q < p) then

11 np = np + 1 increment the domination counter of p ;

12 end

13 if np = 0 p belongs to first front ;

14 then

15 F1 = F1 ∪ {p} ;

16 end

17 Return F1 ;

18 end

19 i = 1 Initialize the front counter ;

20 while Fi 6= θ do

21 Q = θ Used to store the members of the next front;

22 for each p ∈ Fi do

23 for each q ∈ Sp do

24 nq = nq − 1

25 if nq = 0 q belong to the next front;

26 then

27 qrank = i+ 1

28 Q = Q ∪ {q}

29 end

30 end

31 end

32 end
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1 i = i+ 1 ;

2 Fi = Q ;

3 I = |I| number of solutions in I ;

4 for each I, set I[i]distance = 0 initialize distance;

5 do

6 for each objective M do

7 I = sort(I, M) sort using each objective value;

8 I[i]distance = I[i]distance =∞ so that boundary points are always

selected;

9 for i = 2 to (I − 1) for all other points;

10 do

11 I[i]distance = I[i]distance + (I[i+ 1].M− I[i− 1].M)/(fmax
M − fmin

M )

12 end

13 end

14 end

15 Rt = Pt ∪Qt combine parent and offspring population;

16 F = fast-non-dominated-sort (Rt) F = (F1, F2, ..)all non-dominated fronts

of Rt

17 Pt+1 = θ and i = 1

18 Until |Pt+1|+ |Fi| ≤ N until the parent population is filled

19 Crowding-distance-assignment (Fi) calculate crowding-distance in Fi

20 Pt+1 = Pt+1 ∪ Fi include ith non-dominated front for inclusion

21 i = i+ 1 check the next front for inclusion

22 Sort (Fi <n ) sort in descending order using <n

23 Pt+1 = Pt+1∪Fi[1 : (N −|Pt+1|)] choose the first (N −|Pt+1|) elements of Fi

24 Qt+1 = make-new-pop (Pt+1) use selection, crossover and mutation to

create a new population Qt+1

25 t = t+ 1 increment the generation counter
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Table 6.1: Benchmark data sets
Data Set No. of Houses No. of ITAPs No. of ITAP-Location Grid Area

DS1 100 10 10 100× 100

DS1A 100 10 10 100× 100

DS7 1000 50 100 500× 500

DS7A 1000 50 100 500× 500

6.3 Experimental Results

NSGA-II algorithm 6.5 was run for the parameters below to test the performance of

different combinations of crossover and mutation operators for the data sets described

in Table 6.1. Each of the following experiments was run 5 times on each test case with

five different random seeds. The results are presented for the mean values of the 5 runs.

The experimental results are discussed in the following sections.

6.3.1 Parameter Settings

The arithmetic and uniform crossover with uniform and Gaussian mutation were im-

plemented and tested for different combinations of population size and generations

with a population ranging from 16 to 200 and a generational range from 125 to 500. A

population size of 32 and max generation of 500 are chosen, with a mutation rate (Pm)

of 0.1 and gene mutation probabilities of λP = λA = 1. The data sets in Table 6.1 were

applied for the wide range of instances for the experiments in Table 6.2. DS1 and DS7

were regenerated with different random seeds for sets of ITAP and house locations to

generate new data sets with the same density, i.e. DS1A and DS7A, with the properties

as shown in Table 6.1.

Some initial experiments were performed to determine a population size and number

of generations that would be appropriate, bearing in mind that a smaller population size

leads to quicker convergence but the algorithm is more likely to get trapped in local
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Table 6.2: Experiments on data sets

Experiments Data sets
Wireless Range

Connectivity

Wireless Link

Capacity
ITAP Capacity Generation

E6.1 DS1 25 5 10 500

E6.2 DS1A 25 5 10 500

E6.3 DS7 35 15 20 500

E6.4 DS7A 35 15 20 500

E6.5 DS7A 35 15 20 1000

E6.6 DS7 35 54 20 500

Table 6.3: The parameters of the experiments
Parameter Pm σP σA λP λA House demand

Value 0.1 1 1/6 1 1 1

optima and conversely that a large population size will affect the ability of the GA to

explore the whole search space equally. In [63], it is shown how increasing the pop-

ulation size also increases the structural bias of the GA. This means that the search is

biased towards specific regions of the search space while others are ignored. However,

in light of the above facts and the sensitivity analysis of the results the population size

was reduced and run for a longer time, for more generations. To see the progress of

the algorithm; a population of 32 individuals and 500 generations were applied as a

reasonable balance between quality and runtime in the final solution.

6.3.2 Crossover Operator Experimentation

The first experiments aimed to investigate the effectiveness of the crossover operator.

Both arithmetic and uniform crossover were applied with Gaussian mutation operators

using the parameters in Table 6.3.

