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A ZSM-5 catalyst is examined in relation to the methanol-to-hydrocarbon (MTH) reaction as

a function of reaction temperature and time-on-stream. The reaction profile is characterised

using in-line mass spectrometry. Furthermore, the material contained within a catch-pot

downstream from the reactor is analysed using gas chromatography-mass spectrometry.

For a fixed methanol feed, reaction conditions are selected to define various stages of the

reaction coordinate: (i) initial methanol adsorption at a sub-optimum reaction temperature

(1 h at 200 �C); (ii) initial stages of reaction at an optimised reaction temperature (1 h at

350 �C); (iii) steady-state operation at an optimised reaction temperature (3 days at 350 �C);

and (iv) accelerated ageing (3 days at 400 �C). Post-reaction, the catalyst samples are

analysed ex situ by a combination of temperature-programmed oxidation (TPO) and

spectroscopically by electron paramagnetic resonance (EPR), diffuse-reflectance infrared

and inelastic neutron scattering (INS) spectroscopies. The TPO measurements provide an

indication of the degree of ‘coking’ experienced by each sample. The EPR measurements

detect aromatic radical cations. The IR and INS measurements reveal the presence of

retained hydrocarbonaceous species, the nature of which are discussed in terms of the

well-developed ‘hydrocarbon pool’ mechanism. This combination of experimental

evidence, uniquely applied to this reaction system, establishes the importance of retained

hydrocarbonaceous species in effecting the product distribution of this economically

relevant reaction system.
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1. Introduction

As oil reserves continue to diminish, the methanol to olen (MTO) reaction and

related methanol to gasoline (MTG) reactions over zeolitic catalysts such as ZSM-5

are anticipated to play an increasing role in the landscape of large-scale chemical

and fuel manufacturing operations. Although the original feedstock for these

processes is methanol derived from natural gas, future feedstocks may also

include methanol derived from coal and/or biomass. Looking further ahead,

renewable sources such as the direct oxidation of methane produced by aerobic

digestion could additionally contribute to and sustain the viability of this intricate

reaction system.

Following the industrial innovation in methanol-to-hydrocarbon (MTH) chem-

istry that commenced in the 1980s, a vast amount of literature has subsequently

materialised, examining all aspects of the associated process chemistry. A repre-

sentative sample of the contemporary literature follows. Hemelsoet et al. looked at

the MTO reaction over ZSM-5 and SAPO-34, concentrating on mechanistic aspects

of the process; in particular, they examined the well-established concept of

a hydrocarbon pool via a combination of kinetic measurements supplemented by

theoretical simulations.1 C. Wang et al. have also concentrated on the hydrocarbon

pool chemistry connected with the ZSM-5/MTO reaction, using solid-state NMR

spectroscopy to highlight the role of a variety of polymethylbenzenes as reactive

intermediates.2 S.Wang et al. have used DFT calculations to probe theMTO process

over a range of zeolites and report that the interaction between the proton transfer

reagent (methanol or water) and the zeolitic framework are key factors in the olen

elimination step.3 Sun et al. have addressed issues connected with the two distinct

catalytic cycles that operate for MTO chemistry over ZSM-5; namely, an olen

homologation/cracking route and the formation of the afore-mentioned hydro-

carbon pool.4 Via a detailed kinetic analysis, these works show the importance of

a hydrogen transfer pathway involving chemisorbed methanol intermediates,

which has consequences for sustaining catalyst lifetime under MTO process

conditions.4 More recently, Olsbye and co-workers have comprehensively reviewed

matters connected with the MTH process over protonated zeotype catalysts.5 This

includes an appreciation that the autocatalytic feature of the process involves a role

for hydrocarbons as active species but, additionally, as deactivating species. They

explicitly consider the topic of catalyst deactivation by (hydro-)carbon residues,

which leads on to the concept of coking. The time evolution of the (hydro-)carbon

deposits at the micro- and meso-scales is also considered.5 Such investigations

employ an armoury of analytical techniques to interrogate the range of active

species associated with the product formation pathways as well as with the catalyst

deactivation pathways. In addition to the conventional micro-reactor technology,

these include probes such as solid-state NMR spectroscopy, infrared spectroscopy,

electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis,

temperature-programmed oxidation (TPO), Raman scattering, confocal uores-

cence microscopy and UV-visible micro-spectroscopy.5

One technique that, up until now, has been little used to examine MTO/MTH

reactions over zeolites is inelastic neutron scattering (INS). Increasingly, INS is being

applied to investigate heterogeneous catalysts used in a variety of economically

relevant reaction systems, such as methyl chloride synthesis,6 methanol synthesis,7
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methane reforming,8 Fischer–Tropsch synthesis,9,10 etc. The application of inelastic

neutron spectrometers to investigate issues in molecular spectroscopy, including

aspects of heterogeneous catalysis, has been reviewed by Parker and co-workers.11

In 2016 O'Malley et al. used a variety of neutron scattering methods, including

INS, to investigate room temperature methoxylation in zeolites.12 In the same year,

Howe et al. reported a preliminary investigation applying INS to examine the

methanol-to-gasoline reaction over a ZSM-5 catalyst.13 This latter work demonstrated

how INS could be used to obtain the vibrational spectrum of hydrocarbonaceous

entities retained by the catalyst during the MTH transformation process at elevated

reaction temperatures. Compared to infrared spectroscopy, INS conveys several

advantages. Namely, (i) a wide range of vibrational frequencies (600–4500 cm�1) is

accessible without obscuration from zeolite framework modes, (ii) the method can

be applied to technical catalysts with no requirement for sample preparation and

(iii) no restriction on the extent of coke formation is evident. This latter attribute in

particular suggests that the methodology adopted by Howe et al. could be used to

simultaneously inspect several facets of theMTH process; specically, the formation

of higher molecular weight hydrocarbons and coke precursors.13

Recognising that INS can supplement the already wide range of investigations on

MTH chemistry over zeolitic materials, the present study extends the preliminary

ZSM-5/MTH investigation of Howe and co-workers13 by using INS to discover if the

hydrocarbonaceous species retained by the zeolite is sensitive to reaction conditions.

