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Abstract. Mesoscopic continuum hyperelastic models for open-cell solids subject to large elastic
deformations are derived from the architecture of the cellular body and the microscopic responses of
the cell walls. These models are valid for general structures, with randomly oriented cell walls, made
from an arbitrary isotropic nonlinear hyperelastic material, and subject to finite triaxial stretches.
Their analyses provide global descriptors of the cellular structure, such as nonlinear stretch and shear
moduli, and Poisson’s ratio. Comparisons with numerical simulations show that the mesoscopic
models capture well the mechanical responses under large strain deformations of three-dimensional
periodic structures and of two-dimensional honeycombs made from a neo-Hookean material.
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1. Introduction. Cellular solids, or foams, are two- or three-dimensional bodies
divided into cells, which may be open or closed, and can be filled with a fluid or solid
core. In open-celled solids, the cell walls consist of the cell edges which form an
interconnected network, while in closed-cell foams, the cell walls contain both the cell
edges and the cell faces forming disconnected cell compartments, though some foams
may contain both open and closed cells [12, 16, 17, 42]. Since a foam (spuma in
Latin; αϕρóς in Greek) is not a continuum, but its mechanical properties depend on
the intrinsic material characteristics of the cell walls and on the size and shape of the
cells, a continuum theory cannot account for all microstructural effects. Nevertheless,
even though it is at a cellular level that the structural basis of foams is best addressed,
both theoretically and computationally, due to the inherent complexity and diversity
of cellular bodies, the mathematical modelling of every individual cell in a structure
with a large number of cells is generally unfeasible, and a combined study spanning
the micro-, meso-, and macroscopic scales is required.

Since many cellular solids return to their initial shape after loads are removed,
at low stresses or strains, the assumption that the cell walls are linearly elastic with
a geometrically nonlinear behavior is valid, and is successfully used in structural me-
chanics and other engineering applications, e.g., wood, metal, or elastomeric foams,
or structural ceramics. In this case, if the deformation is primarily by cell-wall bend-
ing, the elastic responses can be estimated from the linear-elastic deflection of a
beam [6, 16, 17]. In particular, for honeycomb structures with uniform hexagonal cells
loaded uniaxially in plane, assuming that the cell walls, with thickness t and length
L, initially deform linearly elastically by bending, without stretching, the Young’s
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modulus is proportional to (t/L)3, while the relative density ρ∗/ρs, where ρ∗ is the
density of the cellular structure and ρs is the density of the solid cell wall mate-
rial, is proportional to t/L [17, pp. 34–35]. Similarly, for three-dimensional cellular
solids with uniform open cubical cells in staggered distribution and subject to uniaxial
loading, such that the cell edges deform by linear-elastic bending, the Young’s mod-
ulus is proportional to (t/L)4, or equivalently, to (ρ∗/ρs)2 [17, pp. 44–48]. However,
for stretch-dominated prismatic architectures, which are structurally more efficient,
due to a higher stiffness-to-weight ratio than the bending-dominated ones [9, 10],
the Young’s modulus computed from the stretch deformation of the pin-jointed cell
walls is proportional to ρ∗/ρs, or equivalently, to (t/L)2, while the buckling stress is
proportional to (ρ∗/ρs)2 [17, pp. 57–58].

Many modern applications (e.g., synthetic rubbers) and biological structures (e.g.,
soft tissues and organs) also involve large strains, whereby the deformation is inher-
ently nonlinear and the corresponding stresses depend on both the position and the
underlying material properties [28]. At the individual cell level, for many natural and
engineered cellular structures, physical evidence suggests that several main factors
determine the magnitude of the enhancement of stress level in the cellular body, in-
cluding the cell geometry, the cell wall thickness, and the number of cells [1, 11, 13, 37].
In [27], for honeycomb structures of nonlinear hyperelastic material with standard cell-
geometry, it was shown that if a structure contains walls which are inclined relative
to the applied uniaxial tensile load, then the apparent Poisson’s ratio depends on the
deformation and decreases as the magnitude of the tensile load increases. In [25, 26],
a nonlinear elastic modulus was identified and, under increasing strain, was shown to
increase as the thickness of the cell wall increases or when the wall is multilayer, as
well as when the number of cells increases while the volume of cell wall material and
the ratio between the thickness and the length of the wall remain fixed.

Understanding the properties and local behavior of the structural components is
essential when continuum models are designed to predict responses in cellular solids
at a macroscopic level. The first constitutive model for the mechanical response of a
cellular solid deduced from the microstructural cell model is due to Gent and Thomas
(1959) [14]. For this model, general isotropic linearly elastic open-cell foams subject to
small stretch deformations were assumed, and effective Young’s elastic modulus and
the Poisson’s ratio were derived directly from the constitutive equations [2, 4]. This
model was later extended to closed-cell foams containing an ideal gas [15]. For the
study of the nonlinearly elastic response of a compressible isotropic cellular material
under finite strain, a phenomenological continuum model is due to Blatz and Ko
(1962) [7]. This model reduces to the Gent–Thomas model in the small strain regime,
and for both the Gent–Thomas and the Blatz–Ko models, the effective Poisson’s ratio
has a fixed value of 1/4 [5]. The derivation from continuum mechanics of a general class
of constitutive equations of the Blatz–Ko type may be found in the review article [3].
In [40], it was noted that Hill’s energy functional of hyperelasticity [19] can be used to
describe the simple special case of foams where the principal stresses are uncoupled,
i.e., depend only upon the stretch ratio in the corresponding principal direction. These
approaches are based on the strain-energy function for incompressible media proposed
by Ogden (1972) [35] which is extended to the compressible case. Hyperelastic models
are described by a strain-energy density function [36, 41], and are generally amenable
to computer simulations based on the finite element method [23, 34].