5.14 To compare the final populations produced by each crossover, the set coverage

metric as described in section 5.6 in Chapter 5 was applied. Five runs with different

random seeds were generated for each crossover type to give sets of populations A and
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Table 6.4: Set coverage of Arithmetic and Uniform crossover with Gaussian muta-

tion for DS1 and DS7.
Set Coverage B

Gaussian

Mutation/

Uniform

Crossover

Set Coverage A

Gaussian Mutation / Arithmetic Crossover

E6.1 E6.2 E6.3 E6.4 E6.6

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

46% 20% 73% 16% 6% 57% 14% 48% 7% 61%

B and both sets were compared pairwise:

A = {A1, A2, A3, A4, A5}

B = {B1, B2, B3, B4, B5}

S = 1
25

∑
1≤i,j≤5 S(Ai,Bj)

The average of set coverage is shown in Table 6.4, indicating uniform crossover outper-

formed the arithmetic crossover in DS1 and DS1A of E6.1 and E6.2, and the arithmetic

crossover outperformed the uniform crossover in DS7 and DS7A of E6.3, E6.4 and

E6.6. The assumption is that uniform crossover does better in small data sets, which

may be easy problems, whereas arithmetic does better in larger data sets because the

problem then is harder.

The initial result showed that uniform did better in DS1 and DS1A; as suspected, be-

cause of the size of the problem. To investigate this the progression of uniform and

arithmetic crossovers was examined through the generations for data sets DS1A. In

Table 6.5, the set coverage after 100 generations shows that the arithmetic and uniform

are roughly the same but that after 200 generations the uniform crossover does much

better than the arithmetic crossover. After 300 generations, however, the arithmetic

does better than the uniform. After generations 400 and 500 uniform crossovers show

much divergence. The evaluation result is that the set coverage varies from 100 genera-

tions to 500 generations for both arithmetic and uniform crossovers, as shown in Figure

6.6. Effectively, with simulating smaller problems it is easy to achieve improvement

and easy to explore the search space but the visible effect is small. Given the suspicion
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Table 6.5: Set coverage of Arithmetic and Uniform crossover with Gaussian muta-

tion for generations (100 - 500) of DS1A.

Set Coverage B

Gaussian

Mutation/

Uniform

Crossover

Set Coverage A

Gaussian Mutation/Arithmetic Crossover E6.2

100

Generations

200

Generations

300

Generations

400

Generations

500

Generations

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

41% 38% 91% 14% 27% 33% 88% 27% 93% 15%

that a small data set denotes an easy problem, it was proposed to investigate harder

problems.
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Figure 6.6: Set coverage of Arithmetic and Uniform Crossover of DS1

To confirm and draw attention to the performance of arithmetic crossovers in compar-

ison to uniform crossovers in DS7 and DS7A, the NSGA-II algorithm was run once

with 1000 generations for DS7A, to compare uniform and arithmetic crossovers. The

longer the experiment ran, the greater the difference found between the two types of

crossover. As before, set coverage was compared after every 100 generations. As

seen in Table 6.6, uniform crossover initially outperforms arithmetic, but arithmetic
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Table 6.6: Set coverage of Arithmetic and Uniform crossover with Gaussian muta-

tion of 1000 generations of DS7A.

Set Coverage B

Gaussian

Mutation/

Uniform

Crossover

Set Coverage A

Gaussian Mutation/Arithmetic Crossover E6.5

100

Generations

200

Generations

300

Generations

400

Generations

500

Generations

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

10% 0% 4% 29% 5% 62% 5% 59% 10% 58%

600

Generations

700

Generations

800

Generations

900

Generations

1000

Generations

5% 65% 9% 56% 5% 62% 0% 76% 4% 56%

does better with the remaining generations. This indicates the good progress in lar-

ger problems of arithmetic crossover compared to uniform crossover and confirms that

arithmetic crossover is more effective with larger data sets.

In [60] the evaluation results show that algorithms which use the arithmetic crossover

consistently outperform those using the uniform crossover; the arithmetic crossover is

consistently able to reach the neighbourhood of global minima with competitive speeds

of convergence. It is clear from the above evaluation result that, while NSGA-II with

arithmetic crossover had the highest average set coverage in all test case of DS7 and

DS7A, uniform crossover performed well in small data sets such as DS1and DS1A.

