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Abstract 
UK government has set the ambitious decarbonisation targets, which up to 30GW of 

wind generation could be connected to the GB transmission system before 2020.  The 

majority of the new wind generation will be in the Scotland, and offshore in the UK 

as a whole, where the maximum levels of wind resource are available. To fully use the 

generated power from wind farm, the higher power transfer capacity of transmission 

system is required.  A range of new transmission technologies such as Thyristor 

Controlled Series Compensation (TCSC) and embedded High Voltage Direct Current 

(HVDC) link are planned to reinforce the GB system in order to increase the 

transmission capacity and improve the oscillatory behaviours. This thesis investigates 

the effectiveness of this two power flow control devices to enhance the transient 

stability of the GB power system. A coordinated controller to maximise the effect of 

TCSC and HVDC link is proposed and designed. The power system can operate at 

optimal operational point after fault due to setting the appropriate dispatched 

proportion of controller. The best performance is achieved by comparing various study 

cases. Meanwhile, the principle to dispatch the power flow is studied and presented in 

the thesis. 
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Chapter One: Introduction 

The rapid development of power systems generated by increased demand for electric 

energy initially in industrialized countries and subsequently in emerging countries led 

to different technical problems in the systems. Development based on semiconductor 

devices first established High Voltage Direct Current (HVDC) transmission 

technology as an alternative to long-distance AC transmission. HVDC technology, in 

turn, has provided the basis for the development of Flexible AC Transmission System 

(FACTS) equipment which can solve problems in AC transmission. 

In UK, the majority of the new wind generations will be in Scotland which would 

result in significant increase in power transfer capability requirement between the 

Scottish Power Transmission (SPT) and National Grid Electricity Transmission 

(NGET) boundary. A potential solution to provide the required increase in transfer 

capacity in order to support the additional generation is to deploy state-of-the-art 

transmission technologies such as Thyristor Controlled Series Compensation (TCSC) 

and embedded HVDC links as alternatives to traditional system reinforcements. These 

two kinds of power flow controller devices could dynamically change the overall 

structural and oscillatory behaviour of the system and consequently affect the system 

stability. Due to with different characteristic and advantage for enhancing the power 

system, both of two technologies are going to be applied together.  Therefore, a 

coordinated control method is needed to guarantee the optimal dynamic performance 

for the coordination of power flow control. 

The research question is to investigate how to achieve optimal operational point to 

enhance the transient stability of GB power system when TCSC and HVDC regulate 

power flow concurrently. In order to solve the question, several objectives have been 

achieved and presented in this thesis: 

 Identify the requirement of the National Grid power system. 

 Build the models of new transmission technologies (HVDC and TCSC) which is 

planned to reinforce the GB system. 

 Investigate the performance of the coordinated operation of HVDC and TCSC 

with regards to the transient stability enhancement. 
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 Develop and analyse a coordinated control system of two devices to guarantee the 

robustness and stability of power system under varying operational conditions. 

In Chapter 2 a general overview of HVDC transmission technology is presented with 

description of the coordination of LCC-HVDC and various types of FACTS devices. 

In addition, several coordinated control methods are summarized. In Chapter 3 LCC-

HVDC and TCSC model with overall control system is built in Advanced Digital 

Power System Simulator (ADPSS). To study the characteristics and validate 

parameters of control systems of models, several step-change tests are illustrated. In 

Chapter 4 the power flow controller is added into LCC-HVDC control system which 

is applied with TCSC to improve the transient stability of the simplified GB power 

system at post-fault. The simulations of coordinated operation of these two power 

control devices are studied and analysed. In Chapter 5 a coordinated controller for 

dispatching power flow is designed to achieve the optimum coordination of power 

flow control. The power system operates at optimal operational point after fault 

because of the appropriate dispatched proportion which is set in coordinated controller. 

Chapter 6 concludes the research work and proposals for further work are made. 

References and appendices are shown in the end of thesis. 
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Chapter two: Literature Review 

2.1 Introduction 

High Voltage Direct Current (HVDC) has many advantages in power transmission 

which is widely used to transmit large amounts of power over long distances. A 

Flexible Alternating Current Transmission System (FACTS) is a system composed of 

static equipment used for the AC transmission of electrical energy [1]. FACTS devices 

are used to provide flexible power flow control, support system voltage and improve 

stability. Multiple FACTS devices in cooperation of HVDC links can greatly improve 

system performance. However, there are interactions between FACTS and HVDC 

which could cause unexpected adverse impact on operation system. Proper 

coordination of HVDC links and FACTS devices embedded within AC system is a 

new urgent research topic. 

2.2 HVDC 

2.2.1 Comparison of AC-DC transmission 

HVDC is an efficient technology for long distance power transmission. It can replace 

the AC transmission between two grids. The advantages of the two methods of 

transmission (AC and DC) which should be considered by designer are based on the 

following factors [2]: 

 Economics of power transmission 

 Technical performance 

 Reliability 

The increased power demand makes power system expansion important. This means 

that the construction of a transmission line must be considered as a part of a long term 

planning. 

a. Economics of power transmission 

The cost of a transmission line includes the capital investment required for the actual 

infrastructure (i.e. Right of Way (RoW)), towers, conductors, insulators and terminal 

equipment and costs incurred for operation.  
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Assuming the insulator characteristics, which depends on the peak voltage level 

applied with respect to ground, are similar for AC and DC. DC transmission can 

transfer more power at a given voltage level than AC transmission due to only passing 

active power. In addition, a DC line can carry as much power with two conductors as 

an AC line with three conductors of the same size [3]. Therefore, for the same power 

level, a DC line requires smaller RoW, cheaper and simpler towers and reduced 

conductor and insulator costs. 

Only two conductors (about two-thirds of the AC line with same current carrying 

capacity), the absence of skin effects, the less dielectric losses and reduced corona 

effects are reasons why DC transmission has low costs for operation. The other factors 

that affect line costs are the costs of compensation and terminal equipment. DC lines 

do not need reactive power compensation but the terminal equipment costs are more 

than AC lines because of converters and filters [4].  

Figure 2.1 shows that variation of costs of transmission line with distance for AC and 

DC transmission. DC solution becomes more economical than AC for distance longer 

than the breakeven distance. The breakeven distance is in a range from 400-700 km in 

overhead lines. With a cable system, the breakeven distance can vary between 25 and 

50 km.  

 

 

Figure 2.1 Comparison of ac/dc lines [4] 
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b. Technical performance 

The DC solution has some better features than AC solution. DC transmission has more 

advantages due to the fast controllability of power. The most common arguments 

favoring HVDC include the following [5-6]: 

 Full control over power transmitted 

 Fast control to limit fault current in DC lines result in Less expensive breaker 

and simpler bus-bar arrangements 

 The ability to improve transient and dynamic stability in associated AC 

system. 

 The ability to solve problems of AC interconnection-for example, it allows 

the connection of 50Hz and 60Hz power system. 

 Although the converter stations of some types of HVDC need reactive power, 

it does not need any reactive power to maintain voltage no matter how long 

the DC transmission line is.  

There is another reason for selecting HVDC is the low impact on the surrounding 

environment. 

In fact, DC transmission also have disadvantages which are discussed below: 

1. Inability to use transformers to change voltage level 

2. The difficulty of breaking DC current. 

3. High cost of conversion equipment 

4. Generation of harmonics which need AC and DC filters 

5. Complexity of control 

Over these years, some disadvantages have been overcome and others have been 

improved at least. HVDC technology gains significant advances. 

2.2.2 Types of HVDC 

HVDC system requires an electronic converter to convert electrical energy from AC 

system to DC system or vice versa. There are two types of HVDC converters which 

are Current Source Converter (CSC) and Voltage Source Converter (VSC). 
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CSC-HVDC was developed in 1950’s from Island Gotland to Swedish Mainland 

which utilized mercury-arc valve [7]. Its rated capacity was 20 MW. In 1970’s the 

thyristor valve emerges as fundamental switching device. It has been proven highly 

reliable, and well-studied in CIGRE’s collected statistics and sessions. From about 

1990, the alternative VSC become economically feasible on account of the availability 

of new self-commutating high-power switches, such as Gate Turn-Off thyristor (GTO) 

and Insulated-Gate Bipolar Transistor (IGBT) [8].  

Between 1972 and 2015, the installed capacity of all kinds of HVDC has reached over 

200,000 MW and continues to grow until today [9]. The largest CSC-HVDC, , which 

has the highest voltage( ± 1100kV)  and power(10000MW), and the longest 

distance(2600km), is Zhundong-Sichuan project in China. The application of VSC-

HVDC is also approaching 1400MW, 500KV. An example is the 1400MW, ±525KV 

Nordlink that interconnect the grid of Statnett in Norway and TenneT in Germany over 

a distance of 623km [10-11]. 

HVDC methods are classified by the power electronic switching devices which 

convert power from AC to DC [12]: 

 CSC–HVDC is the technology that applies line-commutated, current-source 

converters (LCC-CSC) with thyristor valves (figure 2.2). These converters 

require a relatively strong synchronous voltage source in order to commutate.  

 VSC-HVDC is the technology based on Voltage Source Converter (VSC) 

with controllable turn-off device (figure 2.3). The current in this technology 

can both be switched on and off at any time independent of the AC voltage, 

that is, it creates its own AC voltages in case of blackstart. 