In this study, assuming that the cell walls are circular cylinders and are sub-
ject to finite triaxial stretches, and the joints between adjacent walls are spheres
with the radius much smaller than the length of the wall, and do not deform signifi-
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cantly, continuum isotropic hyperelastic models for open-cell solids at the mesoscopic
scale comprising a finite number of cells are developed that account for the geome-
try and the material constitutive law of the structural elements (section 2). Unlike
phenomenological models that provide effective elastic parameters based on macro-
scopic observations and measurements, the constitutive parameters for these models
are derived explicitly from the strain-energy function of the underlying solid mate-
rial and the large strains in the cell walls. Specifically, nonlinear stretch and shear
moduli are computed under simple axial and shear deformations, respectively, and a
Poisson’s ratio is obtained under simple compression or tension (section 3). For illus-
trative purposes, the case of neo-Hookean cell walls is treated in details (section 4).
Furthermore, when compression of the continuum hyperelastic material takes place
parallel to the direction of some of the cell walls, the material critical stretches and
stresses for the onset of nonlinear Euler buckling of the cell walls are derived from
the critical stretches for the cell walls under axial load provided by Goriely, Vandiver,
and Destrade (2008) [18]. To assess their mechanical performance, the continuum
models are compared numerically to computer simulations of three-dimensional peri-
odic structures and of two-dimensional honeycombs of neo-Hookean material in large
tension (section 5). Theoretically, the continuum models developed here are valid also
for more general structures, with randomly oriented cell walls made from an arbitrary
isotropic nonlinear hyperelastic material.

Under uniform stresses, many isotropic materials deform uniformly [29, 30, 33],
whereas in cellular structures, the deformation generally concentrates in regions that
are more easily deformable. The hyperelastic models developed here capture struc-
tural behaviors at a mesoscopic level, where the number of cells is finite and the
size of the structure is comparable to the cell-size, and can be useful as an initial
approximation in multilevel approaches, whereby a cellular structure is represented
first as an elastic material deforming uniformly, and after the loading is increased, the
areas where the stress field reaches critical values are remodelled as individual cells
to predict critical local effects [31].

2. Hyperelastic models for structures with open cells. In this section,
we present the approach for constructing strain-energy functions for homogeneous
isotropic hyperelastic models of cellular structures with open cells and identical but
randomly oriented cell walls, provided that the cell walls are circular cylinders and are
subject to finite triaxial stretches, without bending or buckling, and the joints between
adjacent walls are spheres with the radius much smaller than the length of the walls
and do not deform significantly. These geometrical conditions are similar to those
for the Gent–Thomas model [14], where the cell walls were treated as linearly elastic.
However, in our models, the cell walls are made from a general isotropic hyperelastic
material and are capable of finite strain deformations. The triaxial stretch of the
cell walls may occur, for example, when the collective deformation of a finite number
of cells can be reasonably approximated as homogeneous, in which case the elastic
responses of those cells can be captured by a continuum model.

To derive the continuum model, we first relate the principal stretches at the
mesoscopic scale to those of the individual cell walls, then formulate the strain-energy
density at the mesoscopic level as a function of the principal stretches of the cell walls
by averaging over a unit volume of material. The unit volume is taken as either a
sphere or a finite number of spheres, with each sphere centered at the intersection
of adjacent walls, but the same results are obtained if the unit volume is cubical
in shape with the cuboid walls aligning with the cube edges and the cubical joints
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1400 L. A. MIHAI, H. WYATT, AND A. GORIELY

placed at the cube corners. To show how the stiffness of the cellular body at the
mesoscopic scale changes with the ratio between the volume of solid material and
that of the elastic structure, this model is specialized to the case where the volume
fraction of solid material contained in a unit volume of cellular structure depends only
on the ratio between the thickness and the length of the cell walls. Moreover, under
finite strain deformations, if both the volume fraction of solid material and that of
the elastic structure and the ratio between the thickness and the length of the cell
walls remain fixed, then structures with a larger number of smaller cells may become
stiffer compared to those with fewer and larger cells. To capture this behavior, the
strain-energy function is augmented with a suitable weight, such that the resulting
elastic modulus increases if the number of cells increases while the volume fraction
and the ratio between the thickness and the length of the walls are fixed.

2.1. Cell walls under finite triaxial stretch. For a cellular structure with
open cells and randomly oriented cell walls, we denote by L the initial length of a cell
wall, and by t the width of the joint between adjacent walls, such that 0 < k = t/L < 1.
We further denote by l the length of the finitely deformed cell wall, and assume that
the deformation of the joints is less significant than that of the cell walls, and hence the
deformation of the joints can be neglected. We also assume that, in the undeformed
state, the wall thickness is approximately equal to the width of the joint. Then
L = L + t = (1 + k)L and l = l + t = l + kL are the lengths of a cell element
comprising a cell wall and a joint before and after the deformation, respectively, and
denoting by {λi}i=1,2,3 and {λi}i=1,2,3 are the principal stretches for the cell wall and
the cell element, respectively, we obtain

(2.1) λi = (1 + k)λi − k, i = 1, 2, 3.

Let (e1, e2, e3) be the usual orthonormal vectors for the Cartesian coordinates in
the principal directions of the material deformation at the mesoscopic scale, and let
(n1,n2,n3) denote the orthonormal vectors in the principal direction of the deforming
cell wall, as shown in Figure 1, such that

n1 = − e1 cos θ cosφ− e2 cos θ sinφ+ e3 sin θ,
n2 = e1 sinφ− e2 cosφ,
n3 = e1 sin θ cosφ+ e2 sin θ sinφ+ e3 cos θ.