To this end, and for a xed methanol feed, the following four sets of reaction

conditions are selected to dene various stages of the reaction coordinate: (i) initial

methanol adsorption at a sub-optimum reaction temperature (1 h at 200 �C), (ii)

initial stages of reaction at an optimised reaction temperature (1 h at 350 �C), (iii)

steady-state operation at an optimised reaction temperature (3 days at 350 �C) and (iii)

accelerated ageing (3 days at 400 �C). INS spectra are presented for catalyst samples

that have experienced each of these four reaction treatments. In order to contextualise

the INS measurements, a multi-technique approach is adopted. Firstly, reaction

proles are characterised by in-line mass spectrometry. Further, products contained

within a ‘catch-pot’ downstream from the reactor are analysed by gas chromatog-

raphy-mass spectrometry. Post-reaction, the catalyst samples are analysed ex situ by

a combination of temperature-programmed oxidation (TPO), electron paramagnetic

resonance (EPR) spectroscopy and diffuse-reectance infrared Fourier transform

spectroscopy (DRIFTS). These additional measurements facilitate comparisons to

literature work as highlighted by, amongst others, Olsbye and co-workers.5 This is the

rst time that this combination of experimental techniques have been applied to the

methanol to hydrocarbon reaction over a ZSM-5 catalyst. In order to ensure a balance

between sensitivity and resolution,11 two direct geometry INS spectrometers are

employed to better discern the nature of the hydrocarbonaceous material retained at

the catalyst surface.

2. Experimental
2.1 Catalyst characterisation

The ZSM-5 catalyst was a commercial grade catalyst supplied by Johnson Matthey

(Intercat IC16926, lot no. 16296.02261). As received, it possessed a Si : Al ratio of

�30, although it also contained some residual template (tetrapropyl ammonium

bromide) at �0.7 wt%. The BET surface area was 371 m2 g�1. Chemical analysis
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using XRF revealed the following composition (wt%): SiO2 (95), Al2O3 (4.96), Fe2O3

(0.03), TiO2 (0.02), CaO (0), Na2O (0), P2O5 (0). In order to remove the residual

template, the catalyst was calcined in air at 500 �C for 12 h prior to use. Inspection

of the sample post-calcination using infrared spectroscopy showed complete

removal of the template material. It is noted that this ZSM-5 catalyst differs from

the material examined by Howe and co-workers in their preliminary report13 and

that used by O'Malley et al.12

2.2 Reaction testing

Reaction testing was performed on a catalyst test system designed to activate and

react heterogeneous catalyst samples of the sample sizes typically required for INS

measurement (10–20 g). The gas manifold, control system and heating arrange-

ments are comprehensively described elsewhere.14 A new design of stainless steel

reactor was used to contain the catalyst samples, Fig. 1. A photograph of the reactor

is presented on the le hand side of Fig. 1, whilst the right hand side shows

a schematic drawing of the reactor. The internal diameter of the reactor is 35 mm

and its length is 60 mm. For a comparable charge, this arrangement minimises the

catalyst bed length with respect to previously used designs,15 thereby minimising

the possibility of concentration gradients across the length of the bed and ensuring

greater homogeneity of sample composition throughout the sample volume.

The reactor was charged with the calcined catalyst powder (�12.0 g) and dried

using the following procedure: whilst continually maintaining a ow of helium

over the catalyst (1000 sccm, CK Gas, >99.0%), the sample was heated to 350 �C at

a heating rate of 10 �Cmin�1 and thenmaintained at that temperature for 2 h. The

heating was stopped and the sample was allowed to cool to ambient temperature

in a continuous ow of He. The reactor was then isolated and transferred to an

argon-lled glove box (MBraun UniLab MB-20-G, [H2O] < 1 ppm, [O2] < 2 ppm) for

loading of the catalyst into an aluminium INS cell that is sealed via an indium wire

gasket.14 The sample was then transferred to the INS spectrometer for spectral

acquisition. All INS measurements were undertaken at �20 K. The resulting

spectrum provided the vibrational spectrum of the clean, activated catalyst.

Fig. 1 Photograph (left) and schematic (right) of the stainless steel reactor.
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For samples to be reacted with methanol at different temperatures and for

varying times-on-stream, a clean activated catalyst sample was prepared in the

samemanner as described above. However, the dehydration stage was followed by

dosing of the catalyst with methanol vapour by means of a bubbler arrangement

whilst the catalyst was maintained at a specied reaction temperature (200, 350 or

400 �C) for a specied period of time (1 h or 3 days). Methanol (Aldrich, 99.9%)

was entrained in owing helium (150 ml min�1) and the methanol exposure

corresponded to a feed rate of 0.2 g methanol g(cat)
�1 h�1. The eluting stream

was analysed using in-line mass spectrometry (Hiden Analytical, HPR-20), with

the spectrometer connected to the reactor exit line via a differentially-pumped,

heated quartz capillary. Relative intensities of various masses were normalized

against the signal of the helium carrier gas. The apparatus is equipped with

a ‘catch-pot’ downstream of the catalyst that collected liquid products. Material

collected there was subsequently analysed using GC-MS (Shimadzu QP2010SE).

The column employed was a DB-1MS capillary column (60 m length, 0.25 mm

diameter, 0.25 mm thickness). The analytical conditions were as follows: initial

oven temperature was 40 �C, held for 2 min, followed by heating at 10 �C min�1

to 150 �C, and then held for 3 min. The injector and detector temperatures were

250 �C.

Aer the designated time-on-stream, the methanol ow and heating were

stopped, and the reactor cooled whilst maintaining the helium ow. The reactor

was then isolated and transferred to the glovebox, where the catalyst was loaded

into an Al INS cell using the procedure outlined above. During extraction of the

reacted catalyst from the stainless steel reactor, a proportion of the sample was set

aside for subsequent ex situ analysis. The samples for temperature-programmed

oxidation and infrared spectroscopic measurements were stored in glass vials

under Ar atmosphere, whilst samples for subsequent electron paramagnetic

analysis were transferred to quartz EPR tubes and sealed via a Youngs tap (PTFE

seal) before removal from the glove box.

2.3 Inelastic neutron scattering

Two spectrometers were utilised in this study. Due to the relative low quantities of

hydrogenous species retained by the catalyst as evidenced by previous measure-

ments,13 the MERLIN spectrometer was used to study all the prepared catalyst

samples. This is a direct geometry inelastic spectrometer that affords superior

sensitivity compared to other instruments in the Target Station-1 suite of the ISIS

Facility of the Rutherford Appleton Laboratory.16 To maximise instrument

sensitivity, the low resolution S-chopper package was utilised with incident

energies (and frequencies) of 5244 cm�1 (600 Hz), 2017 cm�1 (400 Hz) and

1210 cm�1 (300 Hz).

Certain samples were selected to be run on the MAPS spectrometer, which

possesses superior resolution compared to MERLIN.16 Given the complexity of the

molecules associated with surface reactions in the MTH process,5 favourable

resolution is required to discern individual molecular components. Here, the

higher resolution A-chopper package was used with incident energies (and

frequencies) of 5244 cm�1 (600 Hz), 2017 cm�1 (400 Hz) and 807 cm�1 (200 Hz).