Hence, further investigation was suggested into the use of uniform crossover in small

data sets and arithmetic crossover in larger data sets. From the above experiments

where arithmetic and uniform crossover were tested, the focus was determined as uni-

form crossover in the house allocation, to improve allocation and serve more demands,

since arithmetic crossover would pull everyone towards the middle, because arithmetic

crossover cannot give anyone either a full allocation or no allocation at all. In other

words, it would be hard to make progress in this direction. For the ITAP placement,

arithmetic crossover was focused on improving the attainment of this objective, as

shown in Tables 6.7 and 6.8.
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Table 6.7: The non-dominated solution of uniform crossover for DS7
Uniform Crossover

fD fU fI

480 0.984649016 26

720 0.959059339 14

760 0.97075792 12

580 0.973183139 21

540 0.982669909 23

573.2467573 0.97075792 23

451.4899448 0.982715658 29

640 0.959059339 18

440 0.988399746 28

680 0.959059339 16

500 0.977933187 25

560 0.975285557 22

600 0.971794411 20

608.7278695 0.959059339 23

740 0.963675021 13

483.8021747 0.977933187 26

556.7327874 0.981447794 23

398.6248681 0.988399746 32

620 0.959059339 19

700 0.959059339 15

460 0.978863435 27

660 0.959059339 17

520 0.999820396 24

423.9703524 0.984649016 30
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Table 6.8: The non-dominated solution of arithmetic crossover for DS7
Arithmetic Crossover

fD fU fI

860 0.848318 7

640 0.957089 18

497.5753 0.840982 44

540 0.895586 23

560 0.979841 22

600 0.9456 20

720 0.890432 14

760 0.857483 12

680 0.85879 16

800 0.918517 10

660 0.867393 17

740 0.864393 13

700 0.923822 15

503.1 0.994215 25

489.1366 0.990419 27

780 0.986285 11

580 0.860906 21

520 0.864764 24

840 0.83976 8

820 0.950968 9

A simple example is shown in Figure 6.7, which illustrates the techniques of uniform

and arithmetic crossover. It is clear that uniform crossover has a chance of selecting

a bad solution or an empty gene, while arithmetic crossover tends to move away from

selecting a bad solution. This is an advantage, but its downside is that it also tends

to move away from good solutions. The arithmetic crossover takes the average of the
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parents so as to strike a balance between their strengths which smooths it out; this is a

better method than taking one another, as in uniform crossover.

1 0 0 00.3 0.2 0.9

0 1 1 10.0 0.0 0.0
Parent 1

Parent 2

Child 0.3 0.2 0.0 0 0 1 1

1 0 0 00.3 0.2 0.9

0 1 1 10.0 0.0 0.0

0.15 0.1 0.45 0.5 0.5 0.5 0.5

Uniform Crossover Arithmetic Crossover

Figure 6.7: Show the convergence of Uniform and Arithmetic crossover with α =

0.5.

As expected from the previous result, it was necessary to combine the two crossov-

ers and introduce the Hybrid crossover, described below. The hybrid crossover can be

represented by setting a mixture of the uniform crossover for allocation genes and the

arithmetic crossover for placement genes; this increases the genetic diversity (num-

ber of different gene combinations) within a species, with the effect of improving the

genetic characteristics of the offspring. A hybrid crossover is proposed, which takes

two parents and applies a mixture of uniform crossover (where it uses a fixed mixing

ratio of 0.5) for the genes relating to allocation and arithmetic crossover for the genes

relating to ITAP placement, as shown in Algorithm 6.6. Mutation was then applied to

the child as before. Figure 6.8 shows an example of hybrid crossover applied to two

parents.

Next the hybrid crossover was applied with Gaussian mutation using the parameters

shown in Table 6.9 as before and its set coverage results were compared with the arith-
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Algorithm 6.6: Hybrid Crossover (p, q,M,N )

1 p, q: parent chromosomes //(Select p and q randomly from population)

2 M,N : number of houses, potential ITAP locations

3 α = U([0, 1])

4 c is an empty chromosome of length M +N // initialize child to Empty list

5 Loop over Houses - build allocations for child from parents

6 for i ∈ {1, ...,M} do

7 if U([0, 1]) > 0.5 then

8 c[i] = p[i]

9 end

10 else

11 c[i] = q[i]

12 end

13 end

14 Loop over placement, build placements for child from parents

15 for i ∈ {M + 1, ...,M +N} do

16 c[i] = bα.p[i] + (1− α).q[i]c

17 end

18 Return c

Table 6.9: The parameters of the experiments
Parameter Pm σP σA λP λA House demand

Value 0.1 1 1/6 1 1 1

metic and uniform crossover.

Five runs with different random seeds were generated for each crossover type to give

sets of populations A and B, as described earlier in this section. The average set cov-

erage for the small data (DS1 and DS1A) in Table 6.10 shows the performance of the

uniform crossover compared to the arithmetic and hybrid crossovers. The arithmetic
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3 1 1 0 1 20.1 0.3 0.1 0.9 0.7 0.4 0.5 1.0 0.2 0.9

1 0 3 5 2 00.5 0.8 0.2 0.3 0.9 1.0 0.1 0.5 0.7 0.1
Parent 1

Parent 2

Child 2 0 1 1 1 10.1 0.3 0.2 0.3 0.7 0.4 0.5 0.5 0.7 0.1

Figure 6.8: Hybrid Crossover with α = 0.3 on individual chromosomes

Table 6.10: Set coverage of Arithmetic, Uniform and Hybrid crossover with Gaus-

sian mutation of DS1 and DS1A.