(2.2)

Denoting by {αi}i=1,2,3 the principal stretches for the cellular solid at the meso-
scopic scale, and setting Fm = diag(α1, α2, α3), we can write

λ1 = n1 · Fmn1 = α1 cos2 θ cos2 φ+ α2 cos2 θ sin2 φ+ α3 sin2 θ,

λ2 = n2 · Fmn2 = α1 sin2 φ+ α2 cos2 φ,

λ3 = n3 · Fmn3 = α1 sin2 θ cos2 φ+ α2 sin2 θ sin2 φ+ α3 cos2 θ.

(2.3)

We assume that the cell walls are made from a homogeneous isotropic hypere-
lastic material described by a strain-energy density function W(λ1, λ2, λ3). For the
deforming cell wall, which is subject to a triaxial stretch, the non-zero components of
the first Piola–Kirchhoff stress tensor are the diagonal ones, i.e.,

(2.4) Pi =
∂W
∂λi

, i = 1, 2, 3,
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A HYPERELASTIC MODEL FOR OPEN-CELL SOLIDS 1401

Fig. 1. Schematic of cell walls and joints in a cellular structure, with the orthonormal vectors
(e1, e2, e3) for the structure at the mesoscopic scale and (n1,n2,n3) for a cell wall.

and the associated components of the Cauchy stress tensor are

(2.5) σi = J−1λiPi = J−1λi
∂W
∂λi

= J−1 ∂W
∂ (lnλi)

, i = 1, 2, 3,

where J = λ1λ2λ3. The condition on the strain-energy function W for λ1 = λ2 =
λ3 = 1 to be a minimum is

(2.6)
∂W(m)

∂ (lnλi)
= 0, i = 1, 2, 3.

We define the following principal invariants of the stretch tensor for the cell ele-
ment [39]:

(2.7) i1 = λ1 + λ2 + λ3, i2 = λ1λ2 + λ2λ3 + λ3λ1, i3 = λ1λ2λ3.

Then, using (2.1), the strain-energy function describing the cell wall material can
be written equivalently as W(λ1, λ2, λ3) = W(i1, i2, i3), regardless of k, since the
deformation of the joints is negligible.

We denote the principal invariants of the stretch tensor for the cellular solid at
the mesoscopic level by

(2.8) i1 = α1 + α2 + α3, i2 = α1α2 + α2α3 + α3α1, i3 = α1α2α3.

By the change of frame (2.3), the principal invariants of the stretch tensor for the cell
element are the same as the principal invariants of the stretch tensor for the cellular
solid, i.e.,

(2.9) i1 = i1, i2 = i2, i3 = i3,
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as expected. Therefore, W(i1, i2, i3) = W(i1, i2, i3), with no explicit dependence on
the angles (θ, φ).

Then the strain energy per unit volume of the cellular solid at the mesoscopic
level (designated by a subscript or superscript m) can be derived by taking the mean
value of the cell wall energy W over the unit sphere, i.e.,

W(m) = NV
2
π

∫ π/2

0

∫ π/2

0
W(i1, i2, i3) sin θdθdφ(2.10)

= NVW(i1, i2, i3),(2.11)

where N is the number of full cell walls in a unit volume of cellular material and V is
the volume of a cell wall. The strain-energy function (2.11) describes the behavior of
the deforming cellular solid at the mesoscopic scale, provided that the cell walls are
subject to finite triaxial stretch, without bending or buckling.

For the deforming cellular solid, the principal components of the first Piola–
Kirchhoff stress tensor

(2.12) P
(m)
i =

∂W(m)

∂αi
, i = 1, 2, 3,

and the principal components of the Cauchy stress tensor are

(2.13) σ
(m)
i = J−1

m αiP
(m)
i = J−1

m αi
∂W(m)

∂αi
= J−1

m

∂W(m)

∂ (lnαi)
, i = 1, 2, 3,

where Jm = α1α2α3. The minimum strain energy given by the relations

∂W(m)

∂ (lnαi)
= 0, i = 1, 2, 3,

corresponds to the unstressed state, and by (2.13) and (2.6) it is attained if α1 =
α2 = α3 = 1, i.e., when the cellular body is undeformed.

2.2. The effect of volume fraction. To investigate the effect of the volume
ratio between the elastic solid and the cellular material, we assume that n cell walls,
each of undeformed length L and volume V , are meeting at a common joint of surface
area

nA = 4π(t/2)2 = πk2L2,

where

k =
t

L
=

√
nA

πL2 .

Taking a representative volume of the cellular material at the mesoscopic scale in the
undeformed state as a sphere of radius R = (L + t)/2 = (1 + k)L/2 centered at a
joint, as indicated in Figure 1, the volume of this sphere is equal to

(2.14) V m =
4πR3

3
=
πL3(1 + k)3

6
,

while the volume of solid material contained in this sphere is

(2.15) V =
nAL

2
+

4π(t/2)3

3
=
πk2L3

2
+
πk3L3

6
=
πk2L3(3 + k)

6
.
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By (2.14) and (2.15), the volume ratio is equal to

(2.16) ρm = V /V m = 1− 1 + 3k
(1 + k)3 ,

and increases as the parameter k ∈ (0, 1) increases.
Without loss of generality, setting the unit sphere of cellular material at the

mesoscopic scale as V m = 1, by (2.14), it follows that

πL3

2
=

3
(1 + k)3 ,

which implies that the volume fraction of cell wall material in this sphere is equal to

(2.17) NV =
nAL

2
=
πk2L3

2
=

3k2

(1 + k)3 .