All INS spectra displayed (Fig. 9–13) are integrated over the momentum transfer

range 0 # Q # 12 Å�1.10
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2.4 Other analytical procedures

Temperature-programmed oxidation (TPO) was conducted on the catalysts

post-reaction using a Micromeritics Chemisorb 2720 instrument equipped with

a thermal conductivity detector. Upon removal of the sample that was contained

within a glass vial from the glove box, the sealed vial was retained for approxi-

mately 3 weeks before the TPOmeasurements. Approximately 5 mg of catalyst was

used in each case. The sample was rst purged with helium (25 ml min�1) before

being heated in 5% O2/He (25 ml min�1) at a rate of 10 �C min�1 to a nal

temperature of 800 �C. This nal temperature was then maintained for 30 min to

ensure complete combustion of any carbonaceous species.

EPR spectra were measured with a JEOL FA200 spectrometer operating at

9.1 GHz at room temperature or 80 K with an Oxford Instruments ESR900 cryostat

using liquid nitrogen. Spectra were recorded at low power (0.1 mW) and modu-

lation (0.1 mT) to avoid line broadening. Methanol adsorption experiments were

conducted in EPR cells tted with high vacuum stopcocks. The zeolite was

dehydrated at 350 �C on a turbo-pumped vacuum line (base pressure 10�6 mbar),

exposed to methanol vapour (100 mbar) at room temperature, then heated to

various temperatures. Concentrations of radicals were estimated by comparing

doubly integrated signal intensities with that of a weak pitch standard (Bruker,

1013 spins per cm). Simulation of the spectrum was done using the Symphonia

(Bruker) soware.

Diffuse Reectance Infrared Fourier Transform Spectroscopy (DRIFTS) spectra

were collected with an Agilent Carey 680 FTIR spectrometer, taking 64 scans with

a resolution of 4 cm�1 using a liquid nitrogen cooledMCT detector. Upon removal

of the sample sealed within a glass vial from the glove box, the vial was retained

for approximately 1 day before the DRIFTS measurements were undertaken.

Transfer of the used catalyst samples to the DRIFTS apparatus was performed in

the presence of a continuous ow of helium. Spectra were collected at every 5 �C

whilst the sample was ramped to 375 �C (10 �C min�1) under a 30 ml min�1
ow

of helium.

3. Results and discussion

Five samples will be considered in this study. Table 1 denes sample history in

terms of exposure to methanol at the standard rate of 0.2 g methanol g(cat)
�1 h�1.

Sample 1 represents the clean, activated catalyst; this is used as a background in

some of the INS measurements. Schulz has shown that there exists a marked

temperature dependence in ZSM-5/methanol reactivity, with reaction below

300 �C leading to a rapid loss of activity and signicant hydrocarbon deposition

Table 1 Sample descriptors and sample treatments for the five ZSM-5 samples examined

Sample no. Sample treatment Reaction temperature/�C Duration

1 ZSM5 + He 350 1 h

2 ZSM5 + methanol 200 1 h

3 ZSM5 + methanol 350 1 h
4 ZSM5 + methanol 350 3 d

5 ZSM5 + methanol 400 3 d
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compared to tests employed at high reaction temperatures.17 Sample 2 is there-

fore intended to mimic this phase of reactivity. A reaction temperature of

350 �C is selected as being a representative reaction temperature. Sample 3

considers the case for short reaction times, whilst sample 4 represents longer

reaction times. Coking is a fundamental component of MTH chemistry over

ZSM-5,5 and the elevated reaction temperature of 400 �C (sample 5) is thought

to expose the catalyst to a degree of accelerated ageing. Collectively, this

selection of samples provides information on whether the hydrocarbonaceous

retained material reported in the preliminary INS study13 is sensitive to reac-

tion conditions.

3.1 In-line mass spectrometry and catch-pot analysis

Fig. 2 presents the reaction prole for sample 3, for various stages of the 3 day

duration of sustained methanol conversion at 350 �C. Frame (a) corresponds to

the initial catalyst conditioning period, frame (b) represents 1 day on-stream,

frame (c) 2 days on stream and frame (d) 3 days on-stream. The methanol

consumption is approximately constant throughout the whole reaction sequence,

although a slight increase in conversion is observed in the data for the third day

compared to that observed during the rst two days of operation. Whereas the

product distribution is broadly consistent aer day 1, dramatic swings in product

concentrations are observed during the initial period of reaction. Most important

is the rise and subsequent fall of dimethyl ether over the �2 h period of time

presented in Fig. 2(a). It rises almost immediately on introduction of methanol,

remains roughly constant for less than an hour, thereaer it drops to a low level

that is subsequently maintained for the following 3 days. This prole is indicative

Fig. 2 Mass spectral analysis of the effluent from the reactor at 350 �C over a 3 day period

of continuous reaction as a function of time on stream: (a) initial introduction of methanol;

(b) after 1 day on stream; (c) after 2 days on stream; and (d) after 3 days on stream. Each

frame displays themass spectrometer output over a 1.7 h period. The numbers on the plots

correspond to atomic mass numbers: 91 amu corresponds to the tropylium ion that

signifies the presence of aromatic species; 55 amu corresponds to butene; 46 amu

corresponds to dimethyl ether; 41 amu corresponds to propene; and 32 amu corresponds

to methanol.
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of dimethyl ether (DME) being an intermediate species, most likely formed from

the dimerization of chemisorbed methoxy groups.18

During the period when DME production is greatest, a rapid increase in

propene production is observed that is subsequently sustained throughout the 3

day sequence. In contrast, as DME formation falls, butene production increases

and then achieves a nearly constant rate of formation thereaer. At the point

where the DME signal starts to signicantly decline, the aromatic signal, as

signied by the tropylium ion, suddenly rises from baseline levels. This

promptly levels out and achieves sustained production. At 3 days, which

represents steady-state operation, propene and aromatic entities constitute the

major products. The concomitant fall in DME production and rise in aromatic

formation suggests that DME could be a precursor to aromatic products. The

coincidence of aromatics and olens in the product stream is consistent with

well documented MTH chemistry.4,5 It is noted that for all sets of reactions

investigated here (Table 1, samples 2–5), mass spectrometric analysis of the

product stream showed no obvious evidence of deactivation during the course of

the reactions.

For the catch-pot analysis, two distinct phases were observed: an aqueous

phase and an organic phase. The aqueous phase was essentially entirely water.