Set Coverage B

Gaussian

Mutation

Set Coverage A

Gaussian Mutation

E6.1 E6.2

Hybrid Arithmetic Hybrid Arithmetic

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (A, B) (A, B)

Uniform Crossover 45% 27% 46% 20% 48% 26% 73% 16%

Arithmetic Crossover 35% 29% 23% 41%

and hybrid were more or less close to each other in E6.1 while in E6.2 the hybrid

outperformed the arithmetic.

The set coverage for the larger data sets (DS7 and DS7A) in Table 6.11 demonstrates

the performance of arithmetic crossover compared to that of the uniform and hybrid

crossover.

Figure 6.9 shows the spread of solutions for data set DS7 for arithmetic, uniform and

hybrid crossovers. The non-dominated solutions are located on the Pareto fronts. As
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Table 6.11: Set coverage of Arithmetic, Uniform and Hybrid crossover with Gaus-

sian mutation of DS7 and DS7A.

Set Coverage B

Gaussian Mutation

Set Coverage A

Gaussian Mutation

E6.3 E6.4 E6.6

Hybrid Arithmetic Hybrid Arithmetic Hybrid Arithmetic

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B, A) (A, B) (B,A) (A, B)

Uniform

Crossover
14% 46% 6% 57% 33% 14% 14% 48% 25% 30% 7% 61%

Arithmetic

Crossover
57% 7% 45% 16% 58% 8%

the algorithm progresses, the graphs show the population after each 100 generations,

which are represented with different colours. They show the rapid convergence of

arithmetic crossover with Gaussian mutation compared to the more gradual conver-

gence of uniform crossover with Gaussian mutation. All solutions came out with zero

unfairness.

The evaluation results indicate that uniform crossover worked best on small data sets

and arithmetic crossover had the best average set coverage for larger data sets; therefore

arithmetic crossover and uniform crossover were subjected to further investigation.

6.3.3 Mutation Operator Experimentation

To compare the performance of the proposed mutation operators, experiments were

performed on the data sets of Table 6.1 to explore the efficiency of mutation when

paired with uniform crossover for DS1 and arithmetic crossover for DS7, using the

parameters shown in Table 6.12 , as before. The set coverage results for these exper-

iments are shown in Table 6.13, which illustrates that Gaussian mutation gives better

results than uniform mutation.

Table 6.13 shows that Gaussian mutation has a slight tendency to outperform uniform

mutation in both small and large data sets. Hence Gaussian mutations are the most
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Figure 6.9: Solutions of Arithmetic, Uniform and Hybrid Crossover for DS7

effective mutation operators in the research; therefore, they should be considered for

further investigation.
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Table 6.12: The parameters of the experiments
Parameter Pm σP σA λP λA House demand

Value 0.1 1 1/6 1 1 1

Table 6.13: Set coverage of Arithmetic crossover with Uniform and Gaussian

Mutation of DS1, DS2 and DS3.

Set Coverage B

Uniform Mutation

Set Coverage A

Gaussian Mutation

(B, A) (A, B)

DS1 and DS1A 38% 40%

DS7 and DS7A 27% 30%

DS7 - E6.6 15% 40%

6.3.4 Lifting Allocation Mutation

The mutation operators defined and applied so far are limited in the extent of the

changes that they make. For small values of Pm, λP and λA, there is very little perturb-

ation to the chromosome, which is unlikely to have a significant effect on the overall

cost. However, larger values of Pm, λP and λA perturb the chromosome in an unco-

ordinated fashion, potentially losing any beneficial structure in the solution. To address

this, a modified mutation operator was proposed that applies changes to all the band-

widths allocated to all the houses in a coordinated fashion, adding the same random

value to them all. Lifting allocation mutation is performed by adding a single normally

distributed random value (delta) to every house, as described in Algorithm 6.7. Lifting

is performed with probability Pr, otherwise the previously defined Gaussian mutation

is applied. The Pr represents the probability rates of 0.3, 0.5 and 0.9.