Alternatively, setting the representative volume of the cellular body at the mesoscopic
scale, in the undeformed state, as nm spheres of radius R = (L+ t)/2 = (1 + k)L/2,
such that each sphere is centered at a joint, this volume is equal to nmV m, where
V m is given by (2.14), and contains nmV volume of solid material, with V defined
by (2.15). Therefore, the corresponding volume ratio is the same as that defined by
(2.16), since

ρm =
(
nmV

)
/
(
nmV m

)
= V /V m = 1− 1 + 3k

(1 + k)3 .

Taking the unit sphere of cellular material at the mesoscopic scale as nmV m = 1
implies

πL3

2
=

3
nm(1 + k)3 ,

hence the associated volume fraction of cell wall material is equal to that given by
(2.17), since

NV =
nmnAL

2
=
nmπk

2L3

2
=

3k2

(1 + k)3 .

We conclude that the volume fraction of cell wall material contained in a unit volume
of cellular structure depends only on the parameter k representing the ratio between
the thickness and the length of a cell wall. The same results are obtained if the unit
volume is cubical in shape with the cuboid walls aligning with the cube edges and the
cubical joints placed at the cube corners. This case is discussed in detail in section 5,
where numerical examples are presented.

In the subsequent analysis, we maintain the notation NV for the volume fraction
of cell wall material in a representative unit volume in general, and use the particular
case (2.17) as an example.

3. Nonlinear elastic moduli. In this section, for the cellular solid at the meso-
scopic scale, the elastic moduli are derived from the elastic moduli of the cell wall
material.

3.1. Shear modulus. To compute the nonlinear shear modulus for the cell wall
and the cellular solid, respectively, we consider each of them under the simple shear
deformation

(3.1) x1 = X1, x2 = X2, x3 = γX1 +X3,

D
ow

nl
oa

de
d 

08
/2

3/
17

 to
 1

31
.2

51
.2

54
.1

78
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1404 L. A. MIHAI, H. WYATT, AND A. GORIELY

where (X1, X2, X3) denote the Lagrangian (reference) and (x1, x2, x3) are the Eulerian
(current) coordinates, respectively, and the constant γ > 0 is the amount of shear.
Then, the corresponding principal stretches satisfy

λ2
1 = 1 +

γ2 − γ
√
γ2 + 4

2
= α−2, λ2

2 = 1, λ2
3 = 1 +

γ2 + γ
√
γ2 + 4

2
= α2,

and similarly,
α2

1 = α−2, α2
2 = 1, α2

3 = α2.

Noting that

α =
γ +

√
γ2 + 4
2

and α−1 = −γ −
√
γ2 + 4
2

,

we can compute the respective principal Cauchy stress components using (2.5) and (2.13).
Then, under the deformation (3.1), the nonlinear shear modulus [41, p. 175] for the
cell wall and the cellular solid at the mesoscopic scale are defined, respectively, as
follows:

µ =
σ3 − σ1

α2 − α−2 ,(3.2)

µ(m) =
σ

(m)
3 − σ(m)

1

α2 − α−2 .(3.3)

In the limit of small shear strain, the corresponding shear moduli for the cell walls
and the cellular solid take the form

µ0 = lim
γ→0

µ,(3.4)

µ
(m)
0 = lim

γ→0
µ(m),(3.5)

and a direct computation of these moduli gives

µ0 = 2(W010 +W100),(3.6)

µ
(m)
0 = (1 + k)2NV µ0,(3.7)

where

(3.8) Wijk =

(
∂i∂j∂k

∂Ij1∂I
j
2∂I

k
3

W(I1, I2, I3)

)∣∣∣∣∣
(I1=3,I2=3,I3=1)

,

with

(3.9) I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3 = λ2

1λ
2
2λ

2
3,

and the positive indices i, j, k assumed to be such that i+ j + k is between 0 and 2.
When NV is given by (2.17), the shear modulus for the cellular solid takes the

form

(3.10) µ
(m)
0 =

3k2

1 + k
µ0.
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3.2. Stretch modulus. Another important descriptor of material response of
an elastic body is the stretch modulus. To compute the stretch modulus for the wall,
we consider a uniaxial extension with stretches (λ1(λ), λ1(λ), λ) with the condition
σ1 = σ2 = 0 and σ3 = N(λ). Similarly, for the cellular solid, we have stretches
(α1(α), α1(α), α) with the condition σ

(m)
1 = σ

(m)
2 = 0 and σ

(m)
3 = N (m)(α). The

nonlinear stretch modulus is defined as the slope of the curve representing the axial
stress versus the associated logarithmic strain, i.e.,

E =
∂N(λ)
∂ (lnλ)

,(3.11)

E(m) =
∂N (m)(α)
∂ (lnα)

.(3.12)

In the linear elastic limit, each modulus (3.11)–(3.12) reduces to the corresponding
Young’s modulus for the individual wall and the cellular solid, respectively,

E0 = lim
λ→1

E,(3.13)

E
(m)
0 = lim

α→1
E(m).(3.14)

We can find an explicit expression for these moduli by computing λ1(α) in the small
strain limit to obtain

λ1 = 1− (λ− 1)
W002 −W010 + 4W011 + 4W020 −W100 + 2W101 + 4W110 +W200

2W002 −W010 + 8W011 + 8W020 −W100 + 4W101 + 8W110 + 2W200

+O((λ− 1)2),

(3.15)

where Wijk, with i, j, k such that 0 ≤ i+ j + k ≤ 2, is given by (3.8).
Then, the Young’s modulus for the wall is

(3.16)

E0 = 2µ0
3W002 − 2W010 + 12W011 + 12W020 − 2W100 + 6W101 + 12W110 + 3W200

2W002 −W010 + 8W011 + 8W020 −W100 + 4W101 + 8W110 + 2W200
.