Fig. 3 presents the chromatogram for the organic phase and shows a number of

substituted aromatics to be present. The simplest aromatic compound observed,

and in relatively low quantities, was toluene. The importance of methylation as

a surface mediated reaction is demonstrated by the presence of dime-

thylbenzenes, trimethylbenzenes and tetramethylbenzenes in relatively signi-

cant quantities. However, in addition, although to a lesser degree, polycyclic

aromatic hydrocarbons are also produced, as evidenced by the presence of

a number of substituted naphthalenes. No higher molecular weight fractions

were detected in the liquor. As noted above, when commenting on vapour phase

products detectable by mass spectrometry, MTH activity corresponds to the

Fig. 3 Chromatograph for the organic phase taken from the catch-pot on steady-state

operation at 350 �C.
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formation of olens and aromatic species via parallel, coincident pathways.4,5 The

main thrust of the present investigation is the application of INS to obtain new

information on the nature of the hydrocarbon pool that is frequently connected to

the MTH process (see Section 3.4). Although the product analysis here is quali-

tative, it is informative in terms of identifying relevant trends within the product

distribution. A more detailed quantitative study of the different aromatic

compounds would be helpful for rening mechanistic insight but this was

beyond the scope of the present study.

3.2 Temperature-programmed oxidation (TPO)

The post-reaction TPO proles for samples 2–5 are shown in Fig. 4. Reaction with

methanol at a temperature below the idealised reaction temperature of 350 �C, i.e.

200 �C, (Fig. 4(a)) shows little carbon deposition to have occurred over the 1 h

reaction period. A weak, relatively narrow signal with a peak maximum at about

280 �C is seen. This is suggestive of homogeneous hydrocarbon species that are

weakly bound to the catalyst surface. Increasing the temperature to 350 �C for 1 h

causes a modest increase in carbon retention with desorption occurring over

a wider temperature range, viz. 280–620 �C, with a peak maximum at �590 �C.

This indicates that the enhanced reaction temperature has induced greater

carbonaceous retention and that this carbon is more strongly bound to the

catalyst, and is hence likely to be more ordered, than was the case for the lower

temperature reaction. Table 2 presents the quantities of retained carbon for each

sample.

It appears that the processes contributing to Fig. 4(b) are cumulative, as an

extended run time of 3 days leads to a dramatic increase in the quantity of

retained carbon, Fig. 4(c). The prole is less skewed than that observed in Fig. 4(b)

and displays a distinct maximum at 610 �C. The even distribution of the peak at

this Tmax indicates the retained material to be reasonably well ordered and

strongly bound to the catalyst. Fig. 4(d) shows the TPO plot for the aged sample

Fig. 4 Temperature-programmed oxidation profiles for the ZSM-5 catalyst post reaction:

(a) 1 h at 200 �C; (b) 1 h at 350 �C; (c) 3 days at 350 �C; and (d) 3 days at 400 �C.
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(3 days at 400 �C). Although the peak maximum coincides with Fig. 4(c), it is

noticeably smaller in intensity. Intuitively, this seems incorrect, as it indicates

a lower degree of retention of strongly bound carbonaceous material, where one

might have expected coke forming reactions to dominate. However, it is noted

that Schulz has previously reported a similar trend for ZSM-5/methanol, where

lower coke deposition was seen at 380 �C compared to that observed at 290 �C.17

This pattern also meshes with the comments of Sun et al., who highlight how

reaction temperature can disproportionally inuence the production rates of the

two product streams: the aromatics based cycle dominates at low reaction

temperatures but the olen based cycle is favoured at higher reaction tempera-

tures.4 With respect to the disproportionate intensities observed in Fig. 4(c) and

(d), it is thought that the higher operational temperature has disfavoured a coke

forming pathway.

One nal point for this section concerns the degree of coking. Although the

TPO proles in Fig. 4 for samples 4 and 5 show substantial amounts of carbon

being present, it is noted that visual inspection of these samples post-reaction

revealed the catalysts to exhibit a light grey colouration; they were most

certainly not black in colour. This observation indicates the catalysts to be

only mildly coked, consistent with the quantities displayed in Table 2. Bibby

and co-workers report that the coke loading at which hydrocarbon production

stops varies with zeolite particle size but is within the range of 14–18 wt%.19

3.3 Electron paramagnetic resonance (EPR) spectroscopy

A clean, activated sample of ZSM-5 was EPR silent. Fig. 5 shows the EPR spectra

recorded at room temperature from used catalyst samples removed from the

reactor and loaded into EPR tubes under argon. Aer reaction at 350 �C for 1 hour,

a weak narrow line at g ¼ 2.003 was observed with a line width of 1.2 mT

(Fig. 5(a)). Amplication of this signal (Fig. 5(b)) revealed some indication of

poorly resolved hyperne splitting. Aer reaction at 350 �C for 3 days, a similar

signal was measured with a 20 fold increase in intensity (Fig. 5(c)). Consistent

with the TPO data (Section 3.2), the signal obtained aer reaction at 400 �C for

3 days (Fig. 5(d)) had lower intensity and a signicantly reduced line width

(1.0 mT). The concentrations of paramagnetic species in the zeolite in each of

these samples were estimated by comparison of the doubly integrated signals

with a weak pitch standard. The maximum signal intensity (3 days reaction at

350 �C) corresponded to a concentration of �9 � 1018 spins per gram, or 0.08

spins per unit cell of the zeolite.

Table 2 Carbon retention (wt%) for samples 2–5 as determined by ex situ temperature-

programmed oxidation

Sample no. Sample treatment C/wt%

2 ZSM5 + methanol, 200 �C, 1 h 2.7

3 ZSM5 + methanol, 350 �C, 1 h 2.6

4 ZSM5 + methanol, 350 �C, 3 d 7.1

5 ZSM5 + methanol, 400 �C, 3 d 4.9
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To explore the origins of these signals, further studies were carried out in

which samples of zeolite catalyst were dehydrated in a high vacuum cell and then

exposed to a static atmosphere of methanol vapour (�100mbar) for 1 hour, sealed

and transferred to the EPR spectrometer. Exposure to static methanol vapour at

high temperatures gave similar signals to those seen from the used catalysts. For

example, the inset in Fig. 5 shows the spectrum obtained from a zeolite exposed to

methanol at 300 �C for 1 hour, then evacuated at 50 �C prior to measurement. This

has the same line width as that seen from the catalysts used at 350 �C. This signal

was not removed on subsequent evacuation up to 300 �C.

A notably different spectrum was obtained when the zeolite was exposed to

methanol at 250 �C. No signals were detected when such a sample was evacuated

at room temperature prior to measurement. Evacuation at 100 �C or 150 �C gave

a signal showing a well resolved hyperne structure, as illustrated in Fig. 6. At

least 9 lines can be resolved in the room temperature spectrum, with a hyperne

coupling constant of 0.67 mT. When measured at 80 K, the signal is broadened

and the apparent hyperne splitting increases to 1.0 mT. The integrated intensity

of the signal corresponded to �5 � 1015 spins per gram of zeolite. Evacuation at

higher temperatures removed this signal completely.