VSC technology is distinguished from the more classical LCC-HVDC technology by 

use of self-commutated semiconductor devices, which have the ability to be turned on 

and off by gate signal and endow VSC-HVDC transmissions with number of 

advantages for power system applications. A brief summary of difference between 

LCC and VSC technology is depicted in Table 2.1 [14]. 
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Figure 2.2 HVDC transmission based LCC technology with thristors [13] 

 

Figure 2.3 HVDC system based on VSC technology with IGBTs [13] 

 

Technology CSC-HVDC(LCC) VSC-HVDC 

Semiconductor 
(control) 

Thyristor 
(turn on only) 

IGBT 
(turn on/off) 

Power control Active only Active/Reactive 

AC filter and VAR 
supply 

Require large AC filters 
for harmonic elimination 

and VAR supply for 
power factor correction 

Require only a small AC 
filters for higher harmonics 

elimination and no VAR 
supply 

Minmum Short-Circuit 
Ratio 

>2 0 

economics 
Lower capital cost and 

power losses 
Higher capital cost and 

power losses 

Reliability for over 
1000MW rating 

Yes No 

Table 2.1 Comparison of LCC and VSC [14] 

LCC-HVDC so far is the major HVDC solution with advantages of large capacity and 

lower cost.  The reliability and well-established performance of the thyristor means 

that LCC-HVDC will continue for the foreseeable future to be the main choice for 

long distance, bulk power transmission. This situation is likely to remain until the 
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alternative VSC semiconductors achieve similar or better ratings and techno-economic 

performance than the thyristor [15]. 

2.2.3 State of the art of LCC-HVDC 

In order to meet the growing of power demand, China, Brazil and India began study 

on the UHVDC transmission technologies at the voltage level of 800 kV and more 

recently even up to 1100 kV. Currently, the demand of UHVDC is to transfer 6000-

8000 MW over 1000-2000 km at 800 KV. Yunnan–Guangdong HVDC is the first 800 

kV UHVDC system in the world which is operated by the China Southern Power Grid 

in Guangzhou. It was commenced commercial operation in 2009. During the same 

period, Xiangjiaba-Shanghai HVDC, ±800 kV HVDC Transmission, rated for 6400 

MW, to transmit power over a distance of 1935 km, is operated by State Grid 

Corporation of China (SGCC). The longest HVDC link in the world, with a length 

2375km, was built in Brazil named Rio Madeira. ABB was selected by Power Grid 

Corporation of India to design the world’s first multi-terminal 800 kV UHVDC 

transmission link. The project rated for 6000 MW to transmit power over a distance 

of around 1728 km to feed power into Agra and New Delhi area [16-19].  

In China, due to the inverse distribution between economic development and energy 

resources, the rational allocation of the energy resource over a large area is necessary. 

According to the research, the transmission loss will exceed 10% in the case of ±800 

kV UHVDC technology. In order to reduce this loss, SGCC proposed to improve the 

voltage level further, which is ±1100 kV level. The rated power of one of the projects 

under construction is 10450MW [20]. There will be 30GW electrical power 

transmitted from Sinkiang to central China through 4 UHVDC lines, one of which is 

±1100 kV pilot project, Zhundong-Chengdu project, as shown in figure 2.4. The 

sending side and the receiving side of Zhundong-Chengdu project are thermal power 

and hydro power respectively. [21-22]. 
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Figure 2.4 ±1100 kV pilot projects [23] 

Following the CO2 reduction legislation, all the EU countries are committed to 

maximise the power output from the low carbon resources such as renewable energy 

sources to the level of 20% by 2020. In UK, a significant portion of these renewable 

resources is wind generation which are mainly distributed in the Scotland. In order to 

transfer the increased renewable energy to the south of UK, the Western HVDC Link 

(LCC-HVDC link), which comprises converter stations in England and Scotland, 

linked by a 420 km subsea cable operating at 600 kV was constructed from 2013 [24]. 

This is the UK’s first link to operate at 600 kV direct current, and the longest cable of 

its type in the world at a 2200 MW continuous capacity. Figure 2.5 shows the planning 

configuration of Western HVDC Link in UK.  

 

Figure 2.5 Western HVDC Link project [24] 
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2.3 Coordinated operation of LCC-HVDC and FACTS 

The main application of HVDC is the interconnection between AC systems. When a 

large amount of power has to be transmitted by overhead line or by submarine cable, 

HVDC links can provide excellent load flow and power damping control. However, 

LCC-HVDC is usually weak in transient stability control and voltage control for an 

AC system due to the voltage sensitivity of converter operations. Particularly, with 

increasing complexity of system conditions, e.g. in weak power systems with 

enhanced stability requirements, the voltage sensitivity could cause HVDC outage due 

to commutation failures [26]. The commutation of current from one valve to another 

has not been completed before the commutating voltage reverses across the ongoing 

valve, which is defined as commutation failure [27]. This results in a short circuit 

across the valve group. Under severe conditions, if the recovery after the first 

commutation failure is not successful, multiple commutation failures occur. This can 

normally not be tolerated.  

To improve LCC-HVDC under weak system conditions, FACTS devices can be 

applied to operate with the HVDC involved. The improvement of the voltage control 

can be provided by an additional shunt compensator (such as SVC or STATCOM) and 

the enhancement of the transient stability can be achieved by using a series 

compensator (such as TCSC or FSC). Dedicated FACTS devices exist for special 

applications improving HVDC operations [28].  

In future, transmission systems will have to be operated more and more close to their 

thermal and dynamic stability limits because of economic and environmental reasons 

resulting in higher loading. The increased loading has impact on power system 

stability that may cause inter-area oscillations [29]. The impact may get worse when 

high-power HVDC systems are combined with weak ac systems. Therefore, detailed 

and careful planning is needed to find an appropriate solution. The coordination of 

HVDC and FACTS will be the most economical solution fulfilling reliability and 

operational requirements. To minimize costs and size of the power electronic 

equipment the approach has to take into account the combined and parallel operation 

of power electronic equipment. The different controllers in the system have to be 

coordinated to avoid interaction and to achieve optimal system operation and 

minimum response times [26].  
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2.3.1 Example of coordinated operation of HVDC and SVC 

In 1995, a major 500 kV transmission system extension has been carried out to 

increase the power transfer capability between Arizona and California in USA. The 

extension shown in figure 2.6 includes two main series compensated 500 kV line 

segments and two equally rated SVCs, supplied by Siemens, at the Adelanto and 

Marketplace substations. The SVCs are designed mainly to improve the transient 

stability of the transmission system and to reduce voltage dips on the bus in Adelanto 

where the inverter station of the 1920 MW HVDC long distance transmission line is 

connected [30]. 

The results of the intensive project testing with computer and real-time simulator 

facilities are shown in figure 2.7 for a fault application at Marketplace 500 kV bus. 

The influence of the HVDC and AC system can be seen from the DC voltage ܧௗ௖ and 

Marketplace bus voltage in AC system ௟ܸ௧. Figure 2.7(a) shows that the SVCs are only 

in voltage control and Figure 2.7(b) shows the results under coordinated voltage and 

power oscillation damping control [31].  

 

 

Figure 2.6 Mead-Adelanto AC-DC system [30] 
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(a) Both SVCs in Voltage Control Mode 

 

(b) Both SVCs in Coordinated Voltage 
& Power Oscillation Damping Control Mode 

Figure 2.7 Mead-Adelanto Studies of coordination [31] 

A SVC application in combination with HVDC in Germany is presented [32]. As 

shown in figure 2.8, his project is the first high voltage FACTS controller application 

in network. The reason for the SVC installation at Siems substation nearby the landing 

point of the Baltic Cable HVDC were unforeseen RoW restrictions in the neighboring 

area, where an initially planned new transmission line to the strong 400kV network 
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for connection of HVDC was denied. Therefore, with the existing 110kV reduced 

network (the dotted black lines in figure 2.8), only a limited power transfer (350 MW) 

of the DC link was possible to transmit in 1994 in order to avoid repetitive HVDC 

commutation failures and voltage problems in the grid.  

Finally, the new SVC was installed in 2003, which equipped with a fast coordinated 

control. The HVDC could fully increase its transmission capacity up to the design 

rating of 600 MW. In addition to this measure, a new cable (the green line) to the 220 

kV grid was installed to increase the system strength with regard to performance 

improvement of the HVDC control [33]. 

 

 

Figure 2.8 The solution for no Right of Way for 400 kV AC Grid Access of Baltic 

Cable HVDC [33] 

 

2.3.2 Example of coordinated operation of HVDC and TCSC 

Figure 2.9 gives an example of a large power system simulation of the Chinese grid 

[34], in which both FACTS and HVDC have been integrated for AC system 

interconnection and long distance transmission in a hybrid manner. Due to the long 
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transmission distances, the network experiences some power oscillations after faults, 

close to the stability limits. In the recordings in figure 2.10, oscillations are depicted. 