Performing a similar computation for the cellular solid, the Young’s modulus of the
cellular solid can be expressed in terms of the Young’s modulus of the elastic walls by

(3.17) E
(m)
0 = (1 + k)2NV E0.

In particular, if NV is given by (2.17), then

(3.18) E
(m)
0 =

3k2

1 + k
E0.

This linear elastic modulus is thus proportional to k2, in agreement with the Young’s
modulus for stretch-dominated prismatic structures described by [17, pp. 57–58] when
k � 1.

3.3. Poisson’s ratio. For an elastic material which is finitely extended or com-
pressed in the third direction and deforms freely in the orthogonal directions, the
nonlinear Poisson’s ratio can be computed as the negative quotient of the logarith-
mic strain in an orthogonal direction to that of the logarithmic strain in the third
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1406 L. A. MIHAI, H. WYATT, AND A. GORIELY

direction [5]. For the cell wall and the cellular body, respectively, the Poisson’s ratio
is

ν = − lnλ1

lnλ3
,(3.19)

ν(m) = − lnα1

lnα3
.(3.20)

Assuming that uniaxial loading causes a simple tension or compression in the direction
of the tensile force, we can, in principle, express λ1 = λ2 and α1 = α2 as functions of
λ3 = λ > 0 and α3 = α > 0, respectively. Therefore, in the limit of small strains, we
recover the classic definition of the Poisson’s ratio as

ν0 = − lim
λ→1

lnλ1(λ)
lnλ

,(3.21)

ν
(m)
0 = − lim

α→1

lnα1(α)
lnα

.(3.22)

To compute the Poisson’s ratio for the wall, we use the condition σ1 = σ2 = 0 to
obtain (3.15), so that (3.21) and the expressions for the Young’s and shear moduli
give

(3.23) ν0 = ν
(m)
0 =

E0 − 2µ0

2µ0
,

as expected from the classic linear theory of elasticity [22]. Thus, under small strains,
the Poisson’s ratio of the cellular body is independent of the architecture and directly
inherited from the elastic response of the cell wall.

3.4. The cell-size effect. So far, the material parameters for the continuum
representation of a cellular structure analyzed here were not related to the cell size of
the structure. Therefore, since the product NV depends only on the ratio k between
the thickness and the length of a cell wall, for two different structures containing the
same volume of solid material, which is distributed as a small number of large cells
or as a larger number of smaller cells, respectively, such that the ratio k between
the thickness and the length of a wall is the same in both structures, the stiffness of
the corresponding mesoscale models would be the same. While this is valid for many
cellular structures with linear elastic cell walls [16, 17], and hence appears reasonable
in the small strain regime for similar structures with nonlinear elastic cell walls as
well, in many cellular solids, the cell size is expected to play a more independent
role on the mechanical properties, even though this role is usually obscured by other
structural characteristics, as remarked in the review article [38]. For example, in some
conventional food extrudates, both the decrease of the cell size and the increase in
the wall thickness were identified by Barrett et al. (1994) [1] as causing an increase
in mechanical strength. Therefore, we believe that our theoretical approach should
also account for the independent effect of the cell size relative to the overall size of
the structure at the mesoscale level, and hence on the cells number, even though,
in general, this effect is perhaps more minor than that due to the ratio between the
thickness and the length of the cell wall.

To capture the independent influence of the cells number on the elastic behavior
of a cellular structure under large deformations, we modify the strain-energy function
(2.11) by replacing (2.10) with the following weighted mean value of the cell element
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energy:

W(c) = ηW(m)(3.24)

where η > 0 is a positive weight chosen so that, for structures containing the same
volume of solid material and having similar cell geometries, η increases as the number
of cells increases, assuming that NV is fixed.

For the hyperelastic material described by (3.24), the principal components of the
Cauchy stress tensor are

(3.25) σ
(c)
i = ησ

(m)
i , i = 1, 2, 3.

Then the nonlinear shear and elastic moduli take the form, respectively,

µ(c) = ηµ(m),(3.26)
E(c) = ηE(m).(3.27)

Hence, in the small strain limit, by (3.17) and (3.7), the corresponding shear and
Young’s moduli are

µ
(c)
0 = η(1 + k)2NV µ0,(3.28)

E
(c)
0 = η(1 + k)2NV E0,(3.29)

and both increase when η increases.
In practice, for structures under tension in the third direction, the weight η can

be chosen so that the effective elastic modulus for the continuum model is equal to
the effective modulus for the cell walls

(3.30) Eeff = lim
α3→1

Eeff,

where Eeff is the slope of the effective Cauchy stress versus the effective logarithmic
strain curve. We recall that the effective value of a symmetric tensor s [20, 21] is
defined as

(3.31) seff =
√
s2

11 + s2
22 + s2

33 − s11s22 − s22s33 − s33s11 + 3 (s2
12 + s2

13 + s2
23).

Then

(3.32) η =
Eeff

(1 + k)2NV E0
.