There are several previous reports of EPR signals being generated when

methanol is reacted over zeolite catalysts. Kim et al. observed an 11 line signal

with a splitting of 0.64 mT when methanol was reacted over HSAPO-34 and its

aluminosilicate analogue HSSZ-13 at 350 �C for between 30 and 180 minutes on

stream.20 They attributed this signal to the hexamethylbenzene radical cation. The

hyperne splitting is closely similar to that seen for the 13-line spectrum of UV

irradiated hexamethylbenzene in sulphuric acid.21 A closely related spectrum was

seen when hexamethylbenzene was adsorbed in H-mordenite.20 At longer reaction

times the hyperne structure collapsed and a single symmetrical line was

Fig. 5 EPR spectra of the ZSM-5 catalyst reacted at (a) 350 �C for 1 hour; (b) 10�

expansion of (a); (c) 350 �C for 3 days; (d) 400 �C for 3 days. The inset shows the spectrum

obtained by heating ZSM-5 in methanol vapour at 300 �C for 1 hour, then evacuating at

50 �C.
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observed. This was extremely narrow in the case of HSAPO-34 (�0.3 mT) but

considerably broader in the case of HSSZ-13 (�1.3 mT). These authors also report

that a single symmetric line was observed when methanol reacted over HZSM-5 at

350 �C for all times on stream, although no spectra were shown.

Spectra very similar to those shown in Fig. 5 were obtained by Madeira et al.

from HZSM-5 catalysts used in the conversion of ethanol to hydrocarbons at

350 �C.22 They report a single symmetric line with a line width of 1.0 to 1.4 mT,

rising to a maximum intensity aer 16 hours on stream corresponding to 3.5

micromol per gram, or �1 radical for 50 unit cells of zeolite. Although no

hyperne splitting was resolved in the CW EPR signals, pulsed HYSCORE

measurements showed the presence of several proton hyperne couplings

between 0.3 and 0.6 mT.

Spencer et al. report partially resolved signals from mordenite zeolite cata-

lysts exposed to methanol for different times on stream at various reaction

temperatures.23 The signals were best resolved at shorter reaction times and the

best match between observed and simulated EPR spectra was obtained for the

2,3,6,7-tetramethylnaphthalenium radical cation. At longer reaction times

a single symmetrical line with a width of �1.6 mT was observed.

Jang et al. describe EPR signals obtained when methanol is reacted over

a phosphorusmodied HZSM-5 zeolite.24 At short reaction times (e.g. 5minutes at

350 �C) they observe a partially resolved hyperne splitting which they attribute to

the 1,2,4,5-tetramethylbenzenium cation but, as in the earlier studies, the reso-

lution of the signal was lost at longer reaction times.

It is clear from the above studies and from earlier work on aromatic molecules

adsorbed in zeolites that aromatic radical cations are readily formed in acid

zeolites.25 The signals we observe from used catalysts (Fig. 5) can be readily

assigned to such species, given the methylated aromatic molecules detected in

the product stream (Fig. 3). In the absence of resolved hyperne splitting, it is

Fig. 6 EPR spectra recorded following exposure of ZSM-5 to methanol vapour at 250 �C

for 30 min and evacuation at 150 �C for 30 min. (a) Measured at 25 �C; (b) simulation with

parameters described in text; (c) measured at �193 �C.
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impossible to identify specic radicals. The absence of hyperne splitting has

been attributed by various authors to exchange interactions between radical

cations. We note however that the spin concentrations measured indicate a low

number of radicals per unit cell of the zeolite. The spin exchange narrowing

observed suggests therefore that the radicals are not uniformly distributed

throughout the zeolite pores but rather heterogeneously distributed in close

proximity to each other. A further important observation is that the EPR signal

from the used 400 �C catalyst sample has a signicantly narrower line width than

those reacted at 350 �C, even though the spin concentration is lower. This

suggests a greater degree of condensation of aromatic rings in the radical cations

formed at this temperature.

More surprising is the observation of well resolved proton hyperne splitting in

the signal shown in Fig. 6. The signal is identical to that reported by Kim et al. and

assigned to the hexamethylbenzenium cation.20 This radical, with 18 equivalent

methyl protons, is expected to give a 19-line hyperne pattern, but the intensities of

the outermost lines are too weak to be detected. The intensity distribution of the

inner lines matches well with that in the calculated simulation (Fig. 6(b)) using

a single isotropic coupling constant of 0.67 mT (and g ¼ 2.003). The observed

spectrum cannot be tted to simulations for benzenium cations containing fewer

methyl groups, where two ormore different proton coupling constants are expected

from methyl and aromatic ring protons. Hexamethylbenzene is too large to escape

from the pores of ZSM-5 and is not detected at all in the reaction products. This

work shows, however, that traces of hexamethylbenzenemust be formed within the

zeolite at temperatures as low as 250 �CwhenHZSM-5 is heated in a staticmethanol

atmosphere. The radical cation is only detected on subsequent outgassing, and it is

not stable to heating above 150 �C in vacuum. We think therefore it is unlikely to

play any role in the formation of the hydrocarbon pool; this is borne out also by its

low concentration. The change in the appearance of the signal on cooling to 80 K

(Fig. 6(c)) suggests a signicant anisotropy in the proton hyperne coupling, which

is not normally seen for methyl groups in aromatic radical cations. The observed

splitting of 1.0mTwould then be the parallel component, implying a perpendicular

component of�0.5 mT, not resolved in the spectrum. For comparison, the parallel

and perpendicular methyl proton coupling constants in the toluene and xylene

radical cations in frozen solution differ by only�0.1 mT.26 Further work is required

to clarify the nature and structure of the radical in the zeolite environment.

3.4 Diffuse-reectance infrared spectroscopy (DRIFTS)

Infrared spectra were recorded from the used catalyst samples by diffuse

reectance following temperature-programmed ushing in owing helium up to

the temperature at which they had been reacted. Spectra were recorded over the

wavenumber range 4000 to 1000 cm�1, but the region below 1700 cm�1 was

found to be obscured by strong bands arising from the dispersive component

occurring in the reected beam from lower frequency absorption bands, due to

zeolite framework stretching modes. The overtones of the framework bands at

�1900 and 2000 cm�1 were used to normalise band intensities. Fig. 7 shows

spectra in the n(OH) region from the fresh catalyst dehydrated at 350 �C and from

the four used catalysts, in each case recorded at the temperature at which they

had been reacted.