The lifting mutation within NSGA-II was applied to the data sets. The set coverage

shows good performance with lifting mutation for DS1 with uniform crossover and

Gaussian mutation compared to the data set without lifting allocation. From the set

coverage result of E6.1 it was observed that the lifting allocation with Pr of 0.5 and
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Algorithm 6.7: Lifting allocation mutation (c, Pr, σP , σA, λP , λA M , N )

1 M,N : number of houses, potential ITAP locations

2 c is a chromosome to be mutated

3 Lifting Allocation for houses

4 Probabilities rate Pr

5 if U([0, 1]) < Pr then

6 Lifting Allocation

7 for i ∈ {1, ...,M} do

8 c[i] = max(min(c[i] +N(0, σA)1.0), 0)

9 end

10 end

11 else

12 for i ∈ {1, ...,M} do

13 if U([0, 1]) < λA/M then

14 c[i] = max(min(c[i] +N(0, σA)1.0), 0)

15 end

16 end

17 Mutating placement

18 for i ∈ {M + 1, ...,M +N} do

19 Checking Mutation rate

20 if U([0, 1]) < λp/N then

21 Gaussian mutation & clipping

22 c[i] = max(c[i] + bN(0, σP )c, 0)

23 end

24 end

0.9 shows better performance than Pr (0.3) (see Table 6.14). For further investigation

of DS1 the lifting allocation with Pr of (0.9) was then used.



6.3 Experimental Results 134

Table 6.14: Set Coverage for Lifting Allocation in Uniform crossover and Gaus-

sian mutation for DS1 of E6.1.

Set Coverage B

Set Coverage A

Lifting Allocation of

Pr. 0.3

Lifting Allocation of

Pr. 0.5

Lifting Allocation of

Pr. 0.9

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

Without Lifting

Allocation
7% 100% 7% 100% 8% 100%

Lifting Allocation

prob. 0.3
64% 100% 75% 100%

Lifting Allocation

prob. 0.5
100% 64% 93% 100%

Lifting Allocation

prob. 0.9
100% 75% 100% 93%

Applying lifting mutation to DS7 with arithmetic crossover and Gaussian mutation

also showed an improvement. The result of E6.3 illustrates that lifting allocation with

the Pr of 0.3, 0.5 and 0.9 outperformed the data set without lifting allocation, giving

set coverage of 40%, 45% and 40%, respectively. The lifting allocation with Pr (0.5)

outperformed the lifting allocation with Pr (0.3 and 0.9), as shown in Table 6.15. The

potential of a good experimental result from the lifting allocation was perceived with

Pr (0.5), presenting a good diversity of solutions in the search space (see Figure 6.10)

which improved the performance of allocation with arithmetic crossover and Gaussian

mutation.

In experiment E6.6 data set DS7 was investigated to demonstrate the set coverage for

lifting allocation applied with arithmetic crossover and Gaussian mutation. The lifting

allocation shows good performance compared to other cases. The lifting allocation

for the Pr (0.5) did better than other rates (see Table 6.16). For further investigation

of DS7 of E6.3 and E6.6 the lifting allocation with Pr (0.5) was used. The lifting

allocation mutation showed a marked improvement in the diversity of the solutions in

the search space of the sampled data sets.
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Table 6.15: Set Coverage for Lifting Allocation in Arithmetic crossover and Gaus-

sian mutation for DS7 of E6.3 .

Set Coverage B

Set Coverage A

Lifting Allocation of

Pr. 0.3

Lifting Allocation of

Pr. 0.5

Lifting Allocation of

Pr. 0.9

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

Without Lifting

Allocation
24% 40% 7% 45% 16% 40%

Lifting Allocation

prob. 0.3
22% 28% 29% 31%

Lifting Allocation

prob. 0.5
28% 22% 29% 26%

Lifting Allocation

prob. 0.9
31% 29% 26% 29%

Table 6.16: Set Coverage for Lifting Allocation in Arithmetic crossover and Gaus-

sian mutation for DS7 of E6.6 .

Set Coverage B

Set Coverage A

Lifting Allocation of

Pr. 0.3

Lifting Allocation of

Pr. 0.5

Lifting Allocation of

Pr. 0.9

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

Without Lifting

Allocation
14% 42% 17% 54% 27% 33%

Lifting Allocation

prob. 0.3
27% 32% 33% 36%

Lifting Allocation

prob. 0.5
32% 27% 33% 23%

Lifting Allocation

prob. 0.9
36% 33% 23% 33%

6.3.5 Aggressive Placement Mutation

The previous section addressed the limitations of mutation for bandwidth allocation

by applying a “lifting” adjustment to all houses. Here, modifying the mutation of

placement genes by applying an “aggressive mutation” was proposed. Like lifting, ag-
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Figure 6.10: Diversity of solution in the search space without and with Lifting

Allocation for DS7 of E6.3.

gressive identically mutates not a single gene but a whole chromosome with mutation

probability λA/N , thereby making greater changes possible.

The selected mutating gene of the placement is swapped with the K value. The K =

2, 5, 10 value is a randomly chosen number from the set of 2, 5 and 10. The Algorithm

6.8 describes the approach.