Since cellular bodies are generally more flexible than the elastic material from which
they are made, the relation E

(c)
0 < E0 is expected, in which case the condition 0 <

η < 1/
[
(1 + k)2NV

]
must be satisfied. We note that, for cellular structures where the

stiffness depends primarily on the ratio between the thickness and the length of the
cell walls, the value of η will be approximately equal to 1. Nonetheless, as discussed
earlier, theoretically, our continuum model seems more complete with the factor η
included than without it.
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1408 L. A. MIHAI, H. WYATT, AND A. GORIELY

4. Mesoscopic model for open-cells with neo-Hookean cell walls. We
now specialize our model to the simple case where the cell wall material is described
by the compressible neo-Hookean model

W(λ1, λ2, λ3) =
µ

2
[
λ2

1 + λ2
2 + λ2

3 − 3− 2 ln (λ1λ2λ3)
]

+
λ

2
[ln (λ1λ2λ2)]2 ,(4.1)

where µ > 0 and λ > 0 are constant parameters. The associated principal Cauchy
stress components are

(4.2) σi =
1

λ1λ2λ3

[
µ
(
λ2
i − 1

)
+ λ ln (λ1λ2λ3)

]
, i = 1, 2, 3.

Following the general approach described in section 2, the weighted strain-energy
function at the mesoscopic scale (3.24) is

W(c)(i1, i2, i3) = ηNV
µ

2
[
(1 + k)2 (i21 − 2i2

)
− 2k(1 + k)i1 − 3

(
1− k2)]

− ηNV µ ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3]

+ ηNV
λ

2
{

ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3]}2

.

(4.3)

The corresponding principal Cauchy stress components are

σ
(c)
i = η(1 + k)NV µ

αi
α1α2α3

[
αi(1 + k)− k − 1

αi(1 + k)− k

]
+ η(1 + k)NV λ

αi
α1α2α3

ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
αi(1 + k)− k

, i = 1, 2, 3.

(4.4)

The nonlinear shear modulus (3.26) for the cellular solid at the mesoscopic scale is

µ(c) = η(1 + k)2NV µ

1 +
k2
(

1− 2/
√
γ2 + 4

)
1 + k(1 + k)

(
2−

√
γ2 + 4

)


− η(1 + k)NV λ
k ln

[
(1 + k)2 − k(1 + k)

√
γ2 + 4 + k2

]
√
γ2 + 4

[
(1 + k)2 − k(1 + k)

√
γ2 + 4 + k2

] .
(4.5)

In the small strain limit, the shear modulus (4.5) converges to

(4.6) µ
(c)
0 = lim

γ→0
µ(c) = η(1 + k)2NV µ,

and the corresponding stretch modulus (3.27) converges to the Young’s modulus

(4.7) E
(c)
0 = lim

α→1
E(c) = η(1 + k)2NV E,

where

(4.8) E = µ
2µ+ 3λ
µ+ λ

.

Then, by (3.23), the corresponding Poisson’s ratio is

(4.9) ν
(c)
0 =

λ

2(λ+ µ)
= ν.
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4.1. Simple compression. Next, we consider the case of simple compression
of the cellular material at the mesoscopic level, such that the compression is directed
parallel to one set of cell walls, as assumed also by Gent and Thomas in [15]. For cir-
cular cylinders and tubes of incompressible neo-Hookean or Mooney–Rivlin material
with arbitrary length and thickness, Goriely, Vandicer, and Destrade (2008) [18] ob-
tained an explicit formulation for the Euler elastic buckling load and its first nonlinear
corrections based on the geometrical and material parameters. A similar approach
was employed by DePascalis , Destrade, and Goriely (2011) [8] to derive the elastic
buckling load for a compressible elastic cylinder. When a cylindrical wall of thickness
t and length L = t/k, made out of an incompressible neo-Hookean material, is subject
to a simple compression, where λ3 = λ < 1 and λ1 = λ2 = 1/

√
λ > 1, the critical

axial stretch at which buckling occurs takes the form λ = 1− ε2/4 + 7ε4/36 +O
(
ε6
)
,

with ε = πk/2 small [18].
If the cell walls are similar, by (2.1)–(2.3), under the triaxial stretch diag(α1, α2, α3)

at the mesoscopic level, every cell wall deforms by a triaxial stretch diag(λ1, λ2, λ3),
where the stretches at the mesoscopic scale and at the cell wall levels are related by
a rotation, depending on the cell wall orientation relative to the axial directions in
which the triaxial stretch at the mesoscopic level occurs. Assuming that compression
of the cellular material occurs parallel to the direction of some of the cell walls, with
the orthonormal vectors (n1,n2,n3) given by (2.2), the critical right Cauchy–Green
tensor for the onset of buckling of the cell elements comprising those walls and half
of a joint at each end of a wall is C = diag(λ

2
1, λ

2
2, λ

2
3), where by (2.1),

(4.10) λ1 = λ2 =
1 + k

√
λ

(1 + k)
√
λ
, λ3 =

λ+ k

1 + k
.

Then, by (2.3) and (4.10), the critical principal stretches {αi}i=1,2,3 for the cellular
body at the mesoscopic scale satisfy

α1 =
1 + k

√
λ

(1 + k)
√
λ

cos2 θ cos2 φ+
1 + k

√
λ

(1 + k)
√
λ

sin2 φ+
λ+ k

1 + k
sin2 θ cos2 φ,

α2 =
1 + k

√
λ

(1 + k)
√
λ

cos2 θ sin2 φ+
1 + k

√
λ

(1 + k)
√
λ

cos2 φ+
λ+ k

1 + k
sin2 θ sin2 φ,

α3 =
1 + k

√
λ

(1 + k)
√
λ

sin2 θ +
λ+ k

1 + k
cos2 θ.