The first curve shows HVDC transmitting power in constant power mode (curve a). It 

can be seen that obvious power oscillations occur at post-fault.  However, damping 

control of HVDC Gui-Guang is activated (curve b), the oscillations are damped very 

effectively. Using series compensation with two TCSCs and two FSCs at Pingguo 

substation, the stability of the overall system can be further increased (curve c). Thus, 

without series compensation and without HVDC damping, such a large power system 

would be unstable in case of fault contingencies [35]. 

 

 

Figure 2.9 Use of HVDC and FACTS in a hybrid System in China [34] 
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a- without power modulation  
b- with power modulation of HVDC control 
c- further improvements with Pingguo TCSC 

Figure 2.10 Power flows in Huishui-Hechi transmission line [35] 

 

2.3.3 Planning reinforcement of UK 

As mentioned in Introduction, facing the increase of wind generations, the GB system 

operator and owners need to maximize the use of existing transmission lines and 

operate the transmission lines closer to their thermal limits to avoid constraining some 

generation plant and also improve the stability limit. A potential solution to provide 

the higher required transfer capacity to integrate the additional generations is to use 

some new transmission technologies such as TCSC, SVC and embedded HVDC links 

which will come into the operation in the GB system between 2013 and 2021 [25]. 

Figure 2.10 shows the Planning reinforcement (HVDC links, series compensators and 

Harker SVC) of GB power system. The details and simulations of reinforcement about 

the Western HVDC Link (LCC-HVDC) and the series compensator (TCSC) will be 

presented in Chapter 4. 
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Figure 2.10 Future reinforcements for England and Wales [14] 

 

2.4 Coordinated Control Techniques 

The coordination of HVDC link and FACTS devices may result in simultaneous 

installation of different controllers in power system.  The potential interaction exists 

between multiple controllers. The system stability may be either enhanced or 

debilitated by the interaction depending upon the chosen controls and placement of 

FACTS controllers. Therefore, coordinated control techniques, which are utilized to 

avoid the adverse interaction, need to be investigated. FACTS damping control is 

superimposed on FACTS normal control functions and so its effectiveness can be 

hampered by the interaction between FACTS normal control and the damping control 

function. Based on the relative gain array (RGA) theory, a modified RGA assesses the 

interactions between FACTS normal control and damping control function [36]. 
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Interactions are divided into several types which are presented in [37] 

 Multiple FACTS controllers of a similar type 

 Multiple FACTS controllers of a dissimilar type 

 Multiple FACTS controllers and HVDC converter controllers 

The various interactions occur between the different controllers in power system have 

been classified into different frequency ranges which include [38] 

 0 Hz for steady state interactions 

 0-3/5 Hz for electro-mechanical oscillations 

 2-15 Hz for small-signal or control oscillations 

 10-50/60 Hz for sub -synchronous resonance (SSR) interaction 

Modern coordinated control techniques of HVDC and FACTS controllers are 

generally classified in three broad categories as sensitivity based methods [39-41], 

optimization based method [42-43], and artificial intelligence based techniques [44-

46].  

With the wide application of FACTS in power system, a new major direction of 

FACTS development is the research of multi-FACTS and FACTS-HVDC coordinated 

control based on Wide-Area Measurement System (WAMS). Over last decade, the 

situation was getting better with rapid advancements in WAMS technology which can 

be applied to form a global measurement and supervision system by integrating the 

GPS-based phasor measurement units (PMUs), fast communication networks and 

powerful information technology. In this way, the widely dispersed signals of power 

systems can be centralized, processed and distributed even in real time, which makes 

the wide area signal a good alternative for control input [47]. Wide area control 

systems (WACS) based on modern coordinated methods are responsible of achieving 

different control objectives through signals and measurements taken of a wide area 

network. Control objectives can be focused on a large region of the network or part of 

it. In addition, the control signals could be sent to one or more devices, in the case of 

multiple control actuators. The WACS are in charge of coordinating control actions 

for each device [48]. 
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In [49], a robust coordination approach for the controller design of multiple HVDC 

and FACTS WACS is presented for the aim of stabilizing multiple inter-area 

oscillation modes in large-scale power systems. A sequential robust design approach, 

which receives suitable wide-area control signals, is based on the robust control theory 

and is formulated as a standard problem of multi-objective mixed Hଶ/Hஶ  output-

feedback control with regional pole placement constraints. The linear matrix 

inequality (LMI) theory is applied to solve such a robust control problem. Reference 

[50] presents a wide-area robust decentralized coordinated control framework for 

HVDC power system is then put forward, where the upper level wide-area coordinated 

controller is designed as a dynamic output feedback controller that coordinates the 

lower level HVDC supplementary controller, PSS and SVC. In [51], an algorithm 

based on free-weighting matrix approach is proposed for the anti-delay coordinated 

control among multiple FACTSs, which uses the output feedback signal of wide-area 

measurement system. 

 

Conclusion 

Operation requirements on AC and DC transmission systems will strongly focus on 

reliability and quality of electrical energy. The HVDC and FACTS techniques have 

been as an advanced means for improving overall power system performance. To 

cover a wide range of network configurations and operation conditions, a combination 

of the HVDC and FACTS devices is often required. The coordination of the HVDC 

and FACTS devices can provide the necessary operation characteristics, and thus 

efficiently improve the system dynamic performance, especially under weak and very 

weak system conditions. In this chapter, a few examples of coordinated operations 

have been reviewed.  

Three main types of methods/techniques for coordinated control between FACTS and 

HVDC controllers in multi-machine power systems are mentioned in this chapter. An 

appropriate coordinated control can maximize the control effect, and at the same time, 

avoid possible adverse interaction among existing devices. In recent years, WAMS-

based coordinated control among FACTS controllers is one of the directions of 

FACTS development because the global measurement is better applied to solve 
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problem of power system. Several references of WAMS-based coordinated control are 

addressed in the last section. 
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Chapter Three: Modelling and control 
of LCC-HVDC and 
TCSC 

3.1 Introduction 

The following sections will outline the modelling and primary control of Line-

commutation converters (LCC) based of HVDC transmission networks and TCSC. 

The benchmark models of HVDC and TCSC have been built and used in the later 

chapters of this thesis. The modelling and tests are validated by using time domain 

simulation in Advanced Digital Power System Simulator (ADPSS). 

3.2 Introduction to ADPSS 

As the complexity of the integrated electric power networks grows, the need for more 

comprehensive simulation tools rises. 

China Electric Power Research Institute took 8 years to research and develop the 

ADPSS, which achieved both technical breakthrough and theoretical innovation on 

main technologies such as the real-time simulation of large-scale power system and 

the electromechanical-electromagnetic transient hybrid simulation. The interior rapid 

transient change process of HVDC devices can be simulated by electromagnetic 

simulation. ADPSS integrates all the required functions for power system modelling 

analysis and simulation. Some of these functions include power flow, fault analysis, 

transient stability analysis, small signal analysis [52-55]. 

It also has the capability to integrate new state of art technologies such as power 

electronic based devices FACTS and wind generation. 

The focus of this thesis is on investigating the ability of HVDC link and TCSC to 

increase the transmission capability and system stability using various control schemes. 

HVDC links and TCSC models are built and tested in this chapter, which will be 

implemented throughout the thesis. The concept of a designed controller will be first 

applied to a test model then to a more realistic system which is the simplified GB 

power system. 
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3.3 Modelling and control of LCC-HVDC link 

3.3.1 LCC-HVDC link configuration and components 

To investigate the characteristics of LCC, the model is built based on CIGRE 

benchmark which was proposed in 1985 [56]. It is a standard system to provide the 

reference for HVDC study. The system is shown in Figure 3.1 which is a 500kV, 

1000MW HVDC link with 12-pulse converters on both rectifier and inverter sides, 

connected to a weak ac system (short circuit ratio of 2.5 at a rated frequency of 50 Hz).  

 

Figure 3.1 Single-line diagram of the CIGRE benchmark HVDC system [57] 

The main components of HVDC system include [58]: 

Converters:   The converter stations are represented by 12-pulse configuration with 

two six-pulse valves in series. Each six-pulse valves connects to AC bus by a built-in 

transformer with tap changers which is designed to work with high harmonic current 

and withstand AC/DC voltage stress. 

AC and DC side filters: AC filters are added to absorb the harmonics generated by 

the converter as well as to supply reactive power to the converter. Some HVDC 

designs with overhead lines also implement a DC filter. 

Smoothing reactors: The DC-side of the converter consists of smoothing reactors, 

which are mainly required to reduce harmonics at the DC-side, prevent commutation 

failures and protect valves at post fault. It is usually determined based on DC fault 

current, communication failure and dynamic stability. 

Control system:  The rectifier and inverter include various hierarchical control 

systems which will be explained further in the latter section. 
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3.3.2 LCC-HVDC link modelling 

The equivalent circuit of a CSC-HVDC system is illustrated in Figure 3.2 to show the 

relationship between DC voltage, ( ௗܸ ) at the rectifier and inverter side. Also, the 

principal equations for ௗܸ  and DC current, ( ௗܫ ) at a multi-bridge HVDC links’ 

converter are defined in (3.1) to (3.5). Also, all the parameters are defined in Table 3.1 

[6]. 