The value of K used for aggressive placement mutation was compared in an exper-

iment with Gaussian placement mutation, to see the effect of the changes that the

aggressive mutation can make. In Table 6.17, the set coverage of aggressive place-

ment mutation of value K(= 2 and 5) in DS1 of E6.1 showed a great improvement

compared to the Gaussian placement mutation with lifting allocation. However, the

aggressive placement mutation of value K = 10 showed no improvement over the
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Algorithm 6.8: Aggressive placement mutation (c, Pr, K, σP , σA, λP , λA, M ,

N )

1 M,N : number of houses, potential ITAP locations

2 c is a chromosome to be mutated

3 Lifting Allocation, as above

4 Probabilities rate Pr

5 if U([0, 1]) < Pr then

6 Lifting Allocation

7 for i ∈ {1, ...,M} do

8 c[i] = max(min(c[i] +N(0, σA)1.0), 0)

9 end

10 end

11 else

12 for i ∈ {1, ...,M} do

13 if U([0, 1]) < λA/M then

14 Gaussian mutation

15 c[i] = max(min(c[i] +N(0, σA)1.0), 0)

16 end

17 end

18 Aggressive Mutation

19 for i ∈ {M + 1, ...,M +N} do

20 Checking Mutation rate

21 if U([0, 1]) < λp/N then

22 Aggressive mutation

23 c[i] = U({0, 1, ..., K})

24 end

25 end
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Table 6.17: Set Coverage of Aggressive placement and lifting allocation over

Gaussian mutation in E6.1, E6.3 and E6.6.

Set Coverage B

Gaussian Mutation

with Lifting Allocation

Set Coverage A

Aggressive Placement Mutation with Lifting Allocation (0.9)

Aggressive mutation

of K = 2

Aggressive mutation

of K = 5

Aggressive mutation

of K = 10

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

DS1 E6.1 91% 100% 91% 100% 90% 72%

DS7 E6.3 24% 30% 24% 30% 0% 19%

DS7 E6.6 18% 40% 15% 27% 7% 23%

Table 6.18: Best parameter values of lifting allocation and aggressive mutation
Data sets Lifting Allocation Pr Aggressive Mutation

DS1 0.9 2 and 5

DS7 0.5 2 and 5

Gaussian with lifting allocation. The set coverage of DS7 of E6.3 shows the aggress-

ive placement mutation performance of value K(= 2 and 5) compared to Gaussian

mutation with lifting allocation that has the same improvement value. The aggressive

placement mutation of value K = 10 shows a small improvement. The set coverage of

DS7 of E6.6 demonstrates a greater improvement for aggressive placement mutation

than Gaussian placement mutation with lifting allocation. The aggressive mutation of

value K ensured a better performance than Gaussian placement mutation. Thus, the

aggressive placement mutation of value K showed an improvement over the Gaussian

placement mutation in all data sets, as shown in Table 6.17.

To summarise the lifting allocation and aggressive placement mutations performance

with their parameters, for DS1 and DS7, see Table 6.18.
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6.3.6 Mutation Rate

The mutation applied in sections 6.1 and 6.3 is controlled by a number of paramet-

ers. Pm controls whether an individual chromosome is mutated (otherwise, it is left

unchanged), while Pr, λP , and λA, control the gene mutation in placement and al-

location. Since the mutation rate can be very problem-specific, it is better to run ex-

periments with several rates to see which rate maintains the greatest diversity in the

population. Using too high a mutation rate will increases the diversity in the search

space, but hinders convergence. At the same time, using too small a mutation rate

may result in premature convergence (leading to local optima instead of a global op-

timum). In other words, too high a mutation rate reduces the search ability of NSGA-II

to simple random sampling, while too small a mutation rate almost always fails, result-

ing in a local optimum due to the lack of diversity in the search space. In the previous

experiments a mutation rate of 0.1 was used and then tests with mutation rates of 0.5

and 1.0, with lifting allocation were carried out, comparing these with the previous

mutation rate. The set coverage values in Table 6.19 show that the mutation rate 0.5

outperformed the mutation rate of 0.1 in the data sets of experiments (E6.1, E6.3 and

E6.6). The mutation rate 1.0 showed a slight improvement only in the large data sets

of E6.3 and E6.6. The experimental results demonstrate that the set coverage for the

mutation rate of 0.5 outperformed that of the mutation rate of 0.1, which indicates the

effectiveness of the former over the latter. The best mutation rate seems to be in the

range of 0.5 of population size 32.

6.3.7 Gene Probability Mutation

In earlier experiments gene mutation was applied with small probabilities of λP/N for

placement and λA/M for bandwidth, where λP = 1 and λA = 1. Later, λP = N and

λA = M were set so that every gene was mutated to see what effect this would have.

The gene probability mutation of λP = N and λA = M plus mutation rates of 0.1
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Table 6.19: Set Coverage of the mutation rate (0.5 and 1.0) for DS1, DS2 and DS3.