For the mesoscopic model, the corresponding critical Cauchy stress is then computed
from (2.13) and (3.25). In particular, in the Euler buckling limit λ → 1, the critical
compressive stress predicted by the linear-elastic models [15] is obtained.

5. Numerical examples. In section 2, the unit volume for the continuum model
was considered as a sphere centered at the intersection of adjacent walls. However,
the results are valid also if the unit volume is cubical in shape with the cuboid walls
aligning with the cube edges and the cubical joints placed at the cube corners. More-
over, the generality of the theoretical model, which is not restricted to a specific
cell wall orientation, enables us to derive mesoscopic models corresponding to both
three- and two-dimensional structures, with different cell geometries, by applying the
same approach. In this section, we test the qualitative performance of the mesoscopic
hyperelastic models in the case of computer simulations of three-dimensional peri-
odic open-cell structures with cubical cells and of two-dimensional honeycombs with
hexagonal cells of neo-Hookean material under large tension.
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The structural models presented here were created in SolidWorks and imported
into the Finite Elements for Biomechanics (FEBio) software [24], and a mesh re-
finement study was performed for each structure, so that the numerical results are
independent of the mesh-size. Each structure is formed from a single piece of solid
material described by the compressible neo-Hookean strain-energy function (4.1), with
µ = E/[2(1 + ν)] and λ = νE/[(1 + ν)(1 − 2ν)], where E = 0.1 MPa and ν = 0.49,
and is subject to finite tension with the following boundary conditions: the lower
external horizontal face is fixed in the Y /second/vertical-direction and free to slide in
the X/first/horizontal-direction and in the Z/third/out-of-plane-direction; the upper
external horizontal face is under prescribed tension in the Y -direction and is free to
slide in the X and Z-directions; the remaining external and internal cell faces deform
freely.

For these structures, the mean effective Cauchy stress (normalized by E = 0.1
MPa) versus the mean effective logarithmic strain in the cell walls, and also versus the
prescribed mesoscale tensile deformation, is shown together with the effective Cauchy
stress for the associated continuum models. The mean value was calculated as the
sum of the values on all the finite elements divided by the number of elements. For the
numerical examples involving three-dimensional periodic structures with cubical cells
and two-dimensional honeycombs presented here, we conclude that if the deformation
of the cell walls is close to the triaxial stretch and the joints do not deform significantly,
as assumed theoretically, then the continuum models offer a good approximation for
the respective structures.

5.1. Open-cell structures with cubical cells. We consider six open-cell struc-
tures with cubical cells in stacked distribution, as shown in Figures 2 and 4, with the
corresponding geometric parameters specified in Tables 1 and 2, respectively. These
structures are equal in size in the undeformed state, i.e., they occupy equal cubical
volumes, and are subject to equal prescribed tensile deformations, up to 20%, in the
vertical direction.

In each structure, six cell walls, with undeformed thickness t and length L, are
meeting at a common joint of surface area 6t2 = 6k2L2, where k = t/L. Taking a
representative volume of the cellular material scale in the undeformed state as a cube
of side L+ t = L(1 +k), the volume of this cube is V m = (L+ t)3 = L3(1 +k)3, while
the volume of solid material contained in this cube is V = 6t2(L/2)+t3 = k2L3(3+k).
Hence the volume ratio is

V /V m = 1− 1 + 3k
(1 + k)3 ,

and is equal to that given by (2.16). Setting V m = 1, the volume fraction of cell wall
material in this cube is then equal to that given by (2.17), i.e.,

NV =
6t2L

2
=

3k2

(1 + k)3 .

5.1.1. Fixed number of cells and increasing wall thickness. First, we con-
sider the three structures with a fixed number of cells and increasing wall thickness
illustrated in Figure 3, for which the corresponding geometric parameters are recorded
in Table 1. For these structures, the numerical results show that the Cauchy stress
increases as the deformation increases, and both the mean effective Cauchy stress and
the mean effective strain are greater in the structures with thicker cell walls than in
those with thinner walls (see Figure 3 (a)). Furthermore, at equal mesoscale defor-
mations, the slope of the curve representing the mean effective Cauchy stress versus
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Fig. 2. Undeformed periodic open-cell cubes with thin (left), medium (middle), and thick (right)
cell walls and a fixed number of cells.
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Fig. 3. Comparisons between the effective Cauchy stress for the mesoscale model and the cubical
structures with a fixed number of cells and different cell wall thickness versus (a) the effective strain
and (b) the mesoscale deformation. Above, the cubical structures with thin (left), medium (middle),
and thick (right) cell walls are illustrated at 20% tension in the vertical direction (color bar showing
the displacement in the same direction).

the mesoscopic tensile deformation increases as the thickness of the cell wall increases
(see Figure 3 (b)). The continuum models approximating these structures also cap-
ture these behaviors, and under large strains, appear more accurate for the structures
with thinner walls, where the deformation is closer to the triaxial stretch and the
joints deform less significantly, as assumed theoretically, than for the structures with
thicker walls.

5.1.2. Constant volume and increasing number of cells. Next, we look at
the effect of increasing the number of cells under the constraint of keeping both the
total volume of solid material and the cell wall thickness to length ratio constant, as
shown in Figure 5, with the respective geometric parameters given in Table 2. In this
case, for the three different structures, the mean effective Cauchy stress increases as
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Table 1
Geometric parameters for the undeformed periodic open-cell structures with a fixed number of

cubical cells and different wall thickness. In the undeformed state, each structure occupies a cube
domain of dimensionless side 1 (see Figure 2).