Paper Faraday Discussions

This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 197, 447–471 | 459

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

4
 F

eb
ru

ar
y
 2

0
1
7
. 
D

o
w

n
lo

ad
ed

 o
n
 0

7
/0

6
/2

0
1
7
 0

9
:2

1
:0

9
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



The fresh catalyst shows three bands in this region: a strong band at 3595 cm�1

due to the Brønsted acid hydroxyl groups,27 a weaker band at 3740 cm�1 due to

silanol groups on the external surface of the zeolite28 and a weak shoulder at

�3650 cm�1, which has been previously assigned to AlOH groups associated with

extra-framework aluminium.29,30 The intensity of the 3595 cm�1 band and the

relatively small contribution from the AlOH band conrms that the HZSM-5

catalyst contains a high concentration of Brønsted acid sites.

Fig. 7 Infrared spectra in the n(O–H) region of (a) fresh catalyst; (b) catalyst after reaction

at 200 �C for 1 h; (c) catalyst after reaction at 350 �C for 1 h; (d) catalyst after reaction at

350 �C for 3 days; (e) catalyst after reaction at 400 �C for 3 days. All spectra were recorded

in flowing He at the temperature indicated.
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Aer reaction with methanol at 200 �C for 1 hour, the spectrum (measured at

200 �C) shows almost complete removal of the Brønsted OH band (Fig. 7(b)). At

lower frequencies (not shown) this was replaced by an intense broad triplet of bands

at�3000 cm�1 (underlying the CH stretching bands discussed below),�2300 cm�1,

and �1700 cm�1. This pattern is characteristic of strongly hydrogen bonded

methanol and has been extensively discussed in the literature.31 The so-called ABC

triplet arises from resonant interactions between the n(OH) mode of the zeolite and

the overtone of the bending mode of the perturbed methanol hydroxyl.

The spectrum measured aer reaction at 350 �C for 1 hour and ushing in

helium at the same temperature gives a n(OH) spectrum comparable to that of the

fresh catalyst (Fig. 7(c)). Aer reaction at 350 �C for 3 days however, both the

Brønsted OH band and the external SiOH band are reduced in intensity, and the

AlOH band at 3650 cm�1 becomes more prominent (Fig. 7(d)). Aer 3 days of

reaction at 400 �C the AlOH band grows further, and the Brønsted OH band is

further reduced (Fig. 7(e)).

The loss of intensity in the Brønsted OH band at longer reaction times at

350 �C can have two causes. Firstly, methylation of the surface by methanol

replaces OH groups with methoxy groups (see below).32 Secondly, Brønsted OH

groups can also be lost through hydrolysis by steam produced as a product under

the reaction conditions30,33 and the relative increase in intensity of the AlOH band

at 3650 cm�1 indicates that some hydrolysis is also occurring here.

Fig. 8 shows the difference spectra in the CH stretching region of the used

catalysts (aer subtraction of the spectrum of the fresh catalyst). The catalyst

reacted at 200 �C (Fig. 8(a)) shows an envelope of at least 4 bands at 3003, 2970,

2955, and 2848 cm�1 superimposed on the A hydroxyl component of the

H-bonded methanol triplet. Three of these can be attributed to the CH stretching

vibrations of hydrogen bonded methanol (the degeneracy of the asymmetric CH

stretching mode is lied in the adsorbed state). The low temperature adsorption

of methanol in HZSM-5 was studied in detail by Mirth et al.34 They attributed the

3 CH stretching bands observed at 2993, 2958 and 2856 cm�1 to hydrogen bonded

protonated methanol, although as discussed more recently,35 the methanol is

unlikely to be protonated. Campbell et al. report CH frequencies of 3007, 2957 and

2853 cm�1 for hydrogen bonded methanol.35 The remaining CH band in Fig. 8(a)

at 2970 cm�1 is close to that assigned by several groups to the asymmetric stretch

of surface methoxy groups.29,32,33,35,36 The corresponding symmetric stretch at

about 2868 cm�1 is hidden by the stronger 2848 cm�1 symmetric stretch of

hydrogen bonded methanol. We conclude that the catalyst reacted at 200 �C for

1 hour contains both hydrogen bonded methanol and methoxy groups.

The infrared spectrum of the catalyst reacted at 350 �C for 1 hour contains no

evidence of hydrogen bonded methanol. The Brønsted OH band is close to its

original intensity, and the CH stretching region (Fig. 8(b)) shows, in addition to

small contributions from methoxy groups at 2970 and 2870 cm�1, a weak peak at

2920 cm�1. The 2920 cm�1 band persists and becomesmore intense in the catalyst

reacted at 350 �C for 3 days (Fig. 8(c)). This spectrum also contains a stronger

contribution from the methoxy groups (2970 and 2870 cm�1) and an intense,

broader band at 3120 cm�1. Palumbo et al., in their study of HZSM-5 heated in

static methanol vapour at elevated temperatures, attribute a band at �3100 cm�1

to aromatic CH stretching vibrations of adsorbed methylaromatic species.37 They

supported this assignment through the observation of bands in the C–C stretching
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region (1500–1700 cm�1), which are not accessible in the diffuse reectance

spectra measured in the present work. The dominant band at �2920 cm�1 is

assigned to methyl groups bonded to aromatic rings; for example durene

(1,2,4,5-tetramethylbenzene) has a major CH stretching band at 2930 cm�1.38

The spectrum in the CH stretching region of the catalyst reacted at 400 �C for

three days (Fig. 8(d)) shows some interesting differences from that of the 350 �C

catalyst. The aromatic CH stretching band at 3120 cm�1 is greatly reduced in

intensity, and there are some shis in the aliphatic CH stretching prole below

3000 cm�1. In particular, the 2970 and 2870 cm�1 bands of surfacemethoxy groups

are lost, the 2920 cm�1 remains, and a new band appears at 2860 cm�1. Detailed

discussion of these bands is not warranted, given the complexity of the system, but

the reduction in the aromatic CH stretching band does imply a greater degree of

methylation of the aromatic rings present in the catalyst at this temperature.

Fig. 8 Infrared difference spectra in the n(C–H) region for the catalyst following reaction

with methanol at (a) 200 �C for 1 h; (b) 350 �C for 1 h; (c) 350 �C for 3 days; (d) 400 �C for 3

days. Spectra measured in flowing He at the temperature indicated.
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3.5 Inelastic neutron scattering (INS)

As mentioned in Section 2.3, spectra are presented using two direct geometry

spectrometers: MERLIN emphasizes sensitivity and MAPS offers superior

resolution.