Set Coverage B

Mutation Rate

Set Coverage A

Mutation Rate 0.1

E6.1 E6.3 E6.6

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

Mutation Rate 0.5 100% 91% 30% 21% 37% 23%

Mutation Rate 1.0 82% 94% 33% 27% 30% 21%

Table 6.20: Gene mutation probability with mutation rate (0.1) for DS1, DS2 and

DS3.

Set Coverage B

Set Coverage A

Gene Probability of λP = N and λA = M

E6.1 E6.3 E6.6

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

Gene probability of

λP = 1 and λA = 1
100% 82% 30% 25% 43% 17%

and 0.5 were tested in the experiments (E6.1, E6.3 and E6.6). Generating high gene

probability showed significantly worse results (no improvement) for the data sets than

generating low gene probability with mutation rates of 0.1 and 0.5, as shown in Tables

6.20 and 6.21. The set coverage shows that generating a random gene probability of

λP/N and λP/M gives a better result.

To sum up the experimental results obtained by the data sets with the suggested oper-

ators and parameters that were investigated with, see in Table 6.22 the conclusion of

the genetic algorithm progress.

To test the algorithm and to evaluate the performance of the NSGA-II approach, the

set coverage of NSGA-II and the weighted sum approach are compared for the data set

samples of DS1, DS7 and DS7/E6.6, using the parameters of Table 6.22 plus Gaussian

mutation. Table 6.23 shows that the NSGA-II algorithm outperforms the weighted sum
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Table 6.21: Gene mutation probability with mutation rate (0.5) for E6.1, E6.3 and

E6.6.

Set Coverage B

Set Coverage A

Gene Probability of λP = N and λA = M

E6.1 E6.3 E6.6

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

Gene probability of

λP = 1 and λA = 1
100% 64% 32% 24% 42% 26%

Table 6.22: Summary of the used operators and parameters value with the Ge-

netic Algorithm.

Data Set Crossover Mutation
Lifting

Allocation

Aggressive

Mutation

Mutation

Rate

Gene

Probability

DS1 Uniform Gaussian 0.9 2 and 5 0.5 λP/N and λA/M

DS7 Arithmetic Gaussian 0.5 2 and 5 0.5 λP/N and λA/M

approach for data sets DS1 and DS7. The non-dominated solutions of the weighted

sum are clustered together while the solutions of NSGA-II are spread out in the search

space; for example, in DS7 the maximum and minimum numbers of ITAPs in the

weighted sum were 50 and 20, but in NSGA-II they were 49 and 0 respectively. This

shows that the crowding distance in NSGA-II is higher and gives better results than the

weighted sum.

Table 6.23: Set coverage of the NSGA-II and Weighted sum approaches

Set Coverage B

Set Coverage A

NSGA II

DS1 DS7 DS7 / E6.6

(B, A) (A, B) (B, A) (A, B) (B, A) (A, B)

Weighted Sum 9% 100% 0% 25% 0% 33%
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6.4 Conclusion

In this chapter an evolutionary multi-objective optimization algorithm was presented to

solve the problem of optimizing WMN infrastructure placement, defining the genetic

algorithm which involves applying crossover and mutation operators on two individu-

als. The NSGA-II algorithm creates a child population from its parent population

using fast non-dominated crossover and mutation. Several initial solutions with dif-

ferent operators and parameters were investigated, to ensure the presence of diversity,

aiming to identify the best operator and parameters to use as part of the comprehens-

ive solution methodology. The literature mentions a great variety of crossovers; the

ones illustrated here were Arithmetic, Uniform and Hybrid crossovers. The set cov-

erage comparison of crossover indicated that the uniform crossover outperformed the

arithmetic and hybrid crossovers in small data sets such as DS1 and DS1A, while the

arithmetic crossover outperformed the uniform and hybrid crossovers in big data sets

such as DS7 and DS7A. The experimental results on the data sets samples indicate that

the Gaussian mutation outperformed uniform mutation and was effective as a genetic

operator. However, the results for arithmetic crossover and Gaussian mutation dramat-

ically improved when used in combination with a lifting allocation of 0.5 probabil-

ity. Further investigation of the potential of these operators is suggested. To change

the mutation of the placement genes an aggressive placement mutation was applied;

the results of this experiment demonstrated the performance of aggressive placement

mutation compared to Gaussian placement mutation. A random mutation was applied

to one or more genes for the earlier test of instances the mutation rate was set to 0.1 and

then mutation rates of 0.5 and 1.0 were applied. The experimental result of the muta-

tion rate at 0.5 outperformed the mutation rate at 0.1 and 1.0. The gene probability

mutations of λP = N , λA = M , λP/N and λA/M were applied and it could then be

observed that the high gene probability mutation showed no improvement in the data

set samples. The greatest performance improvements of mutation were obtained by

using a mutation rate of 0.5 and a gene probability mutation of λP/N and λA/M . To
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conclude this chapter, the NSGA-II algorithm results were compared with the results

of using the weighted sum approach. The set coverage result showed that the NSGA-

II outperformed the weighted sum approach for the sampled data sets. This indicates

the effectiveness and good performance of NSGA-II. It was observed from the exper-

iments that the NSGA-II algorithm performed generally better than the weighted sum

approach in terms of diversity and quality from the approximation of the Pareto front.
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Chapter 7

Conclusion and Suggestions for Future

Work

The conclusion of this thesis provides a summary of the research into problems of

WMN infrastructure placement problems and explores possible future directions.