Vdr Vdi
Id

Rdc
Xcr Xci

Vr Vi

 

Figure 3.2 Equivalent circuit of the LCC-HVDC system [58] 

It is obvious that ௗܸ can be varied by changing the firing angle. As shown in (3.4), the 

power factor angle is dependent on the firing angle. Hence, the firing angle is typically 

kept in a low range, around 15°- 20°in order to reduce the reactive power consumption. 

A sufficient margin is also required to compensate for any AC voltage drop following 

a disturbance [59]. In addition, AC voltage and the inductance of the converter 

transformer, (ܺ௖௥, ܺ௖௜) can impact the ௗܸ.  

As can be seen in (3.3), ܫௗ is proportional to the difference between the converters’ 

voltage. Thus, ܫௗ can be controlled by changing the inverter or rectifier voltage. 

ௗܸ௥ ൌ ܤ
ଷ√ଶ

గ ௥ܸ cos ߙ െ ܤ
ଷ

గ
ܺ௖௥ܫௗ                                                              

(3.1) 

ௗܸ௜ ൌ ܤ
ଷ√ଶ

గ ௜ܸ cos ߛ െ ܤ
ଷ

గ
ܺ௖௜ܫௗ                                                              

(3.2) 

ௗܫ ൌ
௏೏ೝି௏೏೔
ோ೏೎

                                                                                                           (3.

3) 
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cos߮ ൎ
ୡ୭ୱఈାୡ୭ୱఋ

ଶ
                                                                                               (3.

4) 

ܳ௔௖ ൌ ௔ܲ௖ tan߮                                                                                                   (3.

5) 

 

α Firing delay angle (start of 
commutation) 

 ௗ DC currentܫ

δ Extinction delay angle (end of 
commutation) 

௥ܸ Line to line AC voltage at 
inverter side 

μ Commutation overlap angle 
(μ ൌ δ െ α ൌ β െ γ) 

௜ܸ Line to line AC voltage at 
rectifier side 

β Ignition advance angle (
β ൌ 180 െ α) 

߮ Power factor angle 

γ Extinction advance angle (
γ ൌ 180 െ δ) 

ܺ௖௥ Impedance at rectifier side 

ௗܸ௥ DC voltage at inverter side ܺ௖௜ Impedance at inverter side 

ௗܸ௜ DC voltage at rectifier side B Number of series connected 6-
pulse bridge 

Table 3.1 Definition of the LCC-HVDC link parameters [6] 

3.3.3 LCC-HVDC control system 

Fast control of current is essential in HVDC. The firing angle (α) is the best controlled 

quantity due to the rapid response (1~4ms) [60]. α signals to valves are generated from 

both sides of rectifier and inverter. The voltage and current ultimately can be regulated.  

As shown in Figure 3.3, following controllers are used in control scheme [61-62]: 

 DC current controller 

 DC voltage controller  

 Extinction angle controller 

 Voltage Dependent Current Order Limiter (VDCOL) 

Rectifier control mode 

Constant current control (CCC) technique is used in the rectifier control system. 

However, the rectifier voltage can be increased until the firing angle reaches the 
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minimum firing angle limit of α ൌ 2°. Under this condition, the rectifier moves to 

constant firing angle mode [62]. 

Inverter control mode 

Inverter control system provides three control modes, including Constant DC voltage 

control mode, Constant Extinction Angle (CEA) control mode and CCC mode. It is 

important to ensure the extinction angle big enough to avoid commutation failure. 

Therefore, the CEA control is a default control at the inverter side. However, this mode 

of control is less stable during a disturbance or in cases where the DC link is connected 

to a weak AC network. Therefore, DC voltage control is the main control at the 

inverter side using a Proportional Integral (PI) feedback control to maintain the voltage 

at the target level. 

If the AC voltage at the rectifier side reduces, the rectifier assists in improving the 

voltage reduction by reducing its firing angle until it reaches to the firing angle limit. 

The inverter operates at CCC mode that the inverter current order, (Iୢ୓ି୧୬୴) reduced 

by a current margin. Hence, there is a 10% margin between the rectifier current order, 

(Iୢ୓ି୰ୣୡ) and the Iୢ୓ି୧୬୴ at inverter side [62]. 

Voltage Dependent Current Order Limiter (VDCOL) 

The VDCAL control is implemented to reduce the DC current reference when the 

voltage drops below a predetermined value. This is done to prevent commutation 

failures from occurring at inverter side. Reducing current reference also decrease the 

reactive power requirement from AC system which is good for fault recovery [62]. 
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Figure 3.3 LCC-HVDC control system scheme [62] 

3.3.4 LCC-HVDC control tests 

During stead-state operation, two kinds of controllers are in operation for LCC-HVDC 

system: DC current controller and extinction angle controller. They all use a PI 

feedback control to achieve the control targets which need to select the optimum 

parameters proportional gain (ܭ௣) and integral gain (ܭ௜). In order to verify the default 

parameters of CIGRE model and study the characteristics of LCC-HVDC control 

system, the following two tests are recommended [6]. 

Test 1: 20% step change in DC current reference 

To test the performance of the current controller, a negative 0.2 p.u. step change shown 

in figure 3.4, is applied to its current reference (ܫௗି௥௘௙) of 1.0 p.u. at 3s and the step 

change is affected in 50ms. The response is both stable and well controlled. The DC 

voltage is also shown, which remains almost constant because it is controlled by the 

extinction angle controller at the inverter side. The rectifier alpha order signal (ߙ௥௘௖) 

also shows the step change being effected as the average value of alpha is transiently 

changed from about 19 degrees to about 35 degrees. Eventually the alpha order settles 

at about 24 degrees for a current at 0.8 p.u.[6]. 
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(a) 

 

(b) 
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(c) 

Figure 3.4 20% step change in DC current reference 

 

Test 2: 2.5° step change in extinction angle reference 

In order to test the performance of the extinction angle controller, a 2.5 degrees step 

change shown in figure 3.5, is applied in the extinction angle reference (ߛ௥௘௙). This 

increasing step starts at 3s from an original gamma value of 23 degrees to 25.5 degrees 

and is followed by a decreasing step at 3.5s the response is reasonably stable and well 

controlled with a response time of 50ms. The DC voltage drops in response to the 

increase of the gamma value. Consequently, a short-lived transient increase in the DC 

current is noticed after increasing step of extinction angle [6].  
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(a) 

 

 

(b) 
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(c) 

Figure 3.5 2.5° step change in extinction angle reference 

 

3.4 Modelling and control of TCSC 

Series capacitor compensation is widely utilized to increase the power transfer 

capability because of the fact that capacitor in series with the transmission line 

increases the inductive impedance. It makes the electrical distance between two AC 

areas to be shorter [63]: 

ଵܲ ൌ
ா௏

௑
sin                                                                                                   ଵߜ

(3.6) 

ଶܲ ൌ
ா௏

௑ି௑಴ೌ೛
sin .ଶ                                                                                          (3ߜ

7) 

Where, E is sending end voltage, V is receiving end voltage, X is reactance of line and 

 is phase angle between E and V. Equation (3.7) represents transmission line with ߜ

series capacitor (ܺ஼௔௣) that more power flow can be transmitted under this condition. 

For same amount of power transfer, the power angle in the case of series compensated 
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line is less than uncompensated one which means better angular stability. However, 

series capacitor compensation may introduce Sub-Synchronous Resonance (SSR) into 

the system which is caused by adverse interaction between a sub-synchronous mode 

of torsional vibration on a turbine generator shaft and series compensated network. 

The characteristic of having a variable reactance makes TCSC has both two 

capabilities to enhance transient stability and mitigate the SSR [64-66]. SSR problem 

won’t be further studied in this thesis. 

3.4.1 Operation principle and model of TCSC  

A typical TCSC model, which is similar to SVC, is comprised of a fixed series 

capacitor C in parallel with a Thyristor-Controlled Reactor (TCR) as shown in figure 

3.6. In practice a branch with a Metal Oxide Varistor (MOV) arrester is used to avoid 

overvoltage. The fundamental frequency equivalent reactance ்ܺ஼ௌ஼  of the TCSC 

model is given by [67]: 

	்ܺ஼ௌ஼ ൌ െܺ஼ ൅ ߨଵሼ2ሺܥ െ ሻߙ ൅ sinሾ2ሺߨ െ  ሻሿሽߙ
െܥଶ cosଶሺߨ െ ሻߙ ሼ݇ tanሾ݇ሺߨ െ ሻሿߙ െ tanሺߨ െ  ሻሽ                                (3.8)ߙ

 

Where 

ଵܥ ൌ
௑಴ା௑ಽ಴

గ
                                                                                                     

(3.9) 

ଶܥ ൌ
ସ௑ಽ಴

మ

௑ಽగ
                                                                                                        

(3.10) 

ܺ௅஼ ൌ
௑಴௑ಽ
௑಴ି௑ಽ

                                                                                                   

(3.11) 

݇ ൌ
ఠೝ

ఠ
ൌ ට

௑಴
௑ಽ

                                                                                      

(3.12) 

߱௥ ൌ
ଵ

√௅஼
                                                                                                        

(3.13) 

 

Where   

ܺ௅ ൌ  the reactance of the linear inductor ,ܮ߱
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ܺ஼ ൌ
ଵ

ఠ஼
, the reactance of the capacitor bank 

்ܺ஼ௌ஼ ൌ Reactance of TCSC 

And   

ߙ ൌ Firing angle 

 

 

Figure 3.6 Basic TCSC scheme [68] 

For a practical TCSC, the compensation capacitance depends on the requirement of 

power system in which the TCSC is installed. Once the capacitance of compensation 

capacitor is specified, the minimum capacitance of ்ܺ஼ௌ஼  can be determined [69]. To 

achieve the requirement of power system which will be simulated in the later chapters, 

the capacitor of the TCSC is taken to be 0.0013F.  