3.5.1 Sample 1. Fig. 9 presents the INS spectra of the clean, activated ZSM-5.

Fig. 9(a) shows the region of the vibrational spectrum corresponding to (O–H) and

(C–H) stretching modes, with only a single peak observed at 3515 cm�1 that is

assigned to internal hydroxyl groups. The external silanol group population

detectable by IR spectroscopy (Fig. 7(a)) is not discernible in Fig. 9(a). Lower

energy transitions are evident in Fig. 9(b). A broad peak in the MERLIN spectrum

at 1140 cm�1 is assigned to an (O–H) bend; in the MAPS spectrum this is further

resolved to peaks at 1179 and 1124 cm�1. Weaker peaks are seen at 819 and

436 cm�1, that are also thought to be hydroxyl deformations, possibly from

a second type of hydroxyl group, as seen in the IR spectrum.

3.5.2 Sample 2. The INS spectrum for the 1 h 200 �C sample (sample 2) is

shown in Fig. 10. Two intense peaks are seen in the higher energy scan, a n(C–H)

Fig. 9 INS spectra (MERLIN (blue) and MAPS (red) spectrometers) of clean, activated ZSM-

5 (sample 1). (a) Spectral region 4000–2800 cm�1, recorded with an incident energy of

5244 cm�1; (b) spectral region 1800–0 cm�1, recorded with incident energies of 2017 and

807 cm�1.
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mode at 3065 cm�1 and a d(C–H) mode at 1478 cm�1. The infrared spectrum

(Section 3.3) indicates that the sample comprises a mixture of methoxy and

hydrogen-bonded methanol. The INS spectrum is consistent with this analysis.

The zeolite O–H stretch at 3515 cm�1 has downshied and comprises part of the

long, broad tail above 3200 cm�1 that also includes the methanol O–H stretch.

The methanol C–O–H bending mode contributes to the band at�800 cm�1 that is

also assigned to a framework hydroxyl deformation. The methoxy and methanol

C–H stretch, bend, and rock modes are close in energy and are not resolvable

on this instrument, thus both species contribute to the modes at 3065, 1470 and

1180 cm�1 modes.12 The adsorbed methoxy species is formed by reaction with the

Brønsted sites, eqn (1), with the water produced being swept out away from the

reaction zone by the He carrier gas.

M–O–H + HOCH3/ M–O–CH3 + H2O. (1)

Themedium energy scan resolves a methyl rocking mode at 1172 cm�1 from the

more intense d(C–H) mode.39 In fact, the methyl rock appears to be split into two

components: a band head at 1172 cm�1 and a high energy shoulder at 1247 cm�1.

This splitting could indicate that either the local symmetry is highly distorted from

C3v, or there are two distinct methoxy populations present, perhaps originating

from different hydroxyls. It is noted that Fig. 10 shows no evidence for a methyl

torsion that is typically located at about 80 cm�1.39 However, the resolution of

MERLIN is insufficient to resolve this from the elastic line with Ei ¼ 1210 cm�1,

thus its absence in Fig. 10 does not negate the presence of methyl groups.

3.5.3 Sample 3. The INS spectrum of sample 3 (1 h, 350 �C) is shown in Fig. 11

that includes the presentation of a difference spectrum, a useful means of

accounting for what hydrogenous modes have been retained by the catalyst on

Fig. 10 INS spectra (MERLIN spectrometer, 4500–0 cm�1) of the ZSM-5 catalyst after 1 h

of reaction at 200 �C (sample 2). Spectra were recorded with incident energies of 5244,

2017 and 1210 cm�1.
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reaction. There is a small increase in a n(O–H) mode at 3690 cm�1 and a most

noticeable increase in a n(C–H) mode centred at 3038 cm�1. The intensity of this

latter feature indicates a signicant degree of hydrocarbon retention even for

a short period of time-on-stream. The band head energy indicates this hydro-

carbonaceous moiety to be olenic/aromatic in nature, i.e. C(sp2)H. Compared to

the IR spectrum (Fig. 8(b)), the INS spectrum exhibits different intensities for

n(C–H). In both IR and INS spectroscopies, the intensity is directly proportional to

the number of oscillators present, however, in the IR the intensity is weighted by

the extinction coefficient, which is a molecular property, so it is different for

Fig. 11 INS spectra (MERLIN spectrometer) of the ZSM-5 catalyst after 1 h of reaction at

350 �C (sample 3): (a) spectral region 4500–2000 cm�1, recorded with an incident energy

of 5244 cm�1; (b) spectral region 1800–600 cm�1, recorded with an incident energy of

2017 cm�1. In both (a) and (b) the blue plot represents the post-reaction spectrum,

whereas the purple plot represents the difference spectrum [i.e. post-reaction spectrum

(sample 3) – spectrum of the clean catalyst (sample 1, black)].
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aliphatic C–H, aromatic C–H and hydroxyl O–H vibrations. In contrast, for INS the

weighting is by the amplitude of vibration, which in the harmonic approximation

is about the same for both C–H and O–H vibrations, so that the intensities directly

reect the number of oscillators present. Further work is required to better

understand the differences between the vibrational spectra of these materials

obtained via optical and neutron scattering methods.

Fig. 11(b) presents the deformation region of the spectrum. A small increase in

the d(O–H) mode at 1150 cm�1 is seen, alongside broad bands centred at about

1450 and 980 cm�1. The former is possibly a d(C–H) mode associated with

a population of aliphatic species that could be associated with the low energy tail

of the intense feature seen in Fig. 11(a) at 3008 cm�1. The 980 cm�1 feature is

thought to represent an olenic wag.40

3.5.4 Sample 4. The spectrum for sample 4 (3 days, 350 �C) is presented in

Fig. 12. For the stretching region, Fig. 12(a), the n(O–H) feature is observed at

3603 cm�1. In the (C–H) stretching region, peaks at 2998 and 3090 cm�1 are seen,

indicating a co-existence of sp2 and sp3 hybridised C–H bonds, which is consis-

tent with the IR data (Fig. 8(c)). The INS relative intensities of the C(sp3)–H and

Fig. 12 INS spectra (MERLIN (blue) and MAPS (red) spectrometers) of the ZSM-5 catalyst

after 3 days of reaction at 350 �C (sample 4): (a) spectral region 4000–2000 cm�1,

recorded with an incident energy of 5244 cm�1; (b) spectral region 1800–800 cm�1,

recorded with an incident energy of 2017 cm�1.
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C(sp2)–H modes are approximately equal, implying equal numbers of each. It is

noted that this is inconsistent with the presence of only polymethylated

aromatics, which should have a larger number of aliphatic C–H moieties.

In the deformation region, Fig. 12(b), there are peaks at 1639, 1460, 1390, and

1190, and a broad feature at 800–1100 cm�1 (with a maximum at 1000 cm�1).