7.1 Thesis Summary and Contributions

The thesis examined the following hypothesis:

• With single objective approach using meta-heuristic algorithms such as Hill

Climbing and Simulated Annealing algorithms, can effectively design WMNs

by using a suitable combination of move operators to place the ITAPs to im-

prove performance and efficiency, this technique provides a better service such

as minimising the number of ITAPs and maximising throughput in a WMN.

• With suitable crossover and mutation operators, a multi-objective genetic al-

gorithm approach is more effective than a weighted sum approach in producing

a range of networks that encapsulate the trade-off between the number of ITAPs,

throughput and fairness of bandwidth allocation in a WMN.

The aim was to investigate combinations of move operators that could be used in heur-

istic and meta-heuristic approaches to efficiently solve such placement problems ex-
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pressed as single and multi-objective formulations.

After reviewing the related literature, our initial study considered two complementary

single objective formulations. In Chapter 3, using an ideal link model, we demon-

strated the effectiveness of simple move operators for HC and SA algorithms in max-

imize the throughput of WMNs with a fixed number of ITAPs. Experimental evaluation

showed the efficiency of combining the “Swap” and “Reallocate” move operators and

the superiority of the SA algorithm in achieving better solutions than the HC algorithm.

Chapter 4 examined the converse formulation, namely, minimizing the number of

ITAPs that need to be installed to satisfy all consumer demand, by adding “Delete”

and “Add” move operators to “Swap” and “Reallocate”. The experimental evaluation

shows that the combination of all four move operators is efficient because it provides

a good solution for the placement of ITAPs in WMNs. Demonstrating the maximiz-

ing of throughput and minimizing of the number of ITAPs, the parameters used in the

model revealed the great impact on the network performance of optimizing the ITAP

placement.

Chapter 5 introduced a multiple objective formulation of the problem and applied the

weighted sum method to HC and SA, demonstrating the significance of the choice of

weights for the ability of the algorithms to explore the whole search space. The result

indicated a strong effect from a number of different starting conditions (e.g. initial

bandwidth allocation), resulting in a clear bias towards individual objectives. More

aggressive neighbourhood move operators were proposed to enable the optimization

algorithms to make larger jumps across the search space and converge more rapidly.

This approach showed the ability to balance the three objectives under review and a

range of solutions was explored to cover the search space.

In Chapter 6 , an evolutionary multi-objective optimization algorithm was presented

in order to solve the problem of optimizing WMN infrastructure placement, defin-

ing the crossover and mutation operators based on the concepts of the neighbourhood

moves in Chapter 5. It was observed from the experiments that the evaluation results
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of the NSGA-II algorithm on the data sets sampled achieved better solutions than the

weighted sum approach in terms of diversity and quality from the approximation of the

Pareto front in optimizing solutions to the problem of WMN infrastructure placement.

7.2 Future Work

This thesis has made a step towards the automated planning of WMN that can be

implemented to provide cost effective wireless coverage for a huge area, focusing on

the placement of infrastructure.

For the success of future WMNs, if services with such QoS requirements as bandwidth,

delay and reliability are to be developed, a fundamental issue must be taken care of.

The energy consumption must be taken into account in any future work regarding cost

issues. Wireless signals operating at similar frequencies can interfere with each other,

with significantly negative effect on the performance of the network. The performance

problems occur for many reasons, such as collision, multi-path interference and traffic

slow-downs due to congestion. Therefore, applying realistic models such as a general

model or real world model to regulate interference in WMNs is desirable.

Having demonstrated the potential to optimize the trade-off between multiple object-

ives, further work could be devoted to expanding the range of measures and investig-

ating the interplay between them. For example, little attention has hitherto been given

to energy efficiency as part of an optimized framework, but this has clear future im-

plications, particularly considering that consumers must use their energy consumption

to provide service to others. Considering aspects of routing and scheduling also has

the potential to improve the solutions overall. In the future, more complex models of

the network could be used, using, for example, hybrid routing mechanisms with mul-

ticast destinations, QoS based routing, bandwidth reservation, delay constraints and

packet loss to a multicast session for some region. The idea of this future direction

is to design routing schemes which adopt bandwidth estimation techniques; this could
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which increase the data delivery rate with less network bandwidth.
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