 

Equation (3.8) shows the relation between k and  ்ܺ஼ௌ஼ሺߙሻ. The effective reactance 

்ܺ஼ௌ஼ሺߙሻ would be infinity, when, 

௥௘௦ߙ ൌ ߨ െ ሺ2݉ െ 1ሻ
గ

ଶ௞
;								ሺ݉ ൌ 1,2, … ሻ                                         (3.14) 

It is clear from equation (3.14), that TCSC may appear multiple resonant points in 90 

degrees to 180 degrees of ߙ . Nevertheless, only one resonant point, namely one 

capacitive range and one inductive range, is allowable. Multiple resonant points will 

reduce the operating range of the TCSC [70]. Refer to the Kayenta TCSC [71-72], it 
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is good for operating when ݇ ൌ ට
௑಴
௑ಽ
൏ 3	and the only one resonant points is at ߙ௥௘௦ ൌ

143°. Thus, the inductance of L can be calculated and taken to be 1.247mH. 

 

Figure 3.7 Firing angle characteristic of TCSC 

Figure 3.7 shows the firing angle characteristics of TCSC for a frequency of 50 Hz. It 

is drawn between TCSC impedance lifting coefficient and firing angle ߙ. The lifting 

coefficient is in per units of  ܺ஼. The impedance of TCSC can be adjusted in three 

kinds of modes by controlling ߙ of thyristor [69-70]: 

1. Blocking mode (α=180°): The thyristor is not triggered and the TCSC is thus 

reduced to a fixed-series capacitor which capacitance turns to ܺ஼.  The power 

factor of TCSC is leading. 

2. Bypassed mode (α=90°): The thyristor is triggered continuously and the valve 

stays conducting all the time. The TCSC behaves like a parallel connection of the 

capacitor bank with the inductor. The power factor of TCSC is lagging.  

3. Vernier mode: The TCSC behaves either as a continuously controllable 

capacitance ( ௥௘௦ߙ ൏ ߙ ൏ 180° ) or as a continuously controllable inductive 

reactance (90° ൏ ߙ ൏  .(௥௘௦ߙ
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The minimum and maximum value of firing angles should be selected in such a way 

to avoid the TCSC operating in high impedance region (close to resonance) which 

results in high voltage drop across the TCSC [70]. Thus, the range of firing angle is 

limited from 145° to 180° when the TCSC is operated as a variable capacitance in 

practice. 

3.4.2 TCSC controller design 

As shown in figure 3.8, the TCSC controller consists two main operational blocks, i.e. 

an internal control and an external control. The function of the external control is to 

accomplish specified compensation objectives. This kind of control directly relies on 

measured systems variables to define the reference for the internal control, which is 

usually the value of the controllable reactance. The function of the internal control is 

to provide appropriate gate drive signals for thyristors to produce the desired 

compensating reactance [73].  

 

Figure 3.8 Whole control system of TCSC [73] 

Internal control 

The TCSC’s internal control includes a firing pulse generator for thyristors. The α 

reference signal to pulse generator comes from a linearization curve block. The 

synchronisation of the thyristor firing controls to the capacitor voltage is achieved 

indirectly by means of a Phase Locked Loop (PLL) synchronised to the transmission 

line currents (ܫ௅) [74]. Figure 3.9 illustrate the internal control system. 
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Figure 3.9 Internal controller [74] 

External control 

The external control may include different control loops depending on the control 

objectives. As showing in figure 3.8, the principal steady state control of a TCSC is 

usually a power flow control loop, which is accomplished either automatically with a 

PI controller or manually through direct operator intervention. Typically, the function 

of stability control loop is damping controls, which is usually a Power Oscillation 

Damping (POD) controller [73]. In this study, only steady state control loop is 

designed in external control system which is a conventional PI controller to regulate 

the transmitted power. 

When TCSC operates in the power control mode as shown in figure 3.10, the 

conventional PI controller attempts to minimize the power deviation (∆ܲሻ which is 

difference of reference power ( ௥ܲ௘௙ ) signal and measured power ( ௠ܲ௘௔௦ ) flowing 

through line and provides the impedance (ܺ଴). 
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Figure 3.10 Power flow control loop [74] 

In order to achieve the appropriate reactance (்ܺ஼ௌ஼) for regulating the power flow, 

the internal control is required to control firing angle. Consequently, the regulated  

்ܺ஼ௌ஼  is applied in power system. 

3.4.3 TCSC control test 

As the part of LCC-HVDC, the optimum parameters of TCSC controller also should 

be determined by testing the model. In order to validate the parameters of PI controller 

offered by [75] and study the characteristic of the TCSC power flow control block, a 

Single-Machine Infinite-Bus (SMIB) power system installed with the TCSC model, 

shown in figure 3.11, is built in ADPSS. The SMIB system’s generator and 

transformer models refer to [76] which the base values are  ௕ܸ௔௦௘ ൌ 400kV, ܵ௕௔௦௘ ൌ

1000MVA and ܺ௕௔௦௘ ൌ 160Ω.  

 

Figure 3.11 SMIB with TCSC [75] 

In [75], a heuristic tuning method named Ziegler–Nichols method is introduced to 

determine the gains of PI controller. As in the method above, the ܭ௜ and ܭ௣ gains are 

first set to zero. The proportional gain is increased until it reaches the ultimate gain, 

 ௨ and the oscillation period ௨ܲܭ .௨, at which the output of the loop starts to oscillateܭ

are used to set the gains as: ܭ௣ ൌ ௜ܭ ௨ andܭ0.45 ൌ /௣ܭ1.2 ௨ܲ.  

Test 1: power flow controller with gains (࢖ࡷ ൌ 6, ࢏ࡷ ൌ ૟૙) 
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To test the performance of the power flow controller which gains (ܭ௣ ൌ 6, ܭ௜ ൌ 60) 

are estimated by using Ziegler–Nichols method, a step variation  of P୰ୣ୤ ൌ

ሾ1.1, 1.25, 1.1ሿ	(p.u.) at time t= [0, 5,10] (s) , shown in figure 3.12, is applied. The 

results prove that the function of power flow control is actually effective and the 

parameters of PI controller determined by using introduced method are valid and 

reasonable. The response of power flow control is stable and well controlled. The 

firing angle also shows the step change being effected which is changed from about 

152 degrees to about 147.5 degrees after the first step. Then, it increases to about 152 

degrees again after the second step.  

 

 

(a) 



‐ 37 ‐ 
 

 

(b) 

Figure 3.12 Power flow controller with gains (ܭ௣ ൌ 6, ܭ௜ ൌ 60) 

 

Test 2: power flow controller with gains (࢖ࡷ ൌ 10, ࢏ࡷ ൌ ૚૛૙) 

To investigate the performance of TCSC power flow control for improper PI 

parameters design, figure 3.13 shows the test which applies the same step variation as 

figure 3.12 but with the different gains (ܭ௣ ൌ 10, ܭ௜ ൌ 120). Comparing with the 

result of power flow shown in figure 3.12, the controller has faster response which is 

affected in 0.2s. However, it also has higher overshoot and the obvious oscillations 

occur when the ௥ܲ௘௙ rises to 1.25 p.u.. This is not an appropriate setting of PI controller 

which have worse performance than the test in figure 3.12. 
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(a)  

 

 

(b) 

Figure 3.13 Power flow controller with gains (ܭ௣ ൌ 10, ܭ௜ ൌ 120) 
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 Conclusion 

In this chapter, following a brief overview of the principles and background theory of 

the LCC-HVDC link and TCSC, the overall control strategies for the LCC-HVDC link 

and TCSC are introduced. In addition, both of these two technologies, modelled in 

ADPSS are presented in this chapter. To study the characteristic of control system and 

validate the parameters of controllers, the step change tests are illustrated and 

discussed. In the later chapters, these models are implemented with an objective to 

study the capability of the HVDC link and TCSC in transient and dynamic stability 

enhancement for the future GB transmission networks. 
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Chapter Four: Improving power 
system dynamics by 
HVDC and TCSC power 
flow control 

4.1 Introduction 

In this chapter, transient stability analysis of the LCC-HVDC link and TCSC in a 

power system is investigated. The power flow control of HVDC and TCSC is analyzed 

and corresponding controllers are designed in detail. A three-machine system 

representing the onshore-reinforced mainland GB system is built in ADPSS software 

to examine these reinforced new technologies. The dynamic performance of the 

FACTS device and the HVDC link during serious disturbance are investigated through 

time-domain simulation. Comparison is also made under different operation schemes.  