Although the 1190 cm�1 band coincides with a hydroxyl bending mode as

observed in Fig. 9(b), given the intensity of the n(C–H) mode in Fig. 12(a), the

1190 cm�1 peak is assigned to a C–H mode. The obvious assignment is that the

1460, 1390, and 1190 cm�1 modes are the methyl asymmetric bend, symmetric

bend, and rock, respectively. This assignment would require a strong methyl

torsion mode below 250 cm�1, but further spectral acquisition is required to

discern the presence or absence of this diagnostically signicant mode. It is also

unusual to see the asymmetric and symmetric bending modes resolved (1460 and

1390 cm�1); for chemisorbed methoxy, only a single broad peak is observed.39 The

simplest (but certainly not totally satisfactory) assignment is that all the peaks are

due to coupled aromatic C–C stretch and C–H bend modes. This possibility

requires further investigation.

3.5.5 Sample 5. The spectrum for the 3 days at 400 �C sample is presented in

Fig. 13. The n(O–H) mode is seen at 3665 cm�1; this represents a shi to a higher

wavenumber upon extent of reaction, possibly indicating a reduced degree of

hydrogen bonding. A strong n(C–H) feature is present at 3094 cm�1, with the peak

maximum implying a predominance of C(sp2)H species; the only indication for

the presence of C(sp3)H moieties is that the peak is asymmetric to the low energy

side.

In the deformation region, Fig. 13 shows some commonality with the 3 days at

350 �C spectrum (Fig. 12(b), (C–H) deformation modes at�1456 cm�1 andmethyl

rock at �1195 cm�1), except for the presence of three new features at 1090, 939

and 782 cm�1. These are thought to arise from aryl C–H wag vibrations. This

could include a contribution from naphthalenic species.40 As discussed with

sample 4, the splitting of the d(C–H) mode is thought to indicate the presence of

at least two species.

Fig. 13 INS spectra (MERLIN spectrometer) of the ZSM-5 catalyst after 3 days of reaction

at 400 �C (sample 5) for the spectral region 4000–500 cm�1, recorded with incident

energies of 5244 and 2017 cm�1.
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The original intention of examining a sample aer 3 days at 400 �C was to

induce coking reactions. However, despite exhibiting a reasonable TPO prole

albeit with a lower coke content than at 350 �C (Fig. 4, Table 2), visual inspection

of the sample post-reaction indicates only mild coking at most (Section 3.2).

Indeed, as reported in Section 3.1, no deactivation was observed via in-line mass

spectrometry. Instead, the IR (Fig. 8(d)) and INS (Fig. 13) data suggest that the

progression from 350 to 400 �C has caused some modication to the form of the

hydrocarbonaceous material retained by the catalyst. It is possible that this

modication is connected to the different emphasis on reaction pathways as

a function of temperature, i.e. favouring the olenic pathway over the aromatic

one, as considered by Sun and co-workers.4 Certainly, in order to access

a substantial coking component, it will be necessary to examine more forcing

conditions in future experiments.

3.5.6 Retained hydrocarbonaceous moieties. Considering the INS spectra

together, a low reaction temperature (200 �C) has led to the formation of hydrogen

bonded methanol and methoxy species, reasonable intermediates for MTH

chemistry.5 The spectra for the higher temperature runs are not so readily

assignable and appear to be composed of a variety of hydrocarbonaceous species,

possibly over a range of sites. These spectra are the vibrational ngerprint of the

hydrocarbon pool and INS is able to establish some modication of these hydro-

carbonaceous species as a function of reaction temperature and time-on-stream.

Although INS provides a welcome new handle on the retained hydrogenous

population that are engaged in MTH chemistry over ZSM-5, thus far, there is

insufficient data to dene a precise role for how a hydrocarbon pool simulta-

neously facilitates the formation of olen and aromatic products. Nonetheless,

there are clearly opportunities for using INS to characterise the nature and

Fig. 14 A schematic representation of the principal chemical species identified as part of

this multi-technique investigation of the reaction of methanol over ZSM-5 at elevated

temperatures. The ‘tube’ is intended to indicate the internal surface of the zeolite. The

aliphatic, olefinic and aromatic species in the middle of the tube are representative

examples of the retained hydrocarbonaceous material revealed in the INS spectra.
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quantity of the retained hydrocarbonaceous material with respect to dened

process operations. For example, previously, the role of “coking” was considered

a key process but Fig. 10–13 provide clear evidence that the ‘coke’ has a substantial

hydrogen component, indicating that future studies should more correctly

consider a role for hydrocarbonaceous entities. Olsbye et al.'s highlighting of the

importance of “(hydro-)carbon residues” similarly endorses this awareness.5

Fig. 14 attempts to illustrate the interconnectivity between the species observed in

this study.

With reference to Fig. 14, it is proposed that INS is a most appropriate probe to

be added to the armoury of techniques used to explore the intricacies of MTH

chemistry.

4. Concluding remarks

A multi-technique approach using a combination of reaction testing (mass

spectrometry and GC-MS), TPO, EPR, IR and INS has been used to examine the

methanol-to-hydrocarbon reaction using a commercial grade ZSM-5 catalyst over

a range of conditions, varying from constrained reaction at 200 �C, steady-state

operation at 350 �C, and an attempt at accelerated ageing via reaction at 400 �C.

The following conclusions can be drawn.

� The reaction prole for the reaction at 350 �C indicates that methanol dosing

leads initially to the formation of dimethyl ether. It is assumed that this forms

from the dimerization of chemisorbed methoxy species. Dimethyl ether appears

to be a precursor to the simultaneous production of olenic and aromatic

products. The aromatics are typied by methylated benzenes and naphthalenes.

� TPOmeasurements indicate that an extended time-on-stream at 350 �C leads

to a signicant population of retained carbonaceous material that is strongly

bound to the catalyst.

� EPR measurements indicate that continued reaction leads to an accumula-

tion of undened aromatic radical cations of low spin density.

� Infrared measurements have provided information on catalyst hydroxyl

groups and the retention of hydrocarbonaceous species as the reaction proceeds,

conrming the co-existence of sp2 and sp3 hybridised C–H entities for reaction at

elevated temperatures.

� INS measurements provide vital information on how hydrogen partitions

within the catalyst matrix as the reaction proceeds. For reaction at 200 �C, the co-

existence of hydrogen bonded methanol and methoxy species, as evidenced by IR,

is conrmed. The INS spectrum of the catalyst aer 3 days of operation at 350 �C

indicates the presence of sp2 and sp3 hybridised C–H species. However, no

discrete molecular assignment for the retained hydrocarbonaceous species is

possible as yet, indicating the complexity of the composition of the hydrocarbon

pool. Increasing the reaction temperature from 350 to 400 �Cmodies the form of

the retained hydrocarbon to possibly include napthalenic entities.
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