Structure Number of cells Volume of solid material Wall length L Wall thickness t k = t/L
thin walls 125 0.0781 0.1750 0.0250 0.1429

medium walls 125 0.1562 0.1500 0.0500 0.3333
thick walls 125 0.3124 0.1000 0.1000 1.0000

Table 2
Geometric parameters for the undeformed periodic open-cell structures with fixed material vol-

ume and an increasing number of cubical cells. In the undeformed state, each structure occupies a
cube domain of dimensionless side 1 (see Figure 4).

Structure Number of cells Volume of solid material Wall length L Wall thickness t k = t/L
3 × 3 × 3 cells 27 0.1562 0.2500 0.0833 0.3333
5 × 5 × 5 cells 125 0.1562 0.1500 0.0500 0.3333
9 × 9 × 9 cells 729 0.1562 0.0833 0.0278 0.3333

the deformation increases, and the slope of the curves representing the mean effective
Cauchy stress versus the mean effective strain in the cell walls are equal (see Figure 5
(a)), which is in agreement with the results for stretch-dominated structures from
the linear elasticity theory [17]. The numerical results also show that both the mean
effective Cauchy stress and the mean effective strain are greater in the structures with
a larger number of small cells than in the ones with a smaller number of large cells,
but they provide little insight into the performance of the continuum models in ap-
proximating the behavior of individual structures under large strains. In addition, the
slope of the curve representing the mean effective Cauchy stress versus the mesoscale
tensile deformation, increases as the number of cells increases, even though both the
volume of solid material and the ratio between the thickness and the length of the cells
are the same for the three different structures (see Figure 5 (b)). The accuracy of the
continuum models capturing these behaviors appears similar for the three structures.

5.2. Honeycomb structures. We further assess the numerical performance
of the continuum models developed here in approximating quasi-planar honeycomb
structures with hexagonal cells. For the three structures shown in the undeformed
state in Figure 6, the geometric parameters are listed in Table 3. These honeycomb
structures are taken equal in size in the undeformed state, i.e., they occupy equal
overall volumes, and are deformed by up to 20% tension in the vertical direction.
However, for the three different structures, with an increasing number of cells, the
overall volumes of solid material and the ratios between the thickness and the length
of the walls are different in the undeformed state.

Table 3
Geometric parameters for the undeformed periodic honeycomb structures. In the undeformed

state, each structure occupies a square domain of dimensionless side 1 (see Figure 6).

Structure Number of cells Wall length L Wall thickness t k = t/L
large cells 8 0.1570 0.0613 0.3904

medium cells 23 0.0866 0.0500 0.5774
small cells 77 0.0495 0.0254 0.5131

In these structures, three cell walls of undeformed thickness t and length L are
meeting at a common joint of surface area 3t2 = 3k2L2. Hence the cell wall material
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Fig. 4. Undeformed periodic open-cell cubes with 3×3×3 (left), 5×5×5 (middle), and 9×9×9
(right) cells and fixed material volume.
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Fig. 5. Comparisons between the effective Cauchy stress for the mesoscale model and the cubical
structures with fixed material volume and an increasing number of cells versus (a) the effective strain
and (b) the mesoscale deformation. Above, the cubical structures with 3 × 3 × 3 (left), 5 × 5 × 5
(middle), and 9 × 9 × 9 (right) cells are shown at 20% tension in the vertical direction (color bar
representing the displacement in the same direction).

contained in a unit cube of side L+ t = L(1 + k) is

NV =
3t2L

2
=

3k2

2(1 + k)3 ,

and differs from (2.17) by a factor of 2. In Figure 7, the Cauchy stress for the
continuum models shows good agreement with the Cauchy stress in the deforming
structures. In this case also, the stress increases as the deformation increases, and at
a fixed mesoscale deformation, is greater in the structures with a larger number of
small cells than the ones with a smaller number of large cells.

6. Conclusion. Homogeneous isotropic hyperelastic models for stretch-dominated
open-cell structures, at a mesoscopic level, where the number of cells is finite and the
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Fig. 6. Undeformed periodic honeycomb structures with large (left), medium (middle), and
small (right) hexagonal cells.
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Fig. 7. Comparisons between the effective Cauchy stress for the mesoscale model and for the
honeycomb structures versus (a) the effective strain and (b) the mesoscale deformation. Above, the
honeycomb structures with large (left), medium (middle), and small (right) cells are represented at
20% tension in the vertical direction (color bar showing the displacement in the same direction).

size of the structure is comparable to the size of the cells, were derived from the ar-
chitecture and the material constitutive law of the constituents, and their material
parameters were predicted from the strain-energy function and the large strains in
the cell walls.

Theoretically, the continuum models developed here are applicable to irregular
structures, with arbitrarily oriented cell walls made from a general isotropic nonlinear
hyperelastic material. Numerical results show that the hyperelastic models capture
well the mechanical responses of finite element simulations for three-dimensional pe-
riodic structures and for two-dimensional honeycombs with a finite number of cells
made from a neo-Hookean material under large tension. Moreover, due to the gener-
ality of the theoretical model, which is not restricted to a specific cell wall orientation,
the mesoscopic models corresponding to three- and two-dimensional structures with
different cell geometries can be derived by applying the same approach.

The proposed models for open-cell structures can be enhanced to account for the
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behavior of cellular structures with closed cells, and further extended to composite
cellular structures where the cells are filled with a hyperelastic core [32]. In computer
simulations where modelling a very large number of cells individually is not feasible,
continuum models can be incorporated in multiscale approaches which significantly
reduce computational cost and may even mean the difference between finding a solu-
tion or not.
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