4.2 Introduction to GB reinforcements 

As previously mentioned in chapter 2, following the CO2 reduction legislation, UK is 

committed to maximize the power output from low carbon resources such as wind 

energy source. The main wind generation will be in the Scotland where high levels of 

wind resources are available. A significant increase of the required power transfer 

between SPT (Scottish Power Transmission) and NGET (National Grid Electricity 

Transmission) networks must be achieved. The boundary between SPT and NGET 

includes two double 400kV AC lines on both eastern and western sides. This boundary, 

named Anglo Scottish boundary (also known as B6 in figure 4.1) has a current transfer 

capability of around 2200MW due to stability issues. With the increase in the potential 

output from wind generation, the crucial problem, which the GB operator and owners 

encounter, is to maximize the use of existing transmission lines and avoids 

constraining some generation plants [24-25]. 

A solution to enhance the power transfer capabilities for integrating the additional 

generations is to use new transmission technologies such as FACTS devices (e.g. 

TCSC) and embedded HVDC links. These technologies are going to come into 

operation in the GB system between 2013 and 2021 as shown in figure 4.1 [25]. Such 
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power flow controller devices could dynamically change the overall structure and 

oscillatory behavior of the system and consequently affect the system stability. To 

cover a wide range of network configurations and operating conditions, a coordinated 

operation of the HVDC and FACTS devices is often required. This combination can 

provide the necessary operation characteristics and efficiently improve the system 

dynamic performance [77-78].  

 

 

Figure 4.1 Reinforcements for GB power system [25] 

4.3 Three-machine power system topology 

In order to investigate coordinated operation among FACTS devices and HVDC links, 

a simplified model to demonstrate the concept of SPT-NGET transmission system 

introduces in [79-80] is presented in figure 4.2. Three synchronous machines represent 

three networks in different area, which a HVDC link is applied to transfer power 

generated by windfarm. A TCSC is installed between bus 7 and bus 8 which can 
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control the power flow on line 1 while also affects the power flow on line 2.  All 

parameters are given in Appendix. 

The most mature technology of the HVDC transmission is LCC type.  The reliability 

and well-established performance of the thyristor means that LCC-HVDC will 

continue to be the main choice for the foreseeable construction plan. The HVDC 

model in the 3-machine system is built based on the CIGRE benchmark which was 

proposed in Chapter 3. Reactive compensation and filter are also provided on both 

sides. The rectifier station is connected to Northern Scotland area and the inverter is 

on England-Wales side. Under steady-state, the transferring power flow of each 

transmission line is also shown in figure 4.2. 

 

Figure 4.2 3-machine system topology 

 

4.4 The power flow control scheme of TCSC and LCC-HVDC 

a. TCSC   

At this stage of the research, a simple and conventional stability control scheme is 

implemented for TCSC using a PI controller to control the power flow on transmission 

line. As presented in previous chapter, the PI controller of TCSC has examined and 

determined the parameters. The TCSC controller also consists of a limiter which is 

used to improve the controller response to large deviation of input signal [74]. The 

range of firing angle acting on thyristors in this model is limited from 172° to 145° 
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where the TCSC is only operated as a variable capacitance. As shown in figure 4.3, 

the lifting coefficient can be adjusted from 1.01 to 5.3 which is the multiple of 

capacitance of fixed capacitor. In the 3-machine model, the inductance of line 1 is 

0.0509 H. Therefore, to meet real-world engineering conditions, the fixed capacitor is 

taken 0.0013F (ܺ஼ ൌ 0.02p.u.) such that the compensation level of the line with TCSC 

can be adjusted from about 20% to higher level [81]. The active power flow ሺ ௅ܲ௜௡௘	ଵ) 

through the line containing TCSC is taken as the control variable. It is compared with 

the reference value of active power flow ( ௥ܲ௘௙), and then the error is fed into the PI 

controller. The output of the PI block is the expected impedance (ܺ଴) inputted to the 

internal controller. The corresponding firing angle α is achieved in the internal control 

to regulate the actual impedance (	்ܺ஼ௌ஼) of TCSC. 

 

 

Figure 4.3 Block diagram of whole TCSC power flow control 

 

b. LCC-HVDC 

In general condition, the Extinction Angle Control is the default control at the inverter 

side to maintain the DC voltage and the Constant Current Control is the default control 

at rectifier side to regulate the DC current. As presented in figure 4.4, the DC power 

controller is a hierarchy master level control which in fact provides the current 

reference (ܫ௥௘௙ି௣௢௪) to the DC current controller at the rectifier side (VDCOL does 

not regulate the DC current reference in normal operation, so ܫ௥௘௙ି௣௢௪=ܫௗைି௥௘௖.). The 

figure 4.5 shows that the DC power controller also facilitates the power control by 

continuously calculating the DC current reference related to the measured DC voltage 

(ܷௗି௠௘௔௦ሻ [62]. It is a closed-loop control to regulate the DC power flow that outputs 
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the more accurate and appropriate DC current reference than when the Mode select 

module selects the constant current value. 

 

 

Figure 4.4 LCC-HVDC control system scheme with DC power controller 

 

 

Figure 4.5 Block diagram of LCC-HVDC power control 

 

 

 

4.5 Simulation and test results 
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Three cases under similar conditions were tested and compared to study the combined 

operation of TCSC and HVDC.  Results of simulation is represented by per unit value 

except firing angle. The voltage base value of AC and DC power system are 

400kV	and	500kV and the apparent power base of whole system is1000MVA. A 

three-phase short circuit fault at time t=7s and cleared at t=7.1s is set at bus 8 for 

transient stability analysis. 

Case 1: In this case study no power control of LCC-HVDC link nor TCSC was applied. 

The constant DC current reference (ܫ௥௘௙ ൌ .݌	0.5  is directly inputted to DC current (.ݑ

controller which the power flow of HVDC ( ஽ܲ஼) is maintained at 0.5 p.u. in steady-

state due to keeping DC voltage at 1 p.u. by EAC. TCSC is operated under constant 

impedance control that the compensation level of line 1 is 30%. In this compensation 

level, the line with TCSC transmits 1.15 p.u. of active power. This case will be used 

as a benchmark for comparison. The simulation results of the first case in figure 4.6 

indicate that power oscillations last longer time than other cases. As shown in figure 

4.6(c), the DC power has two obvious oscillations after fault, one has the same 

frequency as the power flow through line 1 and the other one is a low frequency 

oscillation about 0.3 Hz.  

Case 2: The TCSC is series connected in line 1 and the power flow control is applied 

to maintain the power flow through line 1 as case 1 ( ௥ܲ௘௙ =1.15 p.u.). HVDC link still 

operated without the power flow control.  As it was expected and demonstrated by the 

simulation results, TCSC controller minimize the power oscillation by regulating the 

power flow on line 1 at the post-fault. The figure 34(a) indicates that the active power 

on line 1 return to steady-state at 11.5s which is faster than case1. According to the 

curve of firing angle in figure 34(b), the impedance of TCSC (்ܺ஼ௌ஼) is controlled to 

adjust compensation level of line 1 between 20% and 75%.  As shown in figure 4.6(c), 

there is no obvious improvement to damp the oscillation of DC power flow. It means 

that applying power flow control of TCSC has little effect on DC power transfer. 

Case 3: based on case 2, DC power control mode is selected to maintain the constant 

power flow on HVDC link that ௥ܲ௘௙ is set 0.5 p.u.. As shown in figure 4.6(c), the better 

performance of power flow on DC transmission line is achieved which the low 

frequency oscillation is damped. Figure 4.6(d) indicates the difference of rectifier 

firing angle between with and without DC power control to regulate the DC current. 
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DC power controller provides better tracking ability and stronger robustness to 

regulate the power flow than just inputting a constant ܫ௥௘௙ signal. However, applying 

DC power control also has little effect on AC power transfer that the performance of 

post-fault oscillation on line 1 is almost the same as case 2. Although the coordinated 

operation of TCSC and HVDC in this power system has no significant interaction no 

matter adverse or favorable, they increase the power transfer capability and improve 

the transient stability respectively.  

 

 

(a) Active power flow on line 1 
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(b) Firing angle of TCSC 

(c) Power flow on LCC-HVDC link 
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(d) Firing angle of HVDC rectifier converter 

Figure 4.6 Results of simulation 

 

Conclusion 

In this chapter, the methods of power flow control of TCSC and LCC-HVDC link are 

presented and  the reason for requirement of GB power system to these two new 

technologies is also introduced. The test system, a simplified model to demonstrate 

the concept of SPT-NGET transmission system, is built in ADPSS software. The 

simulation results illustrate the effect on the transient stability of power system by 

applying power flow control of TCSC and LCC-HVDC link. In the cases of this 

chapter, there is no obvious interaction between two power flow control devices. Even 

so, coordinated control is still needed to achieve the optimal results for power system. 

A coordinated controller will be designed in next chapter. 
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Chapter Five: Coordinated control for 
dispatching power flow 
among TCSC and 
HVDC  

5.1 Introduction 

The power flow control by using TCSC and HVDC is presented in previous chapter. 

These two kind of thyristor-controlled devices shown good performance of stabilizing 

the transient disturbance at the post-fault. Power flow on transmission lines in 

congested areas often approaches or goes beyond limit in order to satisfy the increased 

electric power trades and consumption. Therefore, reliable supply and secure 

operation are urgent problems due to higher risks of fault lines. HVDC and FACTS 

devices have abilities to influence power flow and voltages to solve these problems 

depending on different types of devices. This is where the new technology of HVDC 

and FACTS offers an important opportunity [82]. 

Breaking the transmission line is a common protection after faults in power system 

which may cause frequency deviation between areas and power swing. Power flow on 

other transmission lines may reach physical or thermal limit [83]. TCSC and HVDC 

can solve this problem by optimal power flow controlling. Coordinated operation is 

needed to determine the new set-points of two power flow controllers at post-fault. 

This chapter will present a coordinated control using TCSC and LCC-HVDC link 

which are embedded within two areas to keep the total power transfer constant. It can 

be achieved by a supervisory controller based on Dispatcher Power Flow (DPF) [84].  

This high-level controller is designed in this chapter to dispatch the power flow that 

can maintain the total power flow as pre-fault. 

5.2 Power swing  

Power swing is caused by large disturbances in a power system.  Severe system 

disturbances could cause large separation of generator rotor angles, large swings of 

power flows, large fluctuations of voltages and currents, and eventual loss of 

synchronism between groups of generators or between neighboring utility systems. 
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Thus, preventing or reducing power swing can improve the transient stability of power 

system [85].  

The electrical power, ௘ܲ , transferred from a generator to another area is given by the 

equation: 

௘ܲ ൌ
ா೒ா೗
௑
sin                                                                                                       ߜ

(5.1) 

Which has already presented in chapter 3 (equation 3.1). The swing equation of the 

machine is [86]: 

௔ܲ ൌ ௠ܲ െ ௘ܲ ൌ
ு

గ௙

ௗమఋ

ௗ௧మ
൅ ܦ

ௗఋ

ௗ௧
                                                                         (5.2) 

Where: 

௠ܲ is Mechanical Turbine Power of the generating unit; 

௘ܲ is Electromagnetic Power output of the generating unit; 

௔ܲ is Accelerating Power; 

H is the inertia constant in seconds; 

D is the rotor damping constant in ݏଶ. 

The mechanical power, ௠ܲ, is provided by the turbine and the average mechanical 

power must be equal to the average electrical power, neglecting losses. When a system 

disturbance occurs, the value of one or more parameters of the electrical power 

equation may be affected. Changing the reactance between two areas (X), the receiving 

end voltage (ܧ௟ ) or combination of these two parameters leads to difference in 

electrical power. For example, a short circuit results in reduction of the load voltage, 

a breaker opening results in increase of the reactance. When the electrical power does 

not equal to mechanical power, the rotor will accelerate or decelerate, which leads to 

deviation from synchronous speed. It results in oscillations in rotor angle and power 

flow swing. Therefore, maintaining the total transferred power on the boundary of two 

areas could reduce the power swing effectively. 



‐ 51 ‐ 
 

 

5.3 Coordinated controller design 

In order to dispatch the optimal power flow on transmission lines after fault, a high-

level controller is designed in this section to modify the pre-fault set-point of power 

flow controllers’ input signals ( ௧ܲ௖௦௖ି௥௘௙  and ௛ܲ௩ௗ௖ି௥௘௙ ). The objective of the 

coordinated control is to stabilize the power system by minimizing the power swing 

of the either side against each other or reducing the frequency deviation. The 

frequency deviation between areas is in proportion to the deviation of real power flows 

transmitted on the boundary.  The coordinated controller is able to minimize the power 

swing and frequency deviation by keeping the total transferred power flow as constant 

as pre-fault.  

As shown in figure 5.1, the simulated power system is quite similar to the system 

simulated in previous chapter of which parameters are presented in Appendix. The 

power is desired to transmit 2.6 p.u. in total from Northern Scotland area to the loads 

in England & Wales area. At the steady state condition before fault, the set-points of 

TCSC and LCC-HVDC link power flow controllers are set to 1.1 p.u. and 0.5 p.u. 

respectively. A new AC transmission line (line 3) is added on the boundary because 

TCSC cannot control power flow without any parallel transmission line when a 

transmission line is open or tripped.  The machine generates constant cumulative 

power that couldn’t change no matter what impedance value of TCSC on a single line 

[87].        

The coordinated controller to re-dispatch the power flow on transmission lines is 

shown as figure 5.2. The active power flow on line 3 ( ௟ܲ௜௡௘ଷ) can be measured by 

Wide-Area Measurement System (WAMS) in practical application. With the global 

information measured by WAMS as an input signal, these FACTS-based controllers 

can obtain rapid advancement in power systems [88-89]. When the breaker on line 3 

is open, at immediate post-fault, the loss of that line will be picked up and shared by 

lines under coordinated control. The dispatched proportion of picked-up active power 

(∆ܲሻ is determined by parameter K. As an exact value of K is selected, the re-dispatch 

function can be applied. Two new set-points ( ௧ܲ௖௦௖ି௥௘௙ and ௛ܲ௩ௗ௖ି௥௘௙), provided by 

coordinated controller, are sent to the power flow controller of TCSC and HVDC when 
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the active power flow on line 3 has changed. The appropriate dispatched proportion 

can be studied and implemented thanks to more than one power flow control devices 

in the power system. Optimum coordinated power control will improve the stability 

performance of whole network. 

However, not every setting of parameter K can perform a good coordinated operation 

of TCSC and HVDC. Either TCSC or HVDC has its specific operation range. If the 

value of K is set to make the set-point of power flow controller to exceed the limit, the 

ideal control effect will not be achieved. The limit of TCSC refer to the minimum and 

maximum value of firing angles which is selected in such a way as to avoid the TCSC 

operating in high impedance region (at resonance). Working beyond the limit may 

result in high voltage drop across the TCSC. As presented in previous chapter, the 

range of firing angle of the simulate model is limited from 145 degrees to 172 degrees 

that can vary the lifting coefficient of impedance from 1.01 to 5.3. 

The way to control the power flow of LCC-HVDC link is to control the DC current of 

DC link. As presented in previous chapter, rectifier control system controls the DC 

current and the DC voltage is maintained by inverter control system in general 

condition. In order to increase the DC current to transmit more power, the voltage at 

rectifier side should be increased by reducing ࢻ of rectifier. The practical alpha-min 

limit (࢔࢏࢓ࢻ ൌ 5°) is required for the valves to have a forward-bias voltage before 

turning on. Thus, a limiter is set in the LCC-HVDC model to prevent little firing angle 

and the corresponding maximum transmission power is 1 p.u. (1000WM).  



‐ 53 ‐ 
 

 

Figure 5.2 Power system with coordinated controller 
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Figure 5.3 Block diagram of coordinated controller 

 

5.4 Simulation studies 

A three-phase fault is set on line 3 at t=6s and the breaker trips to isolate the faulty 

circuit immediately. In order to focus on how the coordinated controller keeps the total 

power flow as constant as pre-fault, the time to detect the fault and communicate is 

neglected. Six cases applying different parameter K were simulated and compared to 

study the optimum dispatched control after fault. Results is represented by per unit 

value except TCSC firing angle and the difference of the rotor angles (rotor angle of 
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Northern Scotland minus rotor angle of England & Wales network). The voltage base 

value (AC 500kV and DC 400kV) and apparent power base value (1000MVA) are 

similar to previous chapter model.  The summary of the simulation results is tabulated 

in table 5.1. 

Case 1 (no coordinated control): the coordinated control is not applied in this case 

study. The set-points of power flow controllers of TCSC and HVDC link remain at 

1.1 p.u. and 0.5 p.u.. As shown in figure 5.4 (a), (b), (c), only HVDC link regulated 

power flow at 0.5 p.u., TCSC does not work at post-fault because the limitation of 

firing angle was reached at 172 degrees (figure 5.4 (d)) which means it operates as a 

fixed series compensator. The power oscillations after the fault occurrence is much 

higher than other cases with coordinated control. 

Case 2 (K=0): the coordinated control is applied in this case and the picked-up power 

flow is desired to be fully dispatched to HVDC link. However, the maximum power 

transferred of HVDC is 1 p.u. so that the rest power flow is picked up by AC 

transmission lines. Table 5.1 indicates that there is 0.75 p.u transferred power flow 

lost from line 3. The rest active power (0.75-0.5=0.25 p.u.) cannot be picked up 

completely by line 2 as predicted because of the same reason as case 1. The lowest 

compensation level of line with TCSC is reached but the stability of system is still 

better than case 1 due to less transmission requirement of AC transmission lines. 

Case 3,4,5,6 (K=0.3,0.5,0.75,1): In this four cases, TCSC and HVDC link both operate 

in controllable range. As it is expected and demonstrated by simulation results, the 

power oscillation at post-fault is damped and suppressed with coordinated control.  

Especially the system quickly returns to steady-state at 7.5s when the parameter K is 

set 0.3 and 0.5. As the values of K are reduced in this four cases, the differences of 

rotor angles (figure 5.4 (e)) become smaller and easier to restore to stability because 

of falling transmission demand of AC transmission system. Figure 5.4 (b) reveals that 

HVDC link has very robust transmission reliability in controllable range no matter 

how much active power it transfers. Therefore, the lost power flow should be 

dispatched to HVDC link as much as possible and the rest of it is picked up by TCSC 

that makes the rotor angles difference keep lower. The low and stable rotor angles 

difference means that generators haven’t lost synchronism and the rotor angle stability 
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of power system is good. By comparison, the coordinated control of case 3 (K=0.3) 

have best performance under this condition. 
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(a) Power flow on line 1(TCSC) 
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(b) Power flow on LCC-HVDC link 

 

(c) Power flow on line 2 

 

(d) Firing angle of TCSC 
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Figure 5.4 Comparison results of simulation 

 

 

Parameter 

(Per Unit) 

Pre-

fault 

Post-fault 

No 

control 

K=0 K=0.3 K=0.5 K=0.75 K=1 

Line1(TCSC) 1.1 1.67 1.25 1.33 1.52 1.64 1.82 

Line2 0.24 0.41 0.33 0.24 0.24 0.24 0.23 

Line3 0.76 0 0 0 0 0 0 

HVDC link 0.5 0.5 1 0.99 0.81 0.68 0.5 

Northern 

Scotland 

generator 

 

2.6 

 

2.6 

 

 

2.6 

 

2.6 

 

2.6 

 

2.6 

 

2.6 

 

Table 5.1 Simulation results at pre-fault and post fault (S௕௔௦௘=1000MVA) 
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Conclusion 

The coordinated control to re-dispatch the power flow and consequently improving 

the stability of power system is investigated through comparison of six cases in this 

chapter. A coordinated controller is designed to maintain total power flow transfer 

from one area to another area as constant as pre-fault. As applied power flow control 

devices, TCSC and HVDC link have different characteristics and advantages. TCSC 

can be controlled in lager range and HVDC link has more stable transmission ability. 

Because there are thermal, stability and voltage constraints of power system and 

limitations of TCSC and HVDC link, the optimum set-points of power flow controller 

should be studied and determined that the transient and dynamic stability of system is 

enhanced. 
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Chapter Six: Conclusions and 
recommendations for 
future work 

 

The motivation and drive for the research were outlined in detail in previous chapters, 

as stemming from the fact that a substantial amount of change needs to be 

implemented to the GB transmission system in order to accommodate the forthcoming 

renewable generation and meet the climate change legislation enforced from both by 

UK Government. For that reason, more state-of-the-art transmission technologies such 

as embedded HVDC links and TCSC are planned to be deployed within the existing 

AC transmission system to provide additional capacity and raise the boundary limit. 

However, these new power flow control devices without a supervisory stability control 

system could bring less benefit of the potential advantages of these costly individual 

reinforcements. A coordinated controller is needed at transmission system level to 

ensure TCSC and LCC-HVDC link operate at the optimal operational point.  

Chapter 2 presents a comprehensive review of the coordination of LCC-HVDC and 

FACTS devices. Several coordinated control methods are summarized. This research 

overview represents the first contribution of the thesis which reveals issues about 

coordination that deserve concern by researchers 

This thesis in Chapter 3 covers and reviews the modelling of LCC- HVDC link and 

TCSC, which could be used for stability studies and analyzing complex system 

dynamic behavior. ADPSS software is used as the simulation tool for developing these 

models. The parameters of controllers are determined and validated by the step change 

tests. 

As the second contribution of this thesis, applying power control of both TCSC and 

LCC-HVDC link in the simplified GB transmission system is simulated and studied 

in the Chapter 4. The simulation results illustrate the effect of two new technologies 

for improving the transient stability of power system. The obvious adverse interaction 

between two devices is not observed, but the coordinated control is still required to 

achieve better results in different conditions. 
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The most significant contribution of the research is to design a coordinated controller 

to maintain total power flow transfer from one area to another area as constant as pre-

fault.  In the Chapter 5, the coordinated control to re-dispatch the power flow at post-

fault is applied different dispatched proportion to study the optimal operational point. 

Through the simulation analysis, HVDC link has very robust transmission reliability 

in controllable range which could pick up as much power flow as possible.  TCSC has 

a large controllable range which can be mainly used to damp the oscillation. These 

two power flow control devices not only increase the power transfer capability but 

also enhance the transient stability effectively under this reasonable coordinated 

control. 

The coordinated control for dispatching power flow in this thesis included two 

actuators (TCSC and HVDC link) which only contain a SISO (Single-Input Single-

Output) power flow controller respectively. They are without any other function such 

as POD module and variables under two SISO controls may be easily coupled. There 

is no obvious interaction between TCSC and HVDC link when they operate under 

coordinated controller designed in this thesis. But they may be coupled while the new 

control functions add into individual actuators or other devices are embedded in power 

system. A new MIMO (Multi-Input and Multi-Output) controller should be designed 

in the future work to improve the performance of coordinated control. SR (Sampled 

Regulator) method, proposed by Åström [90], Lu and Kumar [91], and Mossaheb [92], 

is an efficient and feasible MIMO control design method. In [93], examples of the 

applications of the sampled integral regulators to some advanced FACTS devices have 

been reported. In [94], the application of HVDC link’s set-point adoption is presented 

using a novel SR control design method for design of controller. Reference [95] 

reveals the essential relationship between the two different major designs for a class 

of samples regulator, which are Passive design and Lu-Kumar methods. The designs 

have been demonstrated through two power system applications, including power flow 

control using TCSC, coordination of HVDC power flow control and the SVC voltage 

regulation with the power damping control. According to these references, the 

coordinated control based on SR method will be studied if the research has been 

continued. 
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APPENDIX 

 Machine Data  

Southern Scotland 

Rating 
Capacity 

3160 MVA 
Base 

Voltage 
33 kV 

Base 
Frequency 

fb 
50 Hz 

Ra 0.002 Xd 2.13 T’
d0 6.0857 s 

Xl 0.17 Xd
’ 0.308 T’’

d0 0.0526 s 

Xq 2.07 Xd
” 0.234 T’’

q0 0.2538 s 

Xq
’ 0.906 Xmq 1.9 T’

q0 1.653 s 

Xq
” 0.234 Xmd 1.96   

Shaft Data 

Inertias (MWs/MVA) HSScot 3.84 
Damping coefficients 

(p.u. T/p.u. speed dev.) 
DSScot 

0.1 

 

 

England and Wales 

Rating 
Capacity 

21000 
MVA 

Base 
Voltage 

33 kV 
Base 

Frequency 
fb 

50 Hz 

Ra 0.002 Xd 2.13 T’
d0 6.0857 s 

Xl 0.17 Xd
’ 0.308 T’’

d0 0.0526 s 

Xq 2.07 Xd
” 0.234 T’’

q0 0.2538 s 

Xq
’ 0.906 Xmq 1.9 T’

q0 1.653 s 

Xq
” 0.234 Xmd 1.96   

Shaft Data 

Inertias (MWs/MVA) HEW 5 
Damping coefficients 

(p.u. T/p.u. speed dev.) 
DEW 

0.1 
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Northern Scotland 

Rating 
Capacity 

2400 MVA 
Base 

Voltage 
33 kV 

Base 
Frequency 

fb 
50 Hz 

Ra 0.002 Xd 2.13 T’
d0 6.0857 s 

Xl 0.17 Xd
’ 0.308 T’’

d0 0.0526 s 

Xq 2.07 Xd
” 0.234 T’’

q0 0.2538 s 

Xq
’ 0.906 Xmq 1.9 T’

q0 1.653 s 

Xq
” 0.234 Xmd 1.96   

Shaft Data 

Inertias (MWs/MVA) HNS 3 
Damping coefficients 

(p.u. T/p.u. speed dev.) 
DSSc 

0.1 

 

 

 DC System (Mono-pole and 12 pulses):  

Converter Data 

Rating 
Capacity 

1000MVA Base Voltage 500 kV 
Base 

Frequency 
fb 

50 Hz 

DC Transmission Line and Inductor 

Inductor 0.5968 H Line Resistance 5 Ω 
Capacitanc

e 
26.0μF 

Converter transformer Rectifier 

Rating Capacity 603.73MWA Leakage Reactance 0.18p.u 

Voltage Ratio 400/213.57kV   

Converter transformer Inverter 

Rating Capacity 591.79MWA Leakage Reactance 0.18p.u 

Voltage Ratio 400/209.2288kV   
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 AC system for Chapter Four  

Transformer and transmission lines 

Rating 
Capacity 

1000MVA 
Base 

Voltage 
400 kV 

Base 
Frequency 

fb 
50 Hz 

XT1 0.14 XT2 0.07 XT3 0.00001 

Line1 0.1 Line2 0.1 Line3 0.05 

Line4 0.01  Shunt capacitances XCSh 20 p.u. 

A ratio X/R = 10 is assumed 

Load 

PLoad 18.23 QLoad 2.4847 

PLoad1 2.0 QLoad 0 

 

 AC system for Chapter Five 

Transformer and transmission lines 

Rating 
Capacity 

1000MVA 
Base 

Voltage 
400 kV 

Base 
Frequency 

fb 
50 Hz 

XT1 0.14 XT2 0.07 XT3 0.00001 

Line1 0.1 Line2 0.4 Line3 0.15 

Line4 0.01  Shunt capacitances XCSh 20 p.u. 

A ratio X/R = 10 is assumed 

Load 

PLoad 18.23 QLoad 2.4847 

PLoad1 2.0 QLoad 0 

 